6366

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Bilinear Compressed Sensing Under Known
Signs via Convex Programming

Alireza Aghasi”, Ali Ahmed

Abstract—We consider the bilinear inverse problem of recov-
ering two vectors, © € R and w € R, from their entrywise
product. We consider the case where = and w have known signs
and are sparse with respect to known dictionaries of size K and
NN, respectively. Here, K and )N may be larger than, smaller than,
or equal to L. We introduce £;-BranchHull, which is a convex
program posed in the natural parameter space and does not require
an approximate solution or initialization in order to be stated or
solved. Under the assumptions that « and w satisfy a comparable-
effective-sparsity condition and are S - and S»-sparse with respect
to a random dictionary, we present a recovery guarantee in a
noisy case. We show that £;-BranchHull is robust to small dense
noise with high probability if the number of measurements sat-
isfy L > Q((S1 + S2) log?(K + N)). Numerical experiments
show that the scaling constant in the theorem is not too large.
We also introduce variants of £;-BranchHull for the purposes of
tolerating noise and outliers, and for the purpose of recovering
piecewise constant signals. We provide an ADMM implementation
of these variants and show they can extract piecewise constant
behavior from real images.

Index Terms—Inverse problems, deconvolution, blind source
separation, compressed sensing, optimization.

1. INTRODUCTION

E STUDY the problem of recovering two unknown
W vectors = and w in R” from observations

y=wozo(1+E), (1

where © denotes entrywise product and & € R’ is noise. Let
B c RY*K and C € R¥*N such that w = Bh and £ = Cm
with [[h[lp < Sy and ||m||o < S,. The bilinear inverse problem
(BIP) we consider is to find w and «, up to the inherent scaling
ambiguity, from y, B, C and sign (w).
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BIPs, in general, have many applications in signal process-
ing and machine learning and include fundamental practical
problems like phase retrieval [1]-[3], blind deconvolu-
tion [4]-[7], non-negative matrix factorization [8], [9], self-
calibration [10], blind source separation [11], dictionary learn-
ing [12], etc. These problems are in general challenging and
suffer from identifiability issues that make the solution set non-
unique and non-convex. A common identifiability issue, also
shared by the BIP in (1), is the scaling ambiguity. In particular,
if (w?, 2") solves a BIP, then so does (cw®, ¢ 'x?) for any
non-zero ¢ € R. In this article, we resolve this scaling ambiguity
by finding the point in the solution set closest to the origin with
respect to the /1 norm.

Another identifiability issue of the BIP in (1) is if (w?, %)
solves (1), then so does (1,w®® x%), where 1 is the vec-
tor of ones. In prior works like [4], this identifiability issue
is resolved by assuming the unknown signals live in known
subspaces. In contrast we resolve the identifiability issue by
assuming the signals are sparse with respect to known bases or
dictionaries. Natural choices for such bases include the standard
basis, the Discrete Cosine Transform (DCT) basis, and a wavelet
basis.

In addition to sparsity of the unknown vectors, w® and
x?, with respect to known dictionaries, we also require sign
information of w’ and . Knowing the signs of the these
unknown vectors is justified in many imaging applications,
where w? or 2% correspond to images and contain non-negative
pixel values. There are various problems in image/signal
processing and optics, where blind demodulation is employed
to recover or improve a desired signal:

1) In imaging applications, inspired by the Lambertian re-
flectance model, a well-know de-illumination technique
considers decomposing an image into the product of an
albedo pattern and a lighting map (e.g., see [13] or Section
9.2 of [14]). Multiplicative models also appear in image
dehazing applications [15]-[17], where the image visibil-
ity is improved by removing the unwanted haze from the
image.

2) In optical applications, and specifically terahertz time-
domain spectroscopy, blind demodulation is used to re-
move sweep distortions from the actual signal. Such dis-
tortions are normally caused by the depth variations or
the layered structure inter-reflections of the specimen [7].
We will highlight a stylized case of distortion removal
from real images in the numerical experiments presented
in Section III.
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Recovering signals with known signs from bilinear measure-
ments is also important in other structured inverse problems;
one such scenario is blind deconvolution from phaseless
measurements, which arises in visible light communications,
and other imaging context, and is considered in [18]. Here
one wants to recover signals by only observing the product of
their phase-less measurements. The known sign assumption is
naturally met in this context as the the problem can be reframed
as a bilinear recovery problem of positive-definite matrices.

In this article, we study a sparse bilinear inverse problem,
where the unknown vectors are sparse with respect to known
dictionaries. Similar sparse BIPs have been extensively studied
in the literature and are known to be challenging. In particular,
the best known algorithm for sparse BIPs that can provably
recovery h% and m/! require measurements that scale quadrat-
ically, up to log factors, with respect to the sparsity levels, S
and S5. Recent work on sparse rank-1 matrix recovery problem
in [19], which is motivated by considering the lifted version
of the sparse blind deconvolution problem, provides an exact
recovery guarantee of the sparse vectors h% and m/ that satisfy
a ‘peakiness’ condition, i.e. min{||h? |, [|m] o } > cforsome
absolute constant ¢ € R, using a non-convex approach. This
result holds with high probability for random measurements if
the number of measurements satisfy L > Q(S; + Sz), up to a
log factor. For general vectors that are not constrained to a class
of sparse vectors like those satisfying the peakiness condition,
the same work shows exact recovery is possible if the number
of measurements satisfy L > €(.5152), up to a log factor.

The main contribution of the present article is to introduce
a convex program in the natural parameter space for the sparse
BIP described in (1) and show that it can stably recover sparse
vectors, up to the global scaling ambiguity, provided they sat-
isfy a comparable-effective-sparsity condition. Precisely, we
say the sparse vectors h% and m? are p-comparable-effective-
sparse, for some p > 1, if there exists an o € R that satisfies
max(a, 1/a) < p and

LS TPR ol
B =« B .
(L8 P g

@)

Note that the ratio of the ¢; to ¢ norm of a vector is an
approximate notion of the square root of the sparsity of a vector.
Additionally, we assume the noise in (1) does not change the sign
of the measurements. Specifically, we consider noise & € R”
such that

&> —1forallt=1,...,L. 3)

Under the assumptions that the sparse vectors satisfy (2) and
the noise is small as in (3), we show that the convex program
stably recovers the unknown vectors, up to the global scaling
ambiguity, with high probability provided B and C' are random
and the number measurements satisfy L > (S + S2), up to
log factors. Similar to the result in [19], this results has optimal
sample complexity, up to log factors, for a class of sparse signals,
namely those with comparable sparsity levels.
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(a) Convex relaxation

Fig. 1. Panel (a) shows the convex hull of the relevant branch of a hyperbola
given a measurement yy and the sign information sign (wy ). Panel (b) shows the
interaction between the 1 -ball in the objective of (4) with its feasibility set. The
feasibility set is ‘pointy” along a hyperbola corresponding the scaling ambiguity,
which allows for signal recovery where the /1 ball touches this hyperbola.

