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Deep neural networks provide state-of-the-art performance for image denoising, where the goal is to
recover a near noise-free image from a noisy observation. The underlying principle is that neural networks
trained on large data sets have empirically been shown to be able to generate natural images well from a
low-dimensional latent representation of the image. Given such a generator network, a noisy image can
be denoised by (i) finding the closest image in the range of the generator or by (ii) passing it through
an encoder-generator architecture (known as an autoencoder). However, there is little theory to justify
this success, let alone to predict the denoising performance as a function of the network parameters.
In this paper, we consider the problem of denoising an image from additive Gaussian noise using the
two generator-based approaches. In both cases, we assume the image is well described by a deep neural
network with ReLU activations functions, mapping a k-dimensional code to an n-dimensional image. In
the case of the autoencoder, we show that the feedforward network reduces noise energy by a factor of
O(k/n). In the case of optimizing over the range of a generative model, we state and analyze a simple
gradient algorithm that minimizes a non-convex loss function and provably reduces noise energy by
a factor of O(k/n). We also demonstrate in numerical experiments that this denoising performance is,
indeed, achieved by generative priors learned from data.

Keywords: deep neural networks; denoising.

1. Introduction

We consider the denoising problem, where the goal is to remove noise from an unknown image or signal.
In more detail, our goal is to obtain an estimate of an image or signal y, € R” from a noisy measurement

Y=Yt 0.

Here, n is unknown noise, which we model as a zero-mean white Gaussian random variable with
covariance matrix o2/nl. Image denoising relies on generative or prior assumptions on the image Vi
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2 R. HECKEL ET AL.

such as self-similarity within images [5], sparsity in fixed [6] and learned bases [7] and most recently,
by assuming the image can be generated by a pre-trained deep neural network [3;23]. Deep network-
based approaches typically yield the best denoising performance. This success can be attributed to their
ability to efficiently represent and learn realistic image priors, for example via auto-decoders [11] and
generative adversarial models [8].

Motivated by this success story, we assume that the image y, lies in the range of an image-
generating network. In this paper, we propose the first algorithm for solving denoising with deep
generative priors that provably finds an approximation of the underlying image. As the influence of deep
networks in denoising and inverse problems grows, it becomes increasingly important to understand
their performance at a theoretical level. Given that most optimization approaches for deep learning are
first-order gradient methods, a justification is needed for why they do not get stuck in local minima.

The most related work that establishes theoretical reasons for why gradient methods might succeed
when using deep generative priors for solving inverse problems is [9]. In it, the authors establish global
favorability for optimization of a £,-loss function under a random neural network model. Specifically,
they show existence of a descent direction outside a ball around the global optimizer and a negative
multiple of it in the latent space of the generative model. This work does not justify why the one spurious
point is avoided by gradient descent nor does it provide a specific algorithm which provably estimates
the global minimizer nor does it provide an analysis of the robustness of the problem with respect
to noise. This work was subsequently extended to include the case of generative convolutional neural
networks by [18] but that work too does not prove convergence of a specific algorithm.

Contributions: The goal of this paper is to analytically quantify the denoising performance of deep
prior-based denoisers. Specifically, we characterize the performance of two simple and efficient
algorithms for denoising based on a d-layer generative neural network G: R — R”, with k < n.

We first provide a simple result for an encoder-generator network G(E(y)) where E: R” — R¥ is an
encoder network. We show that if we pass noise through an encoder-decoder network G(E(y)) that acts
as the identity on a class of images of interest, then it reduces the random noise by O(k/n).

The second and main result of our paper pertains to denoising by optimizing over the latent code
of a generator network with random weights. We propose a gradient method that attempts to minimize
the least-squares loss f(x) = %IIG(x) — y||I? between the noisy image y and an image in the range of
the generator, G(x). Even though f is non-convex, we show that a gradient method yields an estimate x
obeying

. k
|6 =y.|” < o™~

with high probability, where the notation < absorbs a logarithmic factor dependent on the number of
layers of the network and the network’s expansivity, as discussed in more detail later. Our result shows
that the denoising rate of a deep generator-based denoiser is optimal in terms of the dimension of the
latent representation. We also show in numerical experiments that this rate—shown to be analytically
achieved for random priors—is also experimentally achieved for priors learned from real imaging data.

Related work: We hasten to add that a close theoretical work to the question considered in this paper is
the paper [2], which solves a noisy compressive sensing problem with generative priors by minimizing
an {,-loss. Under the assumption that the network is Lipschitz, they show that if the global optimizer
can be found, which is in principle NP-hard, then a signal estimate is recovered to within the noise level.
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RATE-OPTIMAL DENOISING WITH DEEP NEURAL NETWORKS 3

While the Lipschitzness assumption is quite mild, the resulting theory does not provide justification
for why global optimality can be reached. Another related work explored what properties of activation
functions enables signal denoising with deep networks [20].

2. Background on denoising with classical and deep learning-based methods

As mentioned before, image denoising relies on modeling or prior assumptions on the image y,. For
example, suppose that the image y, lies in a k-dimensional subspace of R" denoted by ). Then we can
estimate the original image by finding the closest point in £,-distance to the noisy observation y on the
subspace ). The corresponding estimate, denoted by y, obeys

. k
15— .| S’ @.1)

with high probability (throughout, ||-|| denotes the £,-norm). Thus, the noise energy is reduced by a
factor of k/n over the trivial estimate y = y which does not use any prior knowledge of the signal.
The denoising rate (2.1] shows that the more concise the image prior or image representation (i.e. the
smaller k), the more noise can be removed. If on the other hand, the image model (the subspace, in
this example) does not include the original image y,, then the error bound (2.1] increases, as we would
remove a significant part of the signal along with noise when projecting onto the range of the image
prior. Thus, a concise and accurate model is crucial for denoising.

Real-world signals rarely lie in a priori known subspaces, and the past few decades of image
denoising research have developed sophisticated algorithms based on accurate image models. Examples
include algorithms based on sparse representations in overcomplete dictionaries such as wavelets [6]
and curvelets [21] and algorithms based on exploiting self-similarity within images [S]. A prominent
example of the former class of algorithms is the (state-of-the-art) BM3D [5] algorithm. However, the
nuances of real-world images are difficult to describe with handcrafted models. Thus, starting with the
paper [7] that proposes to learn sparse representation based on training data, it has become common to
learn concise representation for denoising (and other inverse problems) from a set of training images.

Burger et al. [3] applied deep networks to the denoising problem by training a plain neural network
on a large set of images. Since then, deep learning-based denoisers [23] have set the standard for
denoising. The success of deep network priors can be attributed to their ability to efficiently represent
and learn realistic image priors, for example via auto-decoders [11] and generative adversarial models
[8]. Over the past few years, the quality of deep priors has significantly improved [10;13;22]. As this
field matures, priors will be developed with even smaller latent code dimensionality and more accurate
approximation of natural signal manifolds. Consequently, the representation error from deep priors will
decrease and thereby enable even more powerful denoisers.

3. Denoising with a neural network with an hourglass architecture

Perhaps the most straight-forward and classical approach to using deep networks for denoising is to
train a deep network with an autoencoder or hourglass structure end-to-end to perform denoising. An
autoencoder compresses data from the input layer into a low-dimensional code and then generates an
output from that code. In this section, we analyze such networks from the perspective of denoising.
Specifically, we show mathematically that a simple model for neural networks with an hourglass
structure achieves optimal denoising rates, as given by the dimensionality of the low-dimensional code.
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An autoencoder H(x) = G(E(x)) consists of an encoder network E: R* — R* mapping an image to a
low-dimensional latent representation, and a decoder or generator network G: R¥ — R” mapping the
latent representation to an image. To see that the size of the low-dimensional code, k, determines the
denoising rate, consider a simple one-layer encoder and multilayer decoder of the form

E@y) =relu(W'y), Gx) = relu(W, .. .relu(Wyrelu(Wx)) . ..), 3.1

where relu(x) = max(x, 0) applies entrywise, W’ are the weights of the encoder, W; € R"*"-1 are the
weights in the i-th layer of the decoder, and #; is the number of neurons in the ith layer.

Typically, the autoencoder network H is trained such that H(y) ~ y for some class of signals of
interest (say, natural images). The following proposition shows that the structure of the network alone
guarantees that an autoencoder ‘filters out” most of the noise.

ProPOSITION 3.1 Let H = G o E be an autoencoder of the form (3.1) and note that it is piecewise
linear, i.e. H(y) = Uy for some matrix U in a region around y. Suppose that ||U ||2 < 2 for all such
regions, where ||U|| is the spectral norm, i.e. the largest singular value of U. Let n be Gaussian noise
with covariance matrix o/, 6 > 0. Then provided that k - 32log(2nn,...n;) < n, we have with
probability at least 1 — 2¢~K10gCmna...na) that

k
IHm)II3 < 5—log(2mn; .. a)lnl3.

Note that the assumption ||U ||2 < 2 implies that |H (y)||% /1l y||% < 2 for all y. This guarantees that
the autoencoder does not ‘amplify’ a signal too much. The specific choice of the constant 2 is irrelevant
and constant larger than one works and simply increases the bound by a constant factor. Note that we
envision an autoencoder that is trained such that it obeys H(y) =~ y for y in a class of images. The
proposition would then justify why the feedforward network reduces noise by O(k/n).

Note that the condition k - 32log(2nn, ...n,;) < n simply requires the autoencoder to have an
hourglass structure. An autoencoder without hourglass structure does not denoise without additional
assumptions on its weights or architecture.

