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Abstract

We show that it is NP-hard to approximate the hyperspherical radius of
a triangulated manifold up to an almost-polynomial factor.

1 Introduction

This paper is concerned with the problem of estimating the smallest Lipschitz
constant of a map with a given degree. We consider this problem from the point
of view of computational complexity.

Suppose that Σ is a closed oriented triangulated manifold of dimension n. We
equip Σ with a metric by making each simplex a unit equilateral Euclidean simplex.
We let L6=0(Σ) and L1(Σ) denote the smallest Lipschitz constant of a map from Σ
to the unit n-sphere with non-zero degree and with degree 1, repsectively. When
Σ is a triangulated 2-sphere, the paper [14] gives a polynomial time algorithm to
estimate L 6=0(Σ) up to a constant factor. In contrast, if Σ is a triangulated surface
of arbitrary degree, we show that it is NP-hard to approximate L6=0(Σ) up to a
constant factor, or indeed to within a far wider range. Similarly, if n ≥ 3 and Σ is
a triangulation of Sn, then we show that it is NP-hard to estimate L6=0(Σ). Here
is a more precise and general statement.

Theorem 1.1. Let n ≥ 2. For Σ a triangulation of Sn (if n ≥ 3) or a triangulated
surface (if n = 2), both L6=0(Σ) and L1(Σ) are NP-hard to approximate to within
N c/ log logN , where N = vol Σ and c > 0 depends on n.

Compare the total range of possible values for these quantities. The “round-
est” possible shape for Σ is approximately a round n-sphere of radius N1/n, and
in the worst case one can contract all but a single simplex. Therefore,

N−1/n . L6=0(Σ) . L1(Σ) . 1.
∗MSC 2010 classes: 53C23, 68Q17. Keywords: hyperspherical radius, hardness of approxima-

tion.
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Background. In the 1970s Gromov began to investigate the smallest Lipschitz
constant of a map in a given homotopy class [11]. For instance, he showed that
the smallest Lipschitz constant of a degree D map from the unit n-sphere to itself
is ∼ D1/n. In [13], Gromov and Lawson defined the hyperspherical radius of a
(closed oriented) Riemannian n-manifold (Σn, g) as the largest radius R so that
(Σn, g) admits a 1-Lipschitz map to the round n-sphere of radius R with non-zero
degree. The hyperspherical radius of Σ is 1/L6=0(Σ). Gromov and Lawson proved
that if the scalar curvature of g is at least 1, and Σ is spin, then the hyperspherical
radius of (Σn, g) is at most a constant C(n).

The most well-known open problem about hyperspherical radius involves the
universal covers of aspherical manifolds. Suppose that Σ is a closed manifold. If
we choose a metric g on Σ, then we can consider the hyperspherical radius of
the universal cover (Σ̃, g̃). Different metrics g may lead to different hyperspherical
radii, but whether the hyperspherical radius is infinite does not depend on the
metric. For instance, on S1 × S2, the hyperspherical radius of the universal cover
is always finite, but on T 3 the hyperspherical radius of the universal cover is
always infinite. It is an open question whether every closed aspherical manifold has
universal cover with infinite hyperspherical radius. This open question is connected
to scalar curvature (cf. [13]) and to the Novikov conjecture (cf. [6]).

This problem is difficult partly because the hyperspherical radius is harder
to estimate than it may sound at first. Our main theorem shows from a different
perspective that hyperspherical radius is hard to estimate. That said, our result is
the best possible for example in the sense that in exponential time, hyperspherical
radius can be estimated to within a constant; we make this precise in an appendix.
This contrasts, for example, with the related problem of determining the least
Lipschitz constant of a degree nonzero map between two simplicial manifolds, both
given as input. In that case, the existence of such a map is undecidable, and even
if it exists, its minimal Lipschitz constant may grow faster than any computable
function of the volumes of the two manifolds. These observations are rooted in the
work of Nabutovsky and Weinberger, cf. [19].

Idea of proof. The proof of Theorem 1.1 builds on recent progress in quan-
titative topology due to Chambers, Dotterrer, Ferry, Weinberger, and the last
author—cf. [3], [4], and [18]. This work answered a number of questions from
quantitative topology that were raised by Gromov in the 1990s. For instance, they
prove that if f is a contractible map from the unit m-sphere to the unit n-sphere
with Lipschitz constant L, then f extends to a nullhomotopy F : Bm+1 → Sn with
Lipschitz constant at most C(m,n)(L+ 1) (see [3] for the case when n is odd and
[2] and [1] for the case when n is even). This progress involves new ideas about
how to construct maps with controlled Lipschitz constant and we build on those
ideas in our proof.

Let us briefly describe the examples of high genus surfaces Σ where L6=0(Σ)
is hard to estimate. We begin with a complicated simplicial complex X—in par-
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ticular the dimension of H2(X;Z) is quite large. The surface Σ sits inside of X.
Topologically, it represents a nonzero homology class [Σ] ∈ H2(X,Z). As a metric
space, Σ is very similar to X: it comes within a distance ε of every point of X, and
moreover, for any two points in Σ, the distance between them in Σ is almost the
same as the distance between them in X (using the path metric on both spaces).
This last feature requires Σ to have high genus—we can achieve it by adding lots
of handles to provide short routes between various points.

Since Σ and X are so similar as metric spaces, if f is a map from Σ to the unit
2-sphere with Lipschitz constant not too large, then f extends to a map g : X → S2

with a similar Lipschitz constant. Each map g : X → S2 induces a cohomology
class α = g∗([S2]∗) ∈ H2(X,Z). For each choice of α ∈ H2(X,Z), let Lip(α) be
the smallest Lipschitz constant of a map g : X → S2 with g∗([S2]∗) = α. Using the
recent ideas in quantitative topology we described above, we are able to accurately
estimate Lip(α) for each α ∈ H2(X,Z). But L 6=0(Σ) is approximately the minimum
of Lip(α) over all α ∈ H2(X,Z) with α([Σ]) 6= 0. This is a minimization problem
over H2(X,Z), which is isomorphic to ZD for a large D. It turns out to be closely
related to the shortest vector problem for lattices in L∞. Dinur [5] has a hardness
of approximation result for the shortest vector problem in L∞, and using her paper
we get our hardness of approximation result for L6=0.

