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We consider the bilinear inverse problem of recovering two vectors, x and w, in RL

from their entrywise product. For the case where the vectors have known signs and 
belong to known subspaces, we introduce the convex program BranchHull, which is 
posed in the natural parameter space that does not require an approximate solution 
or initialization in order to be stated or solved. Under the structural assumptions 
that x and w are members of known K and N dimensional random subspaces, we 
present a recovery guarantee for the noiseless case and a noisy case. In the noiseless 
case, we prove that the BranchHull recovers the vectors up to the inherent scaling 
ambiguity with high probability when L � 2(K + N). The analysis provides a 
precise upper bound on the coefficient for the sample complexity. In a noisy case, 
we show that with high probability the BranchHull is robust to small dense noise 
when L = Ω(K + N).

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

This paper considers a bilinear inverse problem (BIP): recover vectors x and w from the observation 
y = A(x, w), where A is a bilinear operator. BIPs have been extensively studied in signal processing and 
data science literature, and comprise of fundamental problems such as blind deconvolution/demodulation 
[3,23,15,1], phase retrieval [9], dictionary learning [25], matrix factorization [14,16], and self-calibration [18]. 
Optimization problems involving bilinear terms and constraints also arise in other contexts, such as blending 
problems in chemical engineering [6].
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A significant challenge of BIPs is the ambiguity of solutions. For example, if (x�, w�) is a solution to a 
BIP, then so is (cx�, c−1w�) for any nonzero c ∈ R. Other ambiguities may also arise, including the shift 
ambiguity in blind deconvolution, the permutation ambiguity in dictionary learning, and the ambiguity up 
to multiplication by an invertible matrix in matrix factorization. These ambiguities are challenging because 
they cause the set of solutions to be nonconvex.

We will consider the fundamental bilinear inverse problem of recovering two L dimensional vectors w and 
x from the observations y = w ◦ x, where ◦ denotes the entry-wise product of vectors. This is immediately 
recognized as the calibration problem, where one is only able to measure a signal x modulo unknown 
multiplicative gains w. A self-calibration algorithm aims to figure out the gains w and the signal x jointly 
from y. The circular convolution also becomes pointwise multiplication in the Fourier domain, allowing us 
to reduce the important blind deconvolution problem in signal processing and wireless communications to 
a complex case of the above bilinear form.

In addition to the challenges of general BIPs, the BIP above is difficult because the solutions are nonunique 
without further structural assumptions. For example (w�, x�) and (1, w� ◦ x�) are both consistent with the 
entrywise products y = w� ◦ x�. While multiple structural assumptions are reasonable, we will consider the 
case where w� and x� belong to known subspaces B and C, as in [3]. In addition, we also require w� and 
x� to be real and of known signs. The method can be extended to complex vectors in the case of known 
complex phases.

The known sign information in the real case is justified in imaging applications, where we want to 
recover image pixels (always non-negative) from occlusions caused by unknown multiplicative masks [7]. A 
stylized application of this setup also arises in the wireless communications. A source encodes a message as 
a series of positive magnitude shifts on tones at frequencies f1, f2, . . . , fL. These real valued and positive 
x = [x(f1), x(f2), . . . , x(fL)]� are transmitted over a linear-time invariant channel, where x(f�) are weighted 
by the frequency response of the channel w(f�) (in general complex valued), and in the ideal noiseless case, 
the receiver ends up observing y(f�) = x(f�) · w(f�). The real part of the complex-valued measurements 
Re {y(f�)} = x(f�) · Re {w(f�)} are simply the pointwise product of two unknown real numbers with known 
signs. In addition, in this application, the vectors x, and w naturally live in low-dimensional subspaces; for 
details, see [3] and [2].

The assumptions of sign and subspace measurements are strongly motivated by the sweep-distortion 
removal problem in dielectric imaging [1]. In this problem, a dielectric is imaged, and the pointwise product 
of an electromagnetic pulse and the reflectivity pattern is observed. The signal’s nonnegativity follows from 
nonnegativity of the material’s reflectivity, and the pulse belongs to a subspace defined by dominant wavelet 
coefficients of the image.

We consider the following bilinear inverse problem in the presence of multiplicative noise given by the 
vector 1 + ξ:

Let: w� ∈ B ⊂ RL, x� ∈ C ⊂ RL, ξ ∈ RL, s = sign(w�)

y = w� ◦ x� ◦ (1 + ξ), (1)

Given: y, s, B, C

Find: w�, x� up to the scaling ambiguity

One standard way to solve the BIP above1 is to convexify it by lifting. More specifically, the bilinear 
inverse problem can be recast as a linear matrix recovery problem with the structural constraint that the 
recovered matrix is rank one. With w�

� = bᵀ
� h� and x�

� = cᵀ
� m� for � = 1, . . . , L, the underlying linear operator 

is given by y� = w�
�x�

� = bᵀ
� h�m�ᵀc� = 〈b�c

ᵀ
� , h�m�ᵀ〉 = A�(h�m�ᵀ), and the formal recovery framework 

1 As stated, this approach ignores the sign information.
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Fig. 1. Given the bilinear measurement x�w� = y�, the point (x�, w�) is on a two-branch hyperbola, as depicted by the dashed and 
solid lines. Further information on the sign of w� identifies which branch of the hyperbola the point is on (the solid line). The 
convex formulation in this paper replaces the relevant branch of the hyperbola with its convex hull (the shaded region).

is to find the X of minimal rank that is consistent with A(X) = y. By relaxing the rank objective to 
the nuclear norm of X, this optimization problem becomes a semidefinite program. The results in [3], 
which apply to the complex case, show that when b� and c� are Fourier and Gaussian vectors, respectively, 
this semidefinite program succeeds in recovering the rank-1 matrix h�m�� with high probability, whenever 
K + N � L/ log3 L. Unfortunately, directly optimizing a lifted problem is prohibitively computationally 
expensive, as the lifted semidefinite program is posed on a space of dimensionality K × N , which is much 
larger than the K + N dimensionality of the natural parameter space.

To address the intractability of lifted methods, a recent theme of research has been to solve quadratic 
and bilinear recovery problems in the natural parameter space using alternating minimization and gradient 
descent algorithms [20,24]. These algorithms include the Wirtinger Flow (WF) and its variants for phase 
retrieval [5,8,28]. A Wirtinger gradient descent method was recently introduced for blind deconvolution in 
[17]. In the case that b� are deterministic complex matrices that satisfy an incoherence property and that c�

are Gaussian vectors, this nonconvex method succeeds at recovering h� and m� up to the scale ambiguity 
with high probability when K+N � L/ log2 L. While WF based methods enjoy rigorous recovery guarantees 
under optimal or nearly optimal sample complexity with suitable measurement models, the proofs of these 
results are long and technical. Also, because of the nonconvexity of the problem, the convergence of a 
gradient descent algorithm to the global minimum usually relies on an appropriate initialization [26,8,17].

