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ABSTRACT

A graph G is asymmetric if its automorphism group of vertices is trivial. Asymmetric graphs were
introduced by Erdés and Rényi in 1963. They showed that the probability of a graph on n vertices
being asymmetric tends to 1 as n tends to infinity. In this paper, we first consider the enumeration
of asymmetric trees, a question posed by Erdds and Rényi. We show that the number of asymmet-
ric subdivided stars is approximately g(n — 1) — [%5], where q(n) is the number of ways to sum
to n using distinct positive integers found by Hardy and Ramanujan in 1918. We also investigate
cubic Hamiltonian graphs where asymmetry, where at least for small values of n, seem to be rare.
It is known that none of the cubic Hamiltonian graphs on 4 < n < 10 vertices are asymmetric,
and of the 80 cubic Hamiltonian graphs on 12 vertices only 5 are asymmetric. We give a construc-
tion of an infinite family of cubic Hamiltonian graphs that are asymmetric. Then we present an
infinite family of quartic Hamiltonian graphs that are asymmetric. We use both of the above
results for cubic and quartic asymmetric Hamiltonian graphs to establish the existence of k-regular

asymmetric Hamiltonian graphs for all k > 3.

1. Introduction

We consider undirected graphs without multiple edges or
loops. A graph G is asymmetric if its automorphism group
of vertices is trivial. Asymmetric graphs were introduced by
Erdés and Rényi in 1963. They showed that the probability
of a graph on n vertices being asymmetric tends to 1 as n
tends to infinity. In this paper, we investigate cubic
Hamiltonian graphs where asymmetry, at least for small val-
ues of n, seems to be rare. It is known that none of the
cubic Hamiltonian graphs on 4 < n < 10 vertices are asym-
metric, and of the 80 cubic Hamiltonian graphs on 12 verti-
ces only 5 are asymmetric [5].

We will use n to denote the number of vertices in a
graph. For a graph G we will use V(G) to denote the set of
vertices in G, and E(G) to denote the set of edges in G. The
edge between vertices u and v will be denoted uv. Two
graphs G and H are isomorphic if there is a bijection f :
G — H where uv € E(G) < f(u)f(v) € E(H). Recall that f
is an automorphism if it is an isomorphism from a graph to
itself, and the set of all automorphisms of a graph form an
algebraic group under function composition. We will use
Aut(H) to denote the automorphism group of vertices in a
graph H. The complement of a graph G will be denoted G.
We will use C, to denote a cycle on n vertices; K, to
denote a complete bipartite graph where one part has s ver-
tices and the other part has t vertices; and P, to denote a
path on n vertices. The degree of a vertex v is the number of

edges incident to v. A graph is k-regular if each vertex has
degree k. An edge-subdivision of an edge uv is performed
by replacing the edge uv by two edges uw and wv, where w
is a new vertex. A subdivided star is a graph that can be
obtained by subdividing one or more edges of the star
Ki, n—1. The distance between two vertices u and v is the
number of edges in a shortest path between u and v. The
distance between an edge and a subgraph will be the min-
imum vertex distance between a vertex incident to the edge
and a vertex in the subgraph. For any undefined notation,
please see the text [4] by West.

In this paper we first investigate asymmetric trees. We
show that the number of asymmetric subdivided stars on n
vertices equals the number of partitions of an integer into at
least three distinct parts, a problem studied by Hardy and
Ramanujan [2] in 1918. Furthermore, we identify the small-
est asymmetric tree that is not a subdivided star.

We also give a construction of an infinite family of cubic
Hamiltonian graphs that are asymmetric. Then we present an
infinite family of quartic Hamiltonian graphs that are asymmet-
ric. We use both of the above results to establish the existence
of k-regular asymmetric Hamiltonian graphs for all k > 3.