A. Convex Program and Main Results

We introduce a convex program written in the natural pa-
rameter space for the bilinear inverse problem described in (1).
Let (b, m?) € RX x RN with ||h%||o < S; and [|m!o < Ss.
Letw, = b, h', zy = ¢;mPand y, = b, h* - ¢/ m! - (1 + &),
where b, and c, are the (th row of B and C, respectively,
and &, is the ¢th entry of £. Also, let s =sign(y) and t =
sign(w) = sign(th). The convex program we consider to
recover (h?, m?) is the ¢;-BranchHull program

¢;-BH:  minimize ||h|j; + ||m]:
heRE mecRN

subject to s;(b, he, m) > |y
tebyh >0, £=1,2,...,L. (4

The motivation for the feasible set in program (4) follows from
the observation that each measurement y, = wy - x, defines a
hyperbola in R2. As shown in Fig. 1(a), the sign information
ty = sign(wy) restricts (wyg, ) to one of the branches of the
hyperbola. The feasible set in (4) corresponds to the convex hull
of particular branches of the hyperbola for each y,. This also
implies that the feasible set is convex as it is the intersection of
L convex sets.

The objective function iI} (4) is an EL minimization over
(h,m) that finds a point (h, ) with ||h||; = ||m||;.! Geo-
metrically, this happens as the solution lies at the intersection
of the ¢1-ball and the hyperbolic curve (constraint) as shown in
Fig. 1(b). So, the minimizer of (4) in the noiseless case, under
successful recovery, is

b )

We now present our main result which states that the ¢;-
BranchHull program (4) stably recovers w and «, up to the
global scaling ambiguity, in the presence of small dense noise.
We show that if w and  live in random subspaces with h" and

1f (h, m) is feasible, then so is (ch, m) for ¢ > 0. The value of c that
minimizes [|ch|[1 + || 2m|; is such that both terms have equal ¢; norm.
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m containing at most .S and S, non zero entries, h?and m! sat-
isfy comparable-effective-sparsity condition (2), the noise £ sat-
isfy (3), and there are at least Q((S; + S2) log?(K + N)) num-
ber of measurements, then the minimizer of the /;-BranchHull
program is close to the bilinear ambiguity set {(ch, ¢ 17i)|c >
0} with high probability. Moreover, in the noiseless case, the
minimizer of the /;-BranchHull is the point on this bilinear
ambiguity set with equal £; norm with high probability, i.e. the
minimizer is (h, m) with high probability.

Theorem 1. (Noisy recovery): Fix p > 1. Fix (hh, mh) €
RE+N that are p-comparable-effective-sparse as defined in
(2) with h% # 0, ||h%||o < S; and m* # 0, |m¥||o < S,. Let
B € RK and C € RE*N have ii.d. M0, 1) entries. Lety €
R contain measurements that satisfy (1) with noise £ € R”
satisfying (3). If L > C,,(v/S1 + Sz log(K + N) + t)? for any
t > 0 then the ¢1-BranchHull program (4) recovers (fl7 ) that
satisfies

H(ﬁ, m) — (cfz,c’lﬁz)H
(ch, c~1rn)|2

2 <37V]I€]lx

min

c>0
with probability atleast 1 — e~tL. Here, C), and ¢; are constants
that depend quadratically on p and ¢, respectively. Furthermore,
(h,m) = (h,m)if&=0.

Theorem 1 shows that exact recovery, up to the global scal-
ing ambiguity, of sparse vectors that satisfy the comparable-
effective-sparsity condition is possible if the number of measure-
ments satisfy L > Q((S; + S2)log?(K + N)). This result is
optimal, up to the log factors. Numerical simulation on synthetic
data verify Theorem 1 in the noiseless case and show that the
constant in the sample complexity is not too large. We also
present the results of numerical simulation on two real images
which shows that a total variation reformulation of the convex
program (4) can successfully recover the piecewise constant part
of an otherwise distorted image.

B. Prior Art for Bilinear Inverse Problems

Recent approaches to solving bilinear inverse problems like
blind deconvolution and phase retrieval include lifting the prob-
lems into a low rank matrix recovery task or to formulate a
convex Or non-convex optimization programs in the natural
parameter space. Lifting transforms the problem of recover-
ing h € RE and m € RY from bilinear measurements to the
problem of recovering a low rank matrix hm' from linear
measurements. The low rank matrix can then be recovered using
a semidefinite program. The result in [4] for blind deconvolution
showed that if h and m are coefficients of the target signals with
respect to Fourier and Gaussian bases, respectively, then the
lifting method successfully recovers the low rank matrix. The
recovery occurs with high probability under near optimal sample
complexity. Unfortunately, solving the semidefinite program is
prohibitively computationally expensive because they operate
in high-dimension space. Also, it is not clear whether or not it
is possible to enforce additional structure like sparsity of h and
m in the lifted formulation in a way that allows optimal sample
complexity [20], [21].

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

In comparison to the lifting approach for blind deconvolution
and phase retrieval, methods that formulate an algorithm in the
natural parameter space, such as alternating minimization and
gradient descent based method, are computationally efficient
and also enjoy rigorous recovery guarantees under optimal or
near optimal sample complexity [19], [22]-[25]. The work
in [19] for sparse blind deconvolution is based on alternating
minimization. In the article, the authors use an alternating
minimization that successively approximate the sparse vectors
while enforcing the low rank property of the lifted matrix.
However, because these methods are non-convex, convergence
to the global optimal requires a good initialization [22], [26],
[27].

Other approaches that operate in the natural parameter space
include PhaseMax [28], [29] and BranchHull [30]. PhaseMax is
a linear program which has been proven to find the target signal
in phase retrieval under optimal sample complexity if a good
anchor vector is available. As with alternating minimization and
gradient descent based approach, PhaseMax requires a good
initializer to even be stated. In PhaseMax the initialization is
part of the objective function but in alternating minimization the
initialization is part of the algorithmic implementation. Branch-
Hull is a convex program which solves the BIP described in (1)
in the dense signal case under optimal sample complexity. Like
the ¢1-BranchHull presented in this article, BranchHull does not
require an initialization but does require the sign information of
the signals.

The ¢;-BranchHull program (4) combines strengths of both
the lifting method and the gradient descent based method.
Specifically, the ¢;-BranchHull program is a convex program
that operates in the natural parameter space, without a need for
an initialization. These strengths are achieved at the cost of the
sign information of the target signals w and «, which can be
justified in imaging applications where the goal might be to
recover pixel values of a target image, which are non-negative.

C. Discussion and Extensions

The ¢;-BranchHull formulation is inspired by the BrachHull
formation introduced in [30], which is a novel convex relaxation
for the bilinear recovery of the entrywise product of vectors with
known signs, and share many of its advantages and drawbacks.
Like in BranchHull, ¢;-BranchHull finds a point in the convex
feasibility set that is closest to the origin. The important differ-
ence between these formulations is that BranchHull finds the
point with the least /5 norm while ¢;-BranchHull finds the point
with the least /;-norm. Another difference is that BranchHull
enjoys recovery guarantee when those vectors belong to random
real subspaces while ¢;-BranchHull enjoys recovery guarantee
under a much weaker condition of those vectors admitting a
sparse representation with respect to known dictionaries.