The approach we will present in this paper will combine strengths of both of these approaches. Specifically, 
we introduce a convex formulation in the natural parameter space for the bilinear inverse problem of 
recovering two real vectors from their entrywise product, provided that the vectors live in known subspaces 
and have known signs. This convex formulation is called BranchHull and does not involve an initialization 
or approximate solution in order to be posed or solved. BranchHull is based on the following idea: The 
bilinear measurements x�w� = y� establish that (x�, w�) is on one of two branches of a hyperbola in R2. 
Information on sign(w�) identifies the appropriate branch. The convex formulation is then formed by relaxing 
this nonconvex branch of a hyperbola to its convex hull, as shown in Fig. 1. We consider the case where the 
two vectors live in random subspaces of RL with dimensions K and N . Under this assumption on x� and w�, 
with noise ξ that does not change the sign of the measurements, we establish that the Euclidean recovery 
error is bounded by the �∞ norm of the noise. This result holds with high probability for K + N � L. 
In the noiseless case, we provide an explicit lower bound on the recovery probability that is nonzero when 
L > 2(K + N) − 3.
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1.1. Problem formulation

We consider the bilinear inverse problem of recovering two vectors from their entrywise product. That is, 
let w�, x�, ξ ∈ RL, and let y = w� ◦ x� ◦ (1 + ξ), where ξ corresponds to noise. From y, we attempt to find 
w� and x� up to the scaling ambiguity (cw�, 1c x�). To make the problem well posed, we consider the case 
where w� and x� belong to known subspaces B and C of RL. We further consider the case where the signs 
of the entries of w�, and hence those of x�, are known. Let s = sign(w�). This bilinear inversion problem is 
stated in (1).

Ideally, we could resolve the scaling ambiguity and find (w�, x�) such that ‖w�‖2 = ‖x�‖2 by solving the 
following program:

minimize
w∈B, x∈C

‖w‖2
2 + ‖x‖2

2 subject to w�x� = y�

s�w� ≥ 0, � = 1, . . . , L.

This program is nonconvex, but it admits the following convex relaxation:

minimize
w∈B, x∈C

‖w‖2
2 + ‖x‖2

2 subject to sign(y�)w�x� ≥ |y�|

s�w� ≥ 0, � = 1, . . . , L.

Note that for fixed �, the feasible set {(w�, x�) | sign(y�)w�x� ≥ |y�|, s�w� ≥ 0} is the convex hull of 
{(w�, x�) | w�x� = y�, s�w� ≥ 0}.

We consider this problem when written in the natural parameter space. Despite the abuse of notation, 
let B ∈ RL×K be a matrix that spans the K dimensional subspace B. Similarly, let C ∈ RL×N be a matrix 
that spans the N dimensional subspace C. Let (h�, m�) ∈ RK × RN . Let w� = Bh� and x� = Cm�. We 
can write w� = bᵀ

� h, x� = cᵀ
� m, and y� = 〈b�c

ᵀ
� , h�m�ᵀ〉, where bᵀ

� is the �th row of B and cᵀ
� is the �th row 

of C. The recovery task is now to find (h�, m�) by the convex program called BranchHull

minimize
h∈RK , m∈RN

‖h‖2
2 + ‖m‖2

2 subject to sign(y�)bᵀ
� h · cᵀ

� m ≥ |y�| (BH)

s� · bᵀ
� h ≥ 0, � = 1, . . . , L.

This program is convex because for any fixed �, the points consistent with both the first and second con-
straints is a convex set. This program has K + N variables, L linear inequality constraints, and L nonlinear 
inequality constraints. Because the scaling (cw�, 1c x�) is consistent with the constraints for positive c, the 
program will return a solution where ‖h‖2 = ‖m‖2. Thus, if recovery is successful in the noiseless case, the 

optimal solution is 
(

h�
√

‖m�‖2
‖h�‖2

, m�
√

‖h�‖2
‖m�‖2

)
. We implement the same convex program (BH) in the noisy 

case if the noise ξ does not alter the sign of the measurement y. This occurs when ξ� ≥ −1 for all � ∈ [L]. 
For the case where noise alters sign or outlier case, see the discussion section for a modified program that 
is conjectured to tolerate sign change and significant outliers.

1.2. Main results

In this paper, we consider the bilinear recovery problem (1), where the subspaces given by B and C are 
random. Specifically, we show that if B and C have i.i.d. Gaussian entries, then exact recovery of (h�, m�) is 
possible in the noiseless case with nonzero probability when there are at least 2 times as many measurements 
as degrees of freedom.
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Theorem 1 (Noiseless case). Fix (h�, m�) ∈ RK × RN such that h� 	= 0 and m� 	= 0. Let B ∈ RL×K , C ∈

RL×N have i.i.d. N (0, 1) entries and ξ = 0. Then 

(
h�

√
‖m�‖2
‖h�‖2

, m�
√

‖h�‖2
‖m�‖2

)
is the unique solution to (BH)

with probability at least

1 − exp
(

−
[
L − (2N + 2K − 3)

]2

2(L − 1)

)
,

provided that L > 2N + 2K − 3.

This theorem provides an explicit lower bound on the recovery probability by the convex program (BH). 
If L > 2N + 2K − 3, there is a nonzero probability of successful recovery. By taking L ≥ C̃(N + K), the 
probability of failure becomes at most e−c̃L, for universal constants C̃ and c̃. The scaling of L in terms 
of N + K is information theoretically optimal up to a constant factor. The proof of Theorem 1 follows 
from estimating the probability of covering a sphere by random hemispheres chosen from a nonuniform 
distribution.

Now we will state a result that the convex program (BH) is robust to small dense noise. Let

ε = ‖ξ‖∞ (2)

represent the noise level. In particular, we present a recovery theorem for ε ≤ 1. Under this assumption 
on the noise, we show that if the matrices B and C have i.i.d. Gaussian entries and there are O(K + N)

measurements, then the minimizer of (BH) is close to 
(

h�
√

‖m�‖2
‖h�‖2

, m�
√

‖h�‖2
‖m�‖2

)
with high probability.

Theorem 2 (Noisy case). Fix (h�, m�) ∈ RK ×RN such that h� 	= 0 and m� 	= 0. Let B ∈ RL×K , C ∈ RL×N

have i.i.d N (0, 1) entries. Let ε be as defined in (2). Let y ∈ RL contain measurements that satisfy (1) with 
ε ∈ [0, 1]. If L ≥ C(K + N) then the unique minimizer (h∗, m∗) of the BranchHull program (BH) satisfies

⎛⎜⎝∥∥∥∥∥h∗ − h�

√
‖m�‖2

‖h�‖2

∥∥∥∥∥
2

2

+

∥∥∥∥∥∥m∗ − m�

√
‖h�‖2

‖m�‖2

∥∥∥∥∥∥
2

2

⎞⎟⎠
1
2

≤ 4
√

ε

√
‖h�‖2‖m�‖2

with probability at least 1 − e−cL. Here, C and c are absolute constants.

In Theorem 2, the �2 recovery error depends on the noise level as the square root of ε. We suspect that 
this square root dependence in the power of ε is an artifact of the proof technique and numerical simulations 
presented in Fig. 4 suggests the recovery errors, for small noise, behaves linearly in ε.

1.3. Discussion

The BranchHull formulation is a novel convex relaxation for the bilinear recovery from the entrywise 
product of vectors with known signs, and it enjoys a recovery guarantee when those vectors belong to random 
real subspaces of appropriate dimensions. The formulation is nothing more than finding which point of a 
convex set is closest to the origin. Geometrically, exact recovery is possible by �2-norm minimization because 
the feasible set of (h, m) has a ‘pointy’ ridge that corresponds to the fundamental scaling ambiguity, as 
illustrated in Fig. 2.

