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Abstract
Key message  Advances in deep learning are providing a powerful set of image analysis tools that are readily acces-
sible for high-throughput phenotyping applications in plant reproductive biology.
High-throughput phenotyping systems are becoming critical for answering biological questions on a large scale. These 
systems have historically relied on traditional computer vision techniques. However, neural networks and specifically deep 
learning are rapidly becoming more powerful and easier to implement. Here, we examine how deep learning can drive phe-
notyping systems and be used to answer fundamental questions in reproductive biology. We describe previous applications 
of deep learning in the plant sciences, provide general recommendations for applying these methods to the study of plant 
reproduction, and present a case study in maize ear phenotyping. Finally, we highlight several examples where deep learning 
has enabled research that was previously out of reach and discuss the future outlook of these methods.
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Introduction

Linking genotype to phenotype is a powerful method to 
understand complex biological systems. However, the 
increasing availability of genotypic data has not been 
matched by increasing capabilities for high-throughput 
phenotyping. This is particularly the case in the field of 
plant reproduction, where relevant biological processes 
are dependent on subtle cell–cell interactions, often taking 
place deep within vegetative and reproductive tissues. Until 
recently, computer vision-based plant phenotyping methods 
have been dominated by easily observable structures, such 
as leaves (Arvidsson et al. 2011; Zhang et al. 2012, 2017; 
Junker et al. 2014; Choudhury et al. 2016; Awlia et al. 2016) 
and roots (Yazdanbakhsh and Fisahn 2009; Clark et al. 2013; 
Slovak et al. 2014; Passot et al. 2018; Jiang et al. 2019). 

These methods have relied on traditional computer vision, 
which leverages mathematical approaches such as threshold-
ing (Otsu 1979), morphological opening and closing (Haral-
ick et al. 1987), and k-means clustering (Lloyd 1982) to sep-
arate the object of interest from the background on a pixel 
level. These approaches are generally computationally effi-
cient, but struggle when faced with complex backgrounds, 
closely packed objects, and structures with inconsistent fea-
tures. Such challenging aspects are often encountered when 
phenotyping reproductive mutants, limiting the utility of 
traditional image processing approaches.

Over the past several years, neural network-based deep 
learning methods have been increasingly applied to address a 
wide range of biological questions (reviewed in (Ching et al. 
2018)). Neural network-based computer vision approaches 
are fundamentally different from the previous generation of 
image processing techniques because they rely on large sets 
of training data to function. Neural networks are composed 
of multiple layers. For image analysis, the first layer, called 
the input layer, is made up of the image pixels. The final 
layer, called the output layer, contains the model’s predic-
tions. Between the input and output layers are one or more 
hidden layers. Each layer is composed of a number of nodes 
(or neurons), which perform simple mathematical opera-
tions. Nodes are variously connected to adjacent layers and 
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have adjustable parameters that can be trained computation-
ally to accurately predict patterns in the input layer. Data 
flow from the input layer, through the hidden layers, and 
finally to the output layer. Neural networks with multiple 
hidden layers are called deep neural networks.

Neural networks have been used as versatile solutions 
to many phenotyping challenges. Recent improvements in 
ease of use and the development of advanced computa-
tional resources make deep learning strategies well-situated 
to drive future discoveries in plant reproductive biology. 
Here, we examine potential applications of deep learning-
based image analysis to overcome phenotyping challenges. 
We highlight current plant phenotyping systems that take 
advantage of deep learning, as well as useful deep learn-
ing frameworks, guidelines for implementing models, and 
the future outlook for these methods in plant reproductive 
biology.

