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Abstract

Biclustering is a generalization of clustering used to identify simultaneous grouping patterns in observations
(rows) and features (columns) of a data matrix. Recently, the biclustering task has been formulated as a
convex optimization problem. While this convex recasting of the problem has attractive properties, existing
algorithms do not scale well. To address this problem and make convex biclustering a practical tool for
analyzing larger data, we propose an implementation of fast convex biclustering called COBRAC to reduce
the computing time by iteratively compressing problem size along the solution path. We apply COBRAC to
several gene expression datasets to demonstrate its effectiveness and efficiency. Besides the standalone
version for COBRAC, we also developed a related online web server for online calculation and visualization

of the downloadable interactive results.

Availability: The source code is available at https://github.com/haidyi/cvxbiclustr and the
web server is available at http://cvxbiclustr.ericchi.com.

Contact: haidyi@cs.unc.edu or eric_chi@ncsu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Hierarchical clustering is a fundamental task in many bioinformatics
problems ranging from cytogenetics to population genetics. Many
clustering algorithms, including the popular k-means method, formulate
the clustering task as a non-convex optimization problem. A serious
issue with solving non-convex optimization problems is the presence
of suboptimal local minima which often leads to suboptimal clustering
assignments. This issue vanishes, however, when using the convex
clustering algorithm introduced by Pelckmans et al. (2005). Solutions to
the convex clustering problem trace out a tree organization of the data
from the data points located at the leaves to a root as a nonnegative tuning
parameter -y increases from zero to a finite positive value maximal tuning
parameter value ymax. The convex clustering tree has several attractive
properties, in particular the recovered hierarchical clustering is guaranteed
to be stable to noise in the sense that small perturbations in the data are
guaranteed to not lead to disproportionately large fluctuations in the output

tree (Chi et al., 2017). Convex clustering has proven useful for revealing
hierarchical organizations in data from a wide range of applications from
genetics (Chen et al., 2015) to text mining (Weylandt ez al., 2020) and has
been extended to biclustering case by Chi et al. (2017).

From a computational perspective, several optimization algorithms
have been proposed for solving the convex clustering problem ranging
from a variety of first order methods, (Hocking ez al., 2011; Chi and Lange,
2015; Panahi et al., 2017), to second order methods (Yuan ef al., 2018), as
well as a novel algorithm regularization path approach which approximates
the solution path up to an arbitrarily small error with extremely inexact
alternating direction method of multiplier updates (Weylandt et al., 2020).
Although these methods are successful for solving convex clustering
problem, with the exception of the work by Weylandt et al. (2020), none
of them are designed to solve the optimization problem with the goal of
efficiently generating a final dendrogram.

In this paper, we introduce the COBRAC algorithm which iteratively
performs two steps: (1) solves a weighted convex biclustering problem;
(2) compresses the problem size. Compared with Weylandt er al.
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Fig. 1. (A) Flow chart of the algorithm. (B) The heatmap of the U.S. president dataset with 44 observations (rows) and 75 features (columns) and clustering dendrogram generated by

COBRAC using v = 3, 5, 10, 20, 50, 100, 150, 200, 500, 1000.

(2020), COBRAC stores the solution over a much smaller set of ~,
leading to significantly smaller memory usage to generate the clustering
dendrograms. In addition, the compression procedure in COBRAC
can be easily incorporated to other convex clustering algorithms to
further accelerate computations. Our contributions to convex biclustering
are as follows: (i) We present COBRAC, a fast implementation of
convex biclustering that can identify possible biclusters and generate
the corresponding row and column clustering dendrograms; (ii) While
a similar strategy has been proposed for convex clustering before
(Hocking et al., 2011), to our best of knowledge, COBRAC is the
first implementation of convex biclustering that utilizes this compression
strategy to generate the full path solution; (iii) We also develop a webserver
for users to run COBRAC online and visualize the dynamic clustering
process along the rows and columns of a matrix.

2 Algorithm

Figure 1A summarizes COBRAC at a high level. COBRAC solves
a sequence of weighted convex biclustering problem over a series of
,Yn» and uses the solutions U~ , ..., U, to generate
row and column clustering dendrograms. The core idea of COBRAC
is to reduce the size of matrix X iteratively because when some rows
and columns are clustered at a given -y, they will remain clustered for all
larger s (Chi and Steinerberger, 2019). After compression, the objective
function is still a weighted convex biclustering problem, and the only
difference is the size of X and weight coefficients. For example, suppose
for a given parameter -, the rows and columns of X have been clustered
into 7 and c clusters respectively. Then, X will be compressed into an r X ¢
matrix for next larger v in the series, enabling the efficient computation

parameters 1, . . .

of the entire solution path. For detailed formulation and derivation, see
Section 1 in Supplementary data.

3 Implementation

The COBRAC program is written in C/C++ and a Python wrapper is also
provided for easy usage. In our implementation, we optimize the dual
problem of weighted convex biclustering using an accelerated proximal
gradient algorithm FASTA (Goldstein et al., 2014). The input of COBRAC
is a data matrix in csv format and a list of 7y to run the convex biclustering
algorithm. The output of COBRAC is a json file that contains both
the solution matrices for different s and the corresponding clustering
dendrograms. In addition to the standalone program, we also develop a

web server at http://cvxbiclustr.ericchi.com for people to
run COBRAC and visualize the results online.

4 Evaluation

As an example, we run COBRAC on the President dataset that contains
log-transformed word counts of the 75 most variable words taken from the
aggregated major speeches of the 44 U.S. presidents through mid-2018
(Weylandt et al., 2020). Figure 1B shows that COBRAC identifies a strong
biclustering structure among word usage and presidents. To investigate the
speed-ups attainable by introducing compression, we also run COBRAC
on several different genomic expression data including Lung 100, Lung500
(Lee et al., 2010) and TCGA Breast (Koboldt et al., 2012) datasets.
COBRAC achieves a 2.5~5x speed-up to solve the entire solution path
over these data (Table 1 in Supplementary data). The detailed descriptions
of the data and experimental set-up are provided in Supplementary data.
The heatmaps with dendrogram of Lung100 and Lung500 are provided in
our webserver and Supplementary data (Figures 2&3). Furthermore, we
also test the performance of COBRAC using different number of CPUs.
The results show that parallel computing can further reduce the running
time by nearly 40% (Figure 1 in Supplementary data). All the example
data are available on our webserver for users to reproduce the results.
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