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Abstract

Lensless imaging is a new, emerging modality where im-
age sensors utilize optical elements in front of the sensor to
perform multiplexed imaging. There have been several re-
cent papers to reconstruct images from lensless imagers, in-
cluding methods that utilize deep learning for state-of-the-
art performance. However, many of these methods require
explicit knowledge of the optical element, such as the point
spread function, or learn the reconstruction mapping for a
single fixed PSF. In this paper, we explore a neural network
architecture that performs joint image reconstruction and
PSF estimation to robustly recover images captured with
multiple PSFs from different cameras. Using adversarial
learning, this approach achieves improved reconstruction
results that do not require explicit knowledge of the PSF
at test-time and shows an added improvement in the recon-
struction model’s ability to generalize to variations in the
camera’s PSFE. This allows lensless cameras to be utilized
in a wider range of applications that require multiple cam-
eras without the need to explicitly train a separate model
for each new camera.

1. Introduction

As imaging has become ubiquitous, there has been in-
creased emphasis on reduced size, weight, power, and cost
for cameras. While camera size and weight has reduced
drastically over the past decade, it is still limited by the
size/weight of optical components, namely the lens. In
computational imaging research, lensless camera technol-
ogy has been recently shown to be a promising solution for
low size, weight, and cost [4} 39, [2, [14]. Without a lens,
cameras can be reduced to consume a nearly flat form-factor
to enable computer vision in small-scale robotics, embed-
ded in wearable and Internet-of-Things applications, and
even enable potential uses in biomedical microscopy.

Lensless cameras indirectly capture information from a
scene by multiplexing light rays onto the sensor, and then
reconstructing the image by solving an inverse problem.
This multiplexing is done using various optical elements
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such as coded apertures, diffusers, or diffraction gratings. In
previous research, lensless reconstructions have been shown
to be near visual quality of lensed images using both opti-
mization and machine learning methods [7]]. Lensless cam-
eras have also shown potential in 3D microscopy([26, 1] and
depth estimation [44], thus augmenting imaging beyond tra-
ditional photography applications. Finally, lensless images
without reconstruction are not visually identifying for hu-
man observers, and thus may have applications for privacy
and security [42, 9].

However, lensless cameras have not yet been seen as a
viable alternative to traditional cameras in many applica-
tions due to some specific limitations. Reconstruction of
the scene image requires calibration to account for the opti-
cal element which performs light multiplexing onto the sen-
sor, typically the point-spread-function (PSF) of the optical
system. This calibration is sensor-specific, and most recon-
struction algorithms to-date require this information in or-
der to recover the scene. This need for calibration informa-
tion limits the robustness of these reconstruction algorithms
in practice for lensless cameras.

In this paper, we propose lensless camera reconstruc-
tion which does not require calibration of the point-spread-
function (PSF) for a given optical element. Our neural net-
work architecture performs joint image reconstruction and
PSF estimation, and achieves comparable to state-of-the-art
reconstruction performance while generalizing to multiple
PSFs corresponding to multiple lensless cameras. We uti-
lize a GAN-based deep neural network architecture, and es-
timate the PSF from a lensless input image to perform re-
construction without the need for calibration using a prior
learned from training data. Our experimental results vali-
dates our network performance without calibration PSF data
at test time along with low latency. This includes testing
on a difficult, varying PSF dataset of lensless video from
multiple lensless cameras collected from a prototype hard-
ware setup. We hope this work shows the first steps toward
calibration-free and robust lensless imaging in the future.
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Figure 1: Network Architecture: Our lensless image reconstruction pipeline consisting of generative adversarial networks
for image reconstruction and point spread function (PSF) estimation. In addition to regular and adversarial loss functions, a
perceptual loss and a self-supervised consistency loss with respect to the forward imaging model is incorporated.