Opportunities for high‑throughput 
phenotyping in plant reproduction

To date, deep learning approaches in plant phenotyping 
have been focused on similar targets to traditional computer 
vision approaches, such as leaves (Ubbens and Stavness 
2017; Ziamtsov and Navlakha 2019; Hüther et al. 2020) and 
roots (Douarre et al. 2018; Wang et al. 2019; Yasrab et al. 
2019). Additional applications of deep learning in plants 
include disease identification (Wang et al. 2017; Polder et al. 
2019), inflorescence motion tracking (Gibbs et al. 2019), and 
fruit shape (Feldmann et al. 2020). These implementations 
have performed well on images that challenge traditional 
computer vision approaches, particularly those with complex 
target objects and backgrounds. However, published tools for 
phenotyping reproductive tissues are notably scarce.

Deep learning approaches first require digital representa-
tions of the phenotype(s) of interest, generally in the form 
of images. Conceptually, there are three general targets 
for plant reproductive phenotyping (Fig. 1a). For the first, 
whole plant or individual organs such as inflorescences and 
fruit can be imaged using existing methods. Whole plant or 

Fig. 1   Leveraging deep learning for high-throughput phenotyping 
in plant reproduction. a Potential imaging targets for high-through-
put phenotyping of reproductive systems can range from the whole 
plant to individual organs to microscopic structures, both in vivo and 
in  vitro. b General deep learning strategies for image analysis. In 
classification, the class of each image is described, here germinated 
versus ungerminated pollen. When a single image contains more 
than one object, object detection can be used, a method that identi-

fies objects and classes by bounding boxes. Semantic segmentation 
identifies the class of objects in an image on a pixel level, allowing 
for the identification of object attributes like shape and area. As with 
semantic segmentation, instance segmentation identifies pixel classes. 
In addition, instance segmentation differentiates multiple instances of 
the same object class that are touching or overlapping. c Conceptual 
steps for implementing deep learning models
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organ imaging is generally simpler than other approaches, 
but observations are largely limited to secondary effects of 
reproductive processes, such as abnormalities in fruit shape 
due to aberrant seed set. Such imaging has been used to 
track mutant inheritance through kernel phenotypes (War-
man et al. 2021), estimate seed yield (Uzal et al. 2018; Khaki 
et al. 2020), measure fruit characteristics (Hamidinekoo 
et al. 2020), and classify kernel abortion (Chipindu et al. 
2020). Key considerations for whole plant or organ imaging 
include imaging systems, background selection, and devel-
opment of methods for discerning the secondary reproduc-
tive effects of interest.

A second target for reproductive phenotyping is small 
reproductive tissues, specifically the male and female game-
tophytes, the zygote and embryo, and surrounding sporo-
phytic tissues. Phenotyping these tissues are critical because 
they offer the ability to directly observe reproductive pro-
cesses in vivo. However, obtaining microscopic images of 
these tissues on a large scale can be challenging. Often the 
gametophytes are located deep within other tissues and 
require special staining or fluorescent markers to visualize 
structures of interest. In addition, complicated backgrounds 
can make computer vision approaches challenging, even 
with the use of deep learning approaches. Preliminary appli-
cations of deep learning in such instances have focused on 
identifying cells from images of plant tissues using segmen-
tation (Wolny et al. 2020). These methods have been used to 
describe ovule development (Vijayan et al. 2021).

A final type of phenotyping target is gametophytes or 
zygotes imaged in vitro or semi-in vivo (Higashiyama et al. 
2001; Palanivelu and Preuss 2006). These approaches have 
the potential to allow high-throughput imaging of game-
tophytes in a controlled environment, making them ame-
nable to deep learning approaches, but may fail to capture 
some phenotypes that are only observed in vivo. Pollen has 
been the primary target of these types of approaches, likely 
because it is relatively easy to isolate compared to the female 
gametophyte. Previous studies have used deep learning to 
identify pollen from several different species (Dunker et al. 
2020) and differentiate pollen developmental stages (García-
Fortea et al. 2020).

