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Abstract

Given a concurrent data structure, we present an approach
for efficiently taking snapshots of its constituent CAS objects.
More specifically, we support a constant-time operation that
returns a snapshot handle. This snapshot handle can later be
used to read the value of any base object at the time the snap-
shot was taken. Reading an earlier version of a base object
is wait-free and takes time proportional to the number of
successful writes to the object since the snapshot was taken.
Importantly, our approach preserves all the time bounds and
parallelism of the original data structure.

Our fast, flexible snapshots yield simple, efficient imple-
mentations of atomic multi-point queries on a large class
of concurrent data structures. For example, in a search tree
where child pointers are updated using CAS, once a snapshot
is taken, one can atomically search for ranges of keys, find
the first key that matches some criteria, or check if a collec-
tion of keys are all present, simply by running a standard
sequential algorithm on a snapshot of the tree.

To evaluate the performance of our approach, we apply it
to three search trees, one balanced and two not. Experiments
show that the overhead of supporting snapshots is low across
a variety of workloads. Moreover, in almost all cases, range
queries on the trees built from our snapshots perform as well
as or better than state-of-the-art concurrent data structures
that support atomic range queries.

CCS Concepts: » Theory of computation — Concurrent
algorithms.
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1 Introduction

The widespread use of multiprocessor machines for large-
scale computations has underscored the importance of effi-
cient concurrent data structures. Unsurprisingly, there has
been significant work in recent years on designing practical
lock-free and wait-free data structures to meet this demand
and guarantee system-wide progress. Many applications that
use concurrent data structures require querying large por-
tions or multiple parts of the data structure. For example, one
may want to filter all elements by a certain property, perform
range queries, or simultaneously query multiple locations.
However, such “multi-point” queries have been notoriously
hard to implement efficiently. Although it is easy to sup-
port multi-point queries by locking large or multiple parts
of the data structure, this approach lacks parallelism. Some
concurrent data structures resort to multi-point queries that
provide no guarantee of atomicity [41, 43]. Other efforts
have implemented specific queries (e.g., range queries, itera-
tors) [2, 4, 14, 18, 27, 28, 47].

A general way to support efficient multi-point queries is
to provide the ability to take a snapshot of the data structure.
Conceptually, a snapshot saves a read-only version of the
state of the data structure at a single point in time [1, 3, 30].
Multi-point queries can be performed by taking a snapshot
and reading the necessary parts of that version to answer
the query, while updates run concurrently. Snapshots are
also used in database systems for multiversioning and re-
covery [9, 20, 40, 44, 48, 51, 58], and in persistent sequential
data structures [23, 24, 53]. However, known approaches for
taking snapshots either limit the programming model (e.g.
purely functional [8, 21]), use locks with no progress guar-
antees [9, 38, 40], or are lock- or wait-free but have large
running times [1, 11, 26, 29, 36].

Given any concurrent data structure, we present an ap-
proach for efficiently taking snapshots of its constituent
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Compare&Swap (CAS) objects !. Importantly, our approach
preserves all the time bounds and parallelism of the original
algorithm/data structure. Our interface is based on creating
a camera object that has a collection of associated versioned
CAS objects, which support read and CAS operations like nor-
mal CAS objects, as well as a versioned read operation. The
camera object supports a single operation takeSnapshot
that takes a snapshot of the values stored in all the associ-
ated versioned CAS objects. The takeSnapshot operation
does not make a copy of these objects. Instead it returns,
in constant time, a handle that can be used to query (via
the versioned read operation) the state of any subset of the
versioned CAS objects at the time when the handle was ac-
quired. New versioned CAS objects can be associated with
an existing camera object, so our construction is applicable
to dynamically-sized data structures.

Our interface is more flexible than the one traditionally
used for a snapshot object [1], which stores an array and pro-
vides update operations that write to individual components
and scan operations that return the state of the entire array.
Instead of creating a copy of the state of the entire shared
memory in the local memory of a process, our takeSnapshot
simply makes it possible for a process to later read only the
memory locations it needs from shared memory, knowing
that the collection of all such reads will be atomic. Although
partial snapshot objects [5, 34] allow scans of part of the
array, they require the set of locations to be specified in
advance, whereas our approach allows the locations to be
chosen dynamically as a query is executed.

Our algorithm has the following important properties.

1. Taking a snapshot of the current state and returning a
handle to it takes a constant number of instructions.

2. A CAS or read of the current state of a versioned CAS
object takes constant time. Therefore, adding snap-
shots to a CAS-based data structure preserves the data
structure’s asymptotic time bounds.

3. Reading the value of a versioned CAS object from a
snapshot takes time proportional to the number of
successful CAS operations on the object after the snap-
shot and before the start of the read. Thus, all reads are
wait-free (i.e., every read is completed within a finite
number of instructions.)

4. The algorithm is implemented using single-word read
and CAS, which are supported by modern architec-
tures. It does, however, require an unbounded counter.

We know of no previous general mechanism for snapshotting
the state of memory satisfying even the first two properties.

Similarly to previous work [9, 29, 38, 40, 51, 53, 58], we
use a version list for each CAS object. The list has one node

1 A CAS object V stores a value and supports two atomic operations:
V.read() returns the value of V; V.CAS(old, new) compares the value of V'
to old and if they are equal, it changes the value of V' to new and returns
true; otherwise, it returns false without changing V’s value.
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per update (successful CAS) on the object. Each node con-
tains the value stored by the update and a timestamp in-
dicating when the update occurred. The list is ordered by
timestamps, most recent first. A difficulty in implementing
version lists without locks, which we address, is the need to
add a node to the version list, read a global timestamp, and
save that timestamp in the node, all atomically.

Snapshots and Multi-point Queries. Our interface pro-
vides a simple way of converting a concurrent data structure
built out of CAS objects into one that supports snapshots:
simply replace all CAS objects with our versioned CAS ob-
jects, all associated with a single camera object. If all shared
mutable state is stored in the CAS objects, then taking a
snapshot will effectively provide access to an atomic copy
of the entire state of the data structure at the snapshot’s
linearization point?. After taking a snapshot, a read-only
query is free to visit any part of the data structure state at
its leisure, even as updates proceed concurrently. Often, the
query can be performed by simply taking a snapshot and
then running a standard sequential algorithm on the data
structure by replacing each read with our versioned read.

In Section 4, we define more precisely when multi-point
queries can be computed from snapshots. In particular, we
discuss how our approach can be used for arbitrary queries
on Michael-Scott queues [39], Harris’s linked-lists [32], and
two different binary search trees [15, 25]. On the binary
search trees, for example, one can support atomic queries for
finding the smallest key that matches a condition, reporting
all keys in a range, determining the height of the tree, or
multisearching for a set of keys. The time complexity of each
query is the sequential cost of the query plus the number of
vCAS operations it is concurrent with.

Avoiding Indirection and Other Optimizations. Our
algorithm introduces only constant overhead for existing op-
erations, and allows the implementation of wait-free queries.
However, our construction does introduce a level of indirec-
tion: to access the value of a versioned CAS object, one must
first access a pointer to the head of the version list, which
leads to the actual value. This may introduce an extra cache
miss per access. We therefore consider an optimization to
avoid this in Section 5. This optimization applies to many
concurrent data structures that satisfy the recorded-once prop-
erty we introduce. Roughly speaking, recorded-once means
that each data structure node is the new value of a successful
CAS at most once. This allows us to store information for
maintaining the version lists (in particular the timestamp
and the pointer to the next older version) directly in the
nodes themselves, thus removing the level of indirection (see
Figure 2 for an example). In Section 6, we describe other
optimizations to reduce contention and shorten version lists.