Further questions. There are many quantities studied in metric geometry
which it is not obvious how to estimate, and it would be interesting to understand
the computational complexity of estimating them to various degrees of accuracy.
For instance, it unknown how hard it is to approximate Uryson widths (cf. [12]) or
minimax volumes (cf. [15]). As another example, given a simplicial complex X and
a homology class h ∈ Hk(X,Z), the mass of h is defined to be the smallest mass
of an integral k-cycle in the class h (and the mass of a k-cycle is its k-dimensional
volume counted with multiplicity). How hard is it to approximate the mass of a
homology class?

Organization. The paper is organized as follows. In Section 2 we introduce the
comass and explain how it is related to Lipschitz constants of maps. In Section 3,
we efficiently approximate the comass using linear programming. In Section 4, we
use these tools to prove a hardness of approximation result for homologically non-
trivial maps from a complicated complex to the unit sphere. In Section 5, we prove
our main theorem for the case n = 2. In Section 6, we prove our main theorem
for triangulations of Sn with n ≥ 3. Finally, we have also included an appendix
explaining some upper bounds on the complexity of computing hyperspherical
radius.

Acknowledgements. We would like to thank an anonymous referee for correct-
ing a number of typos and offering other useful suggestions. F. Manin was partially
supported by NSF individual grant DMS-2001042.
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2 Comass and the Lipschitz constant

Let X be a finite m-dimensional simplicial complex endowed with the standard
simplexwise linear metric with edge length 1. In this section, we discuss the geomet-
ric relationship between maps X → Sn and the cohomology of X. The discussion
applies when n is odd, or when n is even and m ≤ 2n− 2.

For each homotopy class α ∈ [X,Sn], we associate α∗[Sn]. This association
gives a map from [X,Sn] to Hn(X;Z). Obstruction theory shows that this map is
uniformly finite-to-one: the cardinality of a point preimage is bounded by

dimX∏
k=n+1

#{i-simplices of X} ·#πk(Sn).

Also, the image of this map contains a finite-index subgroup of Hn(X;Z), since
there is a map K(Z, n)(m) → Sn of positive degree.

In this section, we study the relationship between the geometric properties
of a homotopy class α ∈ [X,Sn] and the geometric properties of the cohomology
class α∗[Sn]. We will study the Lipschitz norm Lip(α) of a class α ∈ [X,Sn] and
compare it to the comass norm of the cohomology class α∗[Sn].

First we recall the definition of the comass norm. The comass norm is a norm
on Hn(X;R). Recall that a (real) Lipschitz n-chain is a formal sum

∑
i aiφi where

ai ∈ R and φi : ∆n → X is a Lipschitz map. Lipschitz chains can be used to
define homology just as well as singular (i.e. continuous) chains. One advantage
of Lipschitz chains is that there is a volume associated to each φi. The mass of a
chain is then given by

mass

(∑
i

aiφi

)
=
∑
i

|ai| vol(φi).

The mass descends to a norm on Hn(X,R), written ‖ · ‖mass. The dual norm on
Hn(X;R) is called the comass—in other words,

‖w‖comass := sup
h∈Hn(X,R)
‖h‖mass=1

|w(h)|.

Theorem 2.1. Let n ≥ 2 and let X be a simplicial complex. If n is odd or
dimX ≤ 2n− 2, then for every homotopy class of maps α ∈ [X,Sn]

(vol(Sn)‖α∗[Sn]‖comass)
1/n ≤ Lip(α) ≤ C(dimX,n)(‖α∗[Sn]‖1/ncomass + 1).

When n is even and dimX = 2n−1, the first inequality holds, but the second holds
only in a weaker sense: for every element a ∈ Hn(X;R) which is in the image of
[X,Sn], there is some α ∈ [X,Sn] such that α∗[Sn] = a and

Lip(α) ≤ C(dimX,n)(‖a‖1/ncomass + 1).
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Notice that if the comass is greater than 1, this theorem allows us to compute
the Lipschitz norm up to a multiplicative constant; on the other hand, if the comass
is tiny, it gives almost no information. If Σ is a triangulated n-manifold, and
α ∈ [Σ, Sn] is the class of degree 1 maps, then the bounds given by this theorem are
not very strong. In this case, ‖α∗[Sn]‖comass = ‖[Σ]‖comass = 1/ vol(Σ). Theorem
2.1 then gives vol(Σ)−1/n . Lip(α) . 1. In Section 4 we will see some homotopy
classes where Theorem 2.1 gives sharp bounds.

Theorem 2.1 is a corollary of the more general shadowing principle in quan-
titative homotopy theory, [18, Thm. 4.1], given by the last author. However, it is
simpler than the general shadowing principle, and all the tools are already present
in the second author’s survey paper [16]. We give a full proof here which may also
be of use as an introduction to [18].

Proof. Let f : X → Sn be any representative of the homotopy class α.
We first show the left inequality. For any h ∈ Hn(X;R), we have

|f∗h| ≤
(Lip f)n‖h‖mass

vol(Sn)
;

By definition, this gives

(vol(Sn)‖α∗[Sn]‖comass)
1/n ≤ Lip(α).

Note that this does not depend on the dimension of X.
To show the second inequality when n is odd or dimX ≤ 2n − 2, we will

homotope f to a map with the appropriate Lipschitz bound. Define

R = d‖α∗[Sn]‖1/ncomasse,

and let XR be a subdivision of X at scale ∼ 1/R: specifically, we ensure that
the volume of each n-simplex of XR is ≤ ‖α∗[Sn]‖−1

comass, and that all simplices
are C(dimX,n)-bilipschitz to the standard linear simplex with edge lengths 1/R.
There are many ways to do this [3, §2].

If the comass is very small, the best we can do is no subdivision at all, hence
the theorem does not tell us very much in that instance.

We will homotope f : XR → Sn to a map which, for every k, restricts to on
each k-simplex of XR to one of a finite set Fk of maps. This automatically gives
the Lipschitz bound we are looking for. Specifically:

• For k ≤ n−1, Fk consists of a single map, the constant map to the basepoint
of Sn.

• For k = n, Fn contains a map (∆n, ∂∆n) → Sn of each degree between
−(n+ 2) and (n+ 2).

• For k > n, Fk contains a map for each map ∂∆k → Sn which restricts to
an element of Fk−1 on each (k − 1)-simplex and relative homotopy class of
extensions to ∆k. The dimension restriction means that this is a finite set.
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We will build a sequence of maps fk homotopic to f such that the restrictions of
fk to k-simplices of XR are chosen from Fk.