A related formulation to BranchHull was recently introduced for the phase retrieval problem. This for-
mulation, called PhaseMax, is a linear program and was independently discovered by [4] and [10]. PhaseMax 
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Fig. 2. An illustration of the geometry of BranchHull in the case where h ∈ R2 and m ∈ R1. The feasible set of BranchHull has a 
shape similar to the solid in the top right. The ridge of this set corresponds to the fundamental scaling ambiguity of the bilinear 
recovery problem. The solution to BranchHull is given by the smallest scaling of the unit ball that intersects the feasible set. The 
minimizer is exactly on this ridge because the ridge is ‘pointy.’

enjoys a rigorous recovery guarantee under a random data model. Existing recovery proofs are based on 
statistical learning theory [4], geometric probability [10], and elementary probabilistic concentration ar-
guments [12]. As with Wirtinger Flow, successful recovery of PhaseMax with optimal sample complexity 
has been proven when an appropriate initialization is known. Unlike Wirtinger Flow, the initialization is 
used in PhaseMax’s objective function, as opposed to its algorithmic implementation. In both PhaseMax 
and Wirtinger Flow, an approximate solution or initialization is needed to state or solve the optimization 
problem. We note that BranchHull does not require an anchor vector or initialization to be stated or solved. 
As a trade off, BranchHull instead assumes the sign information of the signal is known.

The idea of convex relaxations in the natural parameter space for bilinear problems is not new. For 
example, in nonlinear programming (NLP) or mixed integer nonlinear programming (MINLP) problems 
with bilinear constraints and specified variable bounds, a McCormick relaxation [19] replaces bilinear terms 
with four linear inequality constraints that define a convex quadrilateral that contains the hyperbola of 
feasible points within the variable bounds. Tighter convex relaxations are possible [6], such as by using 
the hyperbola itself as an inequality constraint [21]. These relaxations have been studied as part of branch 
and bound approaches to NLPs and MINLPs. Under certain conditions and branching rules [13] these 
approaches can find a global minimizer; however, the branching results in many convex programs that need 
to be solved, and it may result in exponential time complexity. In contrast, the present paper considers only 
the single convex program, BranchHull, achieved by the natural convex relaxation of bilinear constraints 
with only sign information. This work establishes conditions — in particular, subspace conditions — under 
which exact recovery by an efficient convex program can be rigorously established.

This work motivates several interesting and important extensions. Most immediately, BranchHull can 
be extended when the phases of complex vectors are known. Because of applications in signal processing 
and communications, it is also important to extend the theory for BranchHull to include deterministic 
subspaces, such as the span of partial Fourier matrices. This paper shows that BranchHull is robust to noise 
that does not change the sign of any measurement. Tolerance to a general noise model, including outliers, 
should be established for BranchHull or a variation with slack variables, such as in [11]. Noise tolerance in 
the case with sign change is particularly important because even one measurement with an incorrect sign 
can substantially alter the shape of the feasible set. For this general noise and outlier case, we propose the 
Robust BranchHull program

minimize
h∈Rk,m∈RN ,e∈RL

‖h‖2
2 + ‖m‖2

2 + λ‖e‖1 subject to sign(y�)(cᵀ
� m + e�)bᵀ

� h ≥ |y�|, (RBH)

s� · bᵀ
� h ≥ 0, � = 1, . . . , L,

which shifts the feasibility set to include the target signal while penalizing against shift. In the outlier 
case, the �1 penalty promotes sparsity of slack variable e, which is desired. We leave detailed empirical and 
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theoretical analysis of (RBH) to future work. It would also be interesting to develop convex relaxations in 
the natural parameter space that do not use sign information. Further, extensions to more general bilinear 
recovery problems are of significant interest. All of these directions are left for future publications.

1.4. Organization of the paper

The remainder of the paper is organized as follows. In Section 1.5, we present notations used throughout 
the paper. In Section 2.1, we present the proof of Theorem 1. In Section 2.2, we present the proof of 
Theorem 2. In Section 3 we observe the performance of BranchHull on synthetic data.

1.5. Notation

Vectors and matrices are written with boldface, while scalars and entries of vectors are written in plain 
font. For example, c�1 is the first entry of c�. We write 1 as the vector of all ones with dimensionality 
appropriate for the context. Let [L] = {1, 2, . . . , L}. Let ei be the ith standard basis element. We write 
K + N � L to mean that there exists a constant C such that K + N ≤ CL. Given a vector in x ∈ RN , let 
x̃ ∈ RN−1 be the subvector formed by all but the first coefficient of x. Let Sn−1 be the unit sphere in Rn. 
For matrices A, B, let 〈A, B〉 = trace(BᵀA) be the Hilbert-Schmidt inner product of A with B. For a set 
S, let Conv(S) be its convex hull. Let Re {z} be the real part of a complex z.

2. Technical proofs

In this section we provide proofs of Theorems 1 and 2. These proofs use a sphere covering type argument 
which is based on the idea that m random directions sampled from a symmetric distribution will cover 
the unit sphere Sn−1 with high probability when m = Ω(n). Another paper that uses this technique is the 
PhaseMax paper by [10].

2.1. Proof of Theorem 1

We will first show that BranchHull program (BH) is a convex program.

Lemma 1. If y ∈ RL such that y 	= 0, s ∈ {±1}L, B ∈ RL×K and C ∈ RL×N then the BranchHull program 
(BH) is a convex program.

Proof. As the objective function is convex, we consider the constraints of (BH). For a fixed �, let S� =
{(h, m) ∈ RK × RN : sign(y�)bᵀ

� h · cᵀ
� m ≥ |y�|, s� · bᵀ

� h ≥ 0}, S�,1 = {(x, w) ∈ R2 : sign(y�)xw ≥
|y�|, s�w ≥ 0} and S�,2 = {(h, m) ∈ RK × RN : (bᵀ

� h, cᵀ
� m) ∈ S�,1}. To show S� is a convex set, it is 

sufficient to show that the sets S�,1 and S�,2 are convex.
We first show that the set S�,1 is convex. Let P = {w ∈ R : s�w ≥ 0} and consider the function f : P → R

such that f(w) = y�

w . Note that if sign(y�)s� ≥ 0 then f is a convex function and S�,1 is the epigraph of f . 
Similarly, if sign(y�)s� ≤ 0 then f is a concave function and S�,1 is the subgraph of f . In both cases, S�,1 is 
a convex set because the epigraph of a convex function and the subgraph of a concave function are convex.

Lastly, S�,2 is convex because the inverse image of a convex set of a linear map is convex. So, S� is also 
a convex set. Since the intersection of any number of convex sets is convex, we have that the constraint of 
(BH) is a convex set. Thus, BranchHull program (BH) is a convex program. �

To prove Theorem 1, we will show that (h�, m�) is the unique minimizer of an optimization with a larger 
feasible set defined by linear constraints.
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Lemma 2. If (h�, m�) is the unique solution to

minimize
h∈RK ,m∈RN

‖h‖2
2 + ‖m‖2

2 subject to y�〈b�c
ᵀ
� , hm�ᵀ + h�mᵀ〉 ≥ 2y2

� , (3)

� = 1, . . . , L,

then (h�, m�) is the unique solution to (BH).

