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belong to known subspaces, we introduce the convex program BranchHull, which is
posed in the natural parameter space that does not require an approximate solution
or initialization in order to be stated or solved. Under the structural assumptions
that  and w are members of known K and N dimensional random subspaces, we

Mallat present a recovery guarantee for the noiseless case and a noisy case. In the noiseless

case, we prove that the BranchHull recovers the vectors up to the inherent scaling
Keywords: ambiguity with high probability when L > 2(K + N). The analysis provides a
BranchHull precise upper bound on the coefficient for the sample complexity. In a noisy case,
Blind deconvolution we show that with high probability the BranchHull is robust to small dense noise
Blind source separation when L = Q(K + N).

Convex programming
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1. Introduction

This paper considers a bilinear inverse problem (BIP): recover vectors  and w from the observation
y = A(x,w), where A is a bilinear operator. BIPs have been extensively studied in signal processing and
data science literature, and comprise of fundamental problems such as blind deconvolution/demodulation
[3,23,15,1], phase retrieval [9], dictionary learning [25], matrix factorization [14,16], and self-calibration [18].
Optimization problems involving bilinear terms and constraints also arise in other contexts, such as blending
problems in chemical engineering [6].
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A significant challenge of BIPs is the ambiguity of solutions. For example, if (2% w?) is a solution to a
BIP, then so is (cxf, ¢ 'w?) for any nonzero ¢ € R. Other ambiguities may also arise, including the shift
ambiguity in blind deconvolution, the permutation ambiguity in dictionary learning, and the ambiguity up
to multiplication by an invertible matrix in matrix factorization. These ambiguities are challenging because
they cause the set of solutions to be nonconvex.

We will consider the fundamental bilinear inverse problem of recovering two L dimensional vectors w and
x from the observations y = w o &, where o denotes the entry-wise product of vectors. This is immediately
recognized as the calibration problem, where one is only able to measure a signal * modulo unknown
multiplicative gains w. A self-calibration algorithm aims to figure out the gains w and the signal x jointly
from y. The circular convolution also becomes pointwise multiplication in the Fourier domain, allowing us
to reduce the important blind deconvolution problem in signal processing and wireless communications to
a complex case of the above bilinear form.

In addition to the challenges of general BIPs, the BIP above is difficult because the solutions are nonunique
without further structural assumptions. For example (w?, %) and (1, w" o 2%) are both consistent with the
entrywise products y = w? o 2?. While multiple structural assumptions are reasonable, we will consider the
case where w? and % belong to known subspaces B and C, as in [3]. In addition, we also require w® and
2" to be real and of known signs. The method can be extended to complex vectors in the case of known
complex phases.

The known sign information in the real case is justified in imaging applications, where we want to
recover image pixels (always non-negative) from occlusions caused by unknown multiplicative masks [7]. A
stylized application of this setup also arises in the wireless communications. A source encodes a message as
a series of positive magnitude shifts on tones at frequencies f1, fa,..., fr. These real valued and positive
x = [z(f1),2(f2),...,2(fr)]" are transmitted over a linear-time invariant channel, where z(f;) are weighted
by the frequency response of the channel w(f;) (in general complex valued), and in the ideal noiseless case,
the receiver ends up observing y(fe) = z(fe) - w(f¢). The real part of the complex-valued measurements
Re{y(fe)} = x(fe) -Re{w(fe)} are simply the pointwise product of two unknown real numbers with known
signs. In addition, in this application, the vectors x, and w naturally live in low-dimensional subspaces; for
details, see [3] and [2].

The assumptions of sign and subspace measurements are strongly motivated by the sweep-distortion
removal problem in dielectric imaging [1]. In this problem, a dielectric is imaged, and the pointwise product
of an electromagnetic pulse and the reflectivity pattern is observed. The signal’s nonnegativity follows from
nonnegativity of the material’s reflectivity, and the pulse belongs to a subspace defined by dominant wavelet
coeflicients of the image.

We consider the following bilinear inverse problem in the presence of multiplicative noise given by the
vector 1+ &:

Let: w%e BCcRY, a2fceC cRF ¢eRE, s= sign(wh)

y=w'oxbo (1+§), (1)
Given: y, s, B,C
Find: w" & up to the scaling ambiguity

One standard way to solve the BIP above! is to convexify it by lifting. More specifically, the bilinear
inverse problem can be recast as a linear matrix recovery problem with the structural constraint that the
recovered matrix is rank one. With wg = b}hh and xi = c}mu for ¢ =1,..., L, the underlying linear operator

is given by y, = wix@ = b}hhthq = (bgcg,hhth) = Ag(hhmt”), and the formal recovery framework

L As stated, this approach ignores the sign information.
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Fig. 1. Given the bilinear measurement x,w; = y¢, the point (z¢, w¢) is on a two-branch hyperbola, as depicted by the dashed and
solid lines. Further information on the sign of we identifies which branch of the hyperbola the point is on (the solid line). The
convex formulation in this paper replaces the relevant branch of the hyperbola with its convex hull (the shaded region).

is to find the X of minimal rank that is consistent with A(X) = y. By relaxing the rank objective to
the nuclear norm of X, this optimization problem becomes a semidefinite program. The results in [3],
which apply to the complex case, show that when by, and ¢, are Fourier and Gaussian vectors, respectively,
this semidefinite program succeeds in recovering the rank-1 matrix him*T with high probability, whenever
K+N<SL/ log® L. Unfortunately, directly optimizing a lifted problem is prohibitively computationally
expensive, as the lifted semidefinite program is posed on a space of dimensionality K x NN, which is much
larger than the K + N dimensionality of the natural parameter space.