First we homotope f to a map fn−1 : XR → Sn which takes X
(n−1)
R to the

basepoint of Sn.
We now homotope this fn−1 to a map fn which has degree 0 or ±1 on every

n-simplex of XR. This is done as follows. Note that fn−1 has a well-defined degree
on each n-simplex of XR. This defines a simplicial cocycle z ∈ Cn(XR;Z).

Now notice that the comass of α∗[Sn] is at least as large as its maximum
value on simplicial n-cycles of mass ≤ 1 in Zn(XR;R). In particular, this in-
cludes all simplicial cycles whose `1-norm with respect to the obvious basis is
≤ ‖α∗[Sn]‖comass. By the Hahn–Banach theorem, this means that the `∞-minimal
simplicial representative ẑ ∈ Cn(XR;R) of α∗[Sn] satisfies ‖ẑ‖∞ ≤ 1.

Now we can find a chain b ∈ Cn−1(X;R) such that db = z − ẑ. Let b̂ = [b] ∈
Cn−1(X;Z) be the nearest integer chain to b. Then the chain z − db̂ satisfies

‖z − db̂‖∞ ≤ n+ 2.

We now define a homotopy hn : XR × [0, 1] → Sn between fn−1 and a new
map fn on cells of the product cell structure on XR × [0, 1], with [0, 1] thought of
as the 1-simplex:

• Send (XR × [0, 1])(n−1) to the basepoint of Sn.

• Map n-cells of the form q× [0, 1], where q is an (n− 1)-simplex of XR, to Sn

via a map of degree 〈b̂, q〉

• This forces the degree on p× {1}, where p is an n-simplex of XR, to be

〈z − db̂, p〉.

We let fn|p be the corresponding element of Fn.

• Finally, we extend arbitrarily to the rest of XR × [0, 1].

Now, suppose we have constructed fk : XR → Sn, k ≥ n. We homotope to
fk+1 by homotoping, on each (k + 1)-simplex p, to the element of Fk+1 corre-
sponding to the relative homotopy class of fk|p. Then we extend the homotopy
arbitrarily to higher skeleta.

The map fdimX is the map we want.
Finally, suppose that dimX = 2n − 1 and let f : X → Sn be some map.

Letting R be as before, we can proceed with the same construction of f2n−2 on the
(2n−2)-skeleton of XR. Finally, in the last step there is no obstruction to filling in
the map on the (2n− 1)-cells. Therefore, for each map ∂∆k → Sn which restricts
to an element of F2n−2 on each (2n− 2)-simplex, we can fix a filling, and then use
those fillings to extend f2n−2 to the (2n− 1)-cells of XR with bounded Lipschitz
constant. The resulting map is not homotopic to f , but induces the same class in
Hn(X;R).
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3 Computing the comass

A good feature of the comass is that it can be approximated efficiently using linear
programming.

Lemma 3.1. There is a polynomial-time algorithm which, given an m-dimensional
simplicial complex X, an integer n, and an element β ∈ Hn(X;R), computes a
constant comass∆(β) such that for some constant C(m,n),

comass∆(β) ≤ ‖β‖comass ≤ C(m,n) comass∆(β).

Proof. The quantity comass∆(β) is the simplicial comass, that is, the supremum
of 〈β, z〉 over simplicial cycles z of mass 1.

Clearly, the simplicial comass is less than or equal to the usual comass. Con-
versely, the Federer–Fleming inequality allows us to push any cycle to a simplicial
one while only increasing the mass by a constant factor C(m,n). This gives the
second inequality.

It remains to show that the simplicial comass is polynomially computable.
In fact, it is a linear programming problem: given a simplicial representative b ∈
Cn(X;R) of β,

maximize a(z) subject to mass(z) ≤ 1, ∂z = 0.

We now give a bit more detail as to the implementation. We introduce a variable
zp ≥ 0 for each oriented n-simplex p ofX (that is, two for each unoriented simplex).
The p-coefficient of the chain z is then given by zp − zp− , where p− is the same
simplex with opposite orientation.

Then the constraint mass(z) ≤ 1 can be written as

vol(∆n)
∑
p

zp ≤ 1,

since every chain has a representative where for every n-simplex p either zp or
zp− is zero. The constraint ∂z = 0 can be written with an equation for each
(n− 1)-simplex of X.

The total number of variables and constraints is linear in |X|; hence the
computation is polynomial in |X|.

Suppose that α ∈ [X,Sn]. In polynomial time, we can approximate the co-
mass of α∗[Sn] up to a constant factor. Suppose that n is odd or dimX ≤ 2n− 2,
so that we can apply Theorem 2.1. If in addition ‖α∗[Sn]‖comass ≥ 1, then Theo-

rem 2.1 guarantees that ‖α∗[Sn]‖1/ncomass agrees with Lip(α) up to a constant factor
C(dimX,n). This gives a significant class of examples in which we can approxi-
mate Lip(α) up to a constant factor in polynomial time.
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4 Hardness of approximation

In the last two sections, we have given some conditions when it is easy to estimate
Lip(α) for a given α ∈ [X,Sn]. We will use that work as a tool to eventually give
an example where it is hard to compute Lip(α). In this section, we prove our first
hardness of approximation result, for a slightly different quantity.

For a simplicial complex X, we define LHNT(X) to be the smallest Lipschitz
constant of a map f from X to the unit n-sphere so that f∗[Sn] is non-zero in
Hn(X;R). (HNT stands for “homologically non-trivial”.)

Theorem 4.1. Let n ≥ 2. Let X denote a simplicial complex of dimension (n+1).
It is NP-hard to approximate LHNT(X) to within a factor of NC/ log logN , where
N is the number of simplices in X.

Let us say something about the proof before we begin the details. In the
family of examples X we construct,

LHNT(X) ∼ min
{
‖β‖1/ncomass | all non-torsion β ∈ Hn(X;Z)

}
. (∗)

Estimating this minimum is a cousin of the shortest vector problem. Dinur [5]
proved that a version of the shortest vector problem in L∞ is NP-hard to approxi-
mate. Using her theorem, we will show that LHNT is also NP-hard to approximate.

Actually to get (∗), we only need that every non-torsion β ∈ Hn(X;Z) has
comass at least some constant (in our case 1/(n + 1).) Then Theorem 2.1 tells
us that for individual α ∈ [X,Sn], Lip(α) ∼ ‖α∗[Sn]‖comass; moreover, since X is
(n+ 1)-dimensional, every β ∈ Hn(X;Z) is represented by some α ∈ [X,Sn].