Similar to BranchHull, /;-BranchHull is a flexible and can
be altered to tolerate large outliers. In this article, we show that
the ¢;-BranchHull formulation is stable to small dense noise
and extend the work presented in [31] for the noiseless case.
However, as stated formulation (4) is not robust to outliers. This
is because the formulations is particularly susceptible to noise
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that changes the sign of even a single measurement. For the
bilinear inverse problem as described in (1) with small dense
noise and arbitrary outliers, we propose the following robust
¢1-BranchHull program by adding a slack variable.

minimize
eRKE meRN ¢ge

¢-RBH: gollBll =+ llmlly + Allg]l

subject to  sg(c, m + &)b, h > |yq|,
teb)h >0, €=1,...,L.  (6)

For measurements y, with incorrect sign, the corresponding
slack variables &, shifts the feasible set so that the target signal
is feasible. In the outlier case, the /1 penalty promotes sparsity
of slack variable £. We implement a slight variation of the above
program to remove distortions from an otherwise piecewise
constant signal. In the case where w = Bh? is a piecewise
constant signal, z = C'm/ is a distortion signal and y = w ® x
is the distorted signal, the total variation version (7) of the robust
BranchHull program (6), under successful recovery, produces
the piecewise constant signal Bh', up to a scaling.

TV BH : minimize TV (Bh) + ||m|1 + A[[€]lx

heRE meRN ¢cR
subject to s¢(&, 4+ ¢, m)b, h > |y|
tebyh >0, €=1,2,...,L. (7

In(7), TV(-) is a total variation operator and is the ¢; norm of the
vector containing pairwise difference of neighboring elements
of the target signal Bh. We implement (7) to remove distortions
from images in Section I1I and leave detailed theoretical analysis
of robust ¢; BranchHull (6) and its variant (7) to future work. It
would also be interesting to develop convex relaxations in the
natural parameter space that do not require sign information and
to extend the analysis to the case when the phases of complex
vectors are known and to the case of deterministic dictionaries
instead of random dictionaries. All of these directions are left
for future research.

D. Organization of the Article

The remainder of the article is organized as follows. In Sec-
tion I-E, we present notations used throughout the article. In
Section II, we present an Alternating Direction of Multipli-
ers implementation of robust /;-BranchHull program (6). In
Section III, we observe the performance of ¢;-BranchHull on
synthetic random data and natural images. In Section IV, we
present the proof of Theorem 1.

E. Notation

Vectors and matrices are written with boldface, while scalars
and entries of vectors are written in plain font. For example, ¢,
is the (the entry of the vector c. We write 1 as the vector of all
ones with dimensionality appropriate for the context. We write
Iy asthe N x N identity matrix. For any z € R, let (z)_ € Z
suchthatz — 1 < (z)_ < x. For any matrix A, let || A|| r be the
Frobenius norm of A. For any vector , let |||y be the number
of non-zero entries in z. For z € RX andy € RY, (z,y) is the
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corresponding vector in R x RN, and ((x1,y,), (T2, y5)) =
(x1,z2) + (Y1, ¥ys). Foraset A C R™, and a vector a € R™,
we define by a @ A, a set obtained by adding a to every element

of A.

II. ALGORITHM

In this section, we present an Alternating Direction Method
of Multipliers (ADMM) implementation of an extension of the
robust /1 -BranchHull program (6). The use of ADMM in signal
processing and machine learning applications is motivated by
several features that it offers, including distributability, robust-
ness, speed and ease of implementation [32]. As we see, using
an ADMM framework allows carrying out the optimization
by a chain of low cost and easy-to-implement operations. The
ADMM implementation of the ¢;-BranchHull program (4) is
similar to the ADMM implementation of (8) and we leave it to
the readers. The extension of the robust ¢; -BranchHull program
we consider is

minimize

pegitinimize . PRy + [lm|[1 + A€l

subject to s¢(& + ¢, m)b, h > |y,
tebyh >0, £=1,2,...,L, 8)

where P € R7*X_ The above extension reduces to the robust
(1-BranchHull program if P = Ix. Recalling that w = Bh
and * = Cm, we form the block diagonal matrices E =
diag(C, B,\"'I) and Q = diag(Iy, P, I1) and define the
vectors

x m
u=|w]|, v=|h
13 Ag

Using this notation, our convex program can be compactly
written as

minimize |Qul||: subjectto u = Ev, u€C.
VERNFKHL gy cR3 L

Here C = {(z,w,&) € R*"| s4(& + wo)we > |yel, towe >
0, £ =1,..., L} is the convex feasible set of (8). Introducing a
new variable z the resulting convex program can be written as

minimize ||z|; subjectto u = FEv, Qv =2z, u€C.
v,z

We may now form the scaled ADMM through the following
steps

Up41 = arg min L |u+ ap — Bog? 9)
ucC 2
zrer =argmin |21+ 22+ 8, - Quil®  (10)
_ P 2
Vi1 = argmin o ey + wpy1 — Evl|
+ 218y + 2141 - Qul?, an

which are followed by the dual updates

ap = o+ uppr — Bvgyg,
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Bri1 = Br + Vit1 — QUiy1.

We would like to note that the first three steps of the proposed
ADMM scheme can be presented in closed form. The update in
(9) is the following projection

Up41 = proje (Bvg — ay),

where proj.(v) is the projection of v onto C. Details of comput-
ing the projection onto C are presented in Section II-A. The
update in (10) can be written in terms of the soft-threshold
operator

zp+1 = S1/, (Qui — By)
where for ¢ > 0,

Zi—cC z;>¢C
(Sc(2)); =4 0

Zit+c z; < —c

lzi] < ¢,

and (S.(z)); is the ith entry of S.(z). Finally, the update in (11)
takes the following form
-1
v = (E'E+Q'Q)
(.ET (ak + 'U/]g+1) + QT(,Bk + Zk+1)) .

In our implementation of the ADMM scheme, we initialize the
algorithm with the vo = 0, ag = 0, By = 0.

A. Evaluation of the Projection Operator
Given a point (z/,w, ¢') € R3 £, in this section we focus on
deriving a closed-form expression for proj.((z', w,’' ¢')), where
C = {(z,w,&) € R**| 54(& + ze)we > |y,
tywg >0, 0=1,...,L}
is the convex feasible set of (8). It is straightforward to see

that the resulting projection program decouples into L convex
programs in R as

/
arg _ min w] = [ w
zeR,weR,écR - 2 ¢ ¢

£ 2

subject to |ye| — spzw — spw <0, —tyw < 0. (12)

Throughout this derivation we assume that |y,| > 0 (derivation

of the projection for the case yy is easy) and as a result of which

the second constraint —¢,w < 0 is never active (because then

w = 0 and the first constraint requires that |y,| < 0). We also

consistently use the fact that ¢, and s, are signs and nonzero.
Forming the Lagrangian as

2

) x x
‘C(wiaghuhp@):i w - U}%
e) \&/l,

+ w1 (|ye| — serw — s€w) — pa (tew) .

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Along with the primal constraints, the KKT optimality condi-
tions are

oL
e :a:fx%fulsngo, (13)
oL
7w =w —wy — pr15ex — fr15e§ — pate =0, (14
oL
€ =&—& —msw=0, (15)
w1 >0,y (lye] — sexw — spw) =0,  (16)
2 > O, 125 (tg’LU) =0. (17)

We now proceed with the possible cases.