A variety of general purpose deep learning 
frameworks can be applied to reproductive 
phenotyping

Deep learning for image analysis can be broadly divided 
into four categories based on how objects are identified in 
the image: classification, object detection, semantic seg-
mentation, and instance segmentation (Fig. 1b). In image 
recognition problems, classification answers what class, or 
type of object, describes a single image. Classification is 

possible when individual images contain only one object 
to be identified, such as single germinated or ungerminated 
pollen grains (Fig. 1b). If more than one object is present in 
an image or if the location of the object needs to be deter-
mined, an object detection approach may be more suitable. 
Object detection uses deep learning (often convolutional 
neural networks or CNNs) to identify both the classes and 
locations of multiple objects in an image, such as germi-
nated and ungerminated pollen grains, and signifies them by 
labeled bounding boxes. Some types of experiments, such as 
shape or area measurements, may require semantic segmen-
tation or instance segmentation. These approaches identify 
the class of every pixel in an image, outputting a mask over 
objects in the image that shows not only their location, but 
their shape. Instance segmentation goes a step farther than 
semantic segmentation by resolving touching or overlapping 
objects, and thus also enables the identification of individual 
objects. Instance segmentation has been used for crop seed 
phenotyping (Toda et al. 2020), and both methods show 
potential for measuring other reproductive phenotypes, such 
as the path of growing pollen tubes or the area of developing 
embryos. The choice of deep learning strategy will vary by 
phenotyping task and is important to consider before choos-
ing a model, as models are optimized for specific strategies. 
An additional consideration is the ease of generating training 
data, a challenge that is described in more detail in the fol-
lowing section. While all deep learning approaches require 
training data, creating these data for classification tasks are 
faster than for object detection and semantic segmentation.

Several programming frameworks are available for imple-
menting deep learning models. Most require some knowl-
edge of the Python or R programming languages, as well as 
a basic familiarity with command line interfaces and Linux/
Unix operating systems. Many machine learning libraries 
exist, but here we highlight two freely available and open 
source frameworks that could serve as a useful starting point. 
Currently, the most popular and versatile library is Tensor-
Flow (Abadi et al. 2016). TensorFlow has a well-developed 
set of machine learning tools, as well as thorough documen-
tation and an active community of users. Many of the newest 
deep learning models are implemented in TensorFlow, and 
it remains at the forefront of machine learning. Taking full 
advantage of TensorFlow requires a thorough understand-
ing of neural networks and a high degree of coding abil-
ity. However, the Keras application programming interface 
(API) simplifies many of TensorFlow’s functions (Chollet 
and Others 2015) and increases accessibility to researchers 
who are not primarily focused on machine learning. Several 
well-established and generalizable TensorFlow methods 
exist for computer vision tasks, including for object detec-
tion and semantic segmentation.

PyTorch (Paszke et al. 2019) is a major alternative to 
TensorFlow. While the user base and available resources 
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are not as large as with TensorFlow, PyTorch provides some 
of the same versatile building blocks for neural network 
construction. PyTorch is tightly integrated with the Python 
programming language, so researchers with experience in 
Python may find PyTorch more intuitive to learn than Ten-
sorflow. Similar network architectures can be created with 
both TensorFlow and PyTorch, so the best library for bio-
logical image analysis will depend both on the researcher’s 
preferences and the availability of established methods in 
each library.

Implementing deep learning methods

A general workflow for implementing deep learning mod-
els can be broken down into a number of conceptual steps 
(Fig. 1c). Before pursuing deep learning, it is important 
to ensure the research question is best answered by this 
approach. Generating large amounts of high-quality training 
data require a substantial initial time investment. Traditional 
computer vision methods may be better suited to certain 
challenges, such as the segmentation of a green plant from 
a solid background. In addition, hand annotation might be 
a more efficient method with small sets of images. Deep 
learning approaches only start to see returns in truly high-
throughput cases, with the analysis of hundreds or thousands 
of images.