To address the intractability of lifted methods, a recent theme of research has been to solve quadratic
and bilinear recovery problems in the natural parameter space using alternating minimization and gradient
descent algorithms [20,24]. These algorithms include the Wirtinger Flow (WF) and its variants for phase
retrieval [5,8,28]. A Wirtinger gradient descent method was recently introduced for blind deconvolution in
[17]. In the case that b, are deterministic complex matrices that satisfy an incoherence property and that ¢,
are Gaussian vectors, this nonconvex method succeeds at recovering h% and m! up to the scale ambiguity
with high probability when K+N < L/ log? L. While WF based methods enjoy rigorous recovery guarantees
under optimal or nearly optimal sample complexity with suitable measurement models, the proofs of these
results are long and technical. Also, because of the nonconvexity of the problem, the convergence of a
gradient descent algorithm to the global minimum usually relies on an appropriate initialization [26,8,17].

The approach we will present in this paper will combine strengths of both of these approaches. Specifically,
we introduce a convex formulation in the natural parameter space for the bilinear inverse problem of
recovering two real vectors from their entrywise product, provided that the vectors live in known subspaces
and have known signs. This convex formulation is called BranchHull and does not involve an initialization
or approximate solution in order to be posed or solved. BranchHull is based on the following idea: The
bilinear measurements z,w, = y, establish that (x,,w;) is on one of two branches of a hyperbola in R2.
Information on sign(wy) identifies the appropriate branch. The convex formulation is then formed by relaxing
this nonconvex branch of a hyperbola to its convex hull, as shown in Fig. 1. We consider the case where the
two vectors live in random subspaces of R” with dimensions K and N. Under this assumption on & and w?,
with noise £ that does not change the sign of the measurements, we establish that the Euclidean recovery
error is bounded by the /, norm of the noise. This result holds with high probability for K + N < L.
In the noiseless case, we provide an explicit lower bound on the recovery probability that is nonzero when
L>2(K+N)-3.
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1.1. Problem formulation

We consider the bilinear inverse problem of recovering two vectors from their entrywise product. That is,
let wh 2% ¢ € RY, and let y = w® o 2% o (1 4 &), where £ corresponds to noise. From y, we attempt to find
w’ and x up to the scaling ambiguity (cw?, %wh) To make the problem well posed, we consider the case
where w? and 2! belong to known subspaces B and C of RY. We further consider the case where the signs
of the entries of w?, and hence those of xf, are known. Let s = sign(w?). This bilinear inversion problem is
stated in (1).

Ideally, we could resolve the scaling ambiguity and find (w?, %) such that ||w®?||s = ||x%||2 by solving the
following program:

minimize ||w||3 + [|z||3 subject to wex, =y,
, zeC

spwg >0, £=1,...,L.
This program is nonconvex, but it admits the following convex relaxation:

minimizg w3 + [|x||3 subject to sign(ye)weze > |ye|
, TE

spwg >0, £=1,...,L.

Note that for fixed ¢, the feasible set {(wg,z¢) | sign(ye)weze > |ye|, sewe > 0} is the convex hull of
{(wg,:rg) | WyLyp = Yy, SgWy Z 0}

We consider this problem when written in the natural parameter space. Despite the abuse of notation,
let B € REXK be a matrix that spans the K dimensional subspace B. Similarly, let C € REXN be a matrix
that spans the N dimensional subspace C. Let (hh, mf) € RE x RN, Let w® = Bh" and z? = Cm". We
can write wy = bJ h, xy = ¢]m, and y; = (bec], h*m"T) where b] is the th row of B and ¢] is the ¢th row
of C. The recovery task is now to find (hh, m?) by the convex program called BranchHull

hl? 2 subject to si bTh-clm > BH
poainimize - [[hll2 + [mll3 subject to sign(ye)bjh - ejm > |ye| (BH)
se-bJh>0,=1,...,L.

This program is convex because for any fixed ¢, the points consistent with both the first and second con-

straints is a convex set. This program has K + N variables, L linear inequality constraints, and L nonlinear
1
(&

program will return a solution where ||h||2 = ||m||2. Thus, if recovery is successful in the noiseless case, the

inequality constraints. Because the scaling (cw?, .7:“) is consistent with the constraints for positive ¢, the

optimal solution is (hh\/ ll‘\:’:“hll‘zz , m”\/ Il\‘::%tlhlifz . We implement the same convex program (BH) in the noisy

case if the noise € does not alter the sign of the measurement y. This occurs when & > —1 for all ¢ € [L].
For the case where noise alters sign or outlier case, see the discussion section for a modified program that
is conjectured to tolerate sign change and significant outliers.

1.2. Main results

In this paper, we consider the bilinear recovery problem (1), where the subspaces given by B and C' are
random. Specifically, we show that if B and C have i.i.d. Gaussian entries, then exact recovery of (hh, m?) is
possible in the noiseless case with nonzero probability when there are at least 2 times as many measurements
as degrees of freedom.
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Theorem 1 (Noiseless case). Fiz (h*,m?) € RE x RN such that h* # 0 and m® £ 0. Let B € REXK C ¢

RL*N have i.4.d. N'(0,1) entries and & = 0. Then <hh./ w;:;ll“; ,m’ ||h¢> is the unique solution to (BH)

mh|;

with probability at least

[L— (2N +2K - 3)]°
1 eXp( 2L 1) )

provided that L > 2N + 2K — 3.

This theorem provides an explicit lower bound on the recovery probability by the convex program (BH).
If L > 2N + 2K — 3, there is a nonzero probability of successful recovery. By taking L > C(N + K), the
probability of failure becomes at most e~®L, for universal constants C and é The scaling of L in terms
of N + K is information theoretically optimal up to a constant factor. The proof of Theorem 1 follows
from estimating the probability of covering a sphere by random hemispheres chosen from a nonuniform
distribution.