The proof of Proposition 3.1, contained in the appendix, shows that H lies in the union of k-
dimensional subspaces and then uses a standard concentration argument showing that the union of those
subspaces can represent no more than a fraction of O(k/n) of the noise.

In the remainder of the paper, we show that denoising via enforcing a generative prior gives us an
analogous denoising rate.

4. Denoising via enforcing a generative model

We consider the problem of estimating a vector y, € R" from a noisy observation y = y, + n. We
assume that the vector y, belongs to the range of a d-layer generative neural network G: RF — R”,
with k < n. Thatis, y, = G(x,) for some x, € R¥. We consider a generative network of the form

G(x) =relu(W, .. .relu(Wyrelu(Wx,)) .. .),

where relu(x) = max(x, 0) applies entrywise, W; € R">"-1 are the weights in the i-th layer, n, is the
number of neurons in the ith layer, and the network is expansive in the sense thatk =ny <n; < --- <
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n; = n. The problem at hand is: given the weights of the network W, ... W, and a noisy observation y,
obtain an estimate y of the original image y, such that || Y=y, || is small and y is in the range of G.

4.1 Enforcing a generative model

As a way to solve the above problem, we first obtain an estimate of x,, denoted by X and then estimate
¥, as G(x). In order to estimate x,, we minimize the loss

1
f@) =16 -yl 4.1)

Since this objective is nonconvex, there is no a priori guarantee of efficiently finding the global
minimum. Approaches such as gradient methods could in principle get stuck in local minima, instead of
finding a global minimizer that is close to x,.

However, as we show in this paper, under appropriate conditions, a gradient method—introduced
next—finds a point that is very close to the original latent parameter x,, with the distance to the
parameter x,, controlled by the noise. In order to state the algorithm, we first introduce a useful quantity.
For analyzing which rows of a matrix W are active when computing relu(Wx), we let

W, , = diag(Wx > O)W.

For a fixed weight matrix W, the matrix W__, zeros out the rows of W that do not have a positive dot
product with x. Alternatively put, W, , contains weights from only the neurons that are active for the
input x. We also define W, , . = (W) , = diag(W;x > 0)W| and

Wigpp=diagWiWe_y oo Wo p (W4 x> 0OW,

The matrix W, | , consists only of the weights of the neurons in the ith layer that are active if the input
to the first layer is x.

We are now ready to state our algorithm: a gradient method with a tweak informed by the loss surface
of the function to be minimized. Given a noisy observation y, the algorithm starts with an arbitrary initial
point x, # 0. At each iteration i = 0, 1, . . ., the algorithm computes the step direction

Py, = (TL W4 )" (GOx) = ),

which is equal to the gradient of f if f is differentiable at x;. It then takes a small step opposite to V, .
The tweak is that before each iteration, the algorithm checks whether f(—x;) is smaller than f(x;), and
if so, negates the sign of the current iterate x;.

This tweak is informed by the loss surface. To understand this step, it is instructive to examine the
loss surface for the noiseless case in Fig. 1. It can be seen that while the loss function has a global
minimum at x,, it is relatively flat close to —x,. In expectation, there is a critical point that is a negative
multiple of x, with the property that the curvature in the £x, direction is positive, and the curvature
in the orthogonal directions is zero. Further, around approximately —x,, the loss function is larger than
around the optimum x,. As a simple gradient descent method (without the tweak) could potentially get
stuck in this region, the negation check provides a way to avoid converging to this region. Our algorithm
is formally summarized as Algorithm 1 below.
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FIG. 1. Loss surface f(x) = |G(x) — G(x4)]l, xx = [1, 0], of an expansive network G with ReLU activation functions with k = 2

nodes in the input layer and ny = 300 and n3 = 784 nodes in the hidden and output layers, respectively, with random Gaussian
weights in each layer. The surface has a critical point near —x, a global minimum at x, and a local maximum at 0.

Other variations of the tweak are also possible. For example, the negation check in Step 3 could be

Algorithm 1 Gradient method for optimizing (4.1)

Require: Weights of the network W;, noisy observation y and step size o > 0
1: Choose an arbitrary initial point x, € RK\ {0}
2: fori=0,1,...do
3: if f(—x;) < f(x;) then

4: X; < —x;

5 else

6: X < x;

7. endif

8 Compute vy € 9f(x;), in particular, if G is differentiable at x;, then set v = v, where

v, = (W1 5) (GG — )

9: X < X — vy
10: end for

performed after a convergence criterion is satisfied, and if a lower objective is achieved by negating
the latent code, then the gradient descent can be continued again until a convergence criterion is again
satisfied.

5. Main results

For our analysis, we consider a fully connected generative network G: R¥ — R” with Gaussian
weights and no bias terms. Specifically, we assume that the weights W, are independently and identically
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distributed as N/ (0, 2/n;) but do not require them to be independent across layers. Moreover, we assume
that the network is sufficiently expansive:
Expansivity condition We say that the expansivity condition with constant € > 0 holds if

n; > ce *log(l/e)n;,_,logn, |, foralli,

where c is a particular numerical constant.

In a real-world generative network, the weights are learned from training data and are not drawn from a
Gaussian distribution. Nonetheless, the motivation for selecting Gaussian weights for our analysis is as
follows:

1. The empirical distribution of weights from deep neural networks often have statistics consistent
with Gaussians. AlexNet is a concrete example [1].

2. The field of theoretical analysis of recovery guarantees for deep learning is nascent, and Gaussian
networks can permit theoretical results because of well-developed theories for random matrices.

3. It is not clear which non-Gaussian distribution for weights is superior from the joint perspective
of realism and analytical tractability.

The network model we consider is fully connected. We anticipate that the analysis of this
paper can be extended to the case of generative convolutional neural networks. This extension has
already happened for theoretical results concerning the favorability of the optimization landscape for
compressive sensing under generative priors [18], as mentioned previously.

We are now ready to state our main result.

THEOREM 5.1 Consider a network, G, with weights in the i-th layer given by W; € R">"-1 iid.
N(0,2/n;) distributed, and suppose that the network satisfies the expansivity condition for e = K/ d”.

Fix x, € R Lety = G(x,) + n, where n ~ N (O, %In). Also, suppose that the denoising bound w,
defined for notational convenience as

k
= \/18025 log (n‘llng_1 . .nd),

obeys

AL
die

X

Consider the iterates of Algorithm 1 with step size ¢ = K4dl2 for minimizing f(x) = %||G(x) — y||2.
Then there exists a number of steps N upper bounded by

such that after N steps, the iterates of Algorithm 1 obey

”xi

— X, || < 5756 ||)c>|< || + Kﬁdéw, foralli > N, 5.1)
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with probability at least 1 —2e~210en ¢ gy o~Kimiz2 gy o~K7klogd/d'™ 1y addition, forall i > N,
we have
— x|l < (1 —a7/8) N|lxy — x|l + Kgw and (5.2)

||x,'

1G(x;) — Gx)Il < 1.2(1 —a7/8) N |lxy — x,1l + 1.2Kgo, (5.3)

where o < 1 is the step size of the algorithm. Here, K, K, K,, . . . are numerical constants, and x is the
initial point in the optimization.

Our result guarantees that after polynomially many iterations (with respect to d), the algorithm
converges linearly to a region satisfying

k
=5, < 0%,

where the notation < absorbs a factor logarithmic in n and polynomial in d. To see this, note that
for the number of iterations being sufficiently large, by Equation (5.2), |xl- — X, ”2 < Kga)2 =
K81802§ log(n’fn‘zi_1 ...ny). The authors made no attempt to optimize the dependence of this result
on d and determining and proving the optimal scalings with respect to d are left as open problems.

The denoising rate can be observed in the i — oo limit of (5.3), which holds because of (5.2)
and Lipschitzness of G in a region around x,.' Thus, the theorem guarantees that our algorithm
yields the denoising rate of o%k/n, and, as a consequence, denoising based on a generative deep prior
provably reduces the energy of the noise in the original image by a factor of k/n, up to logarithmic and
d-dependent factors.

In the case of o = 0, the theorem guarantees convergence to the global minimizer x,. We note that
the intention of this paper is to show rate-optimality of recovery with respect to the noise power, the
latent code dimensionality and the signal dimensionality. As a result, no attempt was made to establish
optimal bounds with respect to the scaling of constants or to powers of d. The bounds provided in the
theorem are highly conservative in the constants and dependency on the number of layers, d, in order
to keep the proof as simple as possible. Numerical experiments shown later reveal that the parameter
range for successful denoising are much broader than the constants suggest. As this result is the first of
its kind for rigorous analysis of denoising performance by deep generative networks, we anticipate the
results can be improved in future research, as has happened for other problems, such as sparsity-based
compressed sensing and phase retrieval.

Finally, we remark that Theorem 5.1 can be generalized to the case where y, only approximately
lies in the range of the generator, i.e. G(x,) ~ y,. Specifically, if ”G(x*) — V. || is sufficiently small, the

error induced by this perturbation is proportional to || G(x,) — vy, H

5.1 The weight distribution condition

While Theorem 5.1 is a statement about neural networks with Gaussian weights, we will prove it by
establishing its conclusions for neural networks that satisfy a deterministic property known as the weight

! The proof of Lipschitzness follows from applying the WDC in Section 5.1.
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distribution condition (WDC) [9]. The proof of the theorem will then follow because this property holds
with high probability for the provided class of random neural networks.
We say that a matrix W € Rk satisfies the WDC with constant € if for all nonzero x, y € Rk,

" , . 7 — 0 sin 6,
Z 1<w,-x>01<w,-y>0 CWiWip — Qx,y <€, with Qx,y = 27 Ik + 20T M?AC‘—),@’ 5.4
i=1

where w; € Rk is the ith row of W; M; ;€ R¥*k is the matrix? such that ¥ +> 3, § — X and z > 0

for all z € span({x,y)*; & = x/lxll, and 3 = y/lyll,; 6y = Z(x,y); and 1g is the indicator function
on S. The norm in the left-hand side of (5.4) is the spectral norm. Note that an elementary calculation®
gives that Q. , = E[3_1 1,010 - Wiwil for w; ~ N(0, 1 /n). Qualitatively, the WDC roughly
means that the rows of W, once sampled, are approximately uniformly distributed over all directions.