If deep learning is well suited to the research question at 
hand, the first step is to choose which tissues or structures 
to image, and to develop a process to generate a large quan-
tity of images. Many commercial and academic phenotyp-
ing platforms exist for image generation, but the specific 
challenges of imaging reproductive structures may require 
the development of new technologies. Alongside image gen-
eration, the researcher should choose the category of image 
analysis (classification, object detection, semantic segmen-
tation, or instance segmentation) and deep learning model 
that can most effectively answer the research question. For 
example, counting fertilized ovules may only require object 
detection, whereas measuring the size of developing seeds 
could benefit from semantic segmentation.

Next, labeled training images must be generated, and 
subsequently split into training, validation, and test sets. 
Training and validation sets allow the model to learn and 
evaluate itself during the training process, whereas test 
sets are reserved for unbiased final evaluations of the 
trained model. A key consideration when training any deep 
learning model is to avoid overfitting the data. Overfit-
ting results when the model predicts the training data too 
closely and is consequently not generalizable to new data. 
Reserving an exclusive test dataset aside from training and 
validation datasets provides a final check that the model 
is generalizable beyond the datasets used for its creation. 

The number of training images required for an accurate 
model will vary by task, but expect to generate between 
100 and 1000 training images, at a minimum. Measur-
ing highly variable phenotypes, such as identifying cell 
types in mutant ovules, will likely require more training 
data than measuring relatively straightforward phenotypes, 
such as counting seeds on a solid background. One com-
monly used strategy to leverage small amounts of training 
data is to employ transfer learning (Douarre et al. 2018; 
Hüther et al. 2020). Transfer learning begins with a well-
trained model from a previous deep learning task, often 
a generalized task such as the identification of common 
objects, then retrains the top layers of the model with a 
new training set for the task at hand. Another strategy 
is to use semi-automated methods to increase the size of 
training sets, a particularly useful method for semantic 
segmentation training data (Adams et al. 2020).

After sufficient training data are generated, the model 
is trained. In deep learning models, training is an iterative 
process in which parameters of the network’s nodes are 
adjusted to optimize predictions. After each iteration, or 
epoch, the model adjusts to better predict outputs. Adjust-
ments are typically made to minimize a "loss function," 
which is a measurement of how accurately the model pre-
dicted validation data. Model training time depends on the 
size of the training dataset and model complexity, and can 
vary widely, from minutes to days or even longer. The pro-
cess can be vastly sped up with high performance GPUs, 
which are available through local or cloud-based computa-
tional resources. Many cloud services offer computational 
resources optimized for deep learning frameworks.

Once a model is trained, predictions, or inference, 
can be made on experimental datasets. Inference is typi-
cally less computationally intensive than model training 
and can often be run on a consumer grade machine. It is 
important that the researcher defines how the performance 
of the model is evaluated throughout the deep learning 
process. For image classification tasks, performance met-
rics typically aim to quantify the number of true positive, 
false positive, false negative, and true negative predictions 
(often termed the "confusion matrix"). Specific combi-
nations of these quantities include accuracy, precision, 
recall, and specificity. “Area under the receiver operating 
characteristic curve” (AUC) is a more thorough formula-
tion of the previous measures. For object detection and 
semantic segmentation, the accuracy of object location 
and size predictions can be evaluated using intersection 
over union (IoU) and mean average precision (mAP). More 
accessible metrics can also be used. For example, with 
regression tasks, coefficients of determination comparing 
model predictions to ground truth are useful metrics, as 
well as mean absolute deviations.
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Maize ear phenotyping: a case study

Our recent work to create a high-throughput phenotyping 
system for maize ears can serve as a practical example of 
one implementation of deep learning methods for plant 
reproductive phenotyping (Warman et al. 2021). Our goal 
was to track changes in Mendelian inheritance caused by 
mutations in genes highly expressed in the male gameto-
phyte. To do so, we used a collection of 56 GFP-tagged 
transposable element insertion mutants (Li et al. 2013; 
Warman et  al. 2020). Kernels carrying mutant alleles 
express the Green Fluorescent Protein (GFP), allowing 
quantification of mutant transmission by counting fluo-
rescent kernels. To facilitate high-throughput phenotyp-
ing, our method targeted the maize ear as a proxy, as 
functional defects in the male gametophyte will result in 
altered transmission frequencies. We developed a custom 
rotational scanning system to capture images of the ear 
for downstream analysis (Fig. 2a). We chose to use a deep 
learning approach to quantify kernels because traditional 
computer vision methods failed to overcome variations in 
our images, such as kernel shape and fluorescence inten-
sity. For our deep learning model, we used the TensorFlow 