Proof of Lemma 2. It suffices to show that the feasible set of (3) contains the feasible set of (BH). We may 
rewrite (BH) as

minimize
h∈RK ,m∈RN

‖h‖2
2 + ‖m‖2

2 subject to y�b
ᵀ
� h · cᵀ

� m ≥ y2
�

s� · bᵀ
� h ≥ 0, � = 1, . . . , L.

We now use the fact that a convex set with a smooth boundary is contained in a halfspace defined by the 
tangent hyperplane at any point on the boundary of the set. Consider the point (w�

�, x
�
�) ∈ R2, and observe 

that {
(w�, x�) ∈ R2

∣∣∣∣ y�w�x� ≥ y2
�

sign(w�) = s�

}
⊆

{
(w�, x�) ∈ R2

∣∣∣∣ ( y�x
�
�

y�w
�
�

)
·
(

w� − w�
�

x� − x�
�

)
≥ 0

}
. (4)

Plugging in w� = bᵀ
� h and x� = cᵀ

� m, we have that any feasible (h, m) satisfies

y�c
ᵀ
� m�bᵀ

� h + y�b
ᵀ
� h�cᵀ

� m ≥ 2y2
� , � = 1, . . . , L,

which implies y�〈b�c
ᵀ
� , hm�ᵀ + h�mᵀ〉 ≥ 2y2

� for all �. �
We now show that (h�, m�) is the unique solution to the optimization problem (3) if the unit sphere in 

RN+K−2 is covered by L hemispheres given in terms of b� and c�. Write b� = (b�1, ̃b�), where b̃� contains 
all but the first element of b�. Similarly, write c� = (c�1, ̃c�).

Lemma 3. Let h� = e1 and m� = e1. The unique solution to (3) is (h�, m�) if for all (δ̃m, δ̃h) ∈ RN−1 ×
RK−1 there exists an � ∈ [L] such that b�1 	= 0, c�1 	= 0, and〈

c̃�

c�1
, δ̃m

〉
+

〈
b̃�

b�1
, δ̃h

〉
≤ 0. (5)

Proof of Lemma 3. Because the feasible set of (3) is closed and convex, and because a closed convex set has 
a unique point closest to the origin, (3) has a unique minimizer.

Consider a feasible point (h� + δh, m� + δm). To prove that (h�, m�) is a minimizer of (3), it suffices to 
show

〈b�c
ᵀ
� , h�m�ᵀ〉〈b�c

ᵀ
� , δhm�ᵀ + h�δmᵀ〉 ≥ 0 ∀ � ⇒ 〈m�, δm〉 + 〈h�, δh〉 ≥ 0.

Plugging in h� = e1 and m� = e1, it suffices to show

b�1c�1
[
b�1c�1(δm1 + δh1) + b�1c̃ᵀ

� δ̃m + c�1b̃
ᵀ
� δ̃h

]
≥ 0 ∀ � ⇒ δm1 + δh1 ≥ 0

Dividing by b2
�1c2

�1, it suffices to show
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δm1 + δh1 +
〈

c̃�

c�1
, δ̃m

〉
+

〈
b̃�

b�1
, δ̃h

〉
≥ 0 ∀� s.t. b�1 	= 0 and c�1 	= 0

⇒ δm1 + δh1 ≥ 0.

To prove this, it suffices to prove

∀(δ̃h, δ̃m) ∈ RN−1 × RK−1, ∃ � s.t. b�1 	= 0, c�1 	= 0, and
〈

c̃�

c�1
, δ̃m

〉
+

〈
b̃�

b�1
, δ̃h

〉
≤ 0. �

For a given vector a, we will call {δ ∈ Sn−1 : 〈a, δ〉 ≥ 0} the hemisphere centered at a. We now provide a 
lower bound to the probability of covering the unit sphere by hemispheres centered at m random directions 
under a nonuniform probability distribution that is symmetric to negation. This lemma is an immediate 
generalization of Lemma 2 in [10], with a nearly identical proof.

Lemma 4. Choose m independent random vectors {ai}m
i=1 in Sn−1 from a (possibly nonuniform) distribution 

that is symmetric with respect to negation, and is such that all subsets of size n are linearly independent 
with probability 1. Then, the hemispheres centered at {ai}m

i=1 cover the whole sphere with probability

1 − 1
2m−1

n−1∑
k=0

(
m − 1

k

)
.

This value is the probability of flipping at least n heads among m − 1 tosses.

Proof of Lemma 4. Classical arguments in sphere covering [30] show2 the following: If m hyperplanes con-
taining the origin are such that the normal vectors to any subset of n hyperplanes are linearly independent, 
then the complement of the union of these hyperplanes is partitioned into

r(n, m) = 2
n−1∑
k=0

(
m − 1

k

)

connected regions. In each of these regions, every point lies on the same side of each hyperplane. Alternatively 
put, each region corresponds to a unique assignment of a side of each hyperplane. For a fixed set of m

hyperplanes, if the half space on either side of each hyperplane is selected by independent tosses of a fair 
coin, then with probability given in the lemma statement, there will be no nontrivial intersection of all these 
half spaces.

By the assumption that the distribution of ai is symmetric with respect to negation, we have that 
for any z ∈ Sn−1, the conditional distribution of ai given ai ∈ {±z} is uniform over the two elements 
±z. By independence, for any fixed {zi}m

i=1 ∈ (Sn−1)m, the distribution of {ai} conditioned on the event 
{ai = ±zi} is uniform over the 2m possibilities. Thus, conditioned on this event, the probability that the 
sphere is covered is that of the lemma statement. Integrating over all possible {zi}, the lemma follows. �

Our last technical lemma provides an explicit lower bound to the probability of the sphere covering given 
in Lemma 3.

2 This article credits [22] for the proof argument.
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Lemma 5. With probability at least 1 − exp
(

−
[
(L−1)−2(N+K−2)

]2

2(L−1)

)
, we have that

∀(δ̃h, δ̃m) ∈ RN−1 × RK−1, ∃ � such that
〈

c̃�

c�1
, δ̃m

〉
+

〈
b̃�

b�1
, δ̃h

〉
≤ 0. (6)

Proof of Lemma 5. To show (6), we must show that the L hemispheres (of the unit sphere in RN−1 ×RK−1) 
centered at (− c̃�

c�1
, − b̃�

b�1
) cover the entire sphere. As the distribution of ( c̃�

c�1
, b̃�

b�1
) is invariant to negation, 

and as any n samples from this distribution are linearly independent with probability 1, Lemma 4 gives 
that the probability that (6) holds is at least the probability of flipping at least N + K − 2 heads among 
L − 1 tosses of a fair coin.

We now bound the probability of getting at least n heads among m fair coin tosses. Let X be the number 
of heads in m tosses. By Hoeffding’s inequality for Bernoulli random variables [29], for any t ≥ 0,

P
(

X − m

2 > −mt
)

≥ 1 − e−2mt2
.