Now we will state a result that the convex program (BH) is robust to small dense noise. Let

€ = [[€lloo (2)

represent the noise level. In particular, we present a recovery theorem for ¢ < 1. Under this assumption
on the noise, we show that if the matrices B and C have i.i.d. Gaussian entries and there are O(K + N)

measurements, then the minimizer of (BH) is close to <hh,/ “”Thh‘;l; ,m! |h—h|2) with high probability.

[mA]l

Theorem 2 (Noisy case). Fiz (h*,m?) € RE xRN such that h* # 0 and m® # 0. Let B € RL*K C e REXN
have i.i.d N'(0,1) entries. Let € be as defined in (2). Let y € R¥ contain measurements that satisfy (1) with
€10,1]. If L > C(K + N) then the unique minimizer (h*,m*) of the BranchHull program (BH) satisfies

e ws (Ul gt [ ) < e fms
il |

2
2 2
with probability at least 1 —e=L. Here, C and ¢ are absolute constants.

In Theorem 2, the ¢5 recovery error depends on the noise level as the square root of e. We suspect that
this square root dependence in the power of € is an artifact of the proof technique and numerical simulations
presented in Fig. 4 suggests the recovery errors, for small noise, behaves linearly in e.

1.8. Discussion

The BranchHull formulation is a novel convex relaxation for the bilinear recovery from the entrywise
product of vectors with known signs, and it enjoys a recovery guarantee when those vectors belong to random
real subspaces of appropriate dimensions. The formulation is nothing more than finding which point of a
convex set is closest to the origin. Geometrically, exact recovery is possible by ¢5-norm minimization because
the feasible set of (h,m) has a ‘pointy’ ridge that corresponds to the fundamental scaling ambiguity, as
illustrated in Fig. 2.

A related formulation to BranchHull was recently introduced for the phase retrieval problem. This for-
mulation, called PhaseMax, is a linear program and was independently discovered by [4] and [10]. PhaseMax
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Fig. 2. An illustration of the geometry of BranchHull in the case where h € R? and m € R'. The feasible set of BranchHull has a
shape similar to the solid in the top right. The ridge of this set corresponds to the fundamental scaling ambiguity of the bilinear
recovery problem. The solution to BranchHull is given by the smallest scaling of the unit ball that intersects the feasible set. The
minimizer is exactly on this ridge because the ridge is ‘pointy.’

enjoys a rigorous recovery guarantee under a random data model. Existing recovery proofs are based on
statistical learning theory [4], geometric probability [10], and elementary probabilistic concentration ar-
guments [12]. As with Wirtinger Flow, successful recovery of PhaseMax with optimal sample complexity
has been proven when an appropriate initialization is known. Unlike Wirtinger Flow, the initialization is
used in PhaseMax’s objective function, as opposed to its algorithmic implementation. In both PhaseMax
and Wirtinger Flow, an approximate solution or initialization is needed to state or solve the optimization
problem. We note that BranchHull does not require an anchor vector or initialization to be stated or solved.
As a trade off, BranchHull instead assumes the sign information of the signal is known.

The idea of convex relaxations in the natural parameter space for bilinear problems is not new. For
example, in nonlinear programming (NLP) or mixed integer nonlinear programming (MINLP) problems
with bilinear constraints and specified variable bounds, a McCormick relaxation [19] replaces bilinear terms
with four linear inequality constraints that define a convex quadrilateral that contains the hyperbola of
feasible points within the variable bounds. Tighter convex relaxations are possible [6], such as by using
the hyperbola itself as an inequality constraint [21]. These relaxations have been studied as part of branch
and bound approaches to NLPs and MINLPs. Under certain conditions and branching rules [13] these
approaches can find a global minimizer; however, the branching results in many convex programs that need
to be solved, and it may result in exponential time complexity. In contrast, the present paper considers only
the single convex program, BranchHull, achieved by the natural convex relaxation of bilinear constraints
with only sign information. This work establishes conditions — in particular, subspace conditions — under
which exact recovery by an efficient convex program can be rigorously established.

This work motivates several interesting and important extensions. Most immediately, BranchHull can
be extended when the phases of complex vectors are known. Because of applications in signal processing
and communications, it is also important to extend the theory for BranchHull to include deterministic
subspaces, such as the span of partial Fourier matrices. This paper shows that BranchHull is robust to noise
that does not change the sign of any measurement. Tolerance to a general noise model, including outliers,
should be established for BranchHull or a variation with slack variables, such as in [11]. Noise tolerance in
the case with sign change is particularly important because even one measurement with an incorrect sign
can substantially alter the shape of the feasible set. For this general noise and outlier case, we propose the
Robust BranchHull program

inimi h|? 242 bject to si T blh > |y, RBH
hﬂgg$@ﬂﬂﬂrwmm+thwwc0$@@M%m+wu > |yl (RBH)

se-bJh >0, 0=1,... L,

which shifts the feasibility set to include the target signal while penalizing against shift. In the outlier
case, the /1 penalty promotes sparsity of slack variable e, which is desired. We leave detailed empirical and
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theoretical analysis of (RBH) to future work. It would also be interesting to develop convex relaxations in
the natural parameter space that do not use sign information. Further, extensions to more general bilinear
recovery problems are of significant interest. All of these directions are left for future publications.

1.4. Organization of the paper

The remainder of the paper is organized as follows. In Section 1.5, we present notations used throughout
the paper. In Section 2.1, we present the proof of Theorem 1. In Section 2.2, we present the proof of
Theorem 2. In Section 3 we observe the performance of BranchHull on synthetic data.

1.5. Notation

Vectors and matrices are written with boldface, while scalars and entries of vectors are written in plain
font. For example, ¢y is the first entry of ¢,. We write 1 as the vector of all ones with dimensionality
appropriate for the context. Let [L] = {1,2,...,L}. Let e; be the ith standard basis element. We write
K + N < L to mean that there exists a constant C such that K + N < CL. Given a vector in x € RY, let
2 € RV~1 be the subvector formed by all but the first coefficient of . Let S?~! be the unit sphere in R™.
For matrices A, B, let (A, B) = trace(BTA) be the Hilbert-Schmidt inner product of A with B. For a set
S, let Conv(S) be its convex hull. Let Re {z} be the real part of a complex z.