2We use the standard definition of linearizability [33], which roughly states
that every operation must appear to have taken effect atomically at its
linearization point, between its invocation and response.
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Memory Reclamation. Maintaining all old versions of a
versioned CAS object may be infeasible. In Section 7, we de-
scribe how to garbage collect old versions using an approach
based on Epoch Based Memory Reclamation (EBR) [31]. Ex-
periments indicate that our approach works well in practice
and has low memory overhead.

Implementation and Experiments. To study the time
and space overhead of our approach, we applied it to three
existing concurrent binary search trees, one balanced and
two not [4, 15, 25]. Adding support for snapshots was very
easy and required minimal changes to the original code. The
experiments demonstrate that the overhead is small. For ex-
ample, the time overhead of supporting snapshots is about
9% for a mix of updates and queries on the current version
of the tree. We also compare to state-of-the-art data struc-
tures that support atomic range queries, including KiWi [7],
LFCA [57], PNB-BST [28], and SnapTree [12]. In almost all
cases, our data structure performs as well as or better than
all of these special-purpose structures even though our ap-
proach is general purpose. Finally, we implement a variety of
other atomic multi-point queries and show that the overhead
compared to non-atomic implementations, which are correct
only when there are no concurrent updates, is small.

Contributions. In summary, our contributions are:

e A simple, constant-time approach to take a snapshot
of a collection of CAS objects.

e A technique to use snapshots to implement linearizable
multi-point queries on many lock-free data structures.

e Optimizations that make the technique more practical,
for example, by avoiding indirection.

e Experiments showing our technique has low overhead,
often outperforming other state-of-the-art approaches,
despite being more general.

2 Related Work

Implementing a snapshot object is a classic problem in shared-
memory computing with a long history. Fich surveyed some
of this work [30]. A partial snapshot object allows operations
that take a snapshot of selected entries of the array instead
of the whole array [5, 34]. An f-array [35] is another gener-
alization of snapshot objects that allows a query operation
that returns the value of a function f applied to a snapshot
of the array. As mentioned above, snapshot objects have a
less flexible interface than our approach to snapshotting.
We describe in Section 4 how to use our snapshots to sup-
port multi-point queries on a wide variety of data structures.
Previous work has focused on supporting such queries on
specific data structures. Bronson et al. [12] gave a blocking
implementation of AVL trees that supports a scan operation
that returns the state of the entire data structure. Prokopec
et al. [50] gave a scan operation for a hash trie by making
the trie persistent: updates copy the entire branch of nodes
that they traverse. Scan operations have also been imple-
mented for non-blocking queues [41, 42, 49] and deques [27].
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Kallimanis and Kanellou [37] gave a dynamic graph data
structure that allows atomic dynamic traversals of a path.

Range queries, which return all keys within a given range,
have been studied for various implementations of ordered
sets. Brown and Avni [14] gave an obstruction-free range
query for k-ary search trees. Avni, Shavit and Suissa [6]
described how to support range queries on skip lists. Basin et
al. [7] described a concurrent implementation of a key-value
map that supports range queries. Like our approach, it uses
multi-versioning controlled by a global counter.

Fatourou, Papavasileiou and Ruppert [28] gave a persis-
tent implementation of a binary search tree with wait-free
range queries, also based on version lists. Our work bor-
rows some of these ideas, but avoids the cumbersome hand-
shaking and helping mechanism they use to synchronize
between scan and update operations. This more streamlined
approach makes our approach easier to generalize to other
data structures. Winblad, Sagonas and Jonsson [57] also gave
a concurrent binary search tree that supports range queries.

Some researchers have also taken steps towards the design
of general techniques for supporting multi-point queries that
can be applied to classes of data structures, although none
are as general as our approach.

Petrank and Timnat [47] described how to add a non-
blocking scan operation to non-blocking data structures
such as linked lists and skip lists that implement a set abstract
data type; scan returns the state of the entire data structure.
Updates and scan operations must coordinate carefully using
auxiliary snap collector objects. Agarwal et al. [2] discussed
what properties a data structure must have in order for this
technique to be applied. Chatterjee [18] adapted Petrank and
Timnat’s algorithm to support range queries.

Arbel-Raviv and Brown [4] described how to implement
range queries for concurrent set data structures that use
epoch-based memory reclamation. They assume that one
can design a traversal algorithm that is guaranteed to visit
every item in the given range that is present in the data
structure for the entire lifetime of the traversal.

Within the database and software transactional memory
(STM) literature there has been a long history of having
transactions capture a snapshot of the state using multi-
versioning [8,9, 17, 20, 22, 29, 38, 40, 44-46, 48, 51, 52, 54, 58].
This avoids conflicts between read-only transactions and
write transactions. Indeed, the idea of version lists for this
purpose dates back to Reed’s thesis on transactions [51]
and is implemented in many modern-day database systems.
Much of the work, especially the earlier work, is lock-based.
Fernandes and Cachopo [29] introduced a lock-free approach
to transactional multiversioning. Their approach, however,
fully sequentializes transactions that require updates by
adding each successful transaction to the end of a trans-
actional log. Other work has, for example, studied how to
make updates in the past [22] by splicing elements into the
version lists.
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As compared to this work on effectively snapshotting the
state after whole transactions, our focus is on standard con-
current algorithms and snapshots at the level of individual
memory operations. A key objective in our work is main-
taining the time bounds of the original algorithms when
operating on the current copy, and thus maintaining an al-
gorithm’s progress properties, e.g., wait-freedom, constant-
time. For this purpose, concurrent updates are crucial—even
wait-freedom for simulating a CAS would by itself be insuf-
ficient. Since we focus on the more restricted problem of
making concurrent data structures snapshottable, we can
use techniques and optimizations that would be difficult if
at all possible in the more general STM setting.

3 Versioned CAS Objects

Our approach uses “time-stamped” versioned lists to main-
tain the state of each object, as in previous work (e.g., [9,
29, 38, 40, 51, 58]). Unlike most of this work, updates do not
increment the timestamps—only taking a snapshot might
increment the timestamp.> An important aspect of our algo-
rithm is how it attaches a timestamp to a new version when
updating an object (with a CAS). This involves temporarily
setting the new version’s timestamp to an undetermined
value (TBD) and then updating this to the “current” time-
stamp only after it is inserted into a version list. The new
version’s timestamp might be updated by the CAS that cre-
ated it or via helping by a concurrent operation accessing
the object. This ability to help is crucial.
We begin with a sequential specification of our objects.

Definition 1 (Camera and Versioned CAS Objects). A ver-
sioned CAS object stores a value and supports three oper-
ations, vRead, vCAS, and readVersion. The first two oper-
ate on the current value and the third is to access a snap-
shotted value. A camera object supports a single operation,
takeSnapshot. Each versioned CAS object O is associated

with a single camera object when it is created. Consider a

sequential history of operations on a camera object S and the

set As of VCAS objects associated with it. The behavior of
operations on S and O for all O € Ag, is specified as follows:

e An O.vCAS(oldV, newV) attempts to update the value of
O to newV and this update takes place if and only if the
current value of O is 0o1dV. If the update is performed, the
VCAS operation returns true and is successful. Otherwise,
the vCAS returns false and is unsuccessful.

e An O.vRead() returns the current value of O.

e The behavior of readVersion and takeSnapshot are spec-
ified simultaneously. A precondition of O.readVersion(ts)
is that there must have been an earlier S.takeSnapshot()
that returned the handle ts. For any S.takeSnapshot() op-
eration T that returns ts and any O.readVersion(ts) oper-
ation R, R must return the value O had when T occurred.