Case 1. 11 = po = 0:

In this case we have (2, w,§) = (2}, w),&)) and this result
would only be acceptable when |y¢| — seajw), — s&wy, <0
and tew), > 0.

Case 2. ;1 =0, tyw = 0:

In this case the first feasibility constraint of (12) requires that
lye| < 0, which is not possible when |y,| > 0.

Case 3. |y¢| — spzw — spw = 0, tyw = 0:

Similar to the previous case, this cannot happen when |y,| >
0.

Case 4. jio = 0, |yo| — spzw — spw = 0:

In this case we have

lye| = serw + seéw.

Now combining this observation with (13) and (15) yields

|yel = s¢ (2 + pasew) w+ s¢ (& + psew)w, — (18)
and therefore
— sz, +&))w
= |yel éz( 52 &) . (19
w
Similarly, (14) yields
w = wy + p15¢ (Ty + prsew) + pase (& + pisew) . (20)

Knowing that w # 0, p1 can be eliminated between (18) and
(20) to generate the following forth order polynomial equation
in terms of w:

2w — 2wpw® + selyel (2 + &) w — y7 = 0.

After solving this 4-th order polynomial equation (e.g., the root
command in MATLAB) we pick the real root w which obeys

lye| — se (z) + &) w > 0. 21

Note that the second inequality in (21) warrants non-negative
values for 111 thanks to (19). After picking the right root, we can
explicitly obtain 4 using (20) and calculate the solutions « and
& using (13) and (15). Technically, in using the ADMM scheme
for each ¢ we solve a forth-order polynomial equation and find
the projection.

tow > 0,

III. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments on synthetic
random data and natural images where the signals follow the
model in (1). The first experiment shows a phase portrait that
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L =0.25(S; + S5) log*(N + K)

4 12 20 28 36 44 52 60 68 76 84 92 100108 116 124 132 140
L

Fig.2. The empirical recovery probability from synthetic data in the noiseless
case with sparsity level S as a function of total number of measurements L. Each
block correspond to the average from 10 independent trials. White blocks corre-
spond to successful recovery and black blocks correspond to unsuccessful recov-
ery. The area to the right of the line satisfies L > 0.25(S7 + S2) log?(N + K).

Relative error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
«, noise level

Fig.3. The mean and standard deviation of relative error from 20 independent
trials for different noise.

verifies Theorem 1 in the noiseless case. The second experiment
shows that ¢;-BranchHull program is robust to small dense
noise. The third experiment compares the performance of /1-
BranchHull and Sparse Power Factorization (SPF), introduced
in [19], in the noiseless and a noisy case. Lastly, we show that the
total variation version (7) of robust /1 -BranchHull program can
effectively remove distortion in real images. In these numerical
experiments, we solve (4) and (7) using an ADMM implemen-
tation, as detailed in Section II.

The measurement details for numerical experiments on syn-
thetic random data are as follows: fix N, K, L € Z_ and noise
level o € [0,1]. Let the target signal (h% m?) e RK x RN
be such that both h® and m? have S =0.05 N non-zero
entries with the non-zero indices randomly selected and set
to £1. Let B € REXKE C e RE*N | and € € R” such that
B;j ~N(0,1), Ci; ~NO0,1), and & ~ N(0,1). Lastly, let
y=Bh"OCm! o (1+ aﬁ) and t = sign(Bh?).

For the first experiment, fix N € {20,40,...,300}, L €

{4,8,...,140}, @ =0 and let K = N. Let (h,m) be the
output of the ¢1-BranchHull program (4) and let (ﬁ, ) be the
candidate minimizer defined in (5). For each trial, we say (4)
successfully recovers the target signal if || (h, ) — (R, 7)||2 <
1078, Fig. 2 shows the fraction of successful recoveries from
10 independent trials using (4) for the bilinear inverse problem
(1) from data as described above. Black squares correspond
to no successful recovery and white squares correspond to
100% successful recovery. The line corresponds to L = C'(S7 +
S5) log?(K + N) with C' = 0.25 and indicates that the sample
complexity constant in Theorem 1, in the noiseless case, is not
very large in practice.
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3 6
- SPF - SPF
25 — (1-BranchHull 5 — (1-BranchHull
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(a) Noiseless case, o = 0 (b) Noisy case, « = 0.1

Fig. 4. Panel (a) compares the performance of ¢;-BranchHull and the SPF
algorithm in the noiseless case. For different measurement ratios, relative error
from 20 independent trials are shown. Panel (b) shows the dependence of relative
error on the measurement ratio in a noisy case of o = 0.1.

For the second experiment, fix N = K = 100, L = 150, and
noise level avin {0, 0.02,0.04, . .., 0.8}. Fig. 3 shows the empir-
ical dependence of the relative error, with respect to the ¢-norm
from 20 independent trials. The line corresponds to the mean
relative error and the shaded region corresponds to the standard
deviation. The figure confirms that ¢;-BranchHull program (4)
is robust to small dense noise. For the third experiment, fix
N = K =100, L € {10,25,50,75,...,800}, and noise level
a =0 or 1. Figs. 4(a) and 4(b) show the relative error, with
respect to the Frobenius norm, from 20 independent trials us-
ing ¢1-BranchHull program (4) and the SPF algorithm in the
noiseless case and a noisy case. The SPF algorithm, introduced
in [19], is an alternating minimization based algorithm that
can estimate a rank-1 and sparse matrix X "= h'm®" from
noisy linear measurement. The measurement y € R* consid-
ered in [19]is y, = (X%, M) - (1 4 &), where M, € RE*N
are known L measurement matrices, £ is noise, and (-,-) is
the trace inner product operator. In the context of the bilin-
ear problem (1) considered in this article, these measurements
matrices are M, = bgcz. Fig. 4(a) shows that ¢;-BranchHull
can exactly recover the unknown signals in the noiseless case
with fewer number of measurements than the SPF algorithm.
Following the recovery trend in the noiseless case, Fig. 4(b)
shows that ¢;-BranchHull outperforms SPF in a noisy case as
well. This difference in performance is likely due to the fact
that ¢;-BranchHull is a convex program that is not sensitive
to improper initialization. Also, the ¢;-BranchHull program is
posed in the natural parameter space and is able to exploit the
rank-1 structure present in the measurement matrices M .

We now show the result of using the total variation BranchHull
program (7) to remove distortions from real images y € RP*9,
In the experiments, The observation y € R” is the column-wise
vectorization of the image y, the target signal w = Bh is the
vectorization of the piecewise constant image and x = C'm
corresponds to the distortions in the image. We use (7) to
recover piecewise constant target images like in the foreground
of Fig. 5(a) with TV(Bh) = |[DBh||;, where D = [g:} in
block form. Here, D,, € RE-D*L and D, € REPI*L with

—lifj:z'—I—(%)
1 ifj:z’+1+(;j> 7

0 otherwise

(Dy)ij =
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(a) Distorted image

(b) Recovered image

Fig. 5.
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(c) Distorted image

(d) Recovered image

Panel (a) shows an image of a mousepad with distortions and panel (b) is the piecewise constant image recovered using total variation /1 -BranchHull.

Similarly, panel (d) shows an image containing rice grains and panel (e) is the recovered image.