2. Technical proofs

In this section we provide proofs of Theorems 1 and 2. These proofs use a sphere covering type argument
which is based on the idea that m random directions sampled from a symmetric distribution will cover
the unit sphere S"~! with high probability when m = Q(n). Another paper that uses this technique is the
PhaseMax paper by [10].

2.1. Proof of Theorem 1

We will first show that BranchHull program (BH) is a convex program.

Lemma 1. If y € RY such that y # 0, s € {£1}1, B € REXE and C € RE*YN then the BranchHull program
(BH) is a convex program.

Proof. As the objective function is convex, we consider the constraints of (BH). For a fixed ¢, let S; =
{(h,m) € R¥ x RY : sign(ye)bjh - cJm > |y¢|, s¢-bjh > 0}, Se1 = {(z,w) € R? : sign(y,)zw >
lyel, sew > 0} and Spo = {(h,m) € RK x RY : (bJh,cJm) € Sy1}. To show Sy is a convex set, it is
sufficient to show that the sets Sy; and S, 2 are convex.

We first show that the set Se 1 is convex. Let P = {w € R : spw > 0} and consider the function f : P — R
such that f(w) = . Note that if sign(y,)s, > 0 then f is a convex function and Sy ; is the epigraph of f.
Similarly, if sign(ye)se < 0 then f is a concave function and Sy ; is the subgraph of f. In both cases, S¢ 1 is
a convex set because the epigraph of a convex function and the subgraph of a concave function are convex.

Lastly, Sy 2 is convex because the inverse image of a convex set of a linear map is convex. So, Sy is also
a convex set. Since the intersection of any number of convex sets is convex, we have that the constraint of
(BH) is a convex set. Thus, BranchHull program (BH) is a convex program. 0O

h

To prove Theorem 1, we will show that (h®, m?) is the unique minimizer of an optimization with a larger

feasible set defined by linear constraints.
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Lemma 2. If (hh,mh) 1s the unique solution to

n]”l%zmmz%lg |R||2 + |m||2 subject to ye(bech, hm'T + h*mT) > 2y2, (3)
he €

=1,...,L,
then (h%,mY) is the unique solution to (BH).

Proof of Lemma 2. It suffices to show that the feasible set of (3) contains the feasible set of (BH). We may
rewrite (BH) as

Irﬂl{}nlmlze |h||3 + ||m]|3 subject to yebjh - cjm > y7
he

se-bJh>0,0=1,...,L.

We now use the fact that a convex set with a smooth boundary is contained in a halfspace defined by the
tangent hyperplane at any point on the boundary of the set. Consider the point (u}f87 :1:5) € R2, and observe

that
yzl‘h Wy — ’UJE
¢ f)>05. (4)
Yew, Ty — Ty

Plugging in wy = bJ h and 2y = ¢]m, we have that any feasible (h,m) satisfies

2

Yewezy = yé } C {(wbxe) € R?

yecsm bl h + yblhicim > 2y2, (=1,...,L,
which implies y,(bec], hm!T + h*mT) > 2y? for all £. O

We now show that (h*, m/!) is the unique solution to the optimization problem (3) if the unit sphere in

RN+K=2 is covered by L hemispheres given in terms of by and ¢,. Write by = (bg1, by), where by contains

all but the first element of by. Similarly, write ¢, = (cs1, €¢).

Lemma 3. Let b’ = ey and m® = ey. The unique solution to (3) is (h',mY) if for all (SE,S!VL) € RVN-1 x
RE-L there exists an £ € [L] such that byy # 0, co1 # 0, and

<2 %>+<ﬂ,5ﬁ>g0. 6
Cr1 bor

Proof of Lemma 3. Because the feasible set of (3) is closed and convex, and because a closed convex set has
a unique point closest to the origin, (3) has a unique minimizer.

Consider a feasible point (h? + 6h, m! 4+ dm). To prove that (h*, m?) is a minimizer of (3), it suffices to
show

(beel, K*m ) (bec] , ShmfT + h'omT) > 0V £ = (mf,dm) + (h*,5h) > 0
Plugging in h" = e; and m® = ey, it suffices to show
berce [bglcgl((sml + (Sh,l) + b(léZ% + 04152-571,] >0V {l=dmi+hy >0

Dividing by b7, ¢7,, it suffices to show
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omy + ohy + <2,(/5;7/1> + <;—£7(§7L> >0WVls.t. by #0and ¢pp #0
cn 01

= dmq + ohy > 0.

To prove this, it suffices to prove

_ &) —— by —
V(6h,om) € RN x RE=L 3 0 st by #0,¢01 # 0, and <cl,5m> + <b£’5h> <0. O
€1 01

For a given vector a, we will call {§ € S"~! : (a, ) > 0} the hemisphere centered at a. We now provide a
lower bound to the probability of covering the unit sphere by hemispheres centered at m random directions
under a nonuniform probability distribution that is symmetric to negation. This lemma is an immediate
generalization of Lemma 2 in [10], with a nearly identical proof.

Lemma 4. Choose m independent random vectors {a;}™, in S"~1 from a (possibly nonuniform) distribution
that is symmetric with respect to negation, and is such that all subsets of size n are linearly independent
with probability 1. Then, the hemispheres centered at {a;}", cover the whole sphere with probability

n—1
1 m—1
1- gm—1 Z ( k )
k=0
This value is the probability of flipping at least n heads among m — 1 tosses.