A vertex v € V(G) is unique if there is a property P such
that for each vertex w € V(G) — {v}, we have that v satis-
fies P and w does not satisfy P. A graph G can be shown to
have a trivial automorphism group if each vertex is unique.
For any graph G, two edges e;,e; € E(G) are said to be
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Figure 1. The smallest asymmetric tree.

different if and only if G— {e;} 2 G— {e;}. It is known
that if G has no component isomorphic to P,, then
Aut(V(G)) = Aut(E(G)). In this way, one could alterna-
tively show that each edge in G is different. In the paper, we
will show that two edges are different by showing that one
edge has a property (e.g. included in a particular type of sub-
graph, or is incident to a vertex that is unique) that another
edge does not. We next state an elementary property relating
the automorphism group of a graph and its complement.

Proposition 1.1. Given any graph G, Aut(G) = Aut(G).
Theorem 1.1. Every asymmetric graph on n vertices can be
extended to an asymmetric graph on n+ 1 vertices.

Proof. Let G be an asymmetric graph. If G has no vertex of
degree one, then we can add a new vertex w along with the
edge wv, where v is a vertex of largest degree. Note that all
of the vertices that were unique in G - v will remain unique.
The vertex v will be unique since it has the largest degree,
and the vertex w is unique since it has the smallest degree.
If G has a vertex of degree one, let u be a vertex with
degree one and the greatest distance from a vertex of degree
greater than two. Then we can add a new vertex x along with
an edge xu. Note that all of the vertices that were unique in G
- u will remain unique. The vertex u will be unique since it is
the only vertex that is adjacent to a vertex of degree one, and
vertex x is unique since it is the only vertex of degree one. [

In Section 2, we give results for the enumeration of a
class of asymmetric trees. In Section 3, we investigate asym-
metric cubic Hamiltonian graphs and present an infinite
family of these graphs. In Section 4, we investigate asymmet-
ric quartic Hamiltonian graphs and again provide an infinite
family. Lastly, Section 5 summarizes the results of the paper
and states open problems.

2. Trees and subdivided stars

The smallest asymmetric tree was given by Erd6s and Rényi
in [1] and is depicted in Figure 1.

Notice that the smallest asymmetric tree is a subdivided
star with n=7. We use T}, ,,, .. to denote a subdivided
star with a vertex of degree k, which we refer to as the cen-
ter vertex, and pendant paths P, , P,,, ..., P, extending from
the center vertex. Hence, the graph shown in Figure 1 will
be denoted T, ;. If we continue to extend any pendant
path of the subdivided star on seven vertices, such that no
two paths are the same length, we build an asymmetric sub-
divided star on n vertices. Figure 2 depicts the asymmetric
subdivided star T, 4 when n=_8. Notice that each pendant
path has a distinct length.

Theorem 2.1. If G=T, ., ., wWhere k>3 and

ny, My, ..., g are all distinct, then G is asymmetric.
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Figure 2. The only asymmetric tree on eight vertices.

Proof. Let G = Ty, p,,..,n, Where k>3 and ny,n,,...,n; are
all distinct. Then any two vertices on the same pendant path
have a different distance to the center vertex v, which is
unique as it has degree k. In this way, any two vertices on
the same pendant path are unique. For vertices on different
pendant paths, if we consider G - v we have k non-iso-
morphic paths. Thus, any two vertices on different pendant
paths are in components of different sizes, and are therefore
unique. O

We count the number of asymmetric subdivided stars
using integer partitions. A partition of n - 1 into three or
more distinct parts ensures a sub-divided star where no two
pendant paths have the same length. In [2], Hardy and
Ramanujan partition integers into distinct parts and give a
formula for counting them. We adopt the notation q(n) for
this formula, as used in [3]. However, because a partition on
less than three parts yields a path, which is symmetric, we
are only interested in distinct partitions of three or more
parts. Moreover, for a subdivided star on n vertices we con-
sider the integer partitions of n — 1. Thus, removing parti-
tions of integers with only two parts from q(n — 1) results
in our formula gives the number of asymmetric sub-divided
stars, [ASDS,| = q(n — 1) — [%5].

The smallest asymmetric tree has seven vertices. This
graph can be extended to the only asymmetric tree on eight
vertices, T1 5 4. This graph can be extended to two non-iso-
morphic asymmetric trees on nine vertices: Ty, 5 and Ty 3 4.
However, a vertex sub-division could be performed on the
central vertex of Tj,s to obtain the graph found in
Figure 3. By Theorem 1.1, it is possible to extend the longest
pendant path of the graph in Figure 3 to create an infinite
family of asymmetric trees.