Object Detection API (Huang et al. 2016) implementa-
tion of Faster R-CNN with Inception Resnet v2 (Ren et al. 
2015; Szegedy et al. 2016). This approach combined a 
powerful model with a simple API. We chose object detec-
tion because our primary goal was to count kernels to track 
mutant transmission. Segmentation-based approaches 
would have provided more detailed descriptions of each 
kernel, but bounding boxes gave us the information we 
needed, while minimizing the time required to produce 
training data. For training the model, we generated 300 
images annotated with bounding boxes (Fig. 2b), evenly 
distributed across ears generated in two field seasons. Each 
image took approximately 20 min to label, for a total of 
100 h of labor to create the entire dataset.

After image annotation, we split the dataset into training 
and validation sets. We used a transfer learning approach, 
taking advantage of a network pre-trained on the Collec-
tion of Common Objects (COCO) dataset, which consists 
of ~ 200,000 labeled images of everyday objects. Transfer 
learning reduced both the amount of training data that was 
required, as well as the time required to train our model. 
The model was trained on an Nvidia V100 GPU for approxi-
mately one hour. After the model was trained, we performed 
inference on the testing set, a set of 320 manually counted 

Fig. 2   Maize ear phenotyping as an example deep learning workflow. 
a First, a rotational scanning system creates a flat projection of the 
surface of an ear. Fluorescent kernel markers are visible in this pro-
jection, signifying the presence of a genetically engineered transpos-
able element insertion in a gene of interest. The ratio of fluorescent 
(mutant) kernels to non-fluorescent (wild-type) kernels can be tracked 
to screen for non-Mendelian inheritance of the mutant alleles. b Next, 
a training set of 300 projections with manually assigned bounding 
boxes labeling each kernel (corners marked by green circles) was 

generated. A transfer learning approach and the Tensorflow Object 
Detection API was then used to create a model based on the train-
ing dataset. c Model inference on the independent test set generates 
bounding boxes predicting the locations of the objects of interest 
in the image. Blue boxes signify non-fluorescent kernels and green 
boxes signify fluorescent kernels. d A comparison between model 
predictions and manual counts for fluorescent and non-fluorescent 
kernels (160 ear projections) was used to validate the model
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images that were not used in the training process (Fig. 2c). 
We measured mAP, as well as calculated linear regres-
sions and mean absolute deviations comparing hand counts 
to model predictions. The outcome was a highly accurate 
model, with adjusted R2 for kernel counts between 0.96 
and 0.98, depending on field season and phenotypic marker 
(Fig. 2d).

The main challenges to implementing deep learning 
methods were imaging and generating the training data. 
We found that using consistent imaging conditions (e.g., 
the same camera) was important, as networks trained on 
data from one camera were not easily transferable to data 
collected on another camera. In addition, the large num-
ber of kernels present in each image reached the limits of 
our GPU’s memory capacity, requiring a strategy of image 
subdivision and recombination. Ultimately, deep learning 
methods enabled us to both (1) survey a larger number of 
ears than would have been possible by manual counting, 
leading to the discovery of new mutants with quantitative 
phenotypic effects; and (2) generate larger datasets for each 
allele, enabling a more accurate estimation of transmission 
rate and increased statistical power to identify significant 
effects.