Proof of Lemma 4. Classical arguments in sphere covering [30] show? the following: If m hyperplanes con-
taining the origin are such that the normal vectors to any subset of n hyperplanes are linearly independent,
then the complement of the union of these hyperplanes is partitioned into

r(n,m) = 2:2; (mk_ 1)

connected regions. In each of these regions, every point lies on the same side of each hyperplane. Alternatively
put, each region corresponds to a unique assignment of a side of each hyperplane. For a fixed set of m
hyperplanes, if the half space on either side of each hyperplane is selected by independent tosses of a fair
coin, then with probability given in the lemma statement, there will be no nontrivial intersection of all these
half spaces.

By the assumption that the distribution of a; is symmetric with respect to negation, we have that
for any z € S"!, the conditional distribution of a; given a; € {£z} is uniform over the two elements
+2. By independence, for any fixed {z;}"; € (S*~1)™, the distribution of {a;} conditioned on the event
{a; = +z;} is uniform over the 2" possibilities. Thus, conditioned on this event, the probability that the
sphere is covered is that of the lemma statement. Integrating over all possible {z;}, the lemma follows. O

Our last technical lemma provides an explicit lower bound to the probability of the sphere covering given
in Lemma 3.

2 This article credits [22] for the proof argument.
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[(L—1)—2(N+K—2)]*

Lemma 5. With probability at least 1 — exp (— ), we have that

2(L-1)
— &) — b, —
V(6h,0m) € RN x RE=1 3 ¢ such that <ﬂ,5m> + <i,5h> <0. (6)
co ber
Proof of Lemma 5. To show (6), we must show that the L hemispheres (of the unit sphere in RV =1 x R¥~1)
centered at (—;—417 —;’7[1) cover the entire sphere. As the distribution of (fe—@l, 157721) is invariant to negation,

and as any n samples from this distribution are linearly independent with probability 1, Lemma 4 gives
that the probability that (6) holds is at least the probability of flipping at least N + K — 2 heads among
L — 1 tosses of a fair coin.

We now bound the probability of getting at least n heads among m fair coin tosses. Let X be the number
of heads in m tosses. By Hoeffding’s inequality for Bernoulli random variables [29], for any ¢ > 0,

P(x- 3> —mt) 21— et
By selecting t = % — 2, we get that when n < m/2,

")2
_QM(%_ﬁ)z _ 1 . e_ (nL;’in) .

P (at least n heads among m tosses) > 1 — e
The lemma follows by plugging in m = L —1 and n = N 4+ K — 2 into the above probability estimate. O

Now, we may prove the theorem.

Proof of Theorem 1. Without loss of generality, let ||h%||y = ||m?||o. This is possible because for any by and
¢y, we have that (hh %,mhq / m) and (hh, mP) give equal values of y, = (becy, hhth>.

Further, without loss of generality, let |h®||2 = ||mf||y = 1. This is possible because the scaling

. h ~ % ~ :
h=——, mzlh7 =t mh:Lu’
|h*2 [[m®]|2 |h*)2 [[m®]]2
turns (BH) into
minimize [|h¥[|3]|Al|3 + [|m*||3]|r13 (7)

heRK, meRN
subject to (bgc},fzhrr;ﬁ)(bgc},ﬂnﬁ) > (bgc},ﬁhn{ﬁﬂz

sg-blh >0, £=1,...,L.

Further, without loss of generality we may take h" = e, and m® = e;. To see this is possible, let Ry,
and R,,,: be rotation matrices that map hY and m’ to ey, respectively. Letting h = Ry:h, m = R,,,;:m,
and 50 = sign(bj R} ;e1), problem (BH) can be written

_minimize |[Rpsh|3 + [R5 (8)
heRK, meRN
subject to (Rpsbec]RT . e1e])(Rysbec]RT . hmT) > (Ry:bic] R,

S¢-bJRT.h >0, (=1,... L.

T T\2
mua6161>



646 A. Aghasi et al. / Appl. Comput. Harmon. Anal. 49 (2020) 636-65/

As f5 norms are invariant to rotation and as Ry:by and R,,,:c, have independent N(0,1) entries, we may
take (h%,m%) = (e1,e1).
Let E be the event that (6) holds. By Lemma 5,

[(L—1)—2(N+K —2)]°
2(L—1) '

P(E)>1 —exp(—

By Lemma 3, on F, (hh,mh) is the unique solution to (3). By Lemma 2, on E, (hh,mh) is the unique
solution to (BH). O

2.2. Proof of Theorem 2

We will now prove that BranchHull is robust to small dense noise which does not alter the sign of the
measurements. The sign of the measurements remains unchanged when & > —1 for all £ € [L]. We first
only consider measurements y, with noise &, that satisfy

e [-1,0] (9)

for all £ € [L]. If all the measurements satisfy condition (9), we say the noise is “one-sided”. Note that the
noise is one-sided if the convex hull of the branch of the hyperbola corresponding to the noisy measurement
contain the hyperbola corresponding to the noiseless measurement, for all measurements. We first establish a
recovery result for measurements with one-sided noise and show that for measurements that contain & > 0,
the problem can be transformed to a related scaled problem whose corresponding measurements contain
one-sided noise.

For the remainder of the paper, let g, = b}hhc}mh. Lemma 6 shows that if the measurements contain
one-sided noise, the recovery error using BranchHull program (BH) is bounded by ||&||so-

Lemma 6. Let h® = ¢ and m* = e,. Let B € RIXE C e REXN and y, satisfy (1) such that the noise is
one-sided as in (9). Let € = ||€]|oo. The minimizer (™, m*) of the BranchHull program (BH) is unique and
satisfies

2
[ e[+ = < 200 - T

if for all (571,,5\77;) € RE-L x RN=L there exists {, k € [L] such that
sign (be1 )by 6h < 0 and sign(cm)&Z% <0, (10)
sign (b1 )b.6h > 0 and sign(ckl)ézﬁ <0. (11)

Proof. First note that the minimizer of BranchHull program (BH) is unique because the feasible set is closed
and convex and a closed convex set has a unique point closest to the origin. We now prove the remainder of
Lemma 6 by showing that any feasible perturbation from the candidate minimizer increases the objective
value of the BranchHull program (BH).