By selecting t = 1
2 − n

m , we get that when n ≤ m/2,

P (at least n heads among m tosses) ≥ 1 − e−2m( 1
2 − n

m )2
= 1 − e− (m−2n)2

2m .

The lemma follows by plugging in m = L −1 and n = N +K −2 into the above probability estimate. �
Now, we may prove the theorem.

Proof of Theorem 1. Without loss of generality, let ‖h�‖2 = ‖m�‖2. This is possible because for any b� and 

c�, we have that 
(

h�
√

‖m�‖2
‖h�‖2

, m�
√

‖h�‖2
‖m�‖2

)
and (h�, m�) give equal values of y� = 〈b�c

ᵀ
� , h�m�ᵀ〉.

Further, without loss of generality, let ‖h�‖2 = ‖m�‖2 = 1. This is possible because the scaling

ĥ = h

‖h�‖2
, m̂ = m

‖m�‖2
, ĥ� = h�

‖h�‖2
, m̂� = m�

‖m�‖2
,

turns (BH) into

minimize
h∈RK , m∈RN

‖h�‖2
2‖ĥ‖2

2 + ‖m�‖2
2‖m̂‖2

2 (7)

subject to 〈b�c
ᵀ
� , ĥ

�
m̂�ᵀ〉〈b�c

ᵀ
� , ĥm̂ᵀ〉 ≥ 〈b�c

ᵀ
� , ĥ

�
m̂�ᵀ〉2

s� · bᵀ
� ĥ ≥ 0, � = 1, . . . , L.

Further, without loss of generality we may take h� = e1 and m� = e1. To see this is possible, let Rh�

and Rm� be rotation matrices that map h� and m� to e1, respectively. Letting h̄ = Rh�h, m̄ = Rm�m, 
and s̄� = sign(bᵀ

� Rᵀ
h�e1), problem (BH) can be written

minimize
h̄∈RK , m̄∈RN

‖Rh�h̄‖2
2 + ‖Rm�m̄‖2

2 (8)

subject to 〈Rh�b�c
ᵀ
� Rᵀ

m� , e1eᵀ
1〉〈Rh�b�c

ᵀ
� Rᵀ

m� , h̄m̄ᵀ〉 ≥ 〈Rh�b�c
ᵀ
� Rᵀ

m� , e1eᵀ
1〉2

s̄� · bᵀ
� Rᵀ

h�h̄ ≥ 0, � = 1, . . . , L.
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As �2 norms are invariant to rotation and as Rh�b� and Rm�c� have independent N (0, 1) entries, we may 
take (h�, m�) = (e1, e1).

Let E be the event that (6) holds. By Lemma 5,

P (E) ≥ 1 − exp
(

−
[
(L − 1) − 2(N + K − 2)

]2

2(L − 1)

)
.

By Lemma 3, on E, (h�, m�) is the unique solution to (3). By Lemma 2, on E, (h�, m�) is the unique 
solution to (BH). �
2.2. Proof of Theorem 2

We will now prove that BranchHull is robust to small dense noise which does not alter the sign of the 
measurements. The sign of the measurements remains unchanged when ξ� ≥ −1 for all � ∈ [L]. We first 
only consider measurements y� with noise ξ� that satisfy

ξ� ∈ [−1, 0] (9)

for all � ∈ [L]. If all the measurements satisfy condition (9), we say the noise is “one-sided”. Note that the 
noise is one-sided if the convex hull of the branch of the hyperbola corresponding to the noisy measurement 
contain the hyperbola corresponding to the noiseless measurement, for all measurements. We first establish a 
recovery result for measurements with one-sided noise and show that for measurements that contain ξ� > 0, 
the problem can be transformed to a related scaled problem whose corresponding measurements contain 
one-sided noise.

For the remainder of the paper, let ŷ� = bᵀ
� h�cᵀ

� m�. Lemma 6 shows that if the measurements contain 
one-sided noise, the recovery error using BranchHull program (BH) is bounded by ‖ξ‖∞.

Lemma 6. Let h� = e1 and m� = e1. Let B ∈ RL×K , C ∈ RL×N and y� satisfy (1) such that the noise is 
one-sided as in (9). Let ε = ‖ξ‖∞. The minimizer (h∗, m∗) of the BranchHull program (BH) is unique and 
satisfies

∥∥∥h∗ − h�
∥∥∥2

2
+

∥∥m∗ − m�
∥∥2

2 ≤ 4(1 −
√

1 − ε)

if for all (δ̃h, ̃δm) ∈ RK−1 × RN−1, there exists �, k ∈ [L] such that

sign(b�1)b̃ᵀ
� δ̃h ≤ 0 and sign(c�1)c̃ᵀ

� δ̃m ≤ 0, (10)

sign(bk1)b̃ᵀ
k δ̃h ≥ 0 and sign(ck1)c̃ᵀ

k δ̃m ≤ 0. (11)

Proof. First note that the minimizer of BranchHull program (BH) is unique because the feasible set is closed 
and convex and a closed convex set has a unique point closest to the origin. We now prove the remainder of 
Lemma 6 by showing that any feasible perturbation from the candidate minimizer increases the objective 
value of the BranchHull program (BH).

Assume the minimizer of (BH) is (h� + δh, m� + δm). Note that (h�, m�) is feasible in (BH) because the 
noise is one-sided. Comparing the objective values at (h� + δh, m� + δm) and (h�, m�), we get

‖δh‖2
2 + ‖δm‖2

2 ≤ −2
(

h�ᵀδh + m�ᵀδm
)

= −2 (δh1 + δm1) . (12)
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We now use the second feasibility condition s�b
ᵀ
� h ≥ 0 to show δh1 ≥ −1. Since (h� + δh, m� + δm) is 

feasible, the following holds for all � ∈ [L].

s�b
ᵀ
� (h� + δh) ≥ 0

⇒ sign(b�1)
(

b�1 + b�1δh1 + b̃
ᵀ
� δ̃h

)
≥ 0 (13)

⇒|b�1|δh1 ≥ −|b�1| − sign(b�1)b̃ᵀ
� δ̃h

⇒δh1 ≥ −1 − sign(b�1)b̃ᵀ
� δ̃h

|b�1|

⇒δh1 ≥ −1, (14)

where the first implication holds because s� = sign(bᵀ
� h�) and h� = e1 and the last implication holds 

because, by assumption (10), there exists a � ∈ [L] such that sign(b�1)b̃ᵀ
� δ̃h ≤ 0.

We now use the first feasibility condition on (h� + δh, m� + δm) to show that δh1 + δm1 is bounded from 
below. From the first feasibility condition, for all � ∈ [L] we have

sign(y�)bᵀ
� (h� + δh)cᵀ

� (m� + δm) ≥ |y�|

⇒ sign(y�)(b�1 + bᵀ
� δh)(c�1 + cᵀ

� δm) ≥ |y�|

⇒ sign(y�) (b�1c�1 + b�1cᵀ
� δm + bᵀ

� δhc�1 + bᵀ
� δhcᵀ

� δm) ≥ |y�|

⇒ sign(y�)b�1c�1(δh1 + δm1) + sign(y�)
(

b�1c̃ᵀ
� δ̃m + b̃

ᵀ
� δ̃hc�1 + bᵀ

� δhcᵀ
� δm

)
≥ |y�| − sign(y�)b�1c�1

⇒|ŷ�|(δh1 + δm1) + sign(y�)
(

b�1c̃ᵀ
� δ̃m + b̃

ᵀ
� δ̃hc�1 + bᵀ

� δhcᵀ
� δm

)
︸ ︷︷ ︸

I

≥ |ŷ�|ξ�, (15)

where the first implication holds because h� = e1 and m� = e1 and the last implication holds because 
sign(y�) = sign(ŷ�) and |y�| = sign(y�)b�1c�1(1 + ξ�).