We note by Theorem 1.1, every asymmetric tree on n
vertices can be extended to an asymmetric tree on n+ 1 ver-
tices. Hence all asymmetric trees can be extended to infin-
ite families.

3. Asymmetric cubic Hamiltonian graphs

In this section we provide a construction for an infinite
family of asymmetric cubic Hamiltonian graphs.

3.1. Construction

We begin by detailing a procedure for constructing the graph:

(1) Construct C, where n is even and n > 12 and label
the vertices from v, to v,,, clockwise.

(2) Add the edge VaVii which creates two unequal sets
of vertices.

(3) Add the edge viv,_;.

(4) Add the edge v,_1v,_3.
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Figure 3. The smallest asymmetric tree that is not a subdivided star.

(5) For each v €G, then add the

edge vivy_a—k.

if 2<k<2-2,

This yields a cubic Hamiltonian graph on n vertices, and
examples of this graph on 12 and 18 vertices are depicted in
Figure 4. Note that there are exactly two C; subgraphs,
which remain fixed as » increases. We will now show this
graph has no symmetry.

3.2. Ensuring a trivial automorphism group

In order to show that this cubic Hamiltonian graph on n
vertices has a trivial automorphism group, we will show that
every edge is different from all other edges in the graph. We
begin by partitioning edges into sets based on various prop-
erties, such that edges in one set are different from edges in
all other sets.

We partition E(G) as follows:

° E(I) = {V1V2}
Edges incident to two C; subgraphs and are not con-
tained in a C,.

o E(II) = {vuVn—1, VaV1, ViVn2, VaVn—a, Va_3Vay1 |
Edges that are in a C; and in a Cs.

e E(INN) = {vn,zvn,l,vn,lvn,3,v§,1v%, v§,1v§,2}
Edges that are in a C; and incident to a vertex that is
distance 2 from a vertex in the other Cs.

o E(IV) = {vy3Vp 2, vuow}
Edges that are in a C; but not incident to a vertex that is
distance 2 from a vertex in the other Cs.

o E(V)={vave 1,V 3vy 4}
Edges that are incident to a C; (and are not in a C; nor
a Cs).

o E\VI)={nvp o |2<k<5—-4}
Edges that are in two Cys, but no Css.

o E(VII) ={mvn|2<k<5—3and §<k<n-—5}
Edges that are in a C; and incident to a C,.

In this way, edges in each set are different from edges in
all other sets. Now we must also show that every edge in
each set is different from all other edges within the
same set.

e E(I):
e This set has only one edge.
e E(II):
e Edge v,v,_; has three distinct paths of length one to
a C; subgraph.
e Edge v,v; is distance one from the C; subgraph with
vertices Vs, Va_1, V22, while the edge v,v,_; is not.

In this way, the edges v,v,_1, v, and v;v,_, are different.

e The edges v,v,—4 and vz_3vuy, are different from the
edges v, V11, vav1 and viv,_p, as the latter edges are
distance one or less from the C; with vertices
Vn—1>Vn—2>Vy—3, Whereas the edges v,v,_4 and
Vi_3Vuyy are not.

e The edge vz 3vzi; has two distinct paths of length
one to a C;, while the edge v,v,_4 only has one.

Thus, the edges v,v,4 and vz_3vuyy are different. In this
way, all the edges in E(II) are different.
e E(III):

e Edges vz;vz and vz1vz, are in neither a C; nor a G,
while the edge v,_1v,_3 is in a Cs (and not in a Cy),
and the edge v,_,v,—1 is in a C4 (and not in a Cg). In
this way, the edges v,_v,_3 and v,_,v,_; are different.

e In order to differentiate between the edges v2_;v: and
Va_1Vip, We compare the distance from each edge to
the C; subgraph with vertices v,_1, v4—2,V4—3. When
comparing distances to the C; subgraph between any
edge vy, where 2<k<mn—5and t =k+ 1, we do
not consider paths that use the edge v,v:_1, as two
edges can reach the C; subgraph in the same distance
using this edge (due to the symmetry below the edge
v2Vy—4). Therefore, when we compare the distance
from each edge to the C; subgraph, we use paths that
only use the exterior edges below the edge v,v,_4 in
order to differentiate between edges.