The future of deep learning in reproductive 
phenotyping

Deep learning is a rapidly advancing field. Many deep learn-
ing models are general purpose, allowing advancements in 
unrelated fields to be rapidly applied to specific cases like 
plant reproduction phenotyping. A thorough understanding 
of general purpose machine learning libraries like Tensor-
Flow and PyTorch will enable biologists to take advantage 
of new research in image analysis. While classification and 
object detection models are relatively mature, semantic seg-
mentation models are an area of active research. These mod-
els will gradually improve, allowing for more reliable iden-
tification of complex objects in noisy images, such as pollen 
tubes growing down the pistil or ovules at fertilization.

Large, high-quality training datasets improve the accu-
racy and versatility of models. Generating training datasets 
remains a major barrier to implementing these models. 
However, various methods of data augmentation can help 
researchers make the most out of available data. Traditional 
image augmentations include transformations like random 
cropping, horizontal and vertical flips, hue adjustments, and 
the addition of random noise. Recent work has developed 
new methods for increasing the size of training sets. One 
method, called "domain randomization," has successfully 
been used in wheat to generate artificial training data by 
semi-randomly layering cropped images of single wheat 
seeds to simulate a large number of seeds on a flat surface 

(Toda et al. 2020). Domain randomization has also been 
used in Arabidopsis to generate artificial training data for 
leaf segmentation (Ward et al. 2018). Another method takes 
advantage of generative adversarial networks, or GANs 
(Zhu et al. 2018). GANs are a type of machine learning that 
uses two neural networks to compete against each other to 
generate realistic data. One network generates data (in this 
case images), while the other network evaluates the data to 
determine which examples are real and which are artificial. 
The network learns from these comparisons and can use 
this knowledge to create novel images that have the charac-
teristics of the input set. These types of networks have been 
used to improve accuracy by increasing the size of training 
datasets.

Another potential future direction is an expansion of 
what constitutes a phenotype. Historically, phenotypes 
have included simple concepts like malformed or undevel-
oped structures, growth defects, or color changes, as well as 
quantitative effects, such as natural variation in fertilization 
success in populations across a species’ geographic distri-
bution. Neural networks allow for the measurement of more 
subtle, multidimensional phenotypes, such as abstractions 
for how images of plants change in response to treatments 
like drought or heat. An application of this concept, called 
latent space phenotyping (LSP), shows strong potential at 
characterizing changes in images of plants unrecognizable 
by the human eye (Gage et al. 2019; Ubbens et al. 2020). 
This approach compares sets of images from treated and 
control samples by using a neural network to create com-
pressed representations of visual characteristics of the 
images, termed latent space. This process does not require 
labeled data beyond experimental and control sets, relying 
on the neural network to determine multidimensional phe-
notypes characteristic of the experimental set. These LSPs 
can then be interpreted using additional networks, ultimately 
uncovering complex phenotypes that, for example, can be 
used for genome-wide association studies (GWAS). LSP 
circumvents the need for hand-labeled training sets and also 
has the potential to incorporate temporal changes into such 
phenotypes (Taghavi Namin et al. 2018). Additional meth-
ods can take more explicit approaches, such as multitask 
learning, which optimizes networks based on several prede-
termined phenotypes simultaneously (Dobrescu et al. 2020).

Implementing deep learning methods for phenotyping can 
be intimidating, as the time and effort necessary to develop a 
successful model is significant, and therefore not appropri-
ate for all experiments. However, the power and versatility 
of these methods make them particularly useful for high-
throughput phenotyping, allowing for increased throughput, 
precision, and the measurement of complex phenotypes that 
may be difficult to describe using more traditional methods. 
As their use spreads, deep learning methods will become 
more accessible, making now an ideal time for applications 
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in high-throughput phenotyping in plant reproductive 
biology.

Definitions sidebar: deep learning 
terminology

Neural network A biologically inspired computing system 
that transforms input data (in this case images) into outputs 
(in this case predictions). Neural networks contain nodes, 
inspired by biological neurons, that are arranged in multiple 
layers, or collections of nodes. In its most basic form, each 
node can aggregate data from previous nodes, transform the 
data using trainable weights, and send the data to nodes in 
the following layer. Deep learning is a subset of machine 
learning that combines many-layered neural networks with 
large amounts of training data to enable predictions from 
heterogeneous datasets.