Assume the minimizer of (BH) is (h® + 6h, m? + ém). Note that (k' m?) is feasible in (BH) because the
noise is one-sided. Comparing the objective values at (hh + 8h, m? + §m) and (hh7 mf), we get

I6hJ12 + [|om2 < —2 (hhTah + tham) = —2(6hy + 0my) . (12)
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We now use the second feasibility condition SgblTh > 0 to show dh; > —1. Since (hh + 6h, mb + dm) is
feasible, the following holds for all ¢ € [L].

s¢b] (¥ + 3h) > 0
= sign(by1) (ba + be1hy + 6}577,) >0 (13)
= |bg1|6hy > —|be1| — sign(be )b ok

B sign(be1)by ok
|ber |
=0h, > -1, (14)

:>5h1 > —

where the first implication holds because s, = Sign(b}hh) and h? = e; and the last implication holds
because, by assumption (10), there exists a £ € [L] such that Sign(bgl)BZﬁL <0.

We now use the first feasibility condition on (h" 46k, m%+ém) to show that 6hy + m is bounded from
below. From the first feasibility condition, for all £ € [L] we have

sign(ye)b] (h° + Sh)e] (m* + 6m) > |y|
= sign(ye) (bey + b]0h)(cor + €] dm) > |y,
= sign(ye) (bercer + berel dm + bl Sheg + bl Sheldm) > [y,

= sign(ye)beice1 (6hy + dmy) + sign(yp) (bglé}-% + 52571,@1 + bz5th6m> > |ye| — sign(ye)beice

=] (6h1 + dmy) + sign(ye) (bglé}gnvm + 52571021 + bg&hcgém) > |4e|ée, (15)

I
where the first implication holds because R = e; and m! = e; and the last implication holds because

sign(ye) = sign(ye) and |ye| = sign(ye)berce (1 + &e)-
We now show that term I is less than |gy|dh1dm; for some ¢ € [L]. Consider

1 = sign(ye) (buefom + b dhey, + b ohefom)
= sign(yy) (bmé}grvn + I;Zﬁwa + bpice1Ohidmy + bgléhlé}grvn + BZ%C@léml + 5}%&}%)
= (5|10 + sign(y) (1 + ma )b} Shcer + sign(g)com (b + bk + b o)

= |4je|Sh1dmy + (1 + 6ma)|cer| sign(bey )by 5k + Sign(cm)é}% |ber +bJdh,

11

where the third equality holds because sign(y,) = sign(gy) = sign(bsice1) and the fourth equality holds
thanks to (13). Note that because of assumptions (10) and (11), there exists a £ € [L] such that IT < 0.
This is because if (1 + dmy) > 0, then we have II < 0 for ¢ that satisfy (10). Similarly, if (1 + dm4) < 0,
then we have II <0 for k that satisfy (11). Thus, there exists an ¢ € [L] such that

I = sign(yy) (cma;% + bl Shey + bgahcgam) < |ge|hym. (16)

Combining (15) and (16), we get there exists a £ such that
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\ydfz

|9e]

The last inequality holds because € = ||€||. Lastly, dhq + omq > —2 (1 —/1- e) because for all € € [0, 1],

0h1 + dmq + dhiom

28 = (17)

{(5h1,5m1) € R2|5h1 + 5m1 Z -2 (1 —V 1-— 6)}

(18)
D) {(5h1,5m1) S Rzldhl + dmq + Shidmq > —€, ohy > —1} .

Thus, combining (12) with 6hy + dmy > —2(1 — /1T —¢€), we get the desired result ||6h||§ + HémHg <
41—-+1—-¢). O

The next lemma shows that if B € RE*E and C € REXYN contain i.i.d. N(0,1) entries, then (10) and
(11) holds with high probability if L = Q(K + N).

Lemma 7. Let B € RE*K and C € RE*N contain i.i.d. N'(0,1) entries. If L > C(K + N) then

Z Ly w<olery<o > 0.2L

min
reSK-1 yeSN—1
with probability at least 1 —e=F. Here, C and ¢ are absolute constants.

Proof. Let f(x,y) = Zle Lyre<olery<o- We will consider a continuous relaxation of f(z,y). Let

1 z < —0.1
w(z) = —53 —01<2<0
0 z>0

and g(x,y) = Zle w(b]z)w(cly). Note that f(x,y) > g(x,y) for all (z,y). So, it is sufficient to show
that with probability at least 1 — e~ ¢E,

L

>0.2L 19
e L éz:: cjy) = 0.2L, (19)
if L>C(K+ N).
Let B¢(x,y) = w(b]x)w(c]y). We first compute E[S,(x, y)] for a fixed z € S¥~! and y € SV~!. Without
loss of generality, let € = e; and y = e;.

E[e(z, y)] =E[w(bea)w(cn)]

> 0.23,

where the second inequality follows by independence of by; and c¢;;. So, for a fixed (z,y) € SK~1 x SV—1,
we have E[g(x,y)] > 0.23L.