—lifj =1
1 ifj=i+p.
0 otherwise

(Dh)ij =

Lastly, we solve (7) using the ADMM algorithm detailed in
Section II with P = DB.

We use the total variation BranchHull program on two real
images. The first image, shown in Fig. 5(a), was captured using
a camera and resized to a 115 x 115 image. The measurement
y € RL is the vectorization of the image with L = 13225. Let
B be the L x L identity matrix. Let F' be the L x L inverse
DCT matrix. Let C € R¥*3%0 with the first column set to
1 and remaining columns randomly selected from columns
of F' without replacement. The matrix C' is scaled so that
|IC||F = ||B||r = VL. The vector of known sign ¢ is set to 1.
Let (h, 70, £) be the output of (7) with A = 103 and p = 10~ %.
Fig. 5(b) corresponds to Bh and shows that the object in the
center was successfully recovered.

The second real image, shown in Fig. 5(c), is an image of rice
grains. The size of the image is 128 x 128. The measurement
y € RL is the vectorization of the image with L = 16384. Let
B be the L x L identity matrix. Let C € R%*50 with the first
column set to 1. The remaining columns of C' are sampled
from Bessel function of the first kind J,(y) with each col-
umn corresponding to a fixed v € R. Specifically, fix g € R®
with g; = -9+ 14 £:11 For each remaining column ¢ of C,
fix ¢ ~ N0,15) and let¢; = Js+d7§\<1\+5\42\(0'1 +10|¢3]). The
matrix C is scaled so that ||C||r = || B||r = v/L. The vector
of known sign ¢ is set to 1. Let (fz, m, é) be the output of (7)
with A = 10® and p = 10~7. Fig. 5(d) corresponds to Bh.

IV. PROOF OUTLINE

In this section, we provide a proof of Theorem 1 by con-
sidering a program similar to ¢;-BrachHull program (4) with
a different representation of the constraint set. Let (wy, 4y) =
(b) h,c]mm), ap = (|niie| + ||)/2 and define a convex func-
tion

f(we,z0) = y(we, 2¢) <\/4|ye + (we — 8¢w)?

— to(we + 8@@)) (22)

(a) Shape of f(wg,zy) if ap <1 (b) Shape of f(wg,xy) if ap > 1

Fig. 6. Panels (a) and (b) shows the shape of the convex function f(wpg, z¢)
foray < 1and oy > 1, respectively. When ap < 1, f(wy, ) is differentiable
everywhere. When oy > 1, f(wyg, z¢) is not differentiable at (wg, zp) with
f(we,x¢) = 0.

where v, : R2 — R+ is a piecewise constant function such that

’7(w25 xf)

1, ifay>1and
= VAlyel + (we — sewe)? — te(we + sezg) <0 (23)
«y, otherwise.

In order to see that f is convex, we first note that the function
f(we,e) = \/Alye| + (we — sex0)? — te(we + sewe) is con-
vex. This is because the Hessian of f , given by
27 4 —Ye

V2 f(we, ) el & (w0 — 5020)7) 3 |ye|} ;
is positive semidefinite for all x¢,w,. So, in the case where
0<ar <1, flwe,xp) = agf(wg,xg) is convex. In the case
were « > 1, the function f(ws,zy) can be expressed as
max{ f(wg, x¢), ag f(we, z¢)}. Since, f is the point-wise max-
imum of two convex function, it itself is convex. Figs. 6(a) and
6(b) show typical f(wy, z,) foray < 1and ay > 1, respectively.

Let ff(hv m) = f(bzh‘v sz) with ’W(h, m) =
v(b, h,c; m). We note that f, : RE+N — R is also a convex
function because its epigraph is a convex set. The epigraph is

convex because it is the inverse image of a convex set over a
linear map. Define a one-sided loss function

|yel
—Ye

L(h,m) =1+ [fe(h,m)],
/=1

where [ - |4 denotes the positive side. We analyze the following
generalized version of the ¢;-BranchHull program:

¢1-GBH : minimize ||h|1 + ||m|1
heRE meRN
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subject to L(h,m) < 0. 24)
Program (24) is equivalent to the ¢;-BranchHull in the sense
that the objective and the constraint set of both the programs are
the same. Lemma 1 shows that the set defined by constraints
s¢(by he, m) > |yg| with t,;b) h >0 and the set defined by
constraints f;(h, m) < 0 are the same set.

Lemma 1: Fix (h®,m?) € RE+N such that h% # 0 and
m?#£0. Let Bc RFK, C c RN and € € RE. Let y €
R’ contain measurements that satisfy (1). The set {(h, m) €
RE+N : s54(b) he, m) > |y, teb, h > 0, £ € [L]}is equal to
the set {(h,m) € RE+N : £(h,m) < 0}.

Proof: Fix an ¢ € {1,...,L}. It is sufficient to show
that the set Sy :={(h,m) e RXTN :5,(b)hc/m) >
lyel, teby h >0} is equal to the set Sy :={(h,m)¢€
RE+N . f,(h,m) < 0}. Consider a (h, m) € Sy,1. We have

[yel < seby heym,

& 4lyel + (by h — sgegm)? < (by b+ spcym)?,

& \/4\ye| + (b, h — spc;m)? < ty(bf h+ spc; m),
(25)

< vo(h,m) (\/4|yg| + (b h — spc; m)?

—to(byh + sec}m)) <0, (26)

where (25) holds because tgblTh > 0and t(S[sz > 0and (26)
holds because v, (h, m) > 0. Thus, S¢.1 C Sp,2. Now, consider
a (h,m) € Sy 2. WL.O.G. assume y,(h, m) # 0. The reverse
implications above implies |y¢| < s¢b, he] m. Also, t,(b, h +
sec, m) > 0because 4|y,| + (b, h — sec, m)? > 0.1fb, h =
0, then t;b, h > 0.1f b, h # 0, then

.
teb] h <1 + 2™
b, h

) = ty(b, h + sgc; m) > 0.

So, tyb,h >0 because s;b, hc,m > |y,| implies (1+

szc;m

b;—h) > 0.Thus, Sy 2 C Sg,1 as well, which proves that Sy ; =
Si2 u

We will first show that if the noise £ in the problem state-
ment (1) satisfy & € [—1,0] for all £ € {1,..., L}, then the
{1-Generalized BranchHull program (24) recovers a point close
totheset {(ch, ¢ '7i)|c > 0}. We then extend the result to noise
that satisfy condition (3). Since the ¢;-Generalized BranchHull
program (24) and the /1 -BranchHull program (4) are equivalent,
the minimizer of /;-BranchHull program is then also close to the
set {(ch, ¢ 'mn)|c > 0}. Our strategy will be to show that for
any feasible perturbation (§h, dm) € RE+V the objective of
the ¢1-Generalized BranchHull program (24) strictly increases
outside a curved cylinder of radius r centered at the bilinear
ambiguity curve {(ch, c"*m)|c > 0}, where the radius depends
on the level of noise.
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The subgradient of the ¢;-norm at (h, i) is

lglles <1,
8||(h7ﬁl)||1 =49¢€ RK+N - dr, = Sign(hrh)7 ’
gr,, ~=sign(mr,,)

where [';,, and I',,, denote the support of non-zeros in fL, and m,
respectively. We first consider the following descent direction
that are orthogonal to the set A/ := span(—h, m)

m . {9, (8h,6m)) <0,
{(5h,5 yeN|: vg € (.10 }

- {(5h,6m) eN, : <th,75hFh> + <gFm75mFm> }

+[|(6hrs , dmre )[[1 <0
[[(6hre, dmre )1 < }
lgr,ur,, I2[|(6hr, , dmr,,)|l2

[(8hrs , dmre )|l < }
V Sl + S2||(5hrh7 6mF771,) |2
7)