Under the assumptions of Theorem 5.1, we note that W;/ V2 will satisfy the WDC with appropriate
probability for all i, provided the expansivity condition holds.

5.2 Sketch of proof of Theorem 5.1

The proof relies on a characterization of the loss surface. We show that outside of two balls around
x =x, and x = —p, x,, with p; a constant defined in the proof, the direction chosen by the algorithm is
a descent direction, with high probability.

We show that the step direction v, concentrates around a particular &, € R¥ that is a continuous
function of nonzero x, x, and is zero only at x = x,, x = —p, x, and 0, using a concentration argument
similar to [9]. Around x = x,, the loss function has a global minimum, close to 0 it has a saddle point
and close tox = —p x,, potentially a local minimum. In a nutshell, we show that (i) the algorithm moves
away from the saddle point at 0, and (ii) the algorithm escapes the local minimum close to x = —p x,
with the twist in Steps 3-5 of the algorithm. Finally, the iterates end up close to the x,.

The proof is organized as described next and as illustrated in Fig. 2. The algorithm is initialized at an
arbitrary point, for example close to 0. Algorithm 1 moves away from 0, at least till its iterates are outside
the gray ring, as 0 is a local maximum, and once an iterate x; leaves the gray ring around 0, all subsequent
iterates will never be in the white circle around O again (see Lemma B.7 in the supplement). Then the
algorithm might move toward —p,x,,, but once it enters the dashed ball around —p,x,,, it enters a region
where the function value is strictly larger than that of the dashed ball around x,, by Lemma B.9 in the
supplement. Thus, Steps 3-5 of the algorithm will ensure that the next iterate x; is in the dashed ball
around x,,. From there, the iterates will move into the region Sg, since outside of 8; U Slg the algorithm
chooses a descent direction in each step (see the argument around Equation (B.15) in the supplement).
The region S;' is covered by a ball of radius r, by Lemma B.8 in the supplement, determined by the
noise and €. This establishes the bound (5.1) in the theorem.

2 A formula for M; .5 is as follows. If 6) = L(%,9) € (0,7) and R is a rotation matrix such that X and $ map to e and

cos 6y - ey +sinf - e, respectively, then M;

cosfy sinfy 0
op = R [sinfp —cosfp O |R,whereOg_p isak—2x k—2 matrix of zeros.
0 0 Or—2

t t

If 6p = 0 or 7, then M; 5 = X&' or —x%', respectively.
3 To do this calculation, take x = e 1 and y = cosfy - e1 + sinfy - ep without loss of generality. Then each entry of the matrix

can be determined analytically by an integral that factors in polar coordinates.

120Z 2Unp 1 uo }senb Aq /6£858S/1 LOBERY/IBIBWIEE0 L 0 L/I0P/SI0IIE-90UBADE/IBIEWI/WOY"dNO" OIS PEDE//:SARY WOl PAPEOjUMOC
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FiG. 2. Logic of the proof, explained in the text.

The proof proceeds be showing that within a ball around x,, the algorithm then converges linearly,
which establishes Equations (5.2) and (5.3).

6. Applications to compressed sensing

In this section, we briefly discuss another important scenario to which our results apply to, namely
regularizing inverse problems using deep generative priors. Approaches that regularize inverse problems
using deep generative models [2] have empirically been shown to improve over sparsity-based
approaches, see [16] for a review for applications in imaging and [19] for an application in magnetic
resonance imaging showing a significant performance improvement over conventional methods.

Consider an inverse problem where the goal is to reconstruct an unknown vector y, € R” from
m < n noisy linear measurements:

z=Ay,+n €R",

where A € R"*" is called the measurement matrix and 7 is zero mean Gaussian noise with covariance
matrix o2/ml, as before. As before, assume that v, lies in the range of a generative prior G, i.e. y, =
G(x,) for some x,. As a way to recover x,, consider minimizing the empirical risk objective f(x) =
%HAG(x) — z||, using Algorithm 1, with Step 6 substituted by f)xi = (AHildei’+,xi)’(AG(xl-) —y), to
account for the fact that measurements were taken with the matrix A.

Suppose that A is a random projection matrix, for concreteness assume that A has i.i.d. Gaussian
entries with variance 1/m. One could prove an analogous result as Theorem 5.1, but with w =

\/ 1802% log(n‘fn‘f1 ...ng), (note that n has been replaced by m). This extension shows that, provided
€ is chosen sufficiently small, that our algorithm yields an iterate x; obeying

k
|Gx) — G| S 02—,
m

where again < absorbs factors logarithmic in the n;’s and polynomial in d. Proving this result would
be analogous to the proof of Theorem 5.1, but with the additional assumption that the sensing matrix
A acts like an isometry on the union of the ranges of IT ,L Wit ;> analogous to the proof in [9]. This
extension of our result shows that Algorithm 1 enables solving inverse problems under noise efficiently
and quantifies the effect of the noise.

We hasten to add that the paper [2] also derived an error bound for minimizing empirical loss.

However, the corresponding result (for example Lemma 4.3) differs in two important aspects to our
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result. First, the result in [2] only makes a statement about the minimizer of the empirical loss and
does not provide justification that an algorithm can efficiently find a point near the global minimizer.
As the program is non-convex, and as non-convex optimization is NP-hard in general, the empirical
loss could have local minima at which algorithms get stuck. In contrast, the present paper presents
a specific practical algorithm and proves that it finds a solution near the global optimizer regardless
of initialization. Second, the result in [2] considers arbitrary noise 1 and thus cannot assert denoising
performance. In contrast, we consider a random model for the noise and show the denoising behavior
that the resulting error is no more than O(k/n), as opposed to ||17||2 ~ (O(1), which is what we would
get from direct application of the result in [2].

7. Experimental results

In this section, we provide experimental evidence that corroborates our theoretical claims that denoising
with deep priors achieves a denoising rate proportional to o>k/n. We provide denoising results for
denoising with an hourglass architecture and via enforcing a generative prior. For enforcing a generative
prior, we consider both a synthetic, random prior, as studied theoretically in the paper, as well as a prior
learned from data. All our results are reproducible with the code provided in the supplement.

7.1 Denoising with enforcing a synthetic prior

We start with a synthetic generative network prior with ReLLU-activation functions and draw its weights
independently from a Gaussian distribution. We consider a two-layer network with n = 1500 neurons in
the output layer, 500 in the middle layer and vary the number of input neurons, k, and the noise level, o.
We next present simulations showing that if & is sufficiently small, our algorithm achieves a denoising
rate proportional to ok/n as guaranteed by our theory.

Toward this goal, we generate Gaussian inputs x, to the network and observe the noisy image
y = G(x,) + 1, n ~ N(0,0%/nl). From the noisy image, we first obtain an estimate X of the latent
representation by running Algorithm 1 until convergence, and second we obtain an estimate of the image
as § = G(X). In the left and middle panel of Fig. 4, we depict the normalized mean squared error of the
latent representation, MSE(%, x,) and the mean squared error in the image domain, MSE(G(X), G(x,.)),

where we defined MSE(z,7) = Hz -7 H2 For the left panel, we fix the noise variance to o2 =025,
and vary k, and for the middle panel we fix k = 50 and vary the noise variance. The results show that,
if the network is sufficiently expansive, guaranteed by k being sufficiently small, then in the noiseless
case (o2 = 0), the latent representation and image are perfectly recovered. In the noisy case, we achieve
an MSE proportional to o2k/n, both in the representation and image domains.

We also observed that for the problem instances considered here, the negation trick in Step 3—4 of
Algorithm 1 is often not necessary, in that even without that step the algorithm typically converges to the
global minimum. Having said this, in general the negation step is necessary, since there exist problem
instances that have a local minimum opposite of x,.

7.2 Denoising with enforcing a learned prior

We next consider a prior learned from data. Technically, for such a prior our theory does not apply since
we assume the weights to be chosen at random. However, the numerical results presented in this section
show that even for the learned prior we achieve the rate predicted by our theory pertaining to a random
prior. Toward this goal, we consider a fully connected autoencoder parameterized by k, consisting of an
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F1G. 3. Denosing with a learned generative prior: even when the number is barely visible, the denoiser recovers a sharp image.
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FIG. 4. MSE in the image domain, MSE(G (%), y«) and in the latent representation, MSE(X, x), as a function of the dimension of
the latent representation, k, with o2 = 0.25(left panel) and the noise variance, o2 with k = 50(middle panel). As suggested by the
theory pertaining to decoders with random weights, if & is sufficiently small, and thus the network is sufficiently expansive, the
denoising rate is proportional to o2k /n. Right panel: denoising of handwritten digits based on a learned decoder with k = 10 and
k = 20, along with the least-squares fit as dotted lines. The learned decoder with k = 20 has more parameters and thus represents
the images with a smaller error; therefore, the MSE at o = 0 is smaller. However, the denoising rate for the decoder with k = 20,
which is the slope of the curve is larger as well, as suggested by our theory.

decoder and encoder with ReLU activation functions and fully connected layers. We choose the number
of neurons in the three layers of the encoder as 784,400, k, and those of the decoder as k, 400, 784. We
set k = 10 and k = 20 to obtain two different autoencoders. We train both autoencoders on the MNIST
[15] training set.