Using paths that only use the exterior edges below the
edge v2v,—4, we find that the edge vz, vz is distance four
away from the C; subgraph, while the edge vi_vz, is
distance three. Therefore, the edges vajvz and vz_jv2
are different. Thus, all the edges in E(III) are different.

e E(IV):

e Edge vz ,v: is part of a Cy, while the edge v,—3v,,—» is
not. In this way, the edges in E(IV) are different.

e E(V):

e Edge v,v:; has a path of length one to a C; sub-
graph, while the edge v,_3v,_4 does not. Thus, the
edges in E(V) are different.

e E(VI):

o We differentiate between edges within this group by com-
paring distances from each edge to both C; subgraphs.
Recall that edges below the edge v,v,_4 have symmetry
about the edge v,vz—;. Thus, when comparing distances
from edges to each C; subgraph, we use paths that do
not use the edge v,v:_, and only use the exterior edges
below the edge v,v,_4 to ensure distinct path lengths.

For each edge in set VI, when we list the shortest path
distance to each C; subgraph, we find that each edge
has a unique pair of distances. This is because the edge
vavz_y splits C, into two unequal subgraphs so that the
path along the exterior of one side of the edge v,vz—; to
the top C; subgraph is different to the path along the
exterior of the other side of the edge v,v: ;. This
ensures that all edges in E(VI) are different.

o E(VI):

o We differentiate between edges within this group by

comparing distances from each edge to both C;



Figure 4. Asymmetric cubic Hamiltonian graphs.

subgraphs. Recall that edges below the edge v,v,_4
have symmetry about the edge v,v:_;. Thus, when
comparing distances from edges to each C; subgraph,
we use paths that do not use the edge v,v:; and
only use the exterior edges below the edge v,v,_4 to
ensure distinct path lengths. For each edge in Group
VII, when we list the shortest path distance to each
Cs subgraph, we find that each edge has a distinct
pair of distances. This is because the edge v,vz_; splits
C, into two unequal subgraphs so that the path along
the exterior of one side of the edge v,v:_; to the top
C; subgraph is different to the path along the exterior
of the other side of the edge v,v:_;. This ensures that
all edges in E(VII) are different.

In this way, the edges within each group are different from
each other. Thus, every edge is different compared to all other
edges in the graph. Consequently, the graph has a trivial auto-
morphism group, and therefore, has no symmetry. In this way,
we have shown that this infinite family of cubic Hamiltonian
graphs on even n > 12 vertices has no symmetry.

4, Asymmetric quartic Hamiltonian graphs

We now present constructions of asymmetric quartic
Hamiltoninan graphs on even n > 12 vertices. These con-
structions depend on congruency of #n modulo 4.

Constructing the graph on # = 0 mod 4 vertices

(1) Construct the cubic Hamiltonian graph described in
Figure 1(a) starting at C, and label the vertices from 1
to n consecutively, traversing clockwise.

(2)  Add the following edges:

.n
ViV and vy iV(z_i) mod » Where 1 <i < 3~ 1

Constructing the graph on n =2 mod 4 vertices

(1) Construct the cubic Hamiltonian graph described in
Figure 4(b) starting at C, and label the vertices from 1

to n consecutively, traversing clockwise.
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(2)  Add the following edges:

.on
viverr and Vi4iV(1-i) mod » Where 1 <i < 3 1

Examples of these graphs on n=12 and n=18 vertices are
depicted in Figure 5.

We first show asymmetry for the cases of small n; that
is, n = 12,14, 16,and18.