We will now show that for a fixed (z,y) € SE-! x SN¥=1 g(x,y) > 0.22L with high proba-
bility. Fix (z,y) € SE~! x S¥~1. Since g(x,y) is bounded, g(z,y) is sub-gaussian. Let a be the
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sub-gaussian norm of 3, after centering. Thus, by Hoeffding-type inequality (see Proposition 5.10 in
c 2
Vershynin [27]), P{|g(x,y) — El[g(z,v)]| >t} < e- e~z where ¢ > 0 is a absolute constant. So,
52
P{g(x,y) <0.23L —6L} <e- e~ e . Pick § = 0.01, then for any fixed (x,y) € SE~1 x S¥=1 we have

P {g(x,y) <0.22L} <e-e °F

for some ¢ > 0.
We will now show that for all (x,y) in an e-net, g(x,y) > 0.22L with high probability. Let N. be an
e-net of SK=1 x SN=1 such that |V | < (1+ Qeﬁ)K“\’. By lemma 5.2 in [27], such an e-net exists. So

PJ min g(z)> 02200 >1—e. e cLHN+E) log(1+22) (20)
(z,y)ENC -

If L > 2(1 +log(1 + 22))(K + N) then

P { min  g(xz,y) > O.22L} >l—c-e 7 (21)
(m,y)EN.
Lastly, we will show that for all (z,y) € SK=1xSV=1 g(x,y) > 0.2L with high probability. We first show
that g(z,y) is 30v/2L-Lipschitz with high probability. This holds because if (x1,y,), (€2, y,) € RE"IxRN 1
then

M=

9(x1, Y1) — g(22,92)| < ) |w(bjzr)w(cjy,) — w(bjz2)w(c]y,)| (22)

)4

Il
-

[(w(bja1) —w(bjz2)) w(ciy,) + (w(cfy,) —wlejys)) wbjmz)|  (23)

M-

~
Il
_

IN

M- M-

[(w(bja1) —w(bjz2)) w(ciy,)| + [(wlcjyr) —wlcjy,)) w(bjzz)|  (24)

<D lw(bjwr) —w(bjzs)| + [wicjy,) — wiciys)| (25)
=1

<IOZ|bT T — Ty |—|—102|ce — 1y, (26)
L L

SI0VL - | ST (bF (1 — 22))2 + 10VI - | S (el (yy — 92))? (27)
=1 =1

=10VL ([|B(w1 — @)} + [C(y1 — y2)l|2) (28)

<10V (| B|[[(z1 — @2)ll2 + | ClllI(y1 = y2)ll2) , (29)

where the fourth line follows because |w(z)| < 1 for all z € R, the fifth line follows because w is 10-Lipschitz
and the sixth line follows from Cauchy-Schwarz inequality. By Corollary 5.35 in [27], there exist events F;
and E, cach with probability at least 1 — 2¢~ %, on which ||B|| < 3V/L and ||C|| < 3V/L, respectively. So,
on 1 N Es we have

l9(x1,91) — g(2,y5)| < 30L(||ler — @22 + [ly) — y2ll2)
< 30vV2L|(z1,91) — (@2, ¥s) 2.
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Take € = %. For any (z1,y;) € SK~1 x SN~1, pick (x2,ys) € N, such that ||(z1,y;) — (x2,Ys)|l2 < e

On the event E; N By and the event given by (20), we have that

g(x1,y1) > min g(xa,y,) — 30V2L|[(x1, ;) — (®2,95)]|2 (30)
(wz,yg)ENe
> 0.2L. (31)

This occurs with the probability at least 1 — e~ provided L > Z(1 + log(1 + 2‘/5))(K +N). O

€

We now extend Lemma 6 to the case with arbitrary but non-zero h" and mP.

Lemma 8. Fiz h? € RX and m® € RN such that h° # 0 and m? # 0. Let B € REXE C e REXN
contain i.5.d N'(0,1) entries and y, satisfy (1) such that the noise is one-sided as in (9). Let € = ||€]|oo- The
minimizer (R*,m*) of the BranchHull program (BH) is unique and if L > C(K + N) then the minimizer

satisfies
2 ; 2
. mf . h
O T . 8 P TC RV s [ SIS
IR*2 [, [[m#[2 )

with probability at least 1 — e~ L. Here, C and ¢ are absolute constants.

Proof. Without loss of generality let ||h%||y = |[m!||s, which is possible because for any by, ¢, and &, we
have that <hh ||‘$;II‘22,m” ||::jnli22) and (h? m!) give equal values of y, = bJh*cym!(1 + &). Further,
without loss of generality, we may take ||h%| = ||m¥|, = 1. This is possible because of a similar line of

argument as (7).
Further, without loss of generality we may take h" = e; and m? = e;. To see this is possible, let R;:

and R,,;: be rotation matrices that map fth and M’ to e1, respectively. Letting h = Rﬂufb7 m = R,m,
and §; = Sign(bgR;Lhel), BranchHull can be written as

: B2 712 b2 — 12
i ERELAIE + 3R,
st. sign ((Rﬁubg)Tel(Rmuce)Tq) (R;ebo)Th(Rypc)Tim > |(Rysbo)Ter (Ryser)Ter(L+ &) (32)
5 - b}R’TﬁB >0, L€ [L).
As /5 norms are invariant to rotation and Rmbg and R,,:c, have independent N(0, 1) entries, we may take

(h%,m") = (e1,e1).
By Lemma 6, the minimizer (h ,m*) of (32) is unique and satisfies

Hﬁ*—eleH\m* el <41l -vI—o) (33)

if for all (0h,dm) € RE—1 x RN=1, there exists £, k € [L] such that

—_~—

Sign((Rﬂnbg)Tel)(Rﬁnb()Tg\fl <0 and Sign((RTﬁuCe)Tel)(Rn*thg)T% <0 (34)

sign((Rmbk)Tel)(%)Tgﬁ >0 and sign((R hck)Tel)(RWAﬂck)TgTv)'z, <0. (35)

m
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By Lemma 7, there exists ¢, k € [L] that satisfy (34) and (35), respectively, with probability at least 1 —e~¢L
ifL>C(K+N). O

We now present a proof of Theorem 2. In Theorem 2, the noise & € [—1,1] which is in contrast to
& € [-1,0] in Lemma 8. The key idea is measurements with noise that satisfy £, > —1 can be converted to
measurements with noise in the interval [—1,1]. In order to see this, let

_ Ye
— 14 ; 36
P RS 0
s =max{s, 1} <1+ [|£] oo, (37)
1
n4=§(1—s+54). (38)

We then consider the measurements y, = sy¢(1 + ;) for £ € [L]. Because sge(1 + 1¢) = Ge(1 + &), the noisy
measurements are the same, however the noise may be different.