We now show that term I is less than |ŷ�|δh1δm1 for some � ∈ [L]. Consider

I = sign(y�)
(

b�1c̃ᵀ
� δ̃m + b̃

ᵀ
� δ̃hc�1 + bᵀ

� δhcᵀ
� δm

)
= sign(y�)

(
b�1c̃ᵀ

� δ̃m + b̃
ᵀ
� δ̃hc�1 + b�1c�1δh1δm1 + b�1δh1c̃ᵀ

� δ̃m + b̃
ᵀ
� δ̃hc�1δm1 + b̃

ᵀ
� δ̃hc̃ᵀ

� δ̃m
)

= |ŷ�|δh1δm1 + sign(ŷ�)(1 + δm1)b̃ᵀ
� δ̃hc�1 + sign(ŷ�)c̃ᵀ

� δ̃m
(

b�1 + b�1δh1 + b̃
ᵀ
� δ̃h

)
= |ŷ�|δh1δm1 + (1 + δm1)|c�1| sign(b�1)b̃ᵀ

� δ̃h + sign(c�1)c̃ᵀ
� δ̃m |b�1 + bᵀ

� δh|︸ ︷︷ ︸
II

,

where the third equality holds because sign(y�) = sign(ŷ�) = sign(b�1c�1) and the fourth equality holds 
thanks to (13). Note that because of assumptions (10) and (11), there exists a � ∈ [L] such that II ≤ 0. 
This is because if (1 + δm1) ≥ 0, then we have II ≤ 0 for � that satisfy (10). Similarly, if (1 + δm1) < 0, 
then we have II ≤ 0 for k that satisfy (11). Thus, there exists an � ∈ [L] such that

I = sign(y�)
(

c�1c̃ᵀ
� δ̃m + b̃

ᵀ
� δ̃hc�1 + bᵀ

� δhcᵀ
� δm

)
≤ |ŷ�|δh1δm1. (16)

Combining (15) and (16), we get there exists a � such that
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δh1 + δm1 + δh1δm1 ≥ |ŷ�|ξ�

|ŷ�|
≥ ξ� ≥ −ε. (17)

The last inequality holds because ε = ‖ξ‖∞. Lastly, δh1 + δm1 ≥ −2 
(
1 −

√
1 − ε

)
because for all ε ∈ [0, 1],{

(δh1, δm1) ∈ R2∣∣δh1 + δm1 ≥ −2
(
1 −

√
1 − ε

)}
⊃

{
(δh1, δm1) ∈ R2∣∣δh1 + δm1 + δh1δm1 ≥ −ε, δh1 ≥ −1

}
.

(18)

Thus, combining (12) with δh1 + δm1 ≥ −2 
(
1 −

√
1 − ε

)
, we get the desired result ‖δh‖2

2 + ‖δm‖2
2 ≤

4(1 −
√

1 − ε). �
The next lemma shows that if B ∈ RL×K and C ∈ RL×N contain i.i.d. N (0, 1) entries, then (10) and 

(11) holds with high probability if L = Ω(K + N).

Lemma 7. Let B ∈ RL×K and C ∈ RL×N contain i.i.d. N (0, 1) entries. If L ≥ C(K + N) then

min
x∈SK−1,y∈SN−1

L∑
�=1

1bᵀ
� x≤01cᵀ

� y≤0 ≥ 0.2L

with probability at least 1 − e−cL. Here, C and c are absolute constants.

Proof. Let f(x, y) =
∑L

�=1 1bᵀ
� x≤01cᵀ

� y≤0. We will consider a continuous relaxation of f(x, y). Let

w(z) =

⎧⎪⎨⎪⎩
1 z < −0.1
− z

0.1 −0.1 ≤ z ≤ 0
0 z > 0

and g(x, y) =
∑L

�=1 w(bᵀ
� x)w(cᵀ

� y). Note that f(x, y) ≥ g(x, y) for all (x, y). So, it is sufficient to show 
that with probability at least 1 − e−cL,

min
x∈SK−1,y∈SN−1

L∑
�=1

w(bᵀ
� x)w(cᵀ

� y) ≥ 0.2L, (19)

if L ≥ C(K + N).
Let β�(x, y) = w(bᵀ

� x)w(cᵀ
� y). We first compute E[β�(x, y)] for a fixed x ∈ SK−1 and y ∈ SN−1. Without 

loss of generality, let x = e1 and y = e1.

E[β�(x, y)] =E[w(b�1)w(c�1)]

= (E[w(b�1)])2

=

⎛⎝ 1√
2π

−.1∫
−∞

e− s2
2 ds + 1√

2π

0∫
−.1

(
− s

0.1

)
e− s2

2 ds

⎞⎠2

≥ 0.23,

where the second inequality follows by independence of b�1 and c�1. So, for a fixed (x, y) ∈ SK−1 × SN−1, 
we have E[g(x, y)] ≥ 0.23L.

We will now show that for a fixed (x, y) ∈ SK−1 × SN−1, g(x, y) ≥ 0.22L with high proba-
bility. Fix (x, y) ∈ SK−1 × SN−1. Since g(x, y) is bounded, g(x, y) is sub-gaussian. Let α be the 
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sub-gaussian norm of β� after centering. Thus, by Hoeffding-type inequality (see Proposition 5.10 in 

Vershynin [27]), P {|g(x, y) − E[g(x, y)]| ≥ t} ≤ e · e− ct2
α2L , where c > 0 is a absolute constant. So, 

P {g(x, y) ≤ 0.23L − δL} ≤ e · e− cδ2L
α2 . Pick δ = 0.01, then for any fixed (x, y) ∈ SK−1 × SN−1, we have

P {g(x, y) ≤ 0.22L} ≤ e · e−cL

for some c > 0.
We will now show that for all (x, y) in an ε-net, g(x, y) ≥ 0.22L with high probability. Let Nε be an 

ε-net of SK−1 × SN−1 such that |Nε| ≤ (1 + 2
√

2
ε )K+N . By lemma 5.2 in [27], such an ε-net exists. So

P

{
min

(x,y)∈Nε

g(x) ≥ 0.22L

}
≥ 1 − e · e−cL+(N+K) log(1+ 2

√
2

ε ). (20)

If L ≥ 2
c (1 + log(1 + 2

√
2

ε ))(K + N) then

P

{
min

(x,y)∈Nε

g(x, y) ≥ 0.22L

}
≥ 1 − e · e− cL

2 (21)

Lastly, we will show that for all (x, y) ∈ SK−1×SN−1, g(x, y) ≥ 0.2L with high probability. We first show 
that g(x, y) is 30