4.1. Quartic Hamiltonian graph on 12 vertices

We divide V(G) into the following subsets:

o V() ={vy,vs3, 14}
These vertices form a C; that is one away from two Cjss
and shares a vertex with another Cs.
(] V(H) = {Vl,Vlz,Vs}
These vertices form a C; that is one away from two Css
and shares an edge with another Cs.
L] V(III) = {Vlz, Vs, Vé}
These vertices form a C; that shares a common edge
with two Css.
[ ] V(IV) = {V4,V5,V6}
These vertices form a Cs; that shares vertices with three
distinct Css.
] V(V) = {VS,VQ,V]()}
These vertices form a C; that is one away from two Css.
(] V(VI) = {V7,V11}
These vertices are not in any Css.

In this way, vertices in any given subset are different
from vertices that are not in that same subset. In order to
show that every vertex in V(G) is unique, we must also
show that each vertex in every subset is different from all
other vertices within the same subset.

o V(D)
e v, is distance one away from V/(II).
e v; is not distance one away from V/(II)
e v, is distance one away from V(II) and in V(IV).



1004 . A. BREWER ET AL.

12
11 1

(a)

Figure 5. Asymmetric quartic Hamiltonian graphs.

V(I0):

e vy, is in both V(III) and V(II).

e vsisin V(III), V(IV) and V(II).

e v, is in only V(II).

V(II0):

e v, isin V(II) and V(III).

e vsisin V(II), V(IV) and V(III).

e vgisin V(IV) and V(III).

V(IV):

e v, is distance one away from V(II) and in V(IV).

e vsisin V(II), V(IV) and V(III).

e vgisin V(IV) and V(III).

V(V):

e g is distance two away from v;, which we now know
is unique.

® 1V, is distance one away from v;, which is unique.

e v is distance one away from V(II).

V(VI):

e v, is distance one away from V(IV)

e vy, is distance two away from V(IV)

Since we have shown that each subset of V(G) is differ-

ent from all other subsets, and since we have described how
vertices within each subset are unique, all vertices in V(G)
are unique and the graph is asymmetric.

4.2. Quartic Hamiltonian graph on 16 vertices

We divide V(G) into the following subsets:

V(I) = {V3, V4, Vs}

These vertices form a Cs that is one away from two Css.
V() = {vi1, vi2, i3}

These vertices form a C; that is distance one away from
two Css and is in another Cs.

V(IH) = {‘V7, Vs, V16}

These vertices form a C; that shares a common edge
with two Css.

V(IV) = {Vl, V7, V16}

These vertices form a C; that is two away from two dis-
tinct Css.

V(V) = {v13, Vs, 15}

These vertices form a C; that shares a vertex, but does
not share an edge with another C;.

V(VI) = {Vﬁ, V7, Vg}

These vertices form a C; that shares a vertex with two
distinct Css, shares an edge with one C;, and is one away
from a C; whose vertices are all in only one Cs.

V(VH) = {Vz, Vo, VIO}

These vertices are not in any Css.

In this way, vertices in any given subset are different

from vertices that are not in that same subset. In order to
show that every vertex in V(G) is unique, we must also
show that each vertex in every subset is different from all
other vertices within the same subset.

V/(IID):

e v;isin V(VI), V(IV), and V(III).

e g is in both V(VI) and V(III).

e v is not in V(VI).

V(IV):

e v isin V(III) and V(IV).

e v;isin V(IV), V(VI), and V(III).

e v, is not in V(III) nor V(IV).

V(V):

e v3is in both V(II) and V(V).

e vy, is distance two away from V/(III).

e vy5 is distance one away from V/(III).

V(VI):

e vz is in both V(III) and V(VI).

e v, isin V(IV), V(III), and V(VI).

e v is not in V(IV) nor V(III).

V(VID):

e v, is distance one away from V(VI) and one away
from V(IV).

e v, is distance one away from V(VI) and one away
from V (V).

e vy is distance two away from V(VI).

V(D):

e v, is distance one away from v,, which we now know
is unique.



e v, is distance two away from v,, which we know

is unique.

e v5 is distance one away from V(VI).

e V(II):

e vy, is distance two away from v, which we now

know is unique.

e v, is distance one away from v,, which we know

is unique.

e vy is in both V(V) and V(II).