Eventually, we will prove that it is hard to approximate L6=0(Σ) and L1(Σ),
where Σ is a triangulated manifold. As a bridge to get to that result, we will
also prove that two cousins of LHNT(X) are hard to approximate. Suppose that
h ∈ Hn(X,Z). We define L6=0(X,h) to be the smallest Lipschitz constant of a map
f : X → Sn so that f∗[Sn](h) 6= 0. Similarly, we define we define L1(X,h) to be
the smallest Lipschitz constant of a map f : X → Sn so that f∗[Sn](h) = 1.

Theorem 4.2. Let n ≥ 2. Let X denote a simplicial complex of dimension (n +
1) and h denote a homology class in Hn(X,Z). It is NP-hard to approximate
L6=0(X,h) or L1(X,h) to within a factor of NC/ log logN , where N is the number
of simplices in X. In fact, it is NP-hard to distinguish the case where L6=0(X,h) ∼ 1
from the case where L6=0(X,h) ≥ NC/ log logN , and similarly for L1.

Now we begin the proofs. All of the results are based on a hardness of ap-
proximation result for shortest vectors in lattices in L∞.

Theorem 4.3. (Dinur, [5]) For a subgroup Γ ⊂ ZN specified by generators of size
polynomial in N , it is NP-hard to approximate the smallest length of a non-zero
vector in Γ to within O(NC/ log logN ).
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This would be enough to prove Theorem 4.1, but we need a small refinement
to prove Theorem 4.2. This refinement was also proven in [5]: it follows from
inspecting the proof of Theorem 4.3, and in particular condition (a) appears in
the proof of Proposition 22 of the paper.

Theorem 4.4. Consider a lattice Γ ⊂ ZN with basis u0,u1, . . . ,uM , with ‖uj‖∞
at most polynomial in N . It is NP-hard to distinguish the following two cases:

(a) There is a vector v ∈ Γ with ‖v‖∞ = 1 of the form v = u0 +
∑M
j=1 ajuj,

where aj ∈ {0, 1}.

(b) There is no nonzero vector v in the subgroup with ‖v‖∞ ≤ NC/ log logN .

Now we begin the proof of Theorems 4.1 and 4.2. We start with a lattice
Γ ∈ ZN with basis u0,u1, . . . ,uM as in Theorem 4.4. We use this lattice to build
an (n+1)-dimensional complex X with an isomorphism γ : Γ → Hn(X;Z), and
so that the l∞ norm on Γ is closely related to the simplicial comass norm on
Hn(X;Z). More precisely, we will show that

(a) If v ∈ Γ has the form
∑M
j=0 ajuj with aj ∈ {0, 1}, then

‖v‖∞ = comass∆(γ(v)).

(b) For any v ∈ Γ, comass∆(γ(v)) ≥ ‖v‖∞.

Here is the construction of the complex X. We start with a wedge of n-
spheres Σ0,Σ1, . . . ,ΣM , each triangulated as ∂∆n+1. For each coordinate of ZN ,
i = 1, . . . , N , we attach a n-sphere Si, also triangulated as ∂∆n+1, together with
a triangulated mapping cylinder between Si and a map Sn →

∨M
j=0 Σj in the

homotopy class

M∑
j=0

(n+ 1)uji idΣj
, where uj = (uj0, . . . , ujN ) ∈ ZN .

The complex X deformation retracts to Σ0 ∨ · · · ∨ ΣM , so in particular
Hn(X;Z) is the free abelian group generated by [Σj ]

∗. We define γ so that
γ(uj) = [Σj ]

∗.
Next we have to estimate the comass norm. Let β ∈ Hn(X;Z) satisfy β(Σj) =

βj ; in other words, β = γ(
∑M
j=0 βjuj). Then

β([Si]/(n+ 1)) =

M∑
j=1

βjuji

and therefore

comass∆(β) ≥ sup
1≤i≤N

∣∣∣∣ M∑
j=1

βjuji

∣∣∣∣ =

∥∥∥∥ M∑
j=1

βjuj

∥∥∥∥
∞
.
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Conversely, if z ∈ Cn(X;R) is a simplicial cycle of mass 1, then it is homologous
to a combination of Si’s and Σj ’s with coefficients summing up to at most 1

n+1 .
Then

comass∆(β) = max

{
sup
j

βj
n+ 1

, sup
i

∣∣∣∣ M∑
j=1

βjuji

∣∣∣∣},
and if the βj are 0 or 1, the term on the right is larger.

Using Theorem 4.4 and our estimate connecting the comass of γ(v) with the
l∞ norm of v in Zn, we see that it is NP-hard to distinguish the following two
cases:

(a) There is a non-zero class β ∈ Hn(X;Z) with comass∆(β) = 1 and β of the

form [Σ0]∗ +
∑M
j=1 aj [Σj ]

∗ with aj ∈ {0, 1}.

(b) For every non-zero β ∈ Hn(X,Z), comass∆(β) ≥ NC/ log logN .

Since X is homotopy equivalent to a wedge of n-spheres, [X,Sn] = Hn(X;Z).
For each α ∈ [X,Sn], there is a unique vα ∈ Γ so that γ(vα) = α∗[Sn]. We apply
Theorem 2.1 to estimate Lip(α). If α 6= 0, then we know that

‖α∗[Sn]‖comass ≥ ‖vα‖∞ ≥ 1.

Theorem 2.1 tells us that Lip(α) ∼ ‖α∗[Sn]‖1/ncomass. Therefore, we see that

LHNT(X)n ∼ min
06=β∈Hn(X;Z)

‖β‖comass.

But it is NP-hard to distinguish the case when the right-hand side is ∼ 1 from the
case when the right-hand side is ≥ NC/ log logN . This shows Theorem 4.1.

To prove Theorem 4.2, let X be the same complex and let h = [Σ0]. Then

L6=0(X,h)n ∼ min
β=

∑M
j=0 aj [Σj ]∗,a0 6=0

‖β‖comass,

and
L1(X,h)n ∼ min

β=
∑M

j=0 aj [Σj ]∗,a0=1
‖β‖comass.

In both cases, we have seen that it is NP-hard to distinguish the case when
the right-hand side is ∼ 1 from the case when the right-hand side is ≥ NC/ log logN .
This shows Theorem 4.2.