We then take an image y, from the MNIST fest set, add Gaussian noise to it and denoise it using
our method based on the learned decoder network G for k = 10 and k = 20. Specifically, we estimate
the latent representation X by running Algorithm 1 and then set = G(%). See Fig. 3 for a few examples
demonstrating the performance of our approach for different noise levels.

We next show that this achieves a MSE proportional to o2k /n, as suggested by our theory that applies
for decoders with random weights. We add noise to the images with noise variance ranging from 6> = 0
to o2 = 6. In the right panel of Fig. 4, we show the MSE in the image domain, MSE(G (%), G(x,)),
averaged over a number of images for the learned decoders with k = 10 and k = 20. We observe an
interesting bias-variance tradeoff: the decoder with k = 10 has fewer parameters, and thus does not
represent the digits as well, therefore the MSE is larger than that for k = 20 for the noiseless case
(i.e. for 0 = 0). On the other hand, the smaller number of parameters results in a better denoising rate
(by about a factor of two), corresponding to the steeper slope of the MSE as a function of the noise
variance, o 2.
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FiG. 5. Denoising of handwritten digits based on a learned hourglass (i.e. encoder-decoder) architecture with £ = 20 and k = 40,
along with the least-squares fit as dotted lines. The learned decoder with k = 40 represents the images with a smaller error;
therefore, the MSE is slightly smaller for the noiseless case (i.e. o2 = 0) and for small noise variances. However, the denoising
rate for the decoder with k = 40, which is the slope of the curve is larger as well (0.47 vs 0.52, illustrated by the least-squares fit
as dotted lines), as suggested by our theory.

7.3 Denoising with an autoencoder

Finally, we consider a learned autoencoder for denoising. We consider the same setup as in the
previous section; specifically, we train a fully connected autoencoder parameterized with five layers
with 784,400, k, 400, 787 neurons in the five layers for k € {20, 40} and train both autoencoders on the
MNIST training set. We then add Gaussian noise with variance o2 € [0, 6] and denoise the noisy image
by passing it through the autoencoder. Figure 5 shows the MSE relative to the noiseless image, averaged
over images from the MNIST test set. As suggested by our theory, the denoising rates are proportional
to the noise variance o2, and the autoencoder with larger k has a larger denoising rate. Note that our
theoretical denoising rates are worst case; therefore, an autoencoder with bottleneck £ might show in
simulations a smaller denoising rate than k/no2, as is the case in the results from Fig. 5.
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A. Proof of Proposition 3.1

We first show that H(y) lies in the range of a union of k-dimensional subspaces and upper-bound the
number of the subspaces. Toward this goal, first note that the effect of the ReLU operation relu(z) can
be described with a diagonal matrix D that contains a one on its diagonal if the respective entry of z is
larger than zero, and zero otherwise, so that Dz = relu(z). With this notation, we can write

H(y) =D ,W,D,_;...DyW,D;W,D'W'y.

U
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RATE-OPTIMAL DENOISING WITH DEEP NEURAL NETWORKS 15

The matrix U € R"*" has at most rank k, thus H(y) lies in the range of a union of at most k-dimensional
subspaces, where each subspace is determined by the matrices Dy, ...,D;,D’. We next bound the
number of subspaces. First note that since W e R"**, there are only 2¢ many different choices for
D', corresponding to all the sign patterns. Next note that, with the lemma below, we have that for a fixed
D'W’, the number of different matrixes D, can be bounded by n¥. Likewise, for fixed W, D, W, D'W’, the

number of different matrices D, can be bounded by ng and so forth. Thus, the total number of different
choices of the matrices Dy, ..., D;, D’ is upper bounded by

2kn]]‘ .. .nZ.
LEMMA A.1 [Variant of Lemma 15 in [9]] For any U € R™>K and k > 5,
|{diag(Uv > 0)U|v € R¥}| < nk.

We note that such lemmas are used in related signal recovery problems, such as 1-bit compressive
sensing [12].
Next note that by assumption, we have that

lunl3/1nl3 < 2, (A.1)

for all vectors 5 and for all U defined by the matrices Dy, ...,D, ,D'. For fixed U, let S be the span
of the right singular vectors of U, and note that S has dimension at most k. Let Pg be the orthogonal
projector onto a subspace S. We have that

2
Ul _ |uPn|; _ 2||Psn||§
Inll3 Inll3 Inll -

again for all n. Now, we make use of the following bound on the projection of the noise 1 onto a
subspace, which follows from standard Gaussian concentration inequalities [14, Lemma 1].

LEMMA A2 Let S C R” be a subspace with dimension k. Let n ~ .4#7(0,1,) and > 1. Then

)

22
|1Psn]; 108k
Il > n

Taking a union bound over all subspaces, we obtain with the lemma above that

>1— e Pk /16,

2
IHmI3™ _ 208k
Inll 2~ n
Choosing 8 = 2log(2nn, . ..n,;) concludes the proof.

x> 1— kb k) (e Pk 4 716,

B. Proof of Theorem 5.1

In this section, we prove our main result, Theorem 5.1. Instead of proving Theorem 5.1 as stated, we will
prove the following equivalent rescaled statement for when W, have i.i.d. .4#(0,1/n;) entries. Because
of this rescaling, G(x) scales like 2-4/2||x]|, the noise w is assumed to scale like 27%/2, Vf scales like 24
and « scales like 2¢. Theorem 5.1 is the € = K/d°° case of what follows.

THEOREM B.1 Consider a network with the weights in the i-th layer, W; € R"*"~1 iid. A4(0, 1/n;)
distributed and suppose that the network satisfies the expansivity condition for some € < K/d*°. Also,
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16 R. HECKEL ET AL.

suppose that the noise variance obeys

e, | K, 27472

oS 416

k
L wi= \/1802; log(ndnd =" ... ny).

Consider the iterates of Algorithm 1 with step size o« = K4f1—;l.
A. Then there exists a number of steps N upper bounded by

Ky f(x9)2!
Cdte x|

such that after N steps, the iterates of Algorithm 1 obey
|x; = x,|| < Ksd®|x,||e + Kgd®2*w, foralli> N, (B.1)

with probability at least 1 — 2¢=2k1ogn — 3¢ gy o=K7nia _ gy o=Kre*log(1/e)k
B. In addition, for all i > N, we have
x<—x\—a._x—x+ w an .
x4y — X < (1 —a7/8) "V |xy — x, || + Kg2*w and (B.2)
1
1G(xi ) — Gx)Il <

2 1o
S (= @7/ Ny —x Il 4 1.2K30, (B.3)

where o < 1 is the step size of the algorithm. Here, K|, K,, .. are numerical constants, and x is
the initial point in the optimization.

As mentioned in Section 5.1, our proof makes use of a deterministic condition, called the WDC,
formally defined in Section 5.1. The following proposition establishes that the expansivity condition
ensures that the WDC holds:

LeEmMMA B.2 (Lemma 11 in [9]). Fix € € (0, 1). If the entries of W; € R"*"-! are i.i.d. .#7(0,1/n;) and
the expansivity condition

n; > ce *log(l/e)n;_;logn,
holds, then W; satisfies the WDC with constant € with probability at least 1 — 8nl-e_K52”f*1. Here, ¢ and
K are numerical constants.
It follows from Lemma B.2, that the WDC holds for all W; simultaneously with probability at least
1— Z?—z 8n e Kmmi-2 _ Snle—lﬁezlog(l/e)k'
In the remainder of the proof, we work on the event that the WDC holds for all W;.
B.1 Preliminaries

Recall that the goal of our algorithm is to minimize the empirical risk objective
1 2
fx) = illG(X) =I5
where y == G(x,) + n, with n ~ 40,02 /nl).

Our results rely on the fact that outside of two balls around x = x, and x = —p,x,,, with p; a constant
defined below, the direction chosen by the algorithm is a descent direction, with high probability. In
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order to prove this, we use a concentration argument, similar to the arguments used in [9]. First, define

1
A= TL,Wi

with W, , . defined in Section 4 for notational convenience, and note that the step direction of our
algorithm can be written as

Vo=V, 44, with v :=AAx—(A)(A )x,, and g, = Al (B.4)

X

Note that at points x where G (and hence f) is differentiable, we have that v, = Vf(x).

The proof is based on showing that v, concentrates around a particular s, € R¥, defined below, that
is a continuous function of nonzero x, x, and is zero only at x = x, and x = —p,x,. The definition of
h, depends on a function that is helpful for controlling how the operator x > W, x distorts angles,
defined as:

(B.5)

_y /(@ —0)cosb + sinbh
0) := cos 1( )
8(0) -

With this notation, we define

d—1 — a1 . = {[d-1 =
. 1 T —0; sinf; T —=0;\ lx.l,
= —ﬁ(H T) | Sl et

i=0 j=it1 ellz

where 6, = /(x,x,) and 6; = g(9,_,). Note that A, is deterministic and only depends on x, x, and the
number of layers, d.