- {(dh,ém) GNL:

= {(ah,(sm) eNL:

=:D

and show that descent direction from (h, 1) & A of large /5
norm is not feasible in (24). We do this by quantifying the
“width” of the set D through a Rademacher complexity, and
a probability that one of the subgradients of the constraint
functions lie in a certain half space. In the noiseless case, we
show that the solution of (24) is in the set (h, 1) & N. Since the
only point in the set (h, 712) & A consistent with the constraint
of (24) is (fL, ), the minimizer of (24), in the noiseless case,
is then (fL, ). In the noisy case, we use the boundedness of
the feasible directions from the line (h, 772) @& N along with the
observation that the feasible hyperbolic set diverges away from
(ﬁ, 1) ® N to conclude the solution of minimizer of (24) is
close to the bilinear ambiguity curve {(ch, ¢ 'ri)|c > 0}.
Recall that the constraint set of the ¢;-BranchHull (4) has
L hyperbolic constraints and L linear constraints. Let y =
Bh & Crin be the noiseless data. Using Lemma 1, each pair
of hyperbolic and linear constraint {(h,m) : s;b, hc, m >
|9¢|, teby b > 0} can be expressed as fy(h,m) < 0 where

fe(h,m) = ~v,(h,m) (\/4@@ + (b, h — spe, m)?

—to(byh + schm)> :

First we note that a subgradient of fy(h,m) at (h,rn) is
zy:= —s¢(c,mb, b, he)). To see this, recall that oy =
(|b; h| + |c) m|)/2 and let

gg(h, m) =y (\/4:1)g| + (b;h — Sgczm)Q

—ti(by b+ sw}m)) .

When ay <1, we have fg = gy because vy,(h,m) =y
by definition of (b, h,c, m) = y,(h,m) in (23). When
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g > 1, fy is non-differentiable at (h, m) where f;(h, m) = 0.
Fig. 6(b) shows the shape of fg when ay > 1. In this case,
we have fy(h, .m) = 0 and fe(h,m) = ge(h,m) for (h,m)
that satisfy f[(h m) <0. Thus, Vg (h,m)e 6fg(h m)

and —se(ce mbg by he)) € 8fi(h,m) if Vi(h,m)=
—s¢(c)mb] b, hce ). So, consider
895 " — spc, )by

—tyb
Bh Y

2\/4\yg| + ( b;h — s¢¢, 7 h)?2

— SgC[ )bg

— toby
bg h + Sece )

— b
Szce ) 0 _ tgbg
|te bz h + see, )|
— syc] )by — (b) h + s4c] )by
te(be h + Sgcg m)
b
= — SgC}T;’ng?

— spc, m)by — (b, h+ see, )by
tg(be h+ Sgce m)

where the second equality follows from the fact that |g,| =
Sy bﬁzc}fn, third and fourth equalities holds because tzbéTiL >
0 and tgszcem >0, and the last equality holds because
oy = t@(b( h + sec)m)/2. Similarly, we have 6“ (h,mh) =
—syb) hey and Vig(h, ) = —s¢(c, mb; b, hce ). Define
the Rademacher complexity of a set D C RE+T as

(hm)
ep)i=E sw 7 Zef (zoemm). @

where €1, ¢€9,...,er are iid Rademacher random variables in-
dependent of everything else. For a set D, the quantity €(D)
is a measure of width of D around the origin in terms of the
subgradients of the constraint functions. Our results also depend
on a probability p-(D), and a positive parameter 7 introduced
below

. h,m

be(D) = inf P ((ze ez =7). @9
Intuitively, p, (D) quantifies the size of D through the subgradi-
ent vector. For a small enough fixed parameter, a small value of
p-(D) means that the D is mainly invisible to the subgradient
vector.

We now state a lemma which shows that if the noise & is such
that

&p =0, forsome ¢ € {1,...,L}, and

& e[-1,0] forall £ € {1,...,L}, (30)
and the number of measurements L > ( for any ¢ >
0, then the solution of (24) is close to the bilinear ambiguity
curve {(ch, ¢ 'm)|c > 0}. The Proof of this lemma is based

2Q(D)+t‘r)
D)
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on small ball method developed in [33], [34] and further studied
in [35]-[37].

Lemma 2: Let D be the set of descent directions, already char-
acterized in (27), for which €(D), and p- (D) can be determined
using (28), and (29). Let the noise £ € R” be such that (30)

is satisfied. Choose L > (ZfiD)(gT)z for any ¢ > 0. Then the

solution (h,71) of the BH in (4) satisfies

(i) = (ch,c i) || < 36\/Ilallmla/TE]~

—2Lt?

for some > 0 with probability at least 1 — e . Furthermore,
(h, 1) = (h,m)if € = 0.

Proof: Without loss of generality, we analyze the /;-
Generalized BranchHull program (24). We note that (h, )
is feasible in (24) because the noise satisfy &, € [—1,0] for
all £e€{1,...,L}. We first control the set of feasible de-
scent direction (h, ém) € D from the set (h,7i) & N. Since
(0h,dm) is a feasible perturbation from a point (h*, m*) :=
(1 = B)h, (1 4 B)mn) for some 3 € R, we have from (24)

(€20)
fe(h" +6h,m* 4+ dm) <0

L(h* + oh,m" +dm) <0.

Note that because of (31),
for all ¢e€{1,...,L} since, by definition, L(h,m)=
+ S [fe(h,m)].  Thus, ~(h* + dh,m* +dm) in
fe(R* +5h,m* +dm) satisfies 0 <~ (h*+dh,m*+
dm) < 1. We now expand the loss function L(h,m) at
(h* + dh, m* + dm). Consider

[fe(h* 4 0h,m" 4 dm)]

- [w ( ((6F (B + 0) = secf (m + 5m))” + dsegie

1
+48g@g£[)§ — tg (b;(h* + (Sh) + sw}(m* + 5m)) >:|

+
> {w (\/4|Qg + (b;(h* + 6h) — see) (m* + 5m))2
—ty (b;(h* +d0h) + secZ(m* + 5m))
[—4Szng£]+)} (32)
+
> {fg(ﬁ — Bh + Sh, 1 + Brin + (5m)}+
— 27e\/ [—seGe&e] +
> [(ze, (=8h + 0h, i+ om)| = 2/[=sencel,
(33)
= [(z¢, (Oh, 6m))], — 24 /[—se8eEe] (34)

where in (32) we use sign(y,) = sign(,) along with the fact that
fora > 0 and b < 0 with a + b > 0, we have vVa +b > \/a —
v/=b and for a > 0 and b > 0, we have v/a + b > \/a. Also,
(33) holds because fy is convex with z, € 8fg(ﬁ, m)and0 <
< 1. Lastly, (34) holds because (z¢, (—h, 1)) = 0. Combining
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(31) and (34), we get