4.1 On the proof of Dinur’s result

For the sake of completeness, we give an idea of Dinur’s proof of Theorem 4.3.
This is a reduction which is performed in two steps. The first step reduces SAT to
an intermediate optimization problem SSAT ∞ (which is somewhat complicated
to define) and the second reduces SSAT ∞ to SVP∞, the problem of deciding the
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length of the `∞-shortest nonzero vector in a lattice. The first reduction creates
a gap, that is, any satisfiable instance of SAT produces an instance of SSAT ∞
whose smallest solution has norm 1, and any unsatisfiable instance produces an
instance of SSAT ∞ whose smallest solution has norm ≥ g ∼ N c/ log logN ; and the
second reduction maintains this gap.

The second reduction, whose particulars were used to state Theorem 4.4, is
essentially an act of tidying up: as we’ll see, the solution set to an instance of
SSAT ∞ already looks like a lattice, and the reduction adds an extra degree of
freedom and massages the vectors so that the norm in SSAT ∞ (a complicated
combination of `1 and `∞) is translated into the `∞-norm.

The first reduction is much more complicated, but the core idea is that of
linear relaxation. That is, think of an instance of SAT as a constraint satisfaction
problem, where each clause is a constraint: is there a choice of assignments for each
clause such that all the variables have the same value each time? What Dinur now
does is relax this problem to get a new problem SSAT ∞. An instance of SSAT ∞
has the same input as an instance of SAT, but an allowable assignment for each
clause is a formal Z-linear combination of satisfying assignments. The value of a
variable in the clause is defined as the projection of this vector to a formal linear
combination of variable assignments. For example, if there are two variables x and
y and two clauses, then

Clause 1: {x = T, y = T}+ {x = F, y = F}
Clause 2: {x = T, y = F}+ {x = F, y = T}

is a consistent assignment, because the value of each variable in each clause is
T+F . Despite this extra flexibility, however, a consistent assignment in which each
clause vector has `1-norm 1 corresponds to a genuine solution to the corresponding
instance of SAT. Therefore, the natural norm on allowable assignments is the
maximum over all clauses of the `1-norm of the clause vector, and the set of all
consistent assignments forms a lattice in the vector space spanned by all satisfying
assignments of every clause.

The remaining and most complicated ingredient is introducing the gap: how
to make it so that the “fake” solutions have very large norm even when the orig-
inal SAT instance is very close to being satisfiable. This is done using something
analogous to an error-correcting code, via applications of algebra on finite fields.

5 The proof of the main theorem for n = 2

In this section, we show that it is hard to approximate L6=0(Σ) or L1(Σ) when Σ
is a triangulated surface (possibly with high genus). We connect this problem to
the hardness of approximation results in the last section by adapting a method
given by the second author in [14, §5]. Essentially, we show that given a complex
X as in the previous section and a homology class h ∈ H2(X,Z), we can construct
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a triangulated surface Σ ⊂ X in the homology class h, so that the metric on Σ
closely imitates the metric on X. Then L6=0(Σ) will be closely related to L6=0(X,h),
which is NP-hard to approximate.

By “closely imitates”, we mean the following. Given ε > 0, we say that the
ε-girth of a map p : Σ→ X is δ if its image is ε-dense in X and the preimages of
2ε-balls have diameter at most δ.1 It turns out that this condition is sufficient for
being able to extend maps from Σ to X:

Lemma 5.1. Suppose that X has a cover by ε-balls with Lebesgue number ε/2 and
multiplicity µ. If a map p : Σ→ X has ε-girth δ and f : Σ→ Sn is a δ−1-Lipschitz
map to the unit sphere, then there is a map g : X → Sn such that f ' g ◦ p and
Lip g ≤ C(µ, n)ε−1.

Before proving the lemma, we give an example of a map of small girth.
Suppose that X is a 3-dimensional simplicial complex with equilateral simplices of
sidelength 1. We build a high genus surface Σ and a 1-Lipschitz map p : Σ→ X as
follows. Let s > 0 be a small number, and let {xi} be an s-net in X. For each i, let
Σi be a 2-sphere of radius s/10 and let p project it to xi. If the distance between
Σi and Σj is at most 10s, then join Σi and Σj by a tube of length at most 10s and
radius ∼ |X|−1/2s,2 and let p project the tube to the geodesic between xi and xj .
This gives us the surface Σ and the map σ. We can triangulate Σ with simplices
of sidelength ∼ |X|−1/2s, and the total number of simplices is . s−3|X|2.

Clearly p is ε-dense for any ε > 10s. Suppose ε > 10s; then any two points
x1, x2 in p−1B(x, 2ε) can be joined by a path in Σ of length at most 100ε as follows.
If the points x1, x2 are in thin tubes, we move them to points x′1, x

′
2 contained in

the spheres Σi1 ,Σi2 via paths of length . 10s ≤ ε. Then connect Σi1 and Σi2
through a sequence of thin tubes of total length . the distance from Σi1 to Σi2 ,
which in turn is ≤ 4ε. Therefore, the map p has ε-girth δ whenever ε > 10s and
δ > 100ε.

Now we turn to the proof of Lemma 5.1.

Proof. Let {Ui} = {Bε(xi)} be the assumed cover of X. We first pick a partition
of unity {φi} subordinate to {Ui}. This defines a map φ from X to the nerve N
of {Ui} via barycentric coordinates. Choose

φ̂i(x) =


1 0 ≤ d(xi, x) ≤ ε/2
2− 2ε−1d(xi, x) ε/2 ≤ d(xi, x) ≤ ε
0 ε ≤ d(xi, x)

and let φi(x) =
(∑

i φ̂i(x)
)−1

φ̂i(x). It is not hard to see that with these choices,

Lip(φ) = O(µ1/2)ε−1.
Then we can define a map g̃ : N → Sn as follows:

1This is slightly different from the definition in [14].
2Here |X| denotes the number of simplices of X; since we put no restrictions on the combi-

natorics of X, the number of facets incident to a vertex may be ∼ |X|.
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• For each Ui, choose a point of f(p−1Ui) and send the corresponding vertex
of N to that point.

• Now for any simplex of N , the images of all vertices are contained in a 1-ball
in Sn. Thus we can project to Sn from the affine simplex spanned by the
vertices; such maps have uniformly bounded Lipschitz constant depending
only on n.

Defined this way, we can set g = g̃ ◦ φ. Then for every point x ∈ Σ, g ◦ p(x) is at
most 2 units from f(x). Therefore there is a linear homotopy from g ◦ p to f .

Remark. This lemma is closely based on Lemma 5.2 in [14], which, however,
works for a much larger class of target manifolds than just the sphere. The argu-
ment above can probably be generalized, for example by replacing the “simplex
flattening” strategy by barycentric coordinates coming from Karcher mean, as in
[7].