In order to bound the deviation of v, from &, we use the following two lemmas, bounding the
deviation controlled by the WDC and the deviation from the noise:

LEMMA B.3 (Lemma 8 in [9]). Suppose that the WDC holds with € < 1/(167rd?)?. Then for all nonzero
X, X, € ]Rk,

_ A3 /€
”Vx - hx||2 < Kz_«d/— maX(”x”29 ”-X*HZ)’ and (B6)
1
(A A x,) 2 4 Sl llx, ], and (B.7)
14,2 < 214200 < 2o¢. B5)
xS 5 12

Proof. Equations (B.6) and (B.7) are Lemma 8 in [9]. Regarding (B.8), note that the WDC implies that
” Wit ”2 < 1/2 4 €. It follows that:

“A || = ” 1+x < 2_d(1+26) o8 ¢ _Zd < Ez s
where the last inequalities follow by our assumption on € (i.e. € < 1/(167 d®?). O

LemMMA B.4 Suppose the WDC holds with € < 1/(16d?)?, that any subset of n,_, rows of W, are
linearly independent for each i and that n ~ .#(0, o> /nI). Then the event

k
e = {HA’n” 22”/2, for allx}, \/ 160 ~ log(r{nS =1 ny) (B.9)

holds with probability at least 1 — 2¢~2k1ogn,
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This lemma is proved in Section B.6.

As the cost function f is not differentiable everywhere, we make use of the generalized subdifferen-
tial in order to reference the subgradients at nondifferentiable points. For a Lipschitz function f defined
from a Hilbert space 2to R, the Clarke generalized directional derivative of f at the point x € Z'in the
direction u, denoted byf‘) (x; u), is defined by f" (x;u) = lim SUPy_, 4110 M
subdifferential of f at x, denoted by 9f (x), is defined by

, and the generalized

af () = {ve RN | (vu) <fo(xu), forallu € 2}.
Since f(x) is a piecewise quadratic function, we have
af (x) = conv(vy,v,,..., V), (B.10)

where conv denotes the convex hull of the vectors vy,...,v,, t is the number of quadratic functions
adjoint to x, and v, is the gradient of the i-th quadratic function at x.

LEMMA B.5 Under the assumption of Lemma B.4, and assuming that &

* oise N0lds, we have that, for any
x # 0 and any v, € 9f(x),

&> Je ®
v, —h ] <K Sa— max(lixly, x,ll) + 5777
Proof. By (B.10), 9f(x) = conv(vy,...v,) for some finite ¢, and thus v, = a;v; + ...q,v, for some
ag,...,a; =0, Zi a; = 1. For each v;, there exists a w such that v; = lirntw szHW. On the event gnoise,
we have that for any x # 0, for any v, € 9f(x)

”f)x _th = HVx—i_le _th

< ”vx B hxn + ”‘_Ix”
3 /e )
S K—g— max(fixlly, llx,ll2) + 272
where the last inequality follows from Lemmas B.3 and B.4 above. The proof is concluded by appealing
to the continuity of i, with respect to nonzero x and by noting that

d3
v —n) < S afvi—h | <k f max (. x,12) + 3775+

i

where we used the inequality above and that >, a; = 1. O

We will also need an upper bound on the norm of the step direction of our algorithm:

LeEmMMA B.6  Suppose that the WDC holds with € < 1/(16wd%)? and that the event &, ;.. holds with
w < %. Then, for all x, and all v, € 9f (x),
dK

v, ll < Sz max(lixll, |2, ), (B.11)

2d

where K is a numerical constant.
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. . 17
Proof. Define for convenience ¢; = d_] % We have

el < el + llhy — vill

1 1<
3a*~ zd%*——dz
=0

v &ye

2d

X

+ K, max([lxlly, [1x,12) + 5777

<

2d/2

1
i || I

1 1 d NG AN
S allll+\ 57 + g ) Il + Ky —g— max(jix]l. [lx, ||)+2d/2

dK

x|

where the second inequality follows from the definition of 4, and Lemma B.5, the third inequality uses

. . . —dj2
|§j| < 1, and the last inequality uses the assumption @ < % O

B.2  Proof of Theorem B.1A

We are now ready to prove Theorem B.1A. The logic of the proof is illustrated in Fig. 2. Recall that x; is
the ith iterate of x as per Algorithm 1. We first ensure that we can assume throughout that x; is bounded
away from zero:

LeEmmA B.7 Suppose that WDC holds with € < 1/ (167d?)? and that & holds with w in (B.9)

noise
—d/2 . - d
%. Moreover, suppose that the step size in Algorithm 1 satisfies 0 < o < 12—22,

d
(%)2 steps, we have that for all i > N

obeying w <
where K is a numerical constant. Then, after at most N =
and all r € [0, 1] that £%; + (1 — H)x;; & B0, 53=IIx, D).

This lemma is proven in Section B.5.

In particular, if @ = K2¢/d?, then N is bounded by a constant times d*.

We can therefore assume throughout this proof that x; ¢ (0, K, ||x* —. We prove
Theorem B.1 by showing that if | /2, | is sufficiently large, i.e. if the iterate x; is outside of set

1
Ty = {x e R¥ [ Il < 2P max(lixll, IIx*II)},
with
B = 4Kd® /e + 130277 /|x,]. (B.12)

then the algorithm makes progress in the sense that f(x; ;) — f(x;) is smaller than a certain negative
value. The set .4 is contained in two balls around x, and —px,, whose radius is controlled by B:

LEmMA B.8 For any B < @,

Sy C B(x,.5000d°B||x, ||,) U B(—pyx,. 500" /Blx, ). (B.13)

Here, p; > 0 is defined in the proof and obeys p; — 1 as d — oo.

This lemma is proven in Section B.7.
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20 R. HECKEL ET AL.

Note that by the assumption @ < |\x*||§+d/2 and Kd* /e < 1, our choice of B in (B.12) obeys
< —L__ for sufficiently small K , K, and thus Lemma B.8 yields:
642412 y 1 y

:5’/3 C B(x,, 1) U B(—pyx,, r||x* ||d8),

where we define the radius r = K,d° /€ ||x* || + K3d®»29/2, where K, K5 are numerical constants. Note
that the radius r is equal to the right-hand side in the error bound (B.1) in our theorem. In order to
guarantee that the algorithm converges to a ball around x,, and not to that around —p x,,, we use the
following lemma:

LeEmMMA B.9  Suppose that the WDC holds with € < 1/(16wd?)?. Moreover, suppose that &, .., holds,
and that w in the event &) ;.. obeys < Kgy/d?, where K < 1 is a universal constant. Then for

any ¢, € [py, 11, it holds that

o
27472 |lxy |12

F&) <f (B.14)

for all x € B¢ x,,K;d 0|x,|l) and y € B(—¢ x,,K;d ||x,|), where K3 < 1 is a universal
constant.

This lemma is proven in Section B.8.
In order to apply Lemma B.9, define for convenience the two sets:

fg =% N Bx,,r), and
Sy =T NV B(—pyX,. r|x, ||d8).

By the assumption that Kd* /e < 1 and w < K, d—162-d/2 ||x*
K19 K?

, we have that for sufficiently small

Fih S Bx,. Kzd Olx, ) and .y S B(—pyx,. Kzd x|

Thus, the assumptions of Lemma B.9 are met, and the lemma implies that for any x € 4 and y € ,5”; ,
it holds that f(x) > f(y). We now show that the algorithm converges to a point in 5”; . This fact and the
negation step in our algorithm (lines 3-5) establish that the algorithm converges to a point in . if we
prove that the objective is nonincreasing with iteration number, which will form the remainder of this
proof.

Consider i such that x; ¢ jﬂﬁ. By the mean value theorem [4, Theorem 8.13], there is a ¢ € [0, 1]
such that for ¥; = x; — tav,. there is a v;, € 3f(%;), where df is the generalized subdifferential of f,
obeying

Flx— aby) =) = (v;,—a,)
= (v, —av,.) + (v, — Yy, —avy)
~ 2 ~ ~
< —allp % +allvy, — 5 17,

= —allF T, — v, — 7, ID. (B.15)
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RATE-OPTIMAL DENOISING WITH DEEP NEURAL NETWORKS 21
In the next subsection, we guarantee that for any ¢ € [0, 1], Vi, with X; = x; — to:f/xl is close to \Nle_:

3 5 d*\ -
||V5¢,. — in|| < g +0lK72—d x

Applying (B.16) to (B.15) yields

(B.16)

1
fo—av,) —fx) < Olllv 113,

where we used that aK7g—f, < 12, by our assumption on the step size « being sufficiently small.
Thus, the maximum number of iterations for which x; ¢ 7 is f(x()12/(c min, ”in H ). We next
lower-bound | 7,. . We have that on &, for all x ¢ ., with g given by (B.12) that

noise’

Velly = Al = (1, — Vil

[l

2d/2
> 274 max(|x], |lx, ||)(3Kd3f+12w ) (B.17)

—d 3 2472
> 27 max(|x|, |x, )| B — K\d" Ve —wor—r

27%Ix, 13Kd> Ve,

where the second inequality follows by the definition of YB and Lemma B.5, and the third inequality
follows from our definition of 8 in Equation (B.12). Thus,

b

FOq—avy) —f(x) < —aKs22d%||x, | < —27d*Kge||x, |

f )2
Kod'e |, iterations for which x; ¢ .%4.

In order to conclude our proof, we remark that once x; is inside a ball of radius r around x,, the
iterates do not leave a ball of radius 2r around x,. To see this, note that by the bound on ||v, || given in
Equation (B.11) and our choice of step size,

d
where we used o = K4fﬁ. Hence, there can be at most

x*”).

afp | <

This concludes the proof of Theorem B.1A.

B.3  Proof of Theorem B.1B

Theorem B.1A establishes that after N iterations, the iterates x; are inside a ball of radius 2r around x,.
With the assumption that € < K/ d*° for sufficiently small K 1 and the definition of r, this implies that
the iterates lie in a ball around x, of radius at most K3d’]0||x*||. In this proof of Theorem B.1B, we
prove convergence within this ball.