√
2L-Lipschitz with high probability. This holds because if (x1, y1), (x2, y2) ∈ RK−1×RN−1

then

|g(x1, y1) − g(x2, y2)| ≤
L∑

�=1

|w(bᵀ
� x1)w(cᵀ

� y1) − w(bᵀ
� x2)w(cᵀ

� y2)| (22)

=
L∑

�=1

|(w(bᵀ
� x1) − w(bᵀ

� x2)) w(cᵀ
� y1) + (w(cᵀ

� y1) − w(cᵀ
� y2)) w(bᵀ

� x2)| (23)

≤
L∑

�=1

|(w(bᵀ
� x1) − w(bᵀ

� x2)) w(cᵀ
� y1)| + |(w(cᵀ

� y1) − w(cᵀ
� y2)) w(bᵀ

� x2)| (24)

≤
L∑

�=1

|w(bᵀ
� x1) − w(bᵀ

� x2)| + |w(cᵀ
� y1) − w(cᵀ

� y2)| (25)

≤10
L∑

�=1

|bᵀ
� (x1 − x2)| + 10

L∑
�=1

|cᵀ
� (y1 − y2)| (26)

≤10
√

L ·

√√√√ L∑
�=1

(bᵀ
� (x1 − x2))2 + 10

√
L ·

√√√√ L∑
�=1

(cᵀ
� (y1 − y2))2 (27)

=10
√

L (‖B(x1 − x2)‖2 + ‖C(y1 − y2)‖2) (28)

≤10
√

L (‖B‖‖(x1 − x2)‖2 + ‖C‖‖(y1 − y2)‖2) , (29)

where the fourth line follows because |w(z)| ≤ 1 for all z ∈ R, the fifth line follows because w is 10-Lipschitz 
and the sixth line follows from Cauchy-Schwarz inequality. By Corollary 5.35 in [27], there exist events E1
and E2 each with probability at least 1 − 2e− L

2 , on which ‖B‖ ≤ 3
√

L and ‖C‖ ≤ 3
√

L, respectively. So, 
on E1 ∩ E2 we have

|g(x1, y1) − g(x2, y2)| ≤ 30L(‖x1 − x2‖2 + ‖y1 − y2‖2)

≤ 30
√

2L‖(x1, y1) − (x2, y2)‖2.
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Take ε = 0.01
30

√
2 . For any (x1, y1) ∈ SK−1 × SN−1, pick (x2, y2) ∈ Nε such that ‖(x1, y1) − (x2, y2)‖2 ≤ ε. 

On the event E1 ∩ E2 and the event given by (20), we have that

g(x1, y1) ≥ min
(x2,y2)∈Nε

g(x2, y2) − 30
√

2L‖(x1, y1) − (x2, y2)‖2 (30)

≥ 0.2L. (31)

This occurs with the probability at least 1 − e−cL, provided L ≥ 2
C (1 + log(1 + 2

√
2

ε ))(K + N). �
We now extend Lemma 6 to the case with arbitrary but non-zero h� and m�.

Lemma 8. Fix h� ∈ RK and m� ∈ RN such that h� 	= 0 and m� 	= 0. Let B ∈ RL×K , C ∈ RL×N

contain i.i.d N (0, 1) entries and y� satisfy (1) such that the noise is one-sided as in (9). Let ε = ‖ξ‖∞. The 
minimizer (h∗, m∗) of the BranchHull program (BH) is unique and if L ≥ C(K + N) then the minimizer 
satisfies

∥∥∥∥∥h∗ − h�

√
‖m�‖2

‖h�‖2

∥∥∥∥∥
2

2

+

∥∥∥∥∥∥m∗ − m�

√
‖h�‖2

‖m�‖2

∥∥∥∥∥∥
2

2

≤ 4(1 −
√

1 − ε)‖h�‖2‖m�‖2

with probability at least 1 − e−cL. Here, C and c are absolute constants.

Proof. Without loss of generality let ‖h�‖2 = ‖m�‖2, which is possible because for any b�, c� and ξ�, we 

have that 
(

h�
√

‖m�‖2
‖h�‖2

, m�
√

‖h�‖2
‖m�‖2

)
and (h�, m�) give equal values of y� = bᵀ

� h�cᵀ
� m�(1 + ξ�). Further, 

without loss of generality, we may take ‖h�‖2 = ‖m�‖2 = 1. This is possible because of a similar line of 
argument as (7).

Further, without loss of generality we may take h� = e1 and m� = e1. To see this is possible, let R
ĥ

�

and Rm̂� be rotation matrices that map ĥ
�

and m̂� to e1, respectively. Letting h̄ = R
ĥ

� ĥ, m̄ = Rm̂�m̂, 
and s̄� = sign(bᵀ

� Rᵀ
ĥ

�e1), BranchHull can be written as

min
h̄∈RK ,m̄∈RN

‖h�‖2
2‖Rᵀ

ĥ
�h̄‖2

2 + ‖m�‖2
2‖Rᵀ

m̂�m̄‖2
2

s.t. sign
(

(R
ĥ

�b�)ᵀe1(Rm̂�c�)ᵀe1

)
(R

ĥ
�b�)ᵀh̄(Rm̂�c�)ᵀm̄ ≥

∣∣∣(R
ĥ

�b�)ᵀe1(Rm̂�c�)ᵀe1(1 + ξ�)
∣∣∣

s̄� · bᵀ
� Rᵀ

ĥ
�h̄ ≥ 0, � ∈ [L].

(32)

As �2 norms are invariant to rotation and R
ĥ

�b� and Rm̂�c� have independent N (0, 1) entries, we may take 

(h�, m�) = (e1, e1).
By Lemma 6, the minimizer (h̄∗

, m̄∗) of (32) is unique and satisfies

∥∥∥h̄
∗ − e1

∥∥∥2

2
+ ‖m̄∗ − e1‖2

2 ≤ 4(1 −
√

1 − ε) (33)

if for all (δ̃h, ̃δm) ∈ RK−1 × RN−1, there exists �, k ∈ [L] such that

sign((R
ĥ

�b�)ᵀe1)(˜R
ĥ

�b�)ᵀδ̃h ≤ 0 and sign((R
m̂�c�)ᵀe1)( ˜R

m̂�c�)ᵀδ̃m ≤ 0 (34)

sign((R
ĥ�bk)ᵀe1)(˜R

ĥ�bk)ᵀδ̃h ≥ 0 and sign((R
m̂�ck)ᵀe1)( ˜R

m̂�ck)ᵀδ̃m ≤ 0. (35)
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By Lemma 7, there exists �, k ∈ [L] that satisfy (34) and (35), respectively, with probability at least 1 −e−cL

if L ≥ C(K + N). �
We now present a proof of Theorem 2. In Theorem 2, the noise ξ� ∈ [−1, 1] which is in contrast to 

ξ� ∈ [−1, 0] in Lemma 8. The key idea is measurements with noise that satisfy ξ� ≥ −1 can be converted to 
measurements with noise in the interval [−1, 1]. In order to see this, let

s̄ = max
�∈[L]

y�

ŷ�
= 1 + max

�∈[L]
ξ�, (36)

s = max{s̄, 1} ≤ 1 + ‖ξ‖∞, (37)

η� = 1
s

(1 − s + ξ�). (38)

We then consider the measurements y� = sŷ�(1 + η�) for � ∈ [L]. Because sŷ�(1 + η�) = ŷ�(1 + ξ�), the noisy 
measurements are the same, however the noise may be different.