3When there are concurrent snapshots, only one needs to increment the
timestamp, avoiding sequentializing snapshots.
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Multiple takeSnapshot operations on a camera object S
may return the same handle, but Definition 1 implies that
two takeSnapshot operations can return the same handle
ts only if each associated versioned CAS object has the same
value when these two takeSnapshot operations occurred.

3.1 A Linearizable Implementation

Algorithm 1 is a linearizable implementation of versioned
CAS and camera objects. The vCAS, vRead and takeSnapshot
operations all take constant time.

The Camera Object. The camera object behaves like a
global clock for all versioned CAS objects associated with it.
It is implemented as a counter called timestamp that stores
an integer value. A takeSnapshot simply returns the current
value ts of variable timestamp as the handle and attempts to
increment timestamp using a CAS. If this CAS fails, it means
that another concurrent takeSnapshot has incremented the
counter, so there is no need to try again. The handle will
be used by future readVersion operations to find the latest
version of any versioned CAS object that existed when the
counter was incremented from ts to ts + 1.

The Versioned CAS Object. Each versioned CAS object
is implemented as a singly-linked list (a version list) that
preserves all earlier values committed by vCAS operations,
where each version is labeled by a timestamp read from
the camera’s counter during the vCAS. The list is ordered
with more recent versions closer to the head of the list. A
vRead operation just returns the version at the head of the
list. A successful vCAS adds a node to the head of the list.
After the node has been added to the list, the value of the
camera object’s counter is recorded as the node’s timestamp.
A readVersion(ts) operation traverses the version list and
returns the value in the first node with timestamp at most ¢s.

The versioned CAS object stores a pointer VHead to the
last node added to the object’s version list. Each node in this
list is of type VNode and stores
e a value val, which is immutable once initialized,

e atimestamp ts, and

e a pointer nextv to the next VNode of the list, which con-
tains the next (older) version of the object.

The version list essentially stores the history of the object.

Timestamps. We use a special timestamp TBD (to-be-
decided) as the default timestamp for any newly-created
VNode. TBD is not a valid timestamp and must be substituted
by a concrete value later, once the VNode has been added to
the version list. When a VNode x is added to the version list,
we call the initTS subroutine (Lines 23-25) to assign it a
valid timestamp read from the camera object’s timestamp
field. Once x’s timestamp changes from TBD to a valid value,
it will never change again, because the CAS on Line 25 suc-
ceeds only if the current value is TBD. This initTS function
can be performed either by the process that added x to the
list, or by another process that is trying to help.
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class Camera { 17 VersionedCAS(Value v, Camerax s) {| 33 Value vRead() {
int timestamp; 18 S =s; 34 VNode* head = VHead;
Camera() { timestamp = 0; } 19 VHead = new VNode(v, NULL); 35 initTS(head);
int takeSnapshot() { 20 initTS(VHead); 36 return head->val; }
int ts = timestamp; 21 3 37 bool vCAS(Value oldV, Value newV) {
CAS(&timestamp, ts, ts+1); 22 | void initTS(VNode* n) { 38 VNodex head = VHead;
return ts; } 23 if(n->ts == TBD) { 39 initTS(head);
3 24 int curTS = S->timestamp; 40 if(head->val != oldV) return false;
class VNode { 25 CAS(&(n->ts), TBD, curTS); 3} 41 if(newV == oldV) return true;
Value val; VNode* nextv; int ts; 26 } 42 VNode* newN = new VNode(newV, head);
VNode(Value v, VNode* n){ 27 Value readVersion(int ts) { 43 if(CAS(&VHead, head, newN)) {
val = v; ts = TBD; nextv = n;} 28 VNode* node = VHead; 44 initTS(newN);
¥ 29 initTS(node); 45 return true;
class VersionedCAS { 30 while (node->ts > ts) 46 } else {
VNode* VHead; 31 node = node->nextv; 47 delete newN;
Camera* S; 32 return node->val; } 48 initTS(VHead);
49 return false; } } };

Algorithm 1. Linearizable implementation of a camera object and a versioned CAS object.

Implementing readVersion(ts) and vRead(). The goal
of a readVersion(ts) is to return the latest version whose
timestamp is at most ts. It first reads VHead and if necessary
helps set the timestamp of the VNode that VHead points to by
calling initTS. The readVersion then traverses the version
list by following nextv pointers until it finds a version with
timestamp smaller than or equal to ts, and returns the value
in this VNode. The vRead function looks only at VHead, helps
set the timestamp of the VNode that VHead points to, and
returns the value in that VNode.

Implementing vCAS(oldV, newV). This operation first
reads VHead into a local variable head. Then it calls initTS
on head to ensure its timestamp is valid. If the value in the
VNode that head points to is not oldV, the vCAS operation
fails and returns false (Line 40). Otherwise, if 01dV equals
newV, the vCAS returns true because nothing needs to be
updated. This is not just an optimization that avoids creating
another VNode unnecessarily; it is also required for correct-
ness because without it, a successful vCAS(a, a) could cause a
concurrent VCAS(a, ) to fail. If 01dV and newV are different,
and the VNode that head points to contains the value 0ldV,
the algorithm attempts to add a new VNode with value newV
to the version list. It first allocates a new VNode newN (Line
42) to store newV and lets it point to head as its next version.
It then attempts to add newN to the beginning of the list by
swinging the pointer VHead from head to newN using a CAS
(Line 43). If successful, it then calls initTS on the new VNode
to ensure its timestamp is valid, and returns true to indicate
success. Before this call to initTS terminates, a valid time-
stamp will have been recorded in the new VNode, either by
this initTS or by another operation helping the vCAS.

If the CAS on Line 43 fails, then VHead must have changed
during the vCAS. In this case, the new VNode is not appended
to the version list. The algorithm deallocates the new VNode
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(Line 47) and returns false. An unsuccessful vCAS also helps
the first VNode in the version list acquire a valid timestamp.

Helping. As mentioned, a vRead, readVersion and an
unsuccessful vCAS all help (by calling initTS) to ensure that
the timestamp of the VNode at the head of the version list is
valid before they return. This is necessary to overcome the
main difficulty in implementing version lists without locks,
i.e., making the following three steps appear atomic: adding
a node to the version list, reading a global timestamp, and
recording a valid timestamp in the node. (See the discussion
of correctness below, and the full correctness proof in [56].)

Initialization. We assume that the constructor (Line 3)
for the camera object completes before invoking the con-
structor (Line 17) for any associated versioned CAS object.
We require, as a precondition of any readVersion(ts) op-
eration on a versioned CAS object O, that O was created
before the takeSnapshot operation that returned the han-
dle ts was invoked. In other words, one should not try to
read the version of O in a snapshot that was taken before O
existed. When using versioned CAS objects to implement a
pointer-based data structure (like a tree or linked list), this
constraint will be satisfied naturally.

Correctness. Theorem 2 states the algorithm’s properties.