2. Related work

Lensless Cameras: The first lensless cameras are actu-
ally the oldest camera technology: pinhole cameras from
classical times. While classical pinholes suffer from low-
light throughput, the principle of coded aperture via mul-
tiple pinholes has been used extensively in astronomy and
scientific imaging [12] [10]. Coded aperture cameras have
been developed using mask patterns [27, 40] or diffrac-
tion gratings [18]] to perform light field-based applications
such as post-capture refocusing and novel view synthesis.
Another parallel track of lensless imaging utilizes spatial
light modulators and compressive sensing to recover im-
ages, commonly known as single-pixel cameras [[13}20].

In this paper, we are primarily concerned with lensless
cameras which feature an optical element above the sensor
to replace the lens, and typically these optical elements are
thin and scalable to a small size [39} 4} 2, [14]. FlatCam [4]
implements a coded mask with transparent and opaque fea-
tures that multiplex light from the scene to cause unique
mask shadows on the sensor. This concept has been ex-
tended for microscopy applications [1] as well as capturing
both images and depth information [19, 44]]. Since ampli-
tude masks lose some light efficiency, newer designs have
featured phase masks [6} 43] for improved performance.
Diffraction gratings [14} [15]] and Fresnel plates [37]] have
also been used to achieve small form factors. Finally, Dif-
fuserCam utilizes a diffusion layer as the mask [2]. Images
for the system are captured in a diffused pattern on the im-
age sensor from which the scene can be recovered using an

algorithm with the appropriately calibrated PSF image. In
our paper, we build off the diffusion mask-based lensless
camera and aim to improve reconstruction quality for this
style of lensless cameras.

Lensless Image Reconstruction: Most of the cameras
presented above utilize optimization algorithms to solve the
inverse problem and recover back the original image of the
scene, typically with a variation on either alternating di-
rection method of multipliers (ADMM) [8] or some regu-
larized ¢, [5]] or total variation regularization [33]], where
are adapted for lensless imaging [4} 2]]. These optimization
algorithms have the advantage of being data-agnostic, and
thus have wide generality compared to networks, but as it-
erative methods suffer from computational inefficiency.

Recently deep learning has shown superior performance
at lensless image reconstruction and other vision tasks. A
ResNet architecture was used to construct images from bare
sensor measurements in [34]. This model performs fairly
well for reconstructions, but is limited to images captured
at close distances which allows for high intensity features
of the image on the sensor. Other deep learning for lensless
optics works have been presented for glass diffusers [28],
scattering media [29]], and spatial light modulators [35]]. For
vision applications, FlatCam was able to expand to utilize
deep learning to incorporate facial recognition on lensless
captured images with several object detection and classifi-
cation Convolution Neural Networks [38]].

The two works most closest to our approach are Khan
et al. [24] and Monakhova et al. [30]. In [24], recon-
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struction on FlatCam images was achieved using genera-
tive adversarial networks and perceptual loss, and did not
require a PSF at test time similar to our network. This pa-
per achieves state-of-the-art reconstruction results, however
it is designed specifically for the mask patterns of Flatcam,
and is trained for only a single PSF. In contrast, our method
can handle multiple PSFs at test-time through our PSF esti-
mation sub-network.

In [30], a series of neural networks to perform unrolled
ADMM optimization with learnable parameters coupled
with (optional) U-Net denoisers was presented and evalu-
ated on DiffuserCam images. This paper is the state-of-the-
art at the moment and we utilize this for our comparison for
experimental results. However, the method requires pro-
viding a PSF obtained via calibration to output high quality
reconstructions. Our paper implements a GAN-based archi-
tecture instead to show that high reconstruction quality can
be achieved without the need for a calibration PSF image,
while also incorporating the ability to estimate the PSF in
our architecture.

3. Approach

Forward Imaging Model: Our problem definition for
lensless imaging formulates measurements from a lensless
camera as a linear model. Namely, our forward model is
that the captured lensless image ¢, siess 1S governed by the
following convolution:

Liensiess = 1 * PSF7 (D

where I is the true spatial image, and PSF' is the point
spread function of the optical element for the lensless cam-
era. Note that this model is valid based on Fourier optics
assuming Fraunhofer diffraction [17]. Thus we wish to re-
cover [ from Ijepse55, Which is a deconvolution problem.
However, the difficulty of our particular problem is that the
PSF is also unknown, and needs to be estimated at the
same time as /.