L
+ < %Z V196l

L
%Z [(ze, (6, 0m))]
=1 =1

I

IN

23" Vibd byl (VIET)

(=1

2\/IBRIs Ol (VIET)
2\[LIB|IAlIC s/ TET~
N

where (35) follows from Cauchy-Schwartz inequality and (36)
holds with probability 1 —e~°" because, by Corollary 5.35

L with probablhty 1—2e" 2 and ||C|| <

3\/f with probablllty 1—2e 2 as well. We now lower bound
I in (36). Let ¢4(s) := (s)+ — (s — t)+. Using the fact that
¥:(s) < (s)4, and that forevery o, t > 0,and s € R, 1),+(s) =
t1)a (%), we have

L

IN

(35)

IN

IN

Rz [[2]]2 (36)

in [

L
I> %Ziﬁfu(ah sm)|s ({2, (Oh, 6m)))

/=1
— |(5h,5m)l2 - L ZL:w ({ze 1))
=1
el 4| Y B (e i)
(=1

—Z (Ed)f ((=e remsmans )
v, (<ze»%>)>}

The proof mainly relies on lower bounding the right hand side
above uniformly over all (6h,dm) € D. To this end, define a
centered random process R (B, C') as follows

13- [ (e i)

=1
- (5h,5m)
r ( <zf’ T(ohm)lz > )} ;

and an application of bounded difference inequality [39] yields
that R(B, C) < ER(B, C) + t/v/L with probability at least
1 — e 2L Jtremains to evaluate E R (B, C), which after using

a simple symmetrization inequality [40] yields

(37

R(B,C):= sup

(6h,6m)eD

ER(B,C) < 2E

sup
(6h,0m)eD

(38)

L
(5h,5m)
T el ( <zf’ TRz > )
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where €1, €2, . . ., €, are independent Rademacher random vari-
ables. Using the fact that :(s) is a contraction: |¢;(aq) —
Ui (an)| < |ag — ag| for all ay, s € R, we have from the
Rademacher contraction inequality [41] that

Z€z¢r<<ze7 K(;S:T(:ln))J)

L
3 1 (6h,6m)
sup <z@, —m> . (39
(5h.6m)eD L g [(0h,0m)]2

sup
(5h, 5m)eD

<E

In addition, using the facts that t1(s > t) < 9.(s) it follows
_(0h,0m) (5h,6m)
By ({20 inimts ) 2 7B [1 ({20 rieimi) 2 7)]

5h 6m
(<Z‘f7 TR, 5m>uz> = T)

(40)
Plugging (40), and (39) in (37), we have
(5h,5m)
I 2 T“((Sh,(&m)HQP <<Z[, m> 2 T)
L
—||(6h, ém 2E sup 1) g ZZ,M
¢ M2 ( o T Z; < T(oR, 6m)H2>
i1
+ x/_f) 41)

Combining this with (36), we obtain the final result

[(5h, dm) |2 [TP (<z[, M> > T)

L
Sh,om) -
— <2E sup %ZE( <Z€a |‘(((;h’5m_)H2> + \t/—z) ]

(6h.6m)eD =

< 18/ [|Al2]l[|72]|2v/ €]l

Using the definitions in (28), and (29), we can write

|5k, 5m) (7o (D) — 2D

< 18\/ ||l llll7iallz /1€ ] -

2¢(D)+tr
N Tp- (D)
feasible descent direction from (h, 712) & A is bounded by

1(5h, 6m) |2 < 18v/ |||z || 2/T1€]l

with probability at least 1 — e~ “t”. Here ¢, is a constant that
depends quadratically on ¢. Since (6h, dm) € N, the inequal-

It is clear that choosing L > ( )2 implies the any

(42)

ity above only gives us an element, ((1 — 3o)h, (1 + Bo)7i) for
some By € R, of the set (h, M) & A obeys
(R, ) = (1 = B)h, (1 + B)ii) |2
< 18y/ [l llllrl2 V/TI€ ] (43)

That is, the solutions (h, 772) cannot waver too far away from
the line (h, 112) & N. We call this norm cylinder constraint as the
solution must lie within a cylinder, centered ataline (h, ) & N
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and of radius given by the r.h.s. of the equation (43). Equiva-
lently, adisplacement ((1 — 3)h h, (1 + B)m) of the ground truth
(h ) is sufficiently close to (h ). Using this fact together
with the fact that the feasible hyperbolic set diverges away from
the line (h, ) @ N for large displacement 3 and touches the
line at 3 = 0, we will conclude in the remaining proof that the
Euclidean distance between (h, ) and the bilinear ambiguity
curve corresponding to the ground truth (fz, ™) is bounded.

We first note that in the case when & = 0, equation (43)
implies that (F, 712) must be on the line (h, m) & N, . Since the
only element in the line (h, ) & N that is feasible is (F, 772),
we conclude that in the noiseless case (h,m) = (h, ).

Now, we use the fact that the noise £ is such that & € [—1, 0]
for every ¢ € [m], and there exists an ¢’ € [m] such that § =
0. Trivially, the minimizer (h, 1) must lie somewhere in the
feasible set specified by the ¢’ constraint: sign(y,)b, he)m >
lye| and tpb,h > 0. Define the boundary B of the feasible set
as follows

B:={(h,m):byhc;m =y, tyb,h >0}.  (44)
The line (h, 712) & A\ only touches the feasible set Bat (h, 7).
For a fixed displacement 3 € R from (h, ), define a segment

of the norm cylinder in (43) as
I(h,m) — h, (1+ B)m |2}

Cs:= :
- { < 18y/ ||h|| ||\|m \/_Hsn;
(45)

Clearly, there exists a By such that (il, m) € Cg,. Moreover,
there exist a ¢ > 0 such that (cﬂ, %fn) € Cg,. This is because
(h.,7n) must live in the convex hull of the set 3 and the bilinear
ambiguity curve corresponding to (ﬁ7 1) is in the set B. Since
the distance between any two points in a cross-section of a
cylinder is at most twice the radius of the cylinder, we have

(R, ) = (ch, )2 < 361/ [|Alj2[l]llav/[€]l«  (46)

for some ¢ > 0.
We now compute the Rademacher complexity €(D) defined
in (28) of the set of descent directions D defined in (27).
Lemma 3: Fix (h*,m!) ¢ RE*N Let B € RF*K and C ¢
RN have i.i.d. N(0,1) entries. Let D be as defined in (27).
Then

¢(D) < c\/(nmug + RB) (1 + S2)log*(K + N) (47)

where C > 0 is an absolute constant.
Proof: We start by evaluating

¢(D)

) (5h,6m) >

sup [(6h,0m)]2

L
1 . T
i g €[< c mbg,bg hey),
(5h,6m)eD —

)

L
1 T - T
I E ) (Ce mby|r,, b, hey
=1

2
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‘ 2

L
1 § T4 T
\/_f Ey (C[ mbg|r,cl s bé hC[‘pgﬁ)
=1

(6hr‘h ,6mrm)

SUD | [Ghemlz

(6h,6m)eD

o0

Shre ,5mr$n)

TGhsmlls (48)

sup
(6h,6m)eD

1

First note that on set D, we have

‘(
<51+ 5 ’ < VS A+ Ss.
2

As for the remaining terms, we begin by writing

)

L
1 T4 T
7 E 1Y, (Ce mby|r, , b, hey
=1

Shpe ,6mp$n)
[(6h,0m)]|2

(5hr, .6mr,, )
[(6h,6m)[2

E

L
1 § T4 T
ﬁ Ey (C[ mbe|ph,be th
(=1

2

o)

L
-\ £ B (Jef ml2l1b/ In, I3 + 1behPledr, 3)

2

IA

E

2

(=1

— /Ilm381 + [Al3Ss,

and the second term in (48) is

L
%Z (b) hey
L

<Qelog(K+N %ZEmaxﬂc;m\QHbg
=1

2)

(26 log(K + N)Emax{|b"h|?|c

re, C( mb[‘pc )

o0

2

lge(b;ﬁce\m,c;mbmz)
.