Proof of Theorem 2. As the noise of measurements yy = ¢o(14+&¢) may not be one-sided as in (9), we consider
equivalent measurements yy = syj¢(1+ 1), where s and 7, are as defined in (37) and (38), respectively. This
turns the BranchHull program (BH) into

i 5 3 ' Th T .
per |24 |m|3  st.  sign(y)blheim > |sye(1 4 n0)),

(39)
s¢-bjh >0, L€ [L].
First, we note that for all £ € [L],
1
ne=(1+&—s) (40)

| =

<—(s—9) (41)

S »

)

where the first inequality holds because 1+&, < 1+max,c(z) § < s. Second, we have n, > —1 for all £ € [L],
which follows directly from & > —1 for all £. Thus, the noise 1 is one-sided and by Lemma 8, the minimizer
(h*, m*) of (39) is unique and if L > C(K + N), the minimizer satisfies

2
b %
h* — \/sh Hmu 2| 4 flme - Vsm ||| u|||2 < 4(1 = V1= 5)s|[h¥|lo]|m®|2 (43)
7 | il |
with probability at least 1 — e~¢L. In (43),
6 = [Inlle
1
= — min <——1+€—€>
Le[L] \ S S
1(1 + min &) + 1
=—- min
S Le(L] ¢
1—c¢
< - +1, (44)

S
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where the first equality holds because € = [|€]|oc > — minge(z) &. Let (h°, m° (hh\/lmh|2 “\/Il“hi”z >

‘hh Iz’ mb||2

‘We now compute

1
2 2 2
Ih* = B2+ [[m* —m|3)

-

R R U

012 2
2

< (lIn" = V3he |3 + me — Vsm® ) + (Ivshe = m2l;+ v

N

°II3) (45)
A= VT=0)slBallm?2) " + (V5 — 1) (IA° B + lme3)* (46)

§(2<s<1— 1;)) VR (VE— 1) | IR ml, (47)
(2(1+6_F_62)5+¢§<\r+e-1)) TR (48)

(2\/_+ fﬁ) TR (19)

<4vey/ R |l2llmd 2, (50)

where (45) holds because of triangle inequality, (46) holds because of (43), (47) holds because of (44) and

Rz = ||mP]l2 = \/||hh||2||mﬂ||27 (48) holds because of (37) and (49) and (50) holds because for all
ec[0,1], wehave 1 + e —v1—-€2 <2 V1+e—-1<Sande< /e. O

3. Numerical results

In this section, we provide two numerical studies on synthetic data. The first study numerically verifies
Theorem 1 and the second study shows that the BranchHull program (BH) is robust to small dense noise. For
both simulations, we used an interior point solver available in Matlab to solve the corresponding BranchHull
program.

For the first simulation, consider the following measurements: fix N € {10,20,...,150}, L €
{10,70,...,850} and let K = N. Let the target signal (h’,m!) € RX x RN be such that h? = ¢
and m* = e;. Let B € REXE and C € RE*N such that B;; ~ N(0,1) and C;; ~ N(0,1). Lastly, let
ye = Bh® o Cm/ and s = sign(Bh").

Fig. 3 shows the fraction of successful recoveries from 10 independent trials for the bilinear inverse
problem (1) from data as described above. Black squares correspond to no successful recovery and white
squares correspond to 100% successful recovery. Let (h*, m*) be the output of (BH). For each trial, we say
(BH) successfully recovers the target signal if ||(h*,m*) — (e1,e1)||2 < 107°. The area to the left of the
line corresponds to the oversampling required for successful recovery stated in Theorem 1. The figure shows
the linear relationship between number of measurements L and size of target signals K + N for successful
recovery.

For the noisy simulation, consider the following measurements: fix N = K = 20 and L € {10, 20, ...,200}.
Let the target signal (h?, m%) € RX x RN be such that h* ~ N(0,1) and m! ~ N(0,1). Let B € REXK
and C € RE*N be such that B;; ~ N(0,1) and C;; ~ N(0,1). Fix o € {0,0.1,...,1} and let £ € R” such
that & ~ Uniform([—a, a]). Lastly, let y, = Bh* o Cm! o (1+¢) and s = sign(Bh/Y).
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20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
N+ K

Fig. 3. The empirical recovery probability from synthetic data with total measurements L as a function of size of the target signals
K + N. The shades of black and white represents the fraction of successful simulation. White blocks correspond to successful
recovery and black blocks correspond to unsuccessful recovery. Each block corresponds to the average from 10 independent trials.
The area to the left of the line satisfies L > 2(K + N), which is the theoretical successful recovery bound stated in Theorem 1.

0.7

06

0.5 -

04r

0.3 -

Maximum relative error

_L_
N+K

L

Fig. 4. The empirical recovery error from synthetic data as a function of sampling ratio EiN-

are fixed to 20. Different piecewise line corresponds to different noise level a.

The size of the signals, N and K,

Fig. 4 shows the maximum relative error from 10 independent trials for the bilinear inverse problem (1)
from data as described above. Each curve corresponds to different noise level a, which controls the size of
noise level e defined in (2). The plot shows the effect of different levels of noise on the maximum relative
error as a function of the sampling ratio Ki—N Empirically, sampling ratio of about 2.5 is sufficient for stable
estimation of the target signal. Additionally, the spacing between the piecewise lines for large sampling ratio
is uniform in Fig. 4. This suggests that the relationship between recovery error and the noise level € is linear,
which is in contrast to Theorem 2 which shows that the recovery error depends as /e for small noise.
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