Classification The prediction of a label (also known as a 
class) from input data. For a single image input, a single 
class would be predicted, such as germinated or ungermi-
nated pollen.

Object detection The detection and localization of objects 
of one or more classes in an image. Unlike classification, 
object detection enables multiple objects to be identified in 
a single image.

Semantic segmentation Classification at the pixel level. 
Semantic segmentation enables the identification of objects 
in greater detail than object detection.

Instance segmentation Classification at the pixel level, with 
the addition of differentiation of touching or overlapping 
instances of one or more classes.

Convolutional neural network (CNN) A neural network con-
taining convolutional layers. Convolutional layers aggregate 
image data by moving a filter across the image and summa-
rizing pixel values using mathematical operations. Convo-
lutional layers allow the network to learn patterns in pixel 
values across the entire image.

Training, validation, and test sets Data used to train a neural 
network model are typically divided into training, validation, 
and test sets. The training set, usually the largest portion of 
the input data, is used to train the model. During each round 
of training, the training set is used to adjust the weights 
of individual nodes to improve the model’s accuracy. The 
validation set is used in the training process to evaluate the 

model’s performance after each training round. Separate 
training and validation sets are used to prevent overfitting, a 
situation that can arise from the model learning the patterns 
of the training dataset too specifically and lacking general-
izability. The test set is used after training to evaluate the 
model. Because the model is not exposed to the test set until 
after training, evaluating the model with the test set provides 
an unbiased method to test the model’s performance.

Loss function During the training process, neural net-
works are evaluated using a loss function. Loss functions 
quantify the accuracy of the network’s predictions. Neural 
networks iteratively optimize the loss function during train-
ing using a process called stochastic gradient descent.

Definitions sidebar: evaluating model 
performance

Confusion matrix Table used to evaluate binary classifica-
tion models, based on class predictions and class ground 
truth.

Actual class 

Positive Negative 

Predicted class 

Positive True positive (TP) False positive (FP) 

Negative False negative (FN) True negative (TN) 

Accuracy TP+TN

TP +TN+FP+FN
 A measure of how often the model 

predicted the correct class. Accuracy is a poor measure of 
model performance because models with higher accuracy 
do not always have more predictive power than models with 
lower accuracy.

Precision TP

TP+FP
 Precision measures the fraction of correct 

positives over the total number of positive predictions. This 
metric is useful for measuring a model’s performance when 
true positives are uncommon, and the cost of a false positive 
is high.

Recall TP

TP+FN
 Recall measures the proportion of positives that 

were correctly identified by the model. Precision and recall 
are often reported together, as an increase in recall is typi-
cally associated with a decrease in precision.

Specificity TN

TN+FP
 Specificity measures the proportion of 

negatives that were correctly identified by the model.
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Area under the receiver operating characteristic curve 
(AUC) AUC is a measure of a binary classification model’s 
performance that summarizes true positive and false posi-
tive rates. An AUC of 1 represents perfect separation of two 
classes, whereas a model with an AUC of 0.5 performs no 
better than random.

Intersection over union (IoU) IoU is a method to evaluate 
predictions in object detection and semantic segmentation 
models. The method compares predicted bounding boxes or 
masks to ground truth annotations. Intersection describes 
the overlapping area between the prediction and the ground 
truth. Union describes the total area covered by both the 
prediction and the ground truth. If the prediction and ground 
truth perfectly overlap, IoU is 1, whereas incomplete overlap 
generates values less than 1.

Mean average precision (mAP) mAP is a performance 
metric often used to evaluate object detection or semantic 
segmentation models. This method summarizes a precision 
recall curve (similar to AUC) across all classes and at vari-
ous IoU thresholds.
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