Since we have shown that each subset of V(G) is differ-
ent from all other subsets, and since we have described how
vertices within each subset are unique, all vertices in V(G)
are unique and the graph is asymmetric.

4.3. Quartic Hamiltonian graph on 14 vertices

We distinguish between vertices as follows:

e The vertices vy, vy, Vs, Ve, V7, Vg, V9, V11, V12, V13, V14 are the
only vertices contained in a C; subgraph:
e v, is unique because it is the only vertex contained in
two distinct Css.
e v, and vy; are the only vertices contained in a C; that
is not distance one away from another Ci;.
e v, is distance three away from the vertex v,, while
the vertex vy, is not.
e The vertices v, Vs, Vs, V12> V13> V5, Voandvyy are all con-
tained in a C; and are one away from a Cj:
e v; and vy, are adjacent to v,.
e v, is only contained in one C; whereas vy, is con-
tained in two Cgs.
® Vg, Vg, Vs, and vg are adjacent to the vertex v;.
e g is adjacent to v14, while vg, vs, and vy are not.
e g is adjacent to v, while v, vs, and vy are not.
e s is distance two away from v;4, while v, is not.
e v;3 and vy, are not adjacent to v; nor v,.
e ;5 is adjacent to vy4, while the vertex v;, is not.
e The vertices v3, v4 and vy, are not in a Cs:
e 3 is adjacent to vi3.
e v, is adjacent to vg.
e vy is adjacent to vy;.
In this way all vertices
is asymmetric.

are unique and the graph

4.4. Quartic Hamiltonian graph on 18 vertices

We construct a quartic Hamiltonian graph (as described in
section 1.1). We distinguish between vertices as follows:

e Vertices vy, V2, V7, Vs, V9, V10, V11> V15, V16> V17, and vig are

the only vertices contained in any C; subgraph:

e The vertex vy is unique because it is the only vertex
contained in two distinct Css.

e The vertices v, and v;5 are the only vertices contained
in a Cs that is not one away from another Cs.
e v, is distance three away from the vertex vo, while

the vertex v,5 is not.
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e The vertices v, vg, V10, V16, V17, V7, Vi1andvig are all con-
tained in a C; and are one away from a Cs:

e v; and v,z are adjacent to v,.

e v, is only contained in one C, whereas v;g is con-
tained in two Cgs.

® Vg, V1o, V7, and vy are adjacent to the vertex vq.

e g is adjacent to v, while vy, v;, and v;; are not.
® Vjo is adjacent to v;, while vg, v,, and v;; are not.
e v, is distance two away from v;g, while v;; is not.
e vy and vy6 are not adjacent to vy nor v,.
e v;; is adjacent to v, while the vertex v;4 is not.
e The vertices vs, V4, Vs, Vg V12, V13 and vy4 are not in any

Css and we distinguish between them as follows:

e 3 is adjacent to vy, v, v4 and vy3. We know v;; and
v, are unique. v, is adjacent to v;¢ and v;3 is not.
Thus, v;¢ and v,3 are unique, and we deduce that v,
is unique.

e v, is adjacent to vig, V3, V5 and vy, We know vy and
v3 are unique. vs is adjacent to v;s and v;, is not.
Thus, v;5 and v, are unique, and we deduce that v,
is unique.

e s is adjacent to vys, vy, ¥ and vy;. We know vys, vy,
and v;; are unique. Thus, we deduce that vs is
unique. Therefore, vs is unique.

® Vs is adjacent to vy4, Vs, V19 and v, which are all
unique. Thus, v is unique.

In this way the vertices vs, v4, Vs, Ve, V12, V13 and vy are all
unique. Therefore, all vertices are unique and the graph
is asymmetric.

4.5. Quartic Hamiltonian for large n

We now show asymmetry for all n > 20.

4.5.1. When n = 0 mod 4

In order to show that a quartic Hamiltonian graph on n >
20,n =0 mod 4 vertices has a trivial automorphism group
(no symmetry), we must show that every vertex in the graph
is unique. We do this by comparing every vertex in the
graph to every other vertex. We begin by grouping vertices
based on differentiating properties, so that vertices in each
group are different from vertices in all other groups.