Theorem 2 (Linearizability and Time Bounds). Algorithm 1
is a linearizable implementation of versioned CAS and camera
objects such that

1. the number of instructions performed by read, vCAS,
and takeSnapshot is constant, and

2. the number of instructions performed by the operation
O.readVersion(ts) is proportional to the number of suc-
cessful O.vCAS operations linearized between the lin-
earization point of the takeSnapshot operation that
returned ts and the start of the readVersion.
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A complete proof of Theorem 2 appears in [56]. Below, we
just describe the linearization points used in that proof. We
say that a timestamp of a VNode is valid at some point if the
ts field is not TBD at that point; it is invalid otherwise.

e For a vCAS operation V:

— If V performs a successful CAS on Line 43 adding a node
x to the version list, and x’s timestamp eventually be-
comes valid, then V is linearized on Line 24 of the initT$S
method that makes x’s timestamp valid.

— Let x be the node VHead points to on Line 38 of V. If V
returns on Line 40 or 41, it is linearized either at Line
38 if x’s timestamp is valid at that time, or the first step
afterwards that makes x’s timestamp valid.

— If V returns false on Line 49, then V failed its CAS
on Line 43. Thus, some other vCAS operation changed
VHead after V read it at Line 38. We linearize the vCAS
immediately after the linearization point of the vCAS
operation V'’ that made the first such change. If several
vCAS operations that return on Line 49 are linearized
immediately after V', they can be ordered arbitrarily.

For a vRead operation that terminates, let x be the VNode

read from VHead at Line 34. The vRead is linearized at Line

34 if x’s timestamp is valid at that time, or at the first step

afterwards that makes x’s timestamp valid.

e A readVersion operation that terminates is linearized at

its last step.

For a takeSnapshot operation T that terminates, let s be

the value read from timestamp on Line 5, T is linearized

when timestamp changes from ts to ts + 1.

Intuitively, the correctness of an O.readVersion oper-
ation depends on ensuring that the timestamp associated
with a value is current (i.e., in the timestamp field of the
camera object S associated with O) at the linearization point
of the vCAS that stored the value in O. Hence, we linearize a
successful VCAS at the time when the successfully installed
timestamp was read from S. Thus, a VNode x can appear at
the head of the version list before the vCAS that created x
is linearized. This is why any other operation that finds a
VNode with an invalid timestamp at the head of the version
list calls initTS to help install a valid timestamp in it before
proceeding. This helping mechanism is crucial to prove that
the linearization points described above are well-defined and
within the intervals of their respective operations.

4 Supporting Linearizable Wait-free
Queries

We use versioned CAS objects to extend a large class of con-
current data structures that are implemented using reads
and CAS primitives to support linearizable wait-free queries.
Our approach is general enough to allow transforming many
multi-point read-only operations on a sequential data struc-
ture into linearizable queries on the corresponding concur-
rent data structure. To achieve this, we define the concept

36

Y. Wei, N. Ben-David, G.E. Blelloch, P. Fatourou, E. Ruppert, and Y. Sun

of a solo query, i.e., a query that only reads the shared state,
and once invoked, is correct if run to completion without
any other process taking steps during its execution. Typi-
cally, solo queries can be implemented by adapting standard
sequential queries.

The approach works as follows. Each CAS or read on a
CAS object is replaced by a vCAS or vRead (respectively) on
the corresponding versioned CAS object, all of which are
associated with the same camera object. To perform a solo
query operation g, a process p first executes takeSnapshot
on the camera object, to obtain a handle ts. Then, for any
CAS object that g would have accessed in the data structure,
p performs readVersion(ts) on the corresponding versioned
CAS object. Intuitively, takeSnapshot takes a snapshot of
shared state, and solo queries then run on this snapshot while
other threads may be updating concurrently.

Not all concurrent data structures can support solo queries.
Herlihy and Wing [33] describe an array-based queue imple-
mentation in which the linearization order of the enqueue
operations depends on future dequeue operations. For that
algorithm, no solo query is possible. However, for most data
structures it is straightforward to implement solo queries.
Here we give examples of several concurrent data struc-
tures that support solo queries. A thorough treatment of
the conditions under which solo queries are sufficient, all
the formalism for our approach, necessary proofs, and more
examples, are provided in [56].

FIFO Queue. We first consider Michael and Scott’s concur-
rent queue (MSQ) [39], which supports atomic enqueues and
dequeues, as well as finding the oldest and newest elements.
Our scheme additionally provides an easy atomic implemen-
tation of more powerful operations such as returning the
i-th element, or all elements, etc. The mutable locations in a
MSQ consist of a head pointer, a tail pointer, and the next
pointer of each node in a linked list of elements, pointing
from oldest to newest. The head points indirectly to the old-
est remaining element, and the tail points to the newest
element, or temporarily to the element behind the newest.
The newest element always has a null next pointer. After ap-
plying our approach, all these pointers become vCAS objects,
and a takeSnapshot operation, T, will atomically capture
the state of all of them. Any query can then easily recon-
struct the part of the queue state it requires. For example,
the i-th query can start at the head and follow the list (call-
ing readVersion on each node, using the handle returned
by T) until it reaches the i-th element in the queue. Each
next pointer in the linked list is only successfully updated
once, so each readVersion of a next pointer takes constant
time. Therefore, for example, finding the i-th element (from
the head) in a queue takes time O(i + ¢) where ¢ denotes
the number of successful dequeues between the read of the
timestamp by T and the read of the head.
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Original data structure Operation Our Time Bounds Parameters

Michael Scott Queue [39] i-th(i): O(i+c) c: number of dequeues concurrent with
enqueue/dequeue: same as original the query

Harris Linked List [32] range(s, e): O(m+P+c¢) m: number of keys in the linked list
multisearch(L): O(m+P+c) c: number of inserts and deletes concurrent with
ith(i): O(i+P+c) the query
insert/delete/lookup: same as original P: number of processes

NBBST [25] and CT [15]  successor(k) O(h+c¢) m: number of keys in the BST
multisearch(L): O(IL| X h +¢) h: height of tree. In the case of CT, h € O(log (m) + P)
range(s, e): O(h+ K(s,e) +¢) K(s, €): number of keys in BST between [s, ]
height(): O(m+c¢) c: number of inserts, deletes, rotations concurrent with
insert/delete/lookup: same as original the query

Table 1. Time bounds for various operations on concurrent queues, lists, and BSTs using our snapshot approach. Parameters
such as the number of keys in the data structure are measured at the linearization point of the operation.

Sorted Linked List. Harris’s data structure [32] maintains
an ordered set as a sorted linked list (HLL), and supports inser-
tions, deletions, and searches. Our approach adds atomic ver-
sions of multi-point query operations, such as range queries,
finding the first element that satisfies a predicate, or multi-
searches (i.e., finding if all or any of a set of keys is in the
list). To implement concurrent insertions and deletions prop-
erly, HLL marks a node before splicing it out of the list. The
mark is kept as one bit on the pointer to the next list node.
Deletes are linearized when the mark is set. The mutable
state comprises the next pointers of each link, which con-
tains the mark bit. If these are versioned, a takeSnapshot
captures the full state. A query can then follow the snapshot-
ted linked list from the head, using readVersion on each
node; all marked nodes should be skipped.