Proof of Theorem 1.1 for n = 2.. We deal with L6=0. The proof for L1 is similar.
Start with (X,h) as in Theorem 4.2, where X is a 3-dimensional simplicial

complex and h ∈ H2(X,Z). Let N be the number of simplices in X. We know
that it is NP-hard to distinguish the case that L6=0(X,h) . 1 from the case that
L6=0(X,h) ≥ N c/ log logN .

Choose s = N−c/ log logN . Now given (X,h), we construct a triangulated
surface Σs with a map p : Σs → X so that p([Σ]) = h and so that p has ε-girth δ
for all ε > 10s and δ > 100ε. The construction is basically the same as the one in
the paragraph just after the statement of Lemma 5.1. The only problem is that in
that description, [Σ] = 0. To fix that problem, we let Σh be a cycle in the class h.
Then we take Σh together with a dense set of spheres Σi and join them with thin
tubes as above.

If g : X → Sn with g∗[Sn](h) 6= 0, then g ◦ p : Σs → Sn has nonzero degree
and Lip(g ◦ p) ≤ Lip(g) Lip(p) ≤ Lip(g). Therefore, L 6=0(Σs) ≤ L6=0(X,h). In
particular, if L6=0(X,h) . 1, then L6=0(Σs) . 1 as well.

On the other hand, suppose that f : Σs → Sn has nonzero degree. If Lip(f) ≤
(1/1000)s−1, then Lemma 5.1 tells us that f is homotopic to a composition g ◦ p,
where Lip(g) . Lip(f). Since f is homotopic to g ◦ p, g∗[Sn](h) 6= 0. Therefore,
L6=0(Σs) & min(s−1, L6=0(X,h)). Recall that we chose s so that s−1 = N c/ log logN .
So if L 6=0(X,h) ≥ N c/ log logN , then L6=0(Σs) & N c/ log logN as well.

Theorem 4.2 tells us that it is NP-hard to distinguish the case L6=0(X,h) ∼ 1
from the case L6=0(X,h) ≥ N c/ log logN ; therefore by the last two paragraphs it
is also NP-hard to distinguish the case L6=0(Σs) ∼ 1 from the case L6=0(Σs) ≥
N c/ log logN . Therefore, it is NP-hard to approximate L6=0(Σ) to within a factor of
N c/ log logN .

Recall that N was the number of simplices in X, but the number of simplices
in Σ is NΣ ≤ s−3N2 and so eventually ≤ N2.1, so the same result holds with NΣ

in place of N .
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6 Approximating simplicial complexes by spheres

If n ≥ 3, the proof of Theorem 1.1 is similar, except that the step of constructing
Σ and the map p : Σ → X is more complicated. If we just wanted to build
triangulated n-manifolds Σ so that L6=0(Σ) is hard to approximate, we could use
the same construction, replacing the 2-spheres by n-spheres, and replacing the
annuli S1× [0, 1] by Sn−1× [0, 1]. We will show that if n ≥ 3, then L6=0(Σ) is hard
to approximate even for triangulated spheres. To do that, we have to construct
maps of small girth from a triangulated sphere Σ to X. This construction is based
on work of Ferry and Okun [9]. Because the construction is a little complicated
we explain it in two stages. First, we construct maps of small girth from Sn to X.
This illustrates the main geometric idea of the construction. Next, we construct
a triangulated sphere Σ with a controlled number of simplices and a simplicial
map of small girth from Σ to a refinement of X. For this simplicial map, we have
to check that the number of simplices is not too large and that the map can be
constructed in polynomial time from the data of (X,h).

Lemma 6.1. Let X be a simply connected triangulated m-complex, n ≥ 3, and ε >
0 a constant. Let h : Sn → X be any map. Then there is a piecewise Riemannian
metric g and a 1-Lipschitz map f : (Sn, g) → X homotopic to h whose ε-girth is
at most C(m,n)ε.

Proof. This is a quantitative version of an asymptotic result due to Ferry and
Okun [9]. We use a technique adapted from their result which is briefly described
in [14, p. 1089], deforming h in several steps. We start by deforming h to a nearby
embedding in a thickening of X and giving Sn the metric g0 induced by that
map. In the rest of the construction, we build up an (n+ 1)-dimensional stratified
manifold, equipped with a Riemannian metric and a map to X, by iteratively
attaching (n+ 1)-disks along n-disks on their boundary. At every step, the space
remains homotopy equivalent to Sn, and we can think of it as a topologically trivial
bordism from (Sn, g0, h) to some (Sn, g, f) which, at the end of the process, will
have the properties we desire.

The disks we glue in will take the form of “balls”, “sticks”, and “slabs”. That
is, we think of them as Di × Dn+1−i, for i = 0, 1 and 2 respectively, equipped
with a map to X which projects to a point, immersed curve, or immersed disk,
and with the metric induced by the immersion in the Di direction and a round
metric of radius << ε in the Dn+1−i direction.

In detail, the process is as follows:

1. Fix a subdivision Xε of X at scale ε.

2. Connect all vertices of Xε in the ε-neighborhood of h(Sn) to h(Sn) via
geodesic segments. Call this set of vertices Vh and the set of segments Eh.

3. Choose a spanning tree T for the graph X
(1)
ε /Vh. We attach sticks along the

edges of T and Eh and balls at the vertices. We may need to homotope h
slightly so that it is constant on the n-disks where we attach the balls.
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At this stage, the map f1 : (Sn, g1) → X given by restricting to the end of
the bordism has ε-dense image in X, but points in f1(X) which are close in
X may be far from each other in the induced metric on f1(X) (and hence in
g1).

4. Now let x and y be two vertices of Xε which are adjacent via an edge not
in T . In the next approximation f2 : Sn → X, the portions of f2(Sn) near x
and y will be close to each other. We achieve this as follows.

Let x′ and y′ be preimages of x and y, respectively, in (Sn, g1). There is
a path γ in (Sn, g1) between x′ and y′; since X is simply connected, f1(γ)
is homotopic to the edge between x′ and y′ via some immersed disk. We
attach a slab which maps to this disk to our sphere. Again we may need to
homotope h slightly near the attaching n-disk.

Similarly, there may be points in the original sphere whose images are close
to each other or to vertices of Xε to which they are not attached. So for some
ε-net on the original sphere, consider all pairs of points x and y such that
d(f1(x), f1(y)) < ε but d(x, y) > 2ε. For each such pair we likewise attach a
slab corresponding to a disk homotoping the image of a path in (Sn, g1) to
the geodesic path.