Vertices that are always contained in a 3-cycle

We find that the graph will always have six distinct Css, no
matter how large n is. These six C;s will always have the
same distinct properties, making each C; different from
every other C;. The vertex sets for these Css and their dis-
tinguishing characteristics are listed below. It is important to
note that the edge v;vu is unique because it is the only edge

that connects two C;s whose vertices are all in only one C;,
and all have a distance greater than one to another Cs.

o V(I) = {ve,vu 1,125}
These vertices form a C; that shares a common vertex
with another triangle and shares a common edge with
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another triangle. It is also at least distance two from any
other triangle.

o V(II) = {vy,vi,vu1}
These vertices form a C; that is distance one away from
a C; whose vertices are all in only one C;.

o V(II) = {vy, vs, v, }
These vertices form a C; that shares a common edge
with two other triangles.

° V(IV) = {Vn—lyvn—ZrVn—.’»}
These vertices form a C; that are distance one from ver-
tices in two triangles.

o V(V)= {V&, V§_1,V§+1}
These vertices form a C; that, compared to V(VI), V(V),
has a greater number of distinct shortest paths to vertices
in V(I), using the special edge vyvs first.

(] V(VI) = {‘V3n,V3n 1,V3n+1}
These vertices form a C; that, compared to V(V), V(VI),
has a smaller number of distinct shortest paths to verti-
ces in V(I), using the special edge viva first.

In this way, any vertex in any C; is different from all other
vertices in any other C;. Now we must show that each vertex
in each C; is different from the vertices within the same Cs.

o V(I):
o wiis contained in two Cjss.
® vuis contained in three Css.
® Vi is contained in one Cs.

o V(II):

e v, is distance two away from v,
e v, is distance one away from v,
e v: is contained in 3 Css

e V(III):

e v, is distance two away from v,
e v: is distance three away from v,
® vuis contained in 3 Css.

e V(IV): Each vertex in this vertex set is differentiated by
a unique ordered pair (x, y), where x is the distance to
Vi and y is the distance to v,

o v,_1:(2,3)
® VvV, 7 (2, 2)
o v,.3: (3 2)
o V(V):
e v is adjacent to the special edge vsvs
° vﬂ,l is always has a greater dlstance to v, than Vii
® Vi s always closer to v, than Va_g.
o V(VI):
* vu is adjacent to the special edge vyvs
® v is always has a greater distance to v, than vu,,
® Vi, is always closer to v, than Vin )

Vertices that are not contained in a 3-cycle
We can divide the vertices that are not contained in a
3-cycle into two sets.

4 V(VII) = {VZa V3> Va, V§74> ngfn V§+l’ V§+2) V§+3}
e v, is distance one away from V(I) and one away
from V/(II).

e v; is distance two away from V(II), distance three
away from V(IV) and distance one away from v,.

e v, is distance four away from V(III) and distance
three away from V(IV).

e w4 is distance two away from V(I), and distance
two away from V(IV).
vz_3 is distance one away from V/(I).
veyy is distance one away from V(I) and distance one
away from V(IV).

e vy, is distance one away from V(IV), and distance
two away from V(II).

e vi; is distance one away from V(IV), and distance
three away from V(II).
In this way the vertices in Set VII are all unique.

e V(VII): Vertices that are added as the graph gets larger.
We can divide the remaining vertices, or the vertices that
are added as the graph becomes larger, into the following
vertex sets:

e A={r,eG:4<x<y}

e B={r,cG:j<x<i—4}
o C={reG:+3<x<
e D={v,eG:2<x<n-3}

In order to show that vertices in V(A), V(B), V(C), and
V(D) are unique, we must compare vertices in each vertex
set to vertices in every other vertex set. We must also com-
pare every vertex in each set to all other vertices within that
same set.

e Comparing Sets A and B to Sets C and D:

When comparing a vertex in set AU B to a vertex in set

CUD, a vertex in AU B has either the same distance to

the vertex Vs as a vertex in CUD has to Van, O @ vertex

in A UB has a different distance to the vertex vz as a ver-

tex in CU D has to v. As a result, we have two cases.