In this proof, we show that for any i > N, it holds that x; € &(x,,a,d~'°||x,|), X; = x; and

i+1—-N d/2
Ixy — x, ) < BNy — x, 0l + 5429 %0,

where Kj is defined in Lemma B.9, b, =1 — ;‘—d% and b, is a universal constant.
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22 R. HECKEL ET AL.

We need Lemma B.10 that guarantees that the search directions of the iterates afterward point to x,
only up to the noise w:

LEmMMA B.10  Suppose the WDC holds with 200d/d/e < 1 and x € A(x,,d/€|x,|). Then for all
x # 0 and for all v, € 9f (x),

1
v, — ﬁ(x—x*)

11
< —d§||x—x*|| + a2

[\

This lemma is proven in Section B.11.
Suppose X; € %(x*,K3d_10||x*||). By the assumption € < K /d” for sufficiently small K, the
assumptions in Lemma B.10 are met. Therefore,

iy — Xl = 1% — avy, — x|l

- o o
=[x, —x, — z_d(xi —x,) —avg, + z_d(xi —x )l

N

o ~ 1 %
(1 - ﬁ) 1 = x,ll 4 ellvy, = 5 (& = )l

aN 11 1
(1_ﬁ) X, —x,ll + gz_d||xi_x*”+2d/2w

AN 1
= 1_2_d§ ||xi—x*||+amw, (B.18)

N

where the second inequality holds by Lemma B.10. By the assumptions X; € %(x,, K3d’10||x* D, <

516”2)2‘/2 , and using (B.18), we have x;, | € B(x,, K3d_10 [lx,.I1). In addition, using Lemma B.9 yields that

Xj41 = X, 1. Repeat the above dsteps yields that x; € A(x,, K3d~'%||x, ) and X; = x; forall i > N.
Using (B.18) and @ = K4§—2, we have

2d/2
X1 = X, Ml < byllx; — x|l + b3 e (B.19)

where b, =1 — 7K,/ (84%) and b5 is a universal constant. Repeatedly applying (B.19) yields

L . o b.24/2
e =l < BE oy =l BN 4 YT DT
) b,24/2
< bH’l*N x —x + 3—(1)

BTNy — x, )l + 5,270,

where the last inequality follows from the definition of b,, and b, is a universal constant. This finishes
the proof for (B.2). Inequality (B.3) follows from Lemma B.17.

This concludes the proof.

The remainder of the proof is devoted to prove the lemmas used in this section.
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RATE-OPTIMAL DENOISING WITH DEEP NEURAL NETWORKS 23

B.4  Proof of Equation (B16)

Our proof relies on i, being Lipschitz, as formalized by the lemma below, which is proven in
Section B.10:

LemMaA B.11 For any x,y ¢ %(0, K, ”x*

), where K, and K, are numerical constants,

-ty < Sy,

By Lemma B.11, for all r € [0,1] and i > N (recall that by Lemma B.7, after at most N steps,
x; # B0, Ko, ])):

2

K,d*
% — Xl (B.20)

I, = byl < =5

where X; = x; — tav, . Thus, we have that on &,

for any v;. € 9f(%;) by Lemma B.5,

Ivi, = T Il < llvg, — g |+ g, — By |+ 1Ay, — 5, |

Xi

&BJe K4d2 . e
2d 2d

<K, max (%11, I, 1) + 5775 Zm + =7 1% =%l + Ky max (|1, Ix, 1) + =775 W
& Kyd* 43/

<K f max (gl + el I e, D) + = 7-aliv |l + K, 2{max<||x I D) + 2575
d3 € adK Kd2 /

<K12+,f(2+ ~d )max(llx I ke D+ = =allv, |+ 2 =57~ 9 (B21)

where the second inequality is from Lemma B.5 and Equation (B.20), and the fourth inequality is from

(B.11) and the assumption W < K /d?.

Combining (B.21) and (B.17), we get that

Xill?

5 d?
||vA -V, || 6+aK72_d

with the appropriate constants chosen sufficiently small. This concludes the proof of Equation (B.16).

B.5 Proof of Lemma B.7

First, suppose that x; € %(0, 2K, ||x “) We show that after a polynomial number of iterations N, we
have that x;__ ¢ %(0 2K x,|)). Below, we prove that

<xv, <0 and |v,| > |x,| forallx e 2(0,2K|x,||) and v, € 3f (x). (B.22)

2‘116
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24 R. HECKEL ET AL.

It follows that for any X; € 4(0,2K, ||)c>k ), X; and the next iterate produced by the algorithm, x; | =
X — Vs, form an obtuseruse triangle. As a consequence,

-2 2 -2 2
1Ziet ™ = x| = 5] +0‘2||V5c,-||

~ 12
> |%| +“2m||x*

where the last inequality follows from (B.22). Thus, the norm of the iterates X; will increase until after

(W)2 iterations, we have X;, v & %(0,2K, | x, |).

Consider x; ¢ %(0,2K,l|x, ), and note that

- 167 Kd . 1 .
offvy Il < ST max ([lx; I, [lx,[]) < az—dllxill < —||xi||,
where the first inequality follows from (B.11), the second inequality from ||X;|| > 2K ||x, || and fmally

the last inequality from our assumption on the sufficiently small step size a. Therefore, from x;,; =
X; — ovy,, we have that £x; + (1 — H)x; | ¢ A0, Kyllx, 1) for all ¢ € [0, 1], which completes the proof.

Proof of (B.22) It remains to prove (B.22). We start with proving < xv, < 0. For brevity of notation,
let A, _H _a Wi 4. We have

A = < A;Axx—AgA X, +ATr)x

X

13, 1
2 I? —4—2—dllx||||x I+ lIxll 5777

13__, 1/(1 )
II)CII(12 x|l + ——

1 3
S Itz 2000 = fe—

The first inequality follows from (B.7) and (B.8), and the second inequality follows from our
assumption on w. Therefore, for any x € Z(0, ﬁ Iz, 11,

N

2d/2

1
[l Il — _2d [l

N

< X0, < — 1oz X llx, ) <O
as desired.

If G(x) is differentiable at x, then v, = v, and (xv,) < 0. If G(x) is not differentiable at x, by
Equation (B.10), we have

1 3
v =2l (v 4 ey 4+ 4cv) <(ep+cy+ ..+ c[)||x||ﬁ (2||x|| = —— I, ||)

1 3 1
= IxliZ (2|| = ez 1% II) ~Terzd PN < 0, (B.23)

for all v, € df (x).
Using (B.23) yields

T

vyl = max () > =/ l)) = =T > e
lull= oo Ixll ~ 24167

which concludes the proof of (B.22). O

[l 1l
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B.6  Proof of Lemma B.4
Let A, = IT1 Wi 4+ We have that
’2

21" = [ 4l < | Ao

s

where P, is a projector onto the span of A,. As a consequence, ||P AX77||2 is x2-distributed random
variable with k-degrees of freedom scaled by o/n. A standard tail bound (see [17, p. 43]) yields that, for
any 8 >k,
2 -8
P[Pan]”>4p <27

Next, we note that by applying [9, Lem. 16])* , with probability one, that the number of different
matrices A, can be bounded as

2 _ _
| {Adx £0) | = | {Hildei’+,x|x ” o} | < 107 (ndnd =" gk < (a1,

where the second inequality holds for log(10) < k/4log(n,). To see this, note that (n‘{ng_1 . nd)k >
107 is implied by k(dlog(n,) + (d — 1) log(n,) + . . .log(n,)) > kd*/41log(n,) > d*log(10). Thus, by
the union bound,

P[P, n|” < 16klog(nfnd=" .. .ny), for allx > 1 — 2¢~2k1oe)
where n = ny,. Recall from (B.8) that || AXH < % Combining this inequality with ”Z]x||2 <
|4, 1P a.n |* concludes the proof.

B.7 Proof of Lemma B.8

We now show that i, is away from zero outside of a neighborhood of x, and —p,x,. We prove
Lemma B.8 by establishing the following:

LEMMA B.12  Suppose 64d°,/B < 1. Define

d-1 . x [d-1 5
sin 6 T =Y
=2 T ——)
i=0 J=it1

where éo = m and éi = g(éF] ). Ifx e Yﬂ, then we have that either

8ol <32a*8 and [lIxll, — lIx,llo| < 132d°B]Ix, |,

or
0p — 7| < 8xd*/B and |lxll, — IIx,ll,04] < 200d7Ve|x, -

In particular, we have
Sy C Bx,.5000d°B|x,||,) U B(—pyx,. 500" /Blx, ). (B.24)

Additionally, p; — 1 asd — oo.

4 The proof in that argument only uses the assumption of independence of subsets of rows of the weight matrices.
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26 R. HECKEL ET AL.