5. Now, f2 still doesn’t have small girth, since for a point p deep in the interior
of a slab, f2(p) may be close to images of other, distant points. It is enough
to create a shortcut from any such p to the ball mapping to a nearby vertex
v of Xε, since then any two such points will have a short path between each
other through v.

So in each slab D, choose an ε-net VD and a forest TD connecting all the

points of VD to the boundary of D. This TD can be deformed to lie in X
(1)
ε

via a homotopy which moves every point by at most 2ε. Thus we can glue in
sticks and slabs spanning each such homotopy; after this surgery, each vertex
v ∈ VD is 2ε-close in the induced metric to a point which approximates the
nearest vertex of Xε, and any point in the interior of one of the new slabs is
5ε-close to one of these vertices. In other words, because the new slabs are
“narrow”, they do not again have the problem of the slabs we added in the
previous step. Thus the resulting map f at the end of the bordism has the
desired small girth.

In order to perform the reduction in the proof of Theorem 1.1, it is not enough
to show that such approximating spheres exist; we must also make sure that they
can be represented by simplicial complexes of polynomial size and computed in
polynomial time. For this argument, it’s important to note that the complexes
constructed in §4 are not only simply connected, but effectively so. In other words,
we can construct a contraction of the 1-skeleton whose size is polynomial in the
volume of the complex.
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Since these complexes are constructed as wedges of spheres with attached
mapping cylinders, we can contract the 1-skeleton by first collapsing the mapping
cylinders onto the wedge of spheres and then puncturing each sphere in some
simplex and contracting away from those points.

Call the relevant complex X. During each of the two stages, loops are ex-
panded by a factor of O(|X|) and each point travels a distance O(|X|). In other
words the overall contraction X(1) × [0, 1]→ X can be made simplicial on a sub-
division at scale ∼ 1/|X|2.

To complete the argument, we give an algorithmic, simplicial version of the
construction in Lemma 6.1.

Lemma 6.2. Suppose X is a simplicial m-complex equipped with an explicit con-
traction c : X(1) × [0, 1]→ X, expressed as a simplicial map on a subdivision with
V facets. Let Σ0 be a triangulation of the n-sphere and f0 : Σ0 → X a simplicial
map. Let ε > 0. Then there is a subdivision Xε of X and a triangulation Σ of the
n-sphere and a simplicial map f : Σ→ Xε such that

• Σ has polyn(|X|, |Σ0|, V, ε−m) simplices;

• The ε-girth of f is at most C(m,n)ε−1 · scale(Xε), when Σ is given the
standard simplexwise linear metric;

• Σ and f can be computed from X, f0, and c in polynomial time for fixed n.

Proof. We proceed with a version of the construction in Lemma 6.1. At each step,
we further subdivide both the domain and the codomain complexes.

Recall that we can subdivide an n-simplex into cubes by adding the midpoint
of each subsimplex as a vertex. We can then subdivide those cubes as finely as nec-
essary; if we prefer to work with simplicial maps, we can subdivide the cubes again
to form simplices. This is somewhat less uniform than the edgewise subdivision of
[8], but easier to work with.

In the beginning, we are given a simplicial map f0 : Σ0 → X. We start by
subdividing both the domain and codomain with scale parameter E ∼ 1/ε to form
cubical complexes Σε and Xε so that the vertices of Xε form an ε-net and the edge
lengths range between about ε and (m+ 1)ε.

In order to give ourselves more space to cut and paste, we subdivide Σε with
another three cubes to a side to produce Σ1. We then precompose the map f0

with a map Σ1 → Σε which sends the middle cube of each cube of Σε to the
corresponding full cube.

Now we build a relative spanning tree T for the pair of graphs (X
(1)
ε , f1(Σ1)(1)).

This has degree bounded by C(m) deg(X), and so certainly by C(m)|X|. Now fix
a cubulation of the n-ball with enough boundary facets that we can shade deg T
of them and have a path along the boundary between any two shaded facets which
does not pass through any other shaded facets, and which has diameter C(n).3 We

3For example a slight subdivision of the simplicial double cone on a sufficiently fine triangu-
lation of Dn.
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assemble these, together with (n+1)-cubes for the sticks, into a cubical thickening
of T , equipped with maps sending the balls to the vertices of Xε and the sticks
to the edges. Finally, for each vertex in f1(Σ1), we arbitrarily choose an n-cube
in Σ1 mapping to the appropriate vertex and glue it to some boundary facet of
the corresponding ball. We let Σ2 be the n-dimensional “outer boundary” of the
resulting complex, and f2 : Σ2 → Xε the restriction of the associated map.

Now fix a set of n-cells Vε of Σ2 which are mapped to vertices of Xε and form
a net of a certain constant density on Σ2; in particular, we include a boundary
n-cell of the balls that we added in as well as a single n-cell adjacent to each vertex
of Σε.

The next step is to glue in slabs to make sure that the cells of Vε that map
to nearby vertices of Xε are actually nearby. In order to have enough space to do
this, we subdivide the domain and codomain again, this time with scale parameter

M = 10(n+ 1)|Vε|2.

Clearly this is polynomial in the various parameters. We call the resulting com-
plexes ΣM and XM .

Now we find and totally order all pairs vi, vj ∈ Vε so that f2(vi) and f2(vj)
are equal or adjacent as vertices of Xε, but dΣ2

(vi, vj) > C(n), where C(n) is large
enough to exclude pairs of adjacent vertices in T or Σε. For each such pair, we

build a path pij from vi to vj of n-cells in Σ2 which map to X
(1)
ε ; a shortest such

path can be found in polynomial time after building the graph of such n-cells.
We can in addition assume that each pij goes “straight through” every cell which

maps outside X
(0)
ε , so that the preimage of each open edge is a disjoint union of

open cells each of which projects onto that edge by forgetting some coordinates.
We now build pairwise disjoint paths p′ij of n-cubes in ΣM , where each p′ij

is a refinement of pij . To make sure that they don’t intersect, we assign each pair
(i, j) a distinct distance from the middle of cubes of Σε as well as an “entry/exit
point” on each face, and have the entry/exit stretches and internal stretches map
to different layers.4 The paths p′ij consist of mostly straight chains of cubes with
the occasional kink.

For each i and j, f2(p′ij) is a path in X
(1)
ε , and (together with the edge from

f2(vi) to f2(vj) if they are not the same) it forms a loop qij : S1 → X
(1)
ε . We

would like to glue in a slab equipped with a map to a contraction of this loop.
This slab consists of several pieces:

1. A thickened annulus which straightens out the kinks in the chain of cubes;

both sides map to the same path in X
(1)
ε .