Network Architecture: As noted in the section before,
deep learning has become the state-of-the-art in lensless im-
age reconstruction. In this paper, we describe our approach
to building a network architecture for both image recon-
struction and blind point spread function (PSF) estimation.
Our full architecture is displayed in Figure [T} and will be
explicated in this section below. Besides the usual mean-
squared error loss on both image and PSF ground truths,
we also utilize adversarial, perceptual, and a forward model
consistency losses to help augment the performance of the
network. In Section[d} we discuss our network implementa-
tion and training details, and demonstrate the results of our
experiments in Section 5

The basic building block for the network architecture is
the U-Net [32] that forms the backbone of most image re-
construction architectures. We utilize a ten layer network

(five encoding and five decoding convolution layers) with
skip connections to help propagate high frequency informa-
tion from the input image through the network. As we do
not have a prior PSF information from calibration, we uti-
lize two U-Net architectures: one for generating an estimate
of the image reconstruction and one for the PSF estimate.
These are labeled as generator networks in Figure [T)as they
will form the basis for generative adversarial networks de-
scribed later in this section to improve performance.

We train these networks using mean-squared error
(MSE) by finding the loss between the reconstructed im-
age and the ground truth image, and a ¢; loss for the PSF
estimation:

Lysp(I,1) =T - 1|3, @
L1(PSF,PSF) = ||PSF — PSF||,

where I is the ground truth image, I is the generator esti-
mated output image, PSF' is the ground truth point spread
function, and PSF is the generator estimated PSF. Note
that the calibrated PSF is required at training, but will not
be required at test time for the network. We found that the
£ norm was necessary for the PSF estimation rather than
{5 especially for multiple PSFs, because otherwise the net-
work would converge to an average PSF rather than learning
to estimate the individual PSFs. For the image reconstruc-
tion, while MSE alone can get us most of way to the ground
truth image, using it as the sole loss function still results
in slightly blurred features in the output. We note that skip
connections, while useful in general for preserving high fre-
quency connections, are not as effective in lensless image
reconstructions as the original images have significant blur,
but still manage to help improve the performance empiri-
cally of the reconstruction.

Perceptual Loss: Since the image reconstruction han-
dled by the network is ill-posed, particularly without known
PSF information, we require additional losses to help im-
prove performance. Similar to [24], we implement a per-
ceptual loss [22] to help improve the visual fidelity of our
reconstructions. Using a pre-trained VGG-16 network, we
extract features ¢(I) of an image and compute the following
perceptual loss:

Lyercep(, 1) = |lo(1) — (D)]13. 3)

In training, we first train with only the MSE loss first for
some epochs before adding in the perceptual loss (as well
as the adversarial and consistency loss described below).
We delay training for the perceptual loss so that the MSE
can converge to an initial reconstruction with low frequency
color information, and so that the perceptual loss does not
overpower the MSE loss in favor of higher perceptual fea-
ture accuracy.
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Adversarial Learning: Even using MSE + perceptual
loss, our network did not achieve compelling lensless im-
age reconstruction. This is probably due to the difficulty of
estimating both the PSF and the reconstructed image simul-
taneously. Recently, adversarial losses have been shown to
achieve photorealistic results via generative adversarial net-
works (GANSs) [16]. GANs have enabled high visual fidelity
in image synthesis and reconstruction tasks across computer
vision. In particular, GANs were recently shown in [24] to
work well for lensless image reconstruction. We also utilize
GANSs, however as opposed to [24]], we do not first perform
a preliminary reconstruction and then use GANS to clean the
estimate in the second stage. Rather, we utilize adversarial
learning for both the reconstruction and the PSF estimation
simultaneously for a one-shot reconstruction at test time.

In Figure[I] we utilize a five convolutional layer discrim-
inator for both the image and PSF generators. We utilize
the Wasserstein GAN loss [3] for our loss function. We also
perform delayed training with the adversarial loss to allow
the network to first converge with MSE before adding in
adversarial, perceptual, and consistency losses.