Proof. Without loss of generality, let |x,| = 1,x, = e, and & = rcosf - e, + rsinf - e, for
6y € [0, 7]. Let x € 7.
First, we introduce some notation for convenience. Let

s=df[1”_§" :=§Sh‘§"gﬁ”_§f r=lxly M =max(r.1)
=0 7 ’ =0 T =i 7 , 3 o
Thus, h, = —%5560 + 2—{,(;’ — ¢)X. By inspecting the components of %, we have that x € -/ implies
| — & +cosby(r— ) < M (B.25)
|sinf,(r — ¢)| < BM. (B.26)

Now, we record several properties. We have:

0, €[0,7/2] fori>1

51- < §i_1 fori > 1
51 <1 (B.27)
d .
[¢] < —sinf, (B.28)
T
. 37 .
0; < - fori >0 (B.29)
i+3
v T
0, > - fori >0 (B.30)
i+1
d—1 = =
-9, -9
1= (B.31)
. T T
i=0
Gy =7+ 0,(8) = 0, =0, + 0,(i8) (B.32)
_ 8
O =7 +0,0) = & < — (B.33)
- 3o A28
Oy =1 +0,0) = ¢ =p,+ 0,(3d°5) 1f7< 1. (B.34)

We now establish (B.29). Observe 0 < g(#) < (% + %)_l =: g(0) for § € (0,7]. As g and g are
monotonic increasing, we have éi = gOi(éO) = g°%(m) < 2°%(m) = (# + %)_l = 3_—”3 Similarly,
g0) > (% + %)_1 implies that éi > HLI, establishing (B.30).

We now establish (B.31). Using (B.29) and 5[ < éi, we have

d-1 gy 3 »
05> T10- ) >0

where the last inequality can be established by showing that the ratio of consecutive terms with respect
to d is greater for the product in the middle expression than for d .
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RATE-OPTIMAL DENOISING WITH DEEP NEURAL NETWORKS 27

We establish (B.32) by using the fact that |g’(9)| < 1 for all & € [0, 7] and using the same logic as
for [9, Equation 38].

We now establish (B.34). As 6, = 7 + 0,(8), we have 6; = 0,(i8). Thus, if 2 5 <1,
d—1 I d—1 5 . d—1 il
T —0; T —6; s T — 0,
J J J 2
[I — | I o0,(—) )= | I 0,(d"§).
- b4 A ( T + 1(27r)) A T +0,(d%9)
j=i+1 j=it+1 J=it1
So

d—1 .o . d—1 5
_ sin6); i8 T — 0 )
r=> ( —+0, (;)) I1 — + 0,(d%8) (B.35)

i=0 j=itl
=ps+0, (d28/n FdPS)m + d482/71) (B.36)
= py + 0,(3d%5). (B.37)

Thus (B.34) holds.
Next, we establish that x € 5” = r < 4d, and thus M < 4d. Suppose r > 1. At least one of the
following holds: | sin 90| 1/«/5 or | cos 00| 1/\/— 2. If | sin §0| 1/«/_ 2 then (B.26) implies that

Ir — ¢| < ~/2Br. Using (B.28), we get r < d/} < d/2if B < 1/4.1f [cosBy| > 1/+/2, then (B.25)

implies that |[r—¢| < v/2(Br+[£]). Using (B.27), (B.28) and B < 1/4, we get r < lf ‘%f < ldjgﬁ <
4d. Thus, we have x € Sg = r < 4d = M < 4d.

Next, we establish that we only need to consider the small angle case (50 ~ () and the large angle
case (0 ~ ), by considering the following three cases:

1. (Casel)sinf, < 16d*B: We have 6, = 0, (32d*B) or 6, = 7 + 0,(32d*B), as 32d*p < 1.

(Case I) |r — ¢| < 4/BM: Applying case II to inequality (B.25) yields |§| < 24/BM. Using
(B.31), we get 0, = 7 + O, 2 d>\/BM).

(Case III) sin§0 > 16d*p and |r — ¢| > /BM: Finally, consider Case III. By (B.26), we
ﬁ . Using this inequality in (B.25), we have |§| < BM + M < 26M <

sinfg sin g
éd M < 2d_ , Where the second to last inequality uses sin 90 > 16d*B and the last inequality

uses M < 4d. By (B.31), we have T=2043 < £ < Ld=3, which implies that 8, > /2. Now,
as |[r — ¢| > /BM, then by (B.26), we have |sinfy| < /B. Hence, 6y = 7 + 0;(2y/B), as
O0yp=>m/2andas B < 1.
ét least one of the Cases I, II or 111 hold;Thus, we see that it suffices to consider the small angle case
6, = 0,(32d*B) or the large angle case 6, = 7 + O, (87 d*\/B).
Small angle case. Assume 6, = O,(8) with § = 32d*B. As 0, < 6, < § forall i, we have | > £ >
a1 - %)d =140, (znﬁl) provided éd/m < 1/2 (which holds by our choice § = 32d*B by assumption
64d6ﬁ < 1). By (B.28), we also have ¢ = 01(%8). By (B.25), we have

have [r — ¢| <

| — & +cosOy(r— )| < BM.
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28 R. HECKEL ET AL.
Thus, as cosfy = 1 + 01(53/2) =140,(%/2),

(0 ()0 () (o0 (£) oo

and r < M < 4d (shown above) provides,

28d  8d 28d 28242
r—=1=0(4dp+ —+ — + —4d + (B.38)
1 T T T

].[2
= 0,(4Bd + 48d°). (B.39)

By plugging in that § = 324*8, we have that r—1 = 0, (132d°B), where we have used that @ < 1/2.

Large angle case. Assume 6, = 7 + O(5) where § = 8d*/B. By (B.33) and (B.34), we have
£ = 0,(8/7), and we have ¢ = p, + 0,(3d>38) if 84°/B < 1. By (B.25), we have

| =& 4 cosby(r— )| < BM,
so,ascosfy =1 — 01(93/2),
0,(8/7) + (14 0,(8%/2))(r — py + 0,(3d°8)) = 0,(BM),
and thus, using r < 4d, p; < d and § = 8md*\/B < 1,

5 3
r—pq=0, (ﬁM + 8/ +3d°5 + 287 + Ed353) (B.40)
1 s 5.3,
=0, (4Bd+58|—+3d°+=d+=d (B.41)
b4 2 2
= 0,(200d"/B). (B.42)

To conclude the proof of (B.24), we use the fact that

llx = x, 1l < |lIxlly = llxglla| + gl + [l = lx, Dl )8

This fact simply says that if a 2d point is known to have magnitude within Ar of some r and is known
to be within angle Af from 0, then its Euclidean distance to the point of polar coordinates (r,0) is no
more than Ar + (r + Ar) A6.

Finally, we establish that p; — 1 as d — oo. Note that p;, | = (1 — ba pg + Sing‘j and py = 0.
It suffices to show p; — 0, where p; := 1 — p,. The following recurrence relation holds: Py =

f,
(1 - I)Pd 1+
fact that 90 =, we get that

M with g, = 1. Using the recurrence formula [9, Equation (15)] and the

< déH—SinéH ‘ 1 6V’j—l B.43
=2 I\ B.43)
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using (B.30), we have that

d X d d .
6. 1 1 d+1 1
H(l_f_l)gn(l__,)zexp > e ([ a) = 1L
=it 1 T j=it+1 J =ir1”’ i+l 8 +
. y , B
Using (B.29) and the fact that §,_, — sinf,_, < 67 ,/6, we have that 5, < >4, gé;n’ S > Oas
d — oo. O

B.8 Proof of Lemma B.9

Consider the function

Jr @) =fo(x) = (GXx) — G(x,), ),

and note that f(x) = f, (x) + ]2, Consider x € (¢ x,, ¢llx,|) for a ¢ that will be specified later.
Note that

|< G) — Gxn| < | < T W, ol + | < T, W, x|
=| <xUT W, D'l + | <x, (T W, )"l

< (Ul + . D57

w
< @l + ez

where the second inequality holds on the event & ;..

our assumption on x. Thus, for x € B(¢ x,., ¢llx,|)

[, <Efo(0) + o) = Efy)| + |< G — Gx,)n|

by Lemma B.4, and the last inequality holds by

10 , 1
2d+1 b7 — 2¢4+Fd<ﬂ [l I +WHX*”

2

1 + 4ed 1 4 4ed) 4 484° 1 4 4ed
+u” 124+ & 6231“ Ve ||x||||x*||+%llx*ll2
+ @l + x5
10 2, | 2
2d+1 ¢2 — 2¢d+K—gd¢ IPes 1+ Sy e
| 4 ded 1 +4ed) +48d° L+ ded
+ SO g 2 P4 LG EEO g 24 LD 2
w
+ @l + x5z
B L O S (pppps 2 B.44
= 2d+l + 5 — ¢d+F < ¢ H"’“x*'“”x*”)W’ B4

where the last inequality follows from € < /€, p; < 1,4ed < 1, ¢ < 1 and assuming ¢ = €.
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Similarly, we have that for any y € B(—¢ x,., ¢llx,|)
5,0 ZEfOMI = 1f0) = EF W] — |< 6@ — Glxn|
1
> 2d+1 (67 — 26000 = 10d9) 1,12 + 377 b, 12

(6(1 + 4ed)

6(1 + ded) + 484d° /e €(1 +4ed) 2
I 1P + S Iyl + = I,

w
— (¢ ”x* ” + ”x* ”)W

N N, 1043 — 6842 /€) — (x| + %, )= (B.45)
Z Sdt ( + &5 — 20404 — Y= 6)— O xe | T+ |1 X4 YIih .