2

009

134

N|—=

b, h|?||ce|re

m

Te

m

i})%

< O\Jmax{[[h]3, |3} log?(K + N),

|eTrnf*||br;

where the second inequality by the application of Lemma 5.2.2
in [42], and the final equality is due to the fact that ||c|re |2,
and ||b|p¢ [|2, are subexponential and using Lemma 3 in [43].
Plugging the bounds above back in (48), we obtain the upper
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bound on the Rademacher complexity given below

¢(D) < c\/(nmng + [IRI3) (S1 + 52) log?(K + N).
(49)
|
Next we compute the tail probability estimate p.- (D) defined
in (29).
Lemma 4: Fix (h*,m!) ¢ RE*N Let B € RF*K and C ¢
RL*N havei.i.d. N0, 1) entries. Let D be as defined in (27) and

set 7 = /£ min{||A||3. |ri|3}. Then p,(D) >
absolute constant ¢ > 0.
Proof: In order to evaulate

~ 7 dh,0m
P (<(czmbg,b;hc[), m> > 7')
(50)

804 for some

(D) = f
(D)= b

it suffice to estimate the probability P(|b, he)dm +
b, She) | > 7). Using Paley-Zygmund inequality, we have

~ 1 N
P <|b,7hc;5m + b, She, m|* > 3P |b, he) om

T T 2
) (E b he] 5+ b ohe] 1))
T.~12
+ b, She) m| ) = . = .
4 E|b, hefom + b, shel !

Using norm equivalence of Gaussian random variables,
we  know  that  (E|b, he)dm + b, dhe] m|)/4 <
¢(E |b) he) dm + b, dhe] m|?)'/2, this implies that
. 1 .
P <|b}hc;5m + b, She, m|* > 3P |b, he, 6m

1
e

v

1
+b, dhe, m|2) 1

Q

Next, we show that E|b/he)dm + b, She)m|? >
min{]|k3, |3} (|0h]3 + [[9m]3). Consider

E b} he, dm + b} She, 1h|?

= Ep Ec bbb} hom T cpe] m + 0h beb] ohan coc) 1
+ 2By B 0h " byb, hom" ¢oc)

— By ||6m|2h beb] b + ||1i2]20R T beb] oh
+ 20m " méh bbb

= [|6m|?[|A]* + llrio] ||k |* + 26m Trinsh A

= [[gm|?|A|)? + || [h + 2 (6m 1)

> min{|[&]3, |73} (|I5R[I3 + [[5m]3)

where the second and third equalities follow because by and ¢,
contain i.i.d. N{0, 1) entries. The fourth equality follows from
the fact (6h, dm) € D C N, and hence D L N, which implies
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that 5h" h = dm " r. Normalizing by ||(5h, ém)||2, and com-
paring with (50) directly shows that 7% = 1 min{ |R|12, || 2 }
and p, (D) > 7 This completes the proof

We now present a proof of Theorem 1. In Theorem 1, the
noise satisfy £ > —1 which is in contrast to & € [—1,0] with
¢y =0 forsome ¢ € {1,...,L} in Lemma 2. The key idea is
measurements with noise that satisfy £, > —1 can be converted
to measurements with noise in the interval [—1, 0] with the noise
for one of the measurement exactly equal to zero. In order to see
this, let

s —maxy— =1 +maX§e <14 [[€]loos

51
Ce[L] e le 1)

ne = ;(1*5+§e)~ (52)
We then consider the measurements vy = sy,(1 + 1) for £ €
[L]. Because sye(1 + n¢) = e(1 + &), the noisy measurements
are the same, however the noise may be different.

Proof of Theorem 1: As the noise of measurements y, =
7e(1 + &) may not be one-sided as in (3), we consider equivalent
measurements y; = syz(1 + n;), where s and 7 are as defined
in (51) and (52), respectively. This turns the ¢;-BranchHull
program (4) into

minimize |[|h|1 + ||m]1
heRE meRN

subject to  s¢b, he, m > [sye(1+ 1),

ty-byh>0,0c{l,...,L}. (53)
First, we note that forall £ € {1, ..., L},
1
ﬂe:g(lﬂL&*S) (54)
1
< ;(8 —5) (55)
0, (56)

where the first inequality holds because 1-+& <1+
maxe(r) §¢ < s. Second, we have n, > —1 for all £¢€
{1,..., L}, which follows directly from & > —1 forall £. Third,
there exists a ¢’ such that ny = 0. :l"hus, the noise 7 satisfies (3)
and by Lemma 2, the minimizer (h, m) of (53) is unique and if

2¢(D)+tt
L= ( TpT)(D) )2

, the minimizer satisfies

1
<Hh — e/3h||+ - cwgmH;) :
< 361/ sllAl2]l ]2/l

for some ¢ > 0 with probability at least 1 — ¢, Furthermore,
c— lasn — 0.In (5§7),

(67

sl = —;g[ig] (1—s+&)

=s—1—min&

te[L]
R
< 2&ll (58)
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where the first equality holds because 7, <0 for all ¢ €
{1,..., L}. We now compute
1
2 2
>

(Hﬁ—cﬁ

~ ~ ~ ~ 12
([ vt + v — i

1

2
+Hrh—c’ m
2

N

+ || — ¢ W+ ¢ s — ¢t

2)

IN

(o - )
i (o=« o - )

1
N . 3
< 36 (slnllcl ol 1]

+ (V5 = 1) (k3 + e rmf3) (60)
< (o0 (L) () (1 + )’
< (36 (1€l + (v - 1) (Iehl3 + e mig) " oD
< (36 (J€lx)* + (VIFTEN — 1)) (Jlchl3

[N

Hle™tm3)

< 37V/TEl (Jlchll3 + lle ™ rml3) (63)

where (59) holds because of triangle inequality, (60) holds
because of (57), (61) holds because of (58), (62) holds because

of (51) and (63) holds because for \/1 + [|€]lc — 1 < /|[€]|co-

Lastly, we note that (%)2 > C,(v/S1 + Salog(K +

N) + t)? because of Lemmas 3, 4 and the assumption that h°
and m! are p-comparable-effective-sparse as in (2), for some
p > 1. Here, C,, is constants that depends quadratically on p.
This completes the proof. |

(62)
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