Model Consistency: Finally, as our problem differs
from other lensless image reconstruction tasks in requiring
blind PSF estimation, we also develop a custom loss func-
tion to check the forward model’s consistency. Similar to
the Reblur2Deblur [11] for motion deblurring, we utilize
the following consistency loss that is semi-supervised:

Econsistcncy == HIlensless - PSF * j||27 (4)

where we take the outputs from the image and PSF genera-
tors, convolve them, and compare the result to the original
blurred lensless input.

4. Implementation

Dataset: We utilize the DiffuserCam dataset by Mon-
akhova et al. [30]] for our comparative experiments. The
dataset consists of 25000 images (24000 training, 1000 test
images) from the MirFlickr dataset [21]] that were displayed
on a monitor and captured using both a regular camera as
well as diffuser-based lensless camera, co-axially aligned
via a beam-splitter. Both cameras utilized a Basler Dart
(daA1920-30uc) sensor captured natively at 1920 x 1080
resolution, but then downsampled, flipped and cropped to
380 x 210 resolution to mitigate moire fringes from the
screen on the lensed camera and ensure the monitor was
covering the full field of view of the camera [30]. To cre-
ate the simulated multiple PSF images from this dataset, we
create 20 PSFs by randomly permuting sections of the orig-
inal PSF area. We then use each PSF and convolve it with
the ground truth data for 20 different variations of the orig-
inal dataset with different PSFs used.

Network Architecture: For the generator network ar-
chitecture, we use five encoding layers, five decoding lay-

ers and a convolution layer in the center and output. Skip
connections are also used to transfer high-level features to
the decoding layers. Each encoding layer uses two convo-
lution layers and then performs batch normalization and a
ReLU activation function. Each decoding layer uses an up-
sampled output from the previous layer and concatenates it
with the corresponding encoding layer output before using
three convolution layers. A kernel size, k, of 3 x 3 is used
for all layers except the output layer and a stride, s, of 1 is
used for all layers.

For the discriminator architecture, we use four convolu-
tion layers with batch normalization and the LeakyReLU
activation function and an output layer that uses a Sigmoid
activation function. Each layer uses a kernel size of 4 x 4
and a stride of 2 except the output layer that uses a stride
of 1. Please refer to the supplemental material for details
about the layer parameters for each sub-network.

Training Details: While training, we use a batch size of
20 images per iteration. This takes roughly 20 — 30 min-
utes per epoch on 24000 training images. A lower batch
size can also be used in case of memory constraints, but
will result in slower training. We utilize a cyclic learn-
ing rate for the generator networks while training as shown
in [36]. We set the step size of 2 epochs and train with
cycle lengths in multiples of 4 epochs, and the minimum
and maximum learning rates used were A = le — 7 and
A = b5e — 3 respectively. While this style of learning rate
scheduling results in oscillations in the training loss, the
process trains much quicker than most other methods and
assists with avoiding over-fitting into a particular local min-
ima in the loss gradient. The discriminator’s learning rate
was fixed at A = 2e — 4. For the generator’s loss functions,
after pre-training with only L/sg, we assign weights to
CIMSE, »Cad'u, »Cpercep’ and Cconsistency of )\MSE' = 10,
Aadv = 0.001, Apercep = 0.7, and Aconsistency = 0 — 0.4.
This allowed the MSE loss to be dominant while still gain-
ing desired contributions from the other losses. For the ad-
versarial loss in particular, several values were attempted
ranging from 0.001 to 0.5, to determine 0.001 as the best in
our case. Finally, the Adam optimizer [25] was used with
the cyclic learning rate scheduler to train the entire network.

The hardware used to train and evaluate the model uses
an Intel Xeon W octa-core CPU with 64GB RAM and an
Nvidia RTX 2080Ti GPU. All code to train and evaluate
this model was done using Python 3 and utilized the Py-
Torch framework for machine learning functionality. All
code, datasets, and trained models will be made available
after review via Github.