Time bounds for range query, multisearch and finding
the i-th element are given in Table 1. Each insert or delete
performs up to two successful vCAS operations and each suc-
cessful vCAS may cause a query to traverse an extra version
node. So, in the worst case, queries incur an additive cost
of ¢ (defined in Table 1). Each query also incurs an additive
cost of P since it may encounter up to P marked nodes.

Binary Search Trees. We now consider concurrent bi-
nary search trees (BST). Many such data structures have
been designed [4, 7, 10, 12, 14, 15, 25, 55, 57]. All the BST
structures we looked into work with solo queries allowing
for multi-point queries of the same type as in HLL (e.g., range
queries and multisearches), but potentially much faster since
they can often visit a small part of the tree. Queries on the
structure of the tree (e.g., finding its height) can also be sup-
ported. Here we consider two such trees (which are also used
in our experiments in Section 9): the non-blocking binary
search trees (NBBST) of Ellen et al. [25], and the balanced
non-blocking chromatic tree (CT) of Brown et al. [15].

The NBBST data structure is an unbalanced BST with the
data stored at the leaves and the internal nodes storing keys
for guiding searches. Every insertion involves inserting an
internal node and a leaf, and similarly a delete removes an
internal node and a leaf. The data structure uses a lock-free
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implementation of locks, “locking” one or two nodes for each
insertion or deletion. The locks are implemented by pointing
to a descriptor of the ongoing operation, so other threads can
help complete the operation if they encounter a lock. This
makes the data structure lock-free. The linearization point is
at the pointer swing that splices an internal node (along with
a child) in or out. Therefore at any time the child pointers
of the internal nodes fully define the contents of the data
structure. If these child pointers are kept as versioned CAS
objects, then a snapshot will capture the required state. The
queries can ignore the locks, and therefore the lock pointers,
although mutable, do not need to be versioned.

The chromatic tree (CT) is a balanced BST that also stores
its data at the leaves. It is based on a relaxed version of red-
black trees, with colors at each node facilitating rebalancing.
Concurrent updates are managed similarly to the NBBST. In
particular, updates are linearized at a single CAS that adds
or removes a key. So, obtaining a snapshot of the tree’s child
pointers is sufficient to run multi-point queries.

Any query q on NBBST or CT takes time proportional to
the number of nodes it visits plus the write contention of g
(i.e., the number of VCAS operations concurrent with g on
memory locations accessed by ¢q). This assumes q performs
readVersion on each versioned CAS object at most once.
This can be ensured by caching values read from the tree.
For the bounds in Table 1, it suffices to show that the number
of vCAS operations concurrent with g is at most the number
of inserts, deletes and rotations concurrent with q. This is
because each vCAS is either due to a rotation (only applies
to CT) or is the linearization point of an insert or delete.

Importantly, our snapshot approach maintains the time
bounds of all the operations supported by the original data
structure. (For example, in the case of NBBST and CT, the
original operations would be insert, delete, and lookup).

5 Avoiding Indirection

In this section and the next, we present ways to optimize our
snapshotting approach (and therefore multi-point queries
using such snapshots). We present these optimizations in
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(a) Indirect vCAS

(b) Direct vCAS

Figure 2. A simple concurrent linked list using both direct
and indirect versioned CAS objects. The state of each results
from inserting keys E, C, A, and B (in that order) into an
empty list. Circles represent linked list nodes and squares
represent VNodes. Numbers represent timestamps and dotted
arrows represent version pointers (nextv pointers).

terms of a concurrent data structure D to which we add
snapshots and use them to run queries from a set Q. We
denote by D’ the version of D that also supports the queries
in Q. Some CAS objects in D need not be versioned in D’
because they are not accessed by any of the queries.

Algorithm 1 has a level of indirection even when accessing
the most recent version of a VCAS object since it requires
first accessing the head of the version list, and then the
object it points to. Figure 2(a) illustrates an example of a
linked list updated as described in Algorithm 1 along with
its version lists. Here we discuss how this indirection can be
avoided. Figure 2(b) illustrates the linked list after applying
the optimization (more details later). This optimization has
some restrictions, which we define first.

A versioned node is a node that versioned CAS objects can
point to directly. A history H is a sequence of atomic steps
executed by an algorithm starting from an initial state. We
say that a versioned node is recorded in H if a pointer to it is
the newV parameter of a successful vCAS (on any versioned
CAS object) in H.

Definition 3 (Recorded-once). D’ is recorded-once if for ev-
ery history of D’, the following hold: (1) every versioned
node is recorded at most once, (2) the newV parameter of each
vCAS is a pointer to a versioned node, (3) vCAS operations
with the same newV parameter must have the same oldV
parameter, and (4) versioned CAS objects are initialized with
null or a pointer to a previously recorded node.

This property allows us to overload a versioned node as
both a node and a link in a version list, thus avoiding the
indirection. Conditions 2 to 4 are relatively natural to satisfy,
so it is Condition 1 that is most important.

Our approach works as follows. For each versioned CAS
object O that stores a pointer to a node in D’, instead of
creating a new VNode to store the version pointer and the
timestamp, we store this information directly in the node
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pointed to by O. To do this, we extend each node with two ex-
tra fields, ts and nextv, and modify Algorithm 1 accordingly.
The resulting algorithm is described in Algorithm 3 and we
call it the direct implementation of versioned CAS objects.
Naturally, we call Algorithm 1 the indirect implementation.
Figure 2 gives an example using both versions.

The correctness of Algorithm 3 depends heavily on the
recorded-once property (Definition 3). Condition 1 ensures
that every versioned node appears as a non-tail element of
a version list at most once. Note, however, that a versioned
node x can appear as the tail of the version lists of an arbi-
trary number of VCAS objects since each can set their initial
value to x. In the example of Figure 2 the node C is both the
tail of the version list from B and a non-tail for the version
list from the head. A timestamp is set on a versioned node
when it is recorded (Line 31, or by someone helping), and by
Condition 1 this means it is set at most once. Furthermore
by Condition 4 a node is not used as an initial value until
its timestamp is set, meaning that all timestamps stored in
D’ are already set or in the process of being set (possibly by
helping). Condition 2 is required to ensure we have some-
where to record the timestamp and next node in the version
list (i.e., newV needs nextv and ts fields). Condition 3 en-
sures that all vCAS operations with the same newV attempt
to write the same version pointer into newV on Line 29.

The direct implementation can be applied to concurrent
data structures for which, at any point in time, every object
has at most one pointer to it. Examples include tree data
structures where pointers go from parents to children, or
singly-linked lists. However, this can involve slight modifi-
cations to the original concurrent algorithm. For example, a
node is being pointed to by one object and is being moved
to be pointed to by another object then it would be recorded
more than once. This can happen during a delete operation
in HLL [32] and NBBST [25]. To avoid this, the object can be
copied and a pointer to the new copy can be written into the
new location. This modification should be done with care to
preserve correctness. We apply this transformation in our
NBBST implementation (Section 8).