Proof of Theorem 2. As the noise of measurements y� = ŷ�(1 +ξ�) may not be one-sided as in (9), we consider 
equivalent measurements y� = sŷ�(1 + η�), where s and η� are as defined in (37) and (38), respectively. This 
turns the BranchHull program (BH) into

min
h∈RK , m∈RN

‖h‖2
2 + ‖m‖2

2 s.t. sign(y�)bᵀ
� hcᵀ

� m ≥ |sŷ�(1 + η�)|,

s� · bᵀ
� h ≥ 0, � ∈ [L].

(39)

First, we note that for all � ∈ [L],

η� = 1
s

(1 + ξ� − s) (40)

≤ 1
s

(s − s) (41)

= 0, (42)

where the first inequality holds because 1 +ξ� ≤ 1 +max�∈[L] ξ� ≤ s. Second, we have η� ≥ −1 for all � ∈ [L], 
which follows directly from ξ� ≥ −1 for all �. Thus, the noise η is one-sided and by Lemma 8, the minimizer 
(h∗, m∗) of (39) is unique and if L ≥ C(K + N), the minimizer satisfies

∥∥∥∥∥h∗ −
√

sh�

√
‖m�‖2

‖h�‖2

∥∥∥∥∥
2

2

+

∥∥∥∥∥∥m∗ −
√

sm�

√
‖h�‖2

‖m�‖2

∥∥∥∥∥∥
2

2

≤ 4(1 −
√

1 − δ)s‖h�‖2‖m�‖2 (43)

with probability at least 1 − e−cL. In (43),

δ ≡ ‖η‖∞

= − min
�∈[L]

(
1
s

− 1 + ξ�

s

)
= −1

s
(1 + min

�∈[L]
ξ�) + 1

≤ −1 − ε

s
+ 1, (44)
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where the first equality holds because ε = ‖ξ‖∞ ≥ − min�∈[L] ξ�. Let (h◦, m◦) =
(

h�
√

‖m�‖2
‖h�‖2

, m�
√

‖h�‖2
‖m�‖2

)
. 

We now compute

(
‖h∗ − h◦‖2

2 + ‖m∗ − m◦‖2
2

) 1
2

=
(∥∥h∗ −

√
sh◦ +

√
sh◦ − h◦∥∥2

2 +
∥∥m∗ −

√
sm◦ +

√
sm◦ − m◦∥∥2

2

) 1
2

≤
(∥∥h∗ −

√
sh◦∥∥2

2 +
∥∥m∗ −

√
sm◦∥∥2

2

) 1
2 +

(∥∥√
sh◦ − h◦∥∥2

2 +
∥∥√

sm◦ − m◦∥∥2
2

) 1
2 (45)

≤
(

4(1 −
√

1 − δ)s‖h�‖2‖m�‖2

) 1
2 + (

√
s − 1)

(
‖h◦‖2

2 + ‖m◦‖2
2
) 1

2 (46)

≤

⎛⎝2
(

s

(
1 −

√
1 − ε

s

)) 1
2

+
√

2
(√

s − 1
)⎞⎠√

‖h�‖2‖m�‖2 (47)

≤
(

2
(

1 + ε −
√

1 − ε2
) 1

2 +
√

2
(√

1 + ε − 1
))√

‖h�‖2‖m�‖2 (48)

≤
(

2
√

2ε +
√

2ε

2

)√
‖h�‖2‖m�‖2 (49)

≤4
√

ε

√
‖h�‖2‖m�‖2, (50)

where (45) holds because of triangle inequality, (46) holds because of (43), (47) holds because of (44) and 

‖h◦‖2 = ‖m◦‖2 =
√

‖h�‖2‖m�‖2, (48) holds because of (37) and (49) and (50) holds because for all 
ε ∈ [0, 1], we have 1 + ε −

√
1 − ε2 ≤ 2ε, 

√
1 + ε − 1 ≤ ε

2 and ε ≤ √
ε. �

3. Numerical results

In this section, we provide two numerical studies on synthetic data. The first study numerically verifies 
Theorem 1 and the second study shows that the BranchHull program (BH) is robust to small dense noise. For 
both simulations, we used an interior point solver available in Matlab to solve the corresponding BranchHull 
program.

For the first simulation, consider the following measurements: fix N ∈ {10, 20, . . . , 150}, L ∈
{10, 70, . . . , 850} and let K = N . Let the target signal (h�, m�) ∈ RK × RN be such that h� = e1

and m� = e1. Let B ∈ RL×K and C ∈ RL×N such that Bij ∼ N (0, 1) and Cij ∼ N (0, 1). Lastly, let 
y� = Bh� ◦ Cm� and s = sign(Bh�).

Fig. 3 shows the fraction of successful recoveries from 10 independent trials for the bilinear inverse 
problem (1) from data as described above. Black squares correspond to no successful recovery and white 
squares correspond to 100% successful recovery. Let (h∗, m∗) be the output of (BH). For each trial, we say 
(BH) successfully recovers the target signal if ‖(h∗, m∗) − (e1, e1)‖2 < 10−5. The area to the left of the 
line corresponds to the oversampling required for successful recovery stated in Theorem 1. The figure shows
the linear relationship between number of measurements L and size of target signals K + N for successful 
recovery.

For the noisy simulation, consider the following measurements: fix N = K = 20 and L ∈ {10, 20, . . . , 200}. 
Let the target signal (h�, m�) ∈ RK × RN be such that h� ∼ N (0, 1) and m� ∼ N (0, 1). Let B ∈ RL×K

and C ∈ RL×N be such that Bij ∼ N (0, 1) and Cij ∼ N (0, 1). Fix α ∈ {0, 0.1, . . . , 1} and let ξ ∈ RL such 
that ξ� ∼ Uniform([−α, α]). Lastly, let y� = Bh� ◦ Cm� ◦ (1 + ξ) and s = sign(Bh�).
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Fig. 3. The empirical recovery probability from synthetic data with total measurements L as a function of size of the target signals 
K + N . The shades of black and white represents the fraction of successful simulation. White blocks correspond to successful 
recovery and black blocks correspond to unsuccessful recovery. Each block corresponds to the average from 10 independent trials. 
The area to the left of the line satisfies L > 2(K + N), which is the theoretical successful recovery bound stated in Theorem 1.

Fig. 4. The empirical recovery error from synthetic data as a function of sampling ratio L
K+N . The size of the signals, N and K, 

are fixed to 20. Different piecewise line corresponds to different noise level α.

Fig. 4 shows the maximum relative error from 10 independent trials for the bilinear inverse problem (1)
from data as described above. Each curve corresponds to different noise level α, which controls the size of 
noise level ε defined in (2). The plot shows the effect of different levels of noise on the maximum relative 
error as a function of the sampling ratio L

K+N . Empirically, sampling ratio of about 2.5 is sufficient for stable 
estimation of the target signal. Additionally, the spacing between the piecewise lines for large sampling ratio 
is uniform in Fig. 4. This suggests that the relationship between recovery error and the noise level ε is linear, 
which is in contrast to Theorem 2 which shows that the recovery error depends as 

√
ε for small noise.
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