Baselines and Metrics: To compare our network per-
formance, we compare against several baseline methods for
lensless reconstruction. The first is the alternating direction
method of multipliers (ADMM) which solves the optimiza-
tion problem [8]: argmin,||y— Az ||2+A||z||; where x is the
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estimated image, A is the PSF (written in matrix form), and
y is the lensless image. Our second baseline is a U-Net ar-
chitecture [32] trained using the exact same architecture as
our generator network. The final set of baselines are the Le-
ADMM networks from [30]] which is an unrolled ADMM
algorithm with learnable parameters followed by an (op-
tional) U-Net denoiser. Note that all the baselines require
knowledge of the PSF from calibration to work, while our
method performs on-par or slightly better than these tech-
niques without the need for calibration at test-time.

Evaluating the quality of lensless image reconstruction
is difficult, as both peak signal-to-noise ratio (PSNR) and
SSIM [41] do not capture well the visual fidelity of an im-
age with respect to human perception. For the sake of our
paper, we decided to report both PSNR and SSIM, but we
encourage the reader to look carefully at qualitative results
to determine which reconstructions they prefer. Of course,
these metrics and qualitative results can vary from image to
image and dataset to dataset, but we believe general trends
or observations can be gleaned from our experiments.

Real Hardware Setup: We also capture a real video
dataset to capture lensless images using multiple PSFs in
the lab. This dataset consists of videos captured using a
Panasonic Lumix G85 mirrorless camera with a micro 4/3
sensor. Shown in Figure 2] the diffuser is attached to the
camera using a lens mount adapter with the diffusion layer
taped to the back of the adapter, closest to the sensor with
black electrical tape. A rectangular aperture, similar to Dif-
fuserCam [2], is also created using the black electrical tape.
The collected lensless video dataset uses the DAVIS dataset
sequences as the ground truth and is recorded with the lens-
less camera through a monitor. The videos are recorded in
1920 x 1080 resolution, but downsampled to 480 x 270 to
address moire fringes of the monitor. The final video dataset
consists of 120 sequences with a total of 8,460 frames for
the train set and 30 sequences with a total of 2,000 frames
for the test set. Three different real PSFs were used for this
dataset.

Figure 2: Hardware Setup: On the left, we show our cus-
tom lensless camera consisting of a Panasonic Lumix G85
mirrorless camera and diffusion layer attached with a lens
mount adapter. On the right is our imaging setup with dis-
play monitor for capturing video.

5. Experimental Results

In this section, we present the results of our experiments,
including both comparative studies with other methods on
the DiffuserCam dataset [30] with simulated multiple PSF
data as well as validation of our method for real multiple
PSF data from a hardware prototype in the lab. We also
test our method’s robustness to additive noise, and analyze
computational speed at inference.

DiffuserCam Results: In Table[T] we show the results of
our model on the DiffuserCam dataset [30]] as compared to
our baselines. Note that our method has state-of-the-art per-
formance on-par with Le-ADMM-U for image reconstruc-
tion (slightly lower for SSIM but slightly higher for PSNR).
Further, our network has the fastest computation time at
inference with 0.32 seconds, a 5x improvement over Le-
ADMM-U. Also our method does not require knowledge
of the PSF at test-time but estimates it implicitly from the
data, and thus achieving superior performance without cali-
bration information.

Model Comparison

Model SSIM  PSNR (dB) CPU Time (sec)
ADMM 0.47 11.97 36.38
Le-ADMM 0.51 11.89 1.26
Le-ADMM-S 0.59 14.61 4.22
Le-ADMM-U  0.77 20.46 1.62
U-NET 0.67 17.42 0.34
Ours 0.73 20.56 0.32

Table 1: Single PSF Image Reconstruction Results:
Comparison of reconstruction quality as well as the compu-
tational time for network inference at test time on the Dif-
fuserCam dataset [30]. Note that our model achieves state-
of-the-art performance on-par with Le-ADMM-U, while
also having the advantage of being the fastest network (0.32
seconds).