Since the kinks are isolated and come in const(n) types, this can be done
with const(n) · length(p′ij) vertices, perhaps after subdividing both ends a

4See [17] for more details of a similar construction in three dimensions, used to fit many
maximally separated paths into a cube.
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bounded number of times (in which case we also must subdivide ΣM and
XM .)

The remainder of the slab will have the product cubical structure of a disk
with [0, 1]n−1.

2. Another thickened annulus which maps to a composition of the path with a

retraction of X
(1)
ε to X(1).

We can perform such a retraction by expanding outward in each direction
from one central ε-cube. This map has Lipschitz constant ∼ ε−1 and so the
inner side of this annulus will consist of

const(n) · ε−1 · length(p′ij)

cubes.

3. A thickened annulus which maps to the composition of this with the provided
contraction of X(1). This consists of

const(n) · V ε−1 · length(p′ij)

cubes.

4. A thickened disk which maps to the basepoint to which X(1) is contracted.
This is a thickening of a cone on the inside of the previous annulus.

After all the slabs are glued on, we let Σ3 be the n-dimensional “outer boundary”
of the resulting complex, equipped with a map f3 : Σ3 → XM .

We now need to algorithmically glue in thin slabs so that the new disks are
brought close to other parts of the complex which are mapped to nearby points
of XM . We first choose an ε-net of vertices in each disk and the shortest path
via n-cubes from each point in the net to the boundary of the disk. (This means
retaining the data of whether a given portion of Σ3 is inherited from ΣM .) Call
the set of all the vertices in these nets V ′ε

Now, for each of these paths, we choose a path in ΣM which maps to a
nearby path in XM . Specifically, we make the choice as follows. Choose a sequence
of “signposts” xi at intervals of length ε/3m along the path. For each signpost xi,
choose the nearest vertex vi of Xε. Then the path between xi and xi+1 is contained
within the star of the vertex or edge spanned by vi and vi+1, and we can build a
cubical approximation to the homotopy which retracts that path linearly to the
vertex or edge.

The vi give us a corresponding path in Xε, and we can greedily construct
a path of n-cubes in ΣM which maps to that path, ending at the same point on
the boundary of the disk. After subdividing Σ3 and XM yet again, this time with
scale parameter

M ′ = 10(n+ 1)|V ′ε |,
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we use the same technique as before to create non-intersecting sub-paths. Then for
each pair of sub-paths, we glue in a slab whose cells map to XM via the piecewise
linear homotopy described above. The number of cubes in this slab is

O(length of the path ·M · (M ′)2).

This completes the construction of the space Σ and the map f .

A NP algorithms for the Lipschitz constant

In this appendix, we show that L6=0(Σ) and L1(Σ) can be approximated up to
a constant factor by an NP algorithm. In fact, NP algorithms can give constant
factor approximations to Lip(α) in the more general setting of Theorem 2.1. We
need a little background to state the result precisely.

An NP optimization problem is an optimization problem for which feasible
solutions can be verified in polynomial time. In other words, it is a numerical
function f from some input set A to N (or some other discrete totally ordered
set) such that the statement “f(x) ≤ r”, if true, has a polynomial-time certifi-
cate. Then the true optimum can be found by following all possible certificates in
nondeterministic fashion.

Theorem A.1. If n is odd or m ≤ 2n − 2, there is an NP optimization problem
which, given an m-dimensional simplicial complex X and a class α ∈ [X,Sn],
outputs a value within a multiplicative constant C(m,n) of Lip(α).

Informally, we can say that computing the Lipschitz norm up to C(m,n) is
an NP optimization problem. In addition, if Lip([f ]) ≥ 1, then it can even be
computed in polynomial time up to a multiplicative constant using the algorithm
in §3.

The first step of the proof is the following absolute lower bound for Lip(α).

Lemma A.2. If α ∈ [X,Sn] is not the zero class, then

Lip(α) ≥ c(m,n)(# of simplices of X)−1/n.

Proof. First, a non-nullhomotopic map to Sn always covers Sn: otherwise, it is a
map to the disk and hence nullhomotopic.

Secondly, at the cost of a multiplicative constant, we can restrict to simplicial
maps from a subdivision of X to a subdivision of Y , because of the following result:

Lemma A.3 (Quantitative simplicial approximation theorem [3]). Let X and Y
be simplicial complexes with the standard simplexwise linear metric. Then there
is a constant CQSAT = CQSAT(dimX,dimY ) such that every L-Lipschitz map
f : X → Y can be approximated by a CQSAT(L+ 1)-Lipschitz simplicial map on a
subdivision of X at scale ∼ 1/L.
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We can choose the subdivision on both sides to be the edgewise subdivision
due to Edelsbrunner and Grayson [8] with scale parameters s and t, respectively,
indicating the degree of subdivision of each edge. When we give the simplices of
the subdivision of X the standard linear metric, the resulting metric space differs
from an s-times dilation of X by a multiplicative constant C(dimX); likewise for
Y and t. We call the resulting metric spaces Xs and Yt.

In order to cover Sn, a simplicial map must hit every n-simplex of Sn. Thus
to admit a surjective simplicial map Xs → Snt without subdividing further, Xs

must have at least as many n-simplices as Snt . Now, Xs has

≤ (# of simplices of X) · C(m) · sm

n-simplices. In particular, we can choose t = C(m,n)(# of simplices of X)1/n such
that a surjective simplicial map Xs → Snt can only exist when s ≥ 2CQSAT(m,n).
By the lemma, this means that any surjective map X → Snt must have Lips-
chitz constant at least 1, and so any non-nullhomotopic map X → Sn must have
Lipschitz constant at least 1/t.

Thus, suppose we are given a map f : X → Sn which we know is not
nullhomotopic. Then:

• A homotopic simplicial mapXs → Snt , where t = O((# of simplices of X)1/n)
and s ≤ 2CQSAT(m,n), is a certificate that Lip([f ]) ≤ s/t.

• Moreover, if there is no such simplicial map, then Lip([f ]) ≥ 1/t.

In our situation, the (polynomial-size) data of a simplicial map Xs → Snt in
the right homotopy class is such a certificate, and its validity can be verified in
polynomial time. In particular, if the homotopy class is specified using a repre-
sentative map, then the fact that our map is homotopic to it can be computed in
polynomial time for fixed dimension of X [10]. This shows Theorem A.1.
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