We note that the recorded-once property is actually fully
general, albeit possibly requiring adding back a level of indi-
rection in the data structure itself. Consider the following
construction on an arbitrary concurrent data structure D
based on CAS objects. We introduce a version-link type which
is a versioned node holding a single pointer to a direct value
of another object from D. All CAS objects in D are replaced
with versioned CAS objects in the construction of D’, which
will now point to a version link, and then indirectly to the
value from D. Now whenever applying a CAS in D, in D’ we
create a new version link, put the new value into the link,
and apply a vCAS from the old version link to the new one
(some care needs to be taken to check for equality, as done
in lines 40 and 41 of Algorithm 1). Whenever D initializes a
CAS object, in D’, we initialize the corresponding versioned
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class Node { 13 Nodex vRead() { 24 bool vCAS(Node* oldV, Node* newV) {
/* other fields of the Node class */ 14 Node* head = Head; 25 Node* head = Head;
int ts; // initially TBD 15 initTS(head); 26 initTS(head);
Nodex nextv; }; 16 return head; } 27 if (head != 0ldV) return false;
class DirectVersionedCAS { 17 Node* readVersion(int ts) { | 28 if (newV == oldV) return true;
Node* Head; Camera* S; 18 Node* node = Head; 29 newV->nextv = oldV;
DirectVersionedCAS(Nodex n, Camerak s) { 19 initTS(node); 30 if (CAS(&Head, head, newV)) {
Head = n: S = s; initTS(n); } 20 while(node != NULL && 31 initTS(newV);
o 21 node->ts > ts) 32 return true; 3}
Vofld initTS(Nodex n) { 22 node = node->nextv; 33 else {
1f.(n '= NULL 8& n—->ts == T8D) { 23 return node; } 34 initTS(Head);
int curTS = S->timestamp; 35 return false; } } };
CAS(&(n->ts), TBD, curTS); } }

Algorithm 3. Linearizable implementation of a versioned CAS object without indirection.

CAS object to null, create a new version link with the desired
initial value, and write a pointer to the new version link into
the versioned CAS object with a vCAS. This construction
satisfies all the recorded once properties—the version link is
the newV of exactly one vCAS, it is a versioned node, and all
versioned CAS objects are initialized with null.

Although this construction reintroduces a level of indirec-
tion, it indicates that it should be relatively simple to have
hybrid data structures that use indirection where needed,
and not when not needed. It also means an implementation
of the indirect variant can be built on top of the direct variant.

6 Other Optimizations

In this section, we present additional optimizations that work
for both the direct versioned CAS algorithm from Section 5
and the indirect algorithm from Section 3.

Removing redundant versions. If snapshot operations
are infrequent, many consecutive nodes in a version list
may have the same timestamp. Since only the most recent
such node is needed by readVersion, we can save space by
storing only nodes that have distinct timestamps. We can
guarantee that all nodes (other than the first two) in a version
list have distinct timestamps by splicing out the second node
if it has the same timestamp as the first. This splicing step is
done after a successful vCAS operation sets the timestamp
of the newly added node (i.e., after Line 44 of Algorithm 1).
Note that a successful vCAS operation might stall between
setting the timestamp and splicing out the next version list
node, so each new vCAS operation has to help older vCAS
operations splice out the second node in a version list if it
has the same timestamp as the first. This helping step is done
between Lines 39 and 40 in Algorithm 1. When using this
optimization in Algorithm 3, Line 29 should be modified to
update nextv with a CAS so that this optimization does not
get undone.

Avoiding contention. Although takeSnapshot only uses
a single CAS, this can still be a bottleneck. To reduce con-
tention on this CAS, we observe that C.takeSnapshot must
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only ensure that C’s timestamp is incremented at some point
during its execution interval. Thus, C.takeSnapshot can use
exponential backoff to wait for another process to increment
C’s timestamp. After waiting, if no process has done so, then
C.takeSnapshot tries to do the increment itself.

7 Memory Reclamation

To add memory reclamation to our snapshotting approach,
we use Epoch Based Memory Reclamation (EBR) [31]. EBR
splits an execution into epochs by utilizing a global epoch
counter EC (with initial value 1). Interestingly, with our direct
implementation of versioning we are able to collect exactly
the same nodes as can be collected in non-versioned EBR—
i.e., all nodes that were freed prior to the last two epochs.
There can still be some additional memory overhead for
versioning, however, due to the extra nextv and ts field in
each node, and, as mentioned in Section 5, the need in some
algorithms to allocate extra nodes when deleting.

EBR supports three operations, BeginOp, EndOp and Retire.
A process p executing a BeginOp operation simply reads EC
and announces the value read as its current epoch. An EndOp
by p clears any previously announced epoch by p. EBR main-
tains a per-process limbo list of objects for each epoch. An
object is added to the limbo list of the most recent epoch
whenever it is passed to Retire. When all processes have
announced an epoch number that is at least b (where b is
any integer greater than 2), the limbo list associated with
epoch b — 2 is collected, and the global epoch counter, EC,
is incremented. In this way, EBR maintains only the limbo
lists of the last three epochs. For our experiments, we use an
efficient variation of EBR called DEBRA [16].

Using the notation of Section 5, let D be a concurrent
data structure and let D’ be the snapshottable version of D
that supports a set of query operations Q in addition to the
operations supported by D. In languages without automatic
garbage collection, we can support memory reclamation for
D’ as follows. BeginOp is invoked at the beginning of each
operation, and EndOp is invoked at the end. Retire is called
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on a node whenever it is removed from the current version
of the data structure. If D’ uses the indirect implementation
from Algorithm 1, before returning from a successful vCAS
on Line 45, we also have to Retire the VNode pointed to by
local variable head. Furthermore, when a data structure node
y is retired, we have to Retire all the VNodes at the head of
y’s versioned CAS objects. The key observation is that all
operations from D’ (including query operations) only access
nodes that were in the current version of the data structure
at some point during the operation’s execution interval. This
means that whenever EBR determines that a node is retired
before the start of the earliest live operation, we can free the
node without first unlinking it from any version list because
it can no longer be accessed by any live operation.

In languages with automatic garbage collection, we first
use EBR to unlink nodes from version lists and then rely
on the garbage collector to clean up any unreachable nodes.
We modify the EBR algorithm so that when a limbo list is
collected, for each node x in the limbo list, instead of freeing
x, we set its version list pointer, x->nextv, to null. We can
think of this as retiring a version list pointer rather than a
node. A query operation q working on a snapshot of the data
structure protects any version list pointers it may access by
calling BeginOp before taking a snapshot and EndOp when
it is done using the snapshot. Since g can access version
list pointers only of those nodes that were added during g’s
execution interval, it is safe to retire a version list pointer
as soon as the pointer is added to the data structure. EBR
ensures that this pointer is not set to null until all operations
that were live when it was retired terminate. This means
that in Algorithm 1 (Algorithm 3), we retire the pointer
newN->nextv (newV->nextv, respectively) before returning
from a successful vCAS on Line 45 (Line 32, respectively).

8 Implementation

We implemented our snapshotting approach in both Java and
C++. Using the implementations, we then implemented snap-
shottable versions of three existing lock-free external BST
data structures (see details below). We use all the optimiza-
tions discussed in Sections 5 and 6. To apply our approach
on top of these tree data structures, we make each node in
the data structure versionable by adding a timestamp and
a version pointer field to it, use direct versioned CAS ob-
jects for child pointers, and modify the data structure to be
recorded-once if necessary. All versioned CAS objects are
associated with the same camera object so we avoid storing
a pointer to a camera object in each versioned CAS object.
The key and value fields of each node are immutable in
all three tree data structures. So, a snapshot of the child
pointers completely defines the contents of the tree and can
be used to answer arbitrary multi-point queries. For our
implementation in Java, we implemented the four queries in
Table 2, and for our implementation in C++, we implemented
range queries. All are linearizable. We reclaim memory using
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the EBR based technique described in Section 7. Our code is
publicly available on GitHub?.