As we noted that PSNR and SSIM do not always track
with perceptually better visual reconstructions. Therefore
we also show qualitative reconstructions for this dataset in
Figure[3] As we can see, our method visually reconstructs
the lensless images fairly close to state-of-the-art meth-
ods, improving the quality over ADMM and UNet methods
while being able to generalize for PSF variations. While
the reconstructions are plausible, we note that there is a
drop in visual quality for some images. We consider this to
be the trade-off in our method between visual fidelity and
generalizing to multiple PSFs. This seems to suggest that
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(a) Ground Truth (b) Ours

(c) Le-ADMM-U

(d) UNet

(e) ADMM

Figure 3: Comparison on DiffuserCam dataset [30]: Reconstruction output of sample images from different models for
the DiffuserCam dataset (with the original single PSF). Note that our model performs on-par with the state-of-the-art Le-

ADMM-U model.

calibration-free lensless images can be as good as having
knowledge of the PSF for deep learning reconstruction.

Noise Ablation Study: We observed that none of the
models are designed to robustly handle sensor noise that is
not seen during training. Simulating even a tiny amount
of maximum Gaussian noise o = 0.005 led to significant
degradation in SSIM and PSNR scores as seen in Figure 4]
This speaks to the brittleness of these models with respect to
their training data. To overcome this, we show that further
training our model for about 100 epochs with images con-
taining varying additional noise helps overcome this sen-
sitivity to unseen noise at test-time and improve network
performance. This is a useful strategy that can be used for
all lensless reconstruction networks.

Generalizing to Multiple PSFs: One of the main char-
acteristics of a diffusion-based lensless camera is that the
mask’s PSF are random caustic patterns. While this works
well for solving the inverse problem for lensless cameras, it
is limited by the need for PSF calibration which is unique
to each individual diffusion mask. With vast improvement
in reconstruction quality using DNNS, this further begs the
question of whether it would be a feasible implementation
to train a unique model for each camera or diffusion mask to

Noise vs. PSNR

2 =—— Ours (w/o added noise training)
— - Ours (w/ added noise training)
= ADMM

20 —— Le-ADMM

Le-ADMM*

18 — —— Le-ADMM-U

0.000 0.001 0.002 0.003 0.004 0.005
Gaussian Variance

Figure 4: Noise: Ablative study of model performance
with respect to additive Gaussian noise. Notice how even
an extremely small amount of noise (¢ = 0.005) results
in degradation of performance for all methods. However,
specifically training our model with noise results in more
robust performance.
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(a) Lensless Image (b) PSF Estimate

(c) PSF Target

(d) Reconstruction (e) Image Target

Figure 5: Multiple PSF Reconstruction: We display the PSF estimated as well as the reconstructed images for three different
simulated PSFs on the DiffuserCam dataset [30]. Our method is able to generalize and reconstruct multiple PSFs, although
the quality of the reconstruction is missing some high frequency information. However, the resulting reconstructions are
uniform in quality across the three different PSFs. This shows the potential for generalization of our network for multiple
lensless camera without training a separate model for each one.

(a) Lensless Image (b) PSF Estimate

(c) PSF Target (d) Reconstruction

Figure 6: Blind Deconvolution Reconstruction: We display results from a blind deconvolution method in [31]], which
struggles to estimate the PSF or the image correctly. Blind deconvolution methods traditionally work well for estimating

(e) Image Target

motion blur or more structured optical blur PSFs as opposed to the randomness of a diffusion PSF.

be used. Being able to generalize a single trained model to
reconstruct for variations in the PSF will further help make
lensless cameras more usable as reconstruction quality con-
tinues to improve towards photo-realistic quality.

Our results for training for multiple PSFs are shown in
Figure 5] and give us promising results for both estimat-
ing the PSF and reconstructing the corresponding image.
We see that the resulting PSF estimations are overall very
close to the target PSF, with very slight deviations. These
estimated PSFs are still useful for the network to perform
image reconstruction including learning variations in the
PSF through the self-supervised consistency loss. Quan-
titatively, we report an average PSNR of 35.24 dB and an
average SSIM value of 0.812 for PSF estimation on our syn-
thetic dataset.