Using € < ﬁ, pg < 1,4ed < 1, ¢ < 1 and assuming ¢ = e, the right side of (B.44) is smaller than
the right side of (B.45) if

2
g — Pa®a — 131715

¢ =€< (B.46)
u&+i)ﬁ
(=4
We can establish that:
LemMmA B.13 Forall d > 2, that
u(Kgd+2f)<1—pd<2ﬂyu+4y
This lemma is proven in Section B. 9
Thus, it suffices to have ¢ = € = d10 and 13]|77]|, < d2 < %ﬁ for an appropriate universal
constant Ky and for an appropriate universal constant K.
B.9  Proof of Lemma B.13
It holds that
llx = yll = 2sin(®, ,/2) min(|lx], [|y[), Vx,y (B.47)
sin(6/2) > 6/4, Vo € [0, 7] (B.48)
d
Eg(@) € [0, 1] Vo € [0, ] (B.49)
log(1+x) <x Vx € [-0.5,1] (B.50)

log(1 —x) > —2x Vx € [0,0.75], (B.51)
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where Gx,y = /(x,y). We recall the results (35), (36) and (49) in [9]:

T

d—1 x d—1 % .ox od—1 5

i=1 i=1 Jj=i+1

Therefore, we have forall 0 <i<d—2,

d—1 A d—1 .
H 1— % < H 1— ) Z; ,+.log( /+1) <e i AT <e” S shds ﬁ’
T . j+1 d+1

j=itl j=itl
d—1 5 d—1 : 6
0, -
H 1 — J > H 1 — i — ezj =i+1 IOg(l ]+3) > e _;'1=i1+1 j% >e jid : ris‘ds ﬁ s
Jj=it1 T j=i+1 J+3 d+2

where tkle second Vand the fifth iyequalities follow from (B.50) and (B.51), respectively. Since 3 /(1234
1)3) < 62/12 < 6, —sin6; < 67 /6 < 2773 /(6(i + 3)%), we have that for all d > 3

”g 277 i+2 _ 2 375 250

. < + <
:16(z~|—3)3d+1 d+1 4d+1) ~d+1

b=pasg 7+

and

3 6 d-1 3 13 6 1
l—pd>( )+§ n 3(l+ )2 5
@+2) T &narai \d+2) TKd+2)
WhereweuseZ;ﬁMizg%zand S8 =0m".

B.10  Proof of Lemma B.11
To establish Lemma B.11, we prove the following:

LEmMA B.14 For all x,y # 0,

1 6d+ 4d> 1
h—h| <=+ — —9l.
Ay — hyll (2d + =3 max(”x|| ”y”) l *II) llx — yll

Lemma B.11 follows by noting that if x,y ¢ Z(0, r||x,||), then ||k, — hy|| < (L + 6d+_4d2) llx = ylI.

2d wr2d
Proof of Lemma B.14. For brevity of notation, let i = Hd tz 9‘ . Combining (B.47) and (B.48)

gives |9—O,x - G_O,yl 4 max (‘ ) lx — y||. Inequality (B.49) 1mphes |9i,x - i,y| <16 ix — j,yl for all

x> Tyl
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i > j. It follows that:

1 1
e = Byl < gl = Y1+ 37 [60. = oy | Il
—_——

T
—1 “lg
1n0
Z Cigrk Z i, 3] Il (B.52)
i—=0 i=0
p)
By Lemma B.15, we have
7, < Ly, — ) < 2 (1 l)n I (B.53)
< — —max | —,— ) [lx—yl. .
PR 0 TS Il 1yl
Additionally, it holds that
—1 .z
sin 9 sin O; sin 0 sin 9
Cig1ak Tl’xfiﬂ,xy Y Z §z+1yy
i=0
d-1 . 7 d-1 . 7
d . . sin 6; sin 6;
< _lE =3I+ ZT”X{HLX—Z 2Lyl (B.54)
i=0 i=0
T3
‘We have
[ sindy, sinf, sin §; siné; |
I3 < Z T§i+1,x_T§i+1,y + —§z+1y —§z+1y
=
Ciry fa—i—1- _ 1.
<Xl T|6v,._1,x—0l._l,y‘ + —sind, — sind,|
i=0
dzw 7 |<4d2 (1 1)” Il (B.55)
— < — max xX—y .
wo0r TS Il 1yl

Using (B.47) and (B.48) and noting ||x — 3| < xy yield

PN 1 1
Ix =yl <6, <2max (— —) llx = ylI. (B.56)
flxll 1yl

Finally, combining (B.52)—(B.56) yields the result. Il
LeEMMA B.15 Suppose a;,b; € [0, ] fori=1,...,kand |a; — b;| < |aj - bj|,\7’i > j. Then it holds that

k k
[ - =k
T i T

i=1

k
— —by|.
j_[|511 1|
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Proof. Prove by induction. It is easy to verify that the inequality holds if k = 1. Suppose the inequality
holds with k =t — 1. Then

t t—1

Hﬂ—ai_ﬂ_atnﬂ—bi
b/ /g N b4

i=1 i=1
t—1

t

t
1"
T b
i=1

i=1

<

+

1 t

B.11  Proof of Lemma B.10
We first need Lemmas B.16, B.17 and B.18.

LEmMMA B.16 Suppose W € R"™** gatisfies the WDC with constant €. Then for any x,y € Rk, it holds

that
/1
Wy x— W, oyl < ( S Tet 2(2¢ + 9)) llx =yl

where 6 = Z(x,y).
Proof. We have
Wy x =Wyl < IW, o x = W oyl +1IW, oy — WL oyl
— W= D+ W = W Dyl < IW il =yl + I(W,, = Wyl (B.ST)

By WDC assumption, we have

”W-Q]:,X(WJr,x - W+,y)” < H W—{,XW+,X - I/ZH + H W-Qj:,xW+,y - Qx,y

| +[ew -1
<2 +6. (B.58)

We also have

n
||(W+,x - W+,y)y”2 = z(lw,wx>0 - lwi~)'>0)2(wi ')’)2
i=1
n
< Z(lwi~x>0 - 1w,-~y>0)2((wi : x)Z + (Wi ' y)2 - 2(Wl' : x)(wi ),
i=1
n
= Z(lw,-»x>0 - 1w,-»y>0)2(wi S — y))2
i=1

n n
= Z lwi-x>01wi-y<0(wi (= y))2 + Z lw,--xgolw,--y>0(wi (= y))2

i=1 i=1
_ TwT TwT
=@—y Wi (W, — W+,y)(x -+ &=y W (W, — Wi )@ —y)
<2Q2e +0)|x — y||2. (by B.58) (B.59)
Combining (B.57), (B.59) and ||Wl-,_‘_’x||2 < 1/2 + € given in [9, (9)] yields the result. ([
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LEMMA B.17 Suppose x € A(x,,d/€|x,|), and the WDC holds with € < 1/(200)*/d®. Then it holds
that

1 1 12
H Wi,+,xx - H Wi,-‘r,x*x* < 7 llx — Xy Il.
i=j i=j 232

Proof. In this proof, we denote ¢, , , and O_i’x’x* by 6, and O_i, respectively. Since x € B(x,,d/€||x,]),
we have

< 6y < 2d+/e. (B.60)
By [9, (14)], we also have |6, — 9_,-| < 4i/e < 4d./€. It follows that:

2/6, + 2¢ < 2\/5,. +4ddJe +2¢ < 2\/2dﬁ+4dﬁ+ 2e

1
24/8d+/€ < < 304 (by the assumption on ¢€) (B.61)

Note that +/1 +2¢ < 1+ € < 1+ /d/e. We have

0
:];[ («/1+2e+2\/ei+2e)<(1+7 dﬁ) 1+ 14dy/d+/€ ﬁ<12

-1

where the second inequality is from that (I + x)? < 1 + 2dxif 0 < xd < 1. Combining the above
inequality with Lemma B.16 yields

1 0
[Tw.s x—H X | < H(,/-+e+\/_,/9 +2e)||x—x|| l||x—x||
i=j

: 2
i=j—1
O

LemMA B.18 Suppose x € B(x,,d/€|x,), and the WDC holds with € < 1/(200)*/d®. Then it
holds that

T

1 1
1 11
(1) ({10 ({10 )] - s e
i=d i=d

Proof. For brevity of notation, let A;, - = Hf:j Wi ;.- We have

Ag,l,x (Ad,l,xx - Ad,l,x*x*)

d d
T
= Ad,l,x Ad,l,xx - z (Adj,x j—1, l,x ) + Z (Ad/,x j—1, lx ) - Ad,l,x*x*
=1 j=1
d
T T
= A1 A =50+ AT D A (W = W) A (B.62)

1
T, J

T,
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For T, we have

1 4d
T, = 2—d(x —x,) + >d lx —x, 110, (e). [9, (10)] (B.63)
For T,, we have
d
1 (4a’ 2])6
T2=01(1)Z( — — )|‘(W’j,+,x Wit ) Ao 110X
jo1 \207 2972
o | (4d—2)e
—0,() z( Tt ) H (Ai_g 1% = Aj_p 10750 | 2600, +26)
j=1 24772 2
0 | (d=2e) 1 1
—01(1>Z( - );,.nx—x*n—
-4 2d—3 27 304/2d
1
= Rz—dllx—X*IIOI(l), (B.64)
where the first Equation is by [9, (10)], the second equation is by (B.59), the third equation is by Lemma
B.17 and (B.61). The result follows from (B.62), (B.63) and (B.64). [l

Now, we are ready to prove Lemma (B.10). For brevity of notation, let A; . = H}:j W, ;.- Using
Lemma B.18 yields

||9x—2id(x—x*)ll S 5d 16I| Xl
It follows that:
< iiIIX =Xl +
2416 *
For any x # 0 and for any v € 9f(x), by (B.10), there exist cl,cz, ...,¢, =z Osuchthatc;+c,+...+
=landv = C1V1 + vy + ...+ c,v,. It follows that ||v— >0 (x—x )|| Z}:l cjllvj — z—ld(x—x*)n <

1
Tgllx

1
a2

_ _ 1
Ve +q, — ﬁ(x—x*)

.1
Vr T 5d (x—x,)

¢
1
2d — x|+ zd/zw-
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