Base Data Structures. We applied our snapshotting ap-
proach to the two BSTs described in Section 4, NBBST and CT,
and to a lock-free unbalanced BST [4] that does not support
linearizable range queries. For the first two, we used Brown’s
Java implementations [13]. For the third, we used the C++
implementation by Arbel-Raviv and Brown [4].

Batching. Previous work has shown that the performance
of concurrent BSTs is improved by batching keys. We there-
fore applied the same batching technique from PNB-BST [28]
and LFCA [57] to our Java implementations, storing up to 64
key-value pairs in each leaf (see [28] for more details). We
did not apply batching in our C++ code since it was also not
used by the C++ implementation [4] we compared with.

Recorded-Once. The recorded-once requirement is natu-
rally satisfied by CT and the BST from [4], but not by NBBST
because the delete operation uses CAS to swing a pointer to
a node that is already in the data structure. To avoid this,
our implementation copies the node and swings the pointer
to this new copy instead. This requires some extra marking
and helping steps to preserve correctness and lock-freedom.

Names. BST-64 and CT-64 are the non-snapshotted Java
BSTs (with batching). VcasBST-64 and VcasCT-64 are our
snapshotted versions. BST is the non-snapshotted C++ BST,
while VcasBST is our snapshotted version.

9 Experimental Evaluation

In this section, we provide our experimental analysis, which
has two main goals: first, to understand the overhead that
our approach introduces to concurrent data structures which
originally did not support multi-point queries, and second,
to compare the performance of our approach to that of state-
of-the-art alternatives which support atomic range queries.
Other Structures that Support Range Queries. We com-
pare with several state-of-the-art dictionary data structures:
SnapTree [12], KiWi [7], LFCA [57], PNB-BST [28], KST [14],
and EpochBST [4] using code provided by their respective
authors. Arbel-Raviv and Brown [4] presented several ways
to add range queries to concurrent data structures, imple-
mented in C++. We use EpochBST to refer to their most
efficient range queryable lock-free BST. Note that EpochBST
and VcasBST add range queries to the same initial BST. All
the other data structures are written in Java. They are all
lock-free except SnapTree, which uses fine-grained locking.
We classify KiWi, SnapTree, and VcasCT-64 as balanced data
structures because they have logarithmic search time in the
absence of contention, and the others as unbalanced. For the
k-ary tree (KST), we use k = 64 which was shown to perform
well across a variety of workloads [14]. We used batch size
64 for VcasBST-64 and VcasCT-64, as well as for LFCA and

4https://github.com/yuanhaow/vcaslib
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Query Definition Parameters in Figure 4m
range(s, e): All keys in range [s, ] range256: e = s + 256
succ(k, a) The first a key-values with key greater than k succl:a =1, or succ128: a = 128
findif(s,e, f) [19]: The first key-value pair in range [s, ) findif128: f(k) = (k mod 128 is 0)
multisearch(L): For a list of keys in L, return their values (null if not found) multisearch4: |L| =4
Table 2. The multi-point queries and their parameters we use in experiments.
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Figure 5. C++ experiments.

PNB-BST. This batch size has been shown to yield good range
query performance for LFCA and PNB-BST in [28, 57].

We also applied the contention avoiding technique from
Section 6 to KiWi, PNB-BST, and EpochBST because we found
that it improves their performance in some workloads by
reducing contention on the global timestamp.

Setup. Our experiments ran on a 72-core Dell R930 with
4x Intel(R) Xeon(R) E7-8867 v4 (18 cores, 2.4GHz and 45MB
L3 cache), and 1Tbyte memory. Each core is 2-way hyper-
threaded giving 144 hyperthreads. We used numactl -i
all, evenly spreading the memory pages across the sock-
ets in a round-robin fashion. The machine runs Ubuntu
16.04.6 LTS. The C++ code was compiled with g++ 9.2.1 with
-03. Jemalloc was used for scalable memory allocation. For
Java, we used Open]DK 11.0.5 with flags -server, -Xms300G
and -Xmx300G. The latter two flags reduce interference from
Java’s GC. We report the average of 5 runs, each of 5 seconds.
For Java we also pre-ran 5 runs to warm up the JVM. The
variance is small in almost all tests. Experiments showed
that the throughput of our approach in longer experiments
(lasting up to two hours) is similar to that reported below.

Workload. We vary four parameters: data structure size n,
operation mix, range query size rqsize, and number of threads.
In most experiments, we prefill a data structure with either
n = 100K or n = 100M keys. These sizes show the perfor-
mance when fitting and not fitting into the L3 cache. Keys
for operations, and in the initial tree, are drawn uniformly at
random from a range [1, r], where r is chosen to maintain the
initial size of the data structure. For example, for n = 100K
and a workload with 30% inserts and 20% deletes, we use
r = n X (30 + 20)/30 =~ 166K. We perform a mix of oper-
ations, represented by four values, ins, del, find, rq, which
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are the probabilities for each thread to execute an insert,
delete, find, or range, respectively. Unbalanced trees can
be balanced in expectation using uniformly random keys, so
we also run a workload with keys inserted in sorted order.
Scalability. Figures 4a-4f show scalability (in Java) under
a variety of workloads. Note that in Figures 4c and 4f, al-
though range queries are only performed with 1% probability,
they occupy a significant fraction of execution time.
Generally, VcasCT-64 and VcasBST-64 (our two imple-
mentations), and LFCA have the best (almost-linear) scalabil-
ity across all workloads. LFCA outperforms our implementa-
tion in Figure 4b, but it is consistently slower in the 100M-key
experiments (Figures 4d-f). SnapTree is competitive with
our trees in the absence of range queries, but it has no scala-
bility with range queries due to its lazy copy-on-write mech-
anism. Overall, VcasCT-64 is always among the top three
algorithms and in most cases has the best performance.
Varying Range Query Size. We show the effect of vary-
ing range query size in Figures 4g and 4h (Java), and Figures
5a and 5b (C++), in which 36 dedicated threads ran range
queries and 36 ran updates. Each update thread performs 50%
inserts and 50% deletes on a data structure initialized to 100K
keys. To better understand the cost of updates and range
queries, we plot the throughput of each operation separately.
In Figure 4g, PNB-BST has low update throughput when
rqsize < 1024. This is because its update operations are
forced to abort and restart whenever a new range query
begins, and thus decreasing range query size lowers update
throughput. KST performs decently in most workloads except
when each range query covers a significant fraction of the
key range. This is because their range query performs a
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double collect of the desired range and is forced to restart if
it sees an update in that range.

Data structures that increment a global timestamp with
every range query become bottlenecked by this increment
when range queries are frequent. This applies to our trees as
well as PNB-BST, KiWi, and EpochBST. Consequently, with
rgsize = 8, LFCA has 3x faster range queries when compared
to our trees (Figure 4h). However, LFCA avoids using a global
timestamp by having update operations help ongoing range
query operations. This helping becomes more frequent and
more costly when rgsize is large, as shown in Figure 4g.
For rgsize = 64K (about a third of the key range), the up-
date throughput of our trees is 4x faster than LFCA. Other
than LFCA, all the other implementations have mostly sta-
ble update throughput with varied range size, among which
VcasCT-64 has the best overall performance.