The resulting image reconstructions show the ability for
the generator to perform reconstruction for the different
PSF, although with a drop in output quality when compared
to the single PSF trained network. This may be an expected
trade-off for output quality versus generalizability. Keeping

in mind that the lensless data used for this section was simu-
lated by performing the forward model convolution and true
PSF variations from different masks can prove to be a much
harder problem as shown with real captured data.

Comparison with Blind Deconvolution: Our image re-
construction problem is also very similar to the problem of
blind deconvolution typically found in motion or image de-
blurring tasks, where an unknown blur kernel has been con-
volved across the image. However, we note that the blur
kernels for motion or image blur are typically more struc-
tured and less random as lensless camera PSFs. Neverthe-
less, we utilize a blind deconvolution method [31] for our
task in Figure [f] As you can see, the blind deconvolution
method does not adequately reconstruct either the PSF or
image as compared to our network architecture results.

Real Hardware Prototype Results: We also attempt to
perform reconstruction on our own captured video dataset
with three PSF variations, shown in Figure m While the
results are not quite the same reconstruction quality as the
DiffuserCam dataset, we can still see recovered regions that
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(a) Lensless Image (b) ADMM

(c) Reconstruction

(e) Actual PSF

(d) Target

Figure 7: Real Data with Multiple PSFs: Example reconstructions of real image data captured with three different PSFs
are shown in (c). For comparison, the ADMM algorithm, with the known PSFs, reconstructed the images in column (b).
Reconstruction performance across both methods was not as visually pleasing, primarily due to the real PSFs (shown in (e))
quality in captured caustics. Despite this limitation, the network is still able to invert the measurements to achieve plausible

reconstructions at higher fidelity than ADMM.

resemble the target image. For comparison, we also show
the results of the ADMM algorithm on our real data, which
performed worse than our network even when given the ac-
tual PSF at reconstruction time.

Trying to reconstruct for our captured dataset proved to
be a much more challenging task. We hypothesize that this
is primarily due to the diffusion layer used and the result-
ing PSF of each dataset. The DiffuserCam dataset utilizes
a very small angle optical diffuser which results in more
sparce and spread out caustics [2, [30]], while our diffu-
sion layer uses a plastic polyethylene terephthalate (PET)
layer, commonly used for anti-static bags. The diffusion
caused by this material, while still random, has a much
larger spread of light with more dense caustics as seen in
the figure. Even with this limitation, analysis for the trained
model on the captured test set resulted in an average PSNR
of 19.88 dB and and an average SSIM of 0.6769. While
this is comparable to some of the better models compared
in Table [T, we believe these metrics may not be the best
comparisons for the perceptual quality of the reconstructed
images as seen from the image results. It remains an avenue
of future research to quantify which PSFs and their caustic
patterns are ideal for lensless image reconstruction.

6. Conclusion

In this paper, we proposed a method for lensless im-
age reconstruction that can generalize across varying point
spread functions (PSFs) corresponding to different cam-
eras. This allows our model to train and perform reconstruc-
tion without the need for any PSF calibration and does not

simply learn parameters to a single PSF. This is achieved
through a combination of adversarial training, PSF estima-
tion, and a cycle consistency loss. We verify this approach
on the DiffuserCam dataset, a simulated multi-PSF dataset,
as well as our own captured video dataset. We show that
our network achieves performance on-par with state-of-the-
art methods without requiring PSF information at test-time,
and with low computational latency. However, we point out
challenges underlying the robustness of lensless image re-
construction including sensitivity to added noise and depen-
dence on high quality caustics in the PSF as demonstrated
in our real hardware prototype experiments. Despite these
challenges, our network is able to achieve plausible visual
reconstruction.

There are many avenues for future work to make lens-
less imaging more robust. This includes improving PSF
estimation or using unsupervised or self-supervised tech-
inques only so that calibration is not needed even during
training. Our images, while at modest resolutions, are not
yet reconstructed at full 1080p resolution, and techniques
such as progressive GANs may help here [23]]. Finally in
addition to single frame reconstruction, lensless video re-
construction is another opportunity for deep learning tech-
niques in general.
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