Figures 5a and 5b compare the performance of the C++
version of VcasBST with that of EpochBST. Range queries
on VcasBST are 5-7x faster than EpochBST. This is because
a range query on EpochBST has to visit three nodes in the
retired list for each concurrent delete. Thus, EpochBST vis-
its 1.5-5.5x more nodes in range queries than VcasBST. For
updates, VcasBST is at least as fast as EpochBST, and up to
60% faster on the largest range query size.

Sorted Workload. In Figure 4j, we test the Java implemen-
tations under a sorted workload. We insert an array of sorted
keys into an initially empty tree by splitting the array into
chunks of size 1024 and placing the chunks on a shared work
queue; when a thread runs out of work, it grabs a new chunk
from the head of the shared work queue. As expected, the
balanced trees, VcasCT-64, KiWi and SnapTree, outperform
the unbalanced ones. On 140 threads, SnapTree is 1.4x faster
than VcasCT-64, which is in turn 4.1x faster than KiWi.

Overhead of Our Approach. In Figure 4k, we compare
the throughput of our Java implementations VcasBST-64
and VcasCT-64 with the original data structures, BST-64
and CT-64, using 140 threads. The numbers in Figure 4k are
normalized to the throughput of BST-64 and CT-64 to make
the overheads easier to read. The overall overhead of our
approach is low, ranging between 2.7% and 9.1% depending
on the workload. This overhead includes the time for epoch-
based memory management and the cost of using vCAS and
vRead. For VcasBST-64, it also includes the actions we take
to ensure that deletes satisfy the recorded-once property.
The overhead is low because a vRead rarely sees a node
with timestamp TBD, and therefore rarely performs a CAS.
While a vRead sometimes incurs an extra cache miss to read
the timestamp of the next node (Line 10 of Algorithm 3), in
most cases, this node will later be accessed by the operation
that invoked vRead anyway, so the overall number of cache
misses is not increased by much.

We also measure the overhead of our multi-point queries,
range, succ, findif, and multisearch, with parameters
shown in Figure 4m. We compare throughputs for VcasCT-64
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with non-atomic multi-point queries on the original CT-64,
which simply run their sequential algorithms (and are not
linearizable). Non-atomic multisearch, for example, simply
calls find for each key. Figure 4m shows the cost that our
approach has to pay to provide query atomicity.

All queries other than succ1 exhibit low overhead: they
are between 2.9% and 12.8% slower than their non-atomic
counterparts. For succl, our scheme exhibits larger over-
heads (36.8-41.4%) due to the counter bottleneck when the
query size is small.

Memory Usage Figures 4i and 5c¢ show memory usage
graphs for the Java and C++ data structures, respectively.
In our Java experiments, we measured the amount of heap
memory in use after Java’s garbage collector cleans up all
unreachable objects. We found that VcasCT-64’s memory
usage is within a factor of 2.2 of both CT-64 and LFCA, which
tie for having the smallest memory footprints. We omitted
PNB-BST from Figure 4i because it does not allow for garbage
collection and uses significantly more memory than the rest.

For the C++ experiments, we measured memory usage
by multiplying the number of allocated nodes by the size
of each node. As discussed in Section 7, VcasBST has little
memory overhead with respect to the non-versioned BST
because they both use EBR and keep around approximately
the same number of nodes. Most of the overhead comes from
storing an extra timestamp and version pointer in each node.

We tried running Figures 4i and 5c in an oversubscribed
case by only using 64 out of the 144 hyperthreads on our
machine. We found that the memory usage of EBR based
data structures (VcasBST, VcasBST-64, VcasCT-64, BST, and
EpochBST) became several times higher. This is because
whenever a thread gets swapped out in the middle of an op-
eration, nothing can be collected until it is scheduled again.

Summary. Overall, our snapshot approach has low over-
head and, despite its generality, performs well compared
to existing special-purpose data structures. In particular,
VcasCT-64 had the best overall throughput among all the
range queryable Java data structures we tested. VcasBST-64
is also competitive on uniform workloads.

10 Conclusion and Discussion

In this paper, we show a simple and efficient approach for
snapshotting and supporting multi-point queries on a large
class of concurrent data structures. Our paper focuses mostly
on CAS based data structures, but these ideas can be extended
to work for LL/SC based data structures as well.
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A Artifact Evaluation Appendix
A.1 Abstract

This artifact contains the source code and scripts to repro-
duce all the graphs in Section 9, as well as an easy-to-use
library implementation of our snapshotting approach.

A.2 Artifact check-list (meta-information)

e Algorithm: all the algorithms from Figure 4

e Program: microbenchmarks

Compilation: g++ 9.3.0 and OpenJDK 11.0.9.1

Binary: binary not included

Run-time environment: Ubuntu 16.04.6 LTS

Hardware: any multi-core machine with at least 60

GB main memory.

Output: graphs from Section 9 as PNG files.

Experiments workflow: one script for compiling

the experiments and one script for generating all the

graphs.

¢ Disk space required (approximately): 46 MB

e Time needed to prepare workflow: approximately
10 minutes

e Time needed to complete experiments: approxi-
mately 20 hours

e Publicly available: yes

e Code licenses: MIT License

A.3 Description

A.3.1 How delivered Available as open source under the
MIT software license: https://github.com/yuanhaow/vcaslib.

A.3.2 Hardware dependencies To accurately reproduce
our experimental results, a multi-core machine with at least
300 GB of main memory is recommended. When using less
than 300 GB, you may see some small overhead due to Java’s
garbage collector running more frequently. At least 60 GB
of main memory is required to run the PNB-BST in Figure 4
because it never garbage collects nodes.

A.3.3 Software dependencies Our artifact is expected to
run correctly under a variety of Linux x86_64 distributions.
Our Java experiments require OpenJDK 11 and our C++ ex-
periments were compiled using g++ 9. For scalable memory
allocation in C++, we used jemalloc 5.2.1 (https://github.c
om/jemalloc/jemalloc/releases/download/5.2.1/jemalloc-
5.2.1.tar.bz2). Our scripts for running experiments and draw-
ing graphs require a Python 3 installation with mathplotlib.
We used the numactl command to evenly interleave memory
across the NUMA nodes.

A.3.4 Data sets None.

A.4 Installation

Source code can be complied by running . /compile_all. sh.
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A.5 Experiment workflow

After compiling, run ./generate_graphs_from_paper.sh
to generate all the graphs and store them in the graphs/
directory.

A.6 Evaluation and expected results

On a machine with 140 or more logical cores, the results
should be very similar to those reported in this paper. Fig-
ures 4i and 5c require at least 72 logical cores to reproduce.
On a machine with fewer cores, the memory usage of BST,
EpochBST, VcasBST, and VcasCT-64 will be several times
higher due to Epoch Based Memory Reclamation and over-
subscription. This effect is explained in more detail in Sec-
tion 9.
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A.7 Experiment customization

For instructions on how to customize the number of threads,
workload, range query size, and data structure size in each
experiment, please see the README file in the GitHub repos-
itory (https://github.com/yuanhaow/vcaslib).

A.8 Notes
None.
A.9 Methodology

Submission, reviewing and badging methodology:

e https://ctuning.org/ae/submission-20190109.html

e https://ctuning.org/ae/reviewing-20190109.html

e https://www.acm.org/publications/policies/artifact-
review-badging


https://github.com/yuanhaow/vcaslib
https://ctuning.org/ae/submission-20190109.html
https://ctuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
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