e Case I: A vertex in AU B is the same distance to the
vertex vu, as a vertex in CU D is to va.
Recall that the vertex vu is different ‘from the vertex
vin because the vertex vy has a greater number of
shortest paths to V/(I) that begin with the edge v,
compared to the vertex vu. (Note that the edge viva
is unique because it connects two Css whose vertices
are all in only one C;, and all have a distance greater
than one to another C;). When comparing two verti-
ces that are equidistant from va and Van respectively,
we say that each vertex is i away from v; and va,
respectively. Let i = |4 —x|. Any v, distance i away
from vy or vx will have a path to V(I) that passes
through the edge vavs in the i+ 1 position of the path.
If we ensure that the edge vi, v is used at the i+1
position of the path to V(I), we know that a vertex in
A U B will have a greater number of shortest paths that
use the edge vivu at the i+ 1 position of the path to
V(I), than the vertices in CUD. In this way, vertices
in A UB that are i away from vz are unique from verti-
ces in CU D that are i away from Van.

e Case II: A vertex in AU B is a different distance from
the vertex vz, than a vertex in CUD is to vs.



Let a vertex in CUB be distance | from v, where
l=|2—x|, and let a vertex in AU B be distance k
from vy, where k = |22 — x|, and k # I. A vertex k
from vx has a shortest path to V(I) that uses the
edge v;vu at the k+1 position of the path to V(I). A
vertex | from v has a shortest path to V(I) that uses
the edge viva ‘at the [+1 position of the path to
V(D). Since k # 1, the vertices being compared will
use the edge vava in their path to V(I) at different
times. Since the edge VaVin is unique, and since the
vertices in A U B use the edge vzvs to get to V(I) at a
different time than the vertices in CU B, the vertices
in A U B that are k away from vz are unique from ver-
tices in CU D that are | away from va.

In this way, vertices in A U B are unique from vertices
in set CUD.

o Comparing vertices in Set A to Set B:

The edge Vvavz_y4 is unique because v, and Vvi_4 are unique
vertices: v, is always distance four from V(III) and is
always distance three from V(IV), and vz_4 is always dis-
tance two from V(I) and is always distance two from
V(IV). We compare the vertices in Set A to the vertices
in Set B by comparing the path from v, to the vertex
Vig, that uses the edge Vavig. We find that the path
from any vertex v, in Set A to the vertex vz 4, that uses
the edge v4vz_4, is always i edges short, where i = x — 3,
from a 2i cycle. Whereas, the path from any vertex v, in
Set B to the vertex vz_4, that uses the edge vyvi 4, is
always j edges short, where j =5 —4 —x, from a 2j+2
cycle. When comparing vertices in Set A to vertices in
Set B we assign an ordered pair (r, s) to each v, in each
set, where s is the number of edges that v, is short of an
r-cycle. In Set A each v, is assigned the ordered pair
(2i,i) and in Set B each v, is assigned the ordered pair
(2j +2,j). We will show that a vertex in Set A will never
have the same ordered pair as a vertex in set B. There
are two cases:
o Casel:i=j
When i=j, then (2i,i) and (2j+ 2,j) will never be
the same, as if i=j, we know 2i # 2j 4 2. Thus, the
(2i,i) # (2j + 2,j), and the vertices in Set A are
unique from the vertices in Set B.
o Case2:i#j
If i#j, then (2i,i) and (2j+ 2,j) are different. In
this way the vertices in Set A are always unique from
the vertices in Set B.
In this way the vertices in Set A are always unique from
the vertices in Set B.
Comparing vertices within Set A:
We compare a vertex v, in Set A to all other vertices
within Set A by studying the path from v, to the vertex
vz_4, that uses the edge v4vz_4. This path will always be i
edges short, where i = x — 3, from a 2i cycle. Every v, in
Set A has a unique i value because i = x — 3 and every
vertex has a unique x value assigned. Thus, every vertex
in Set A is unique, as every vertex is short of a cycle by a
unique number of edges. In this way, every vertex in Set
A is unique.
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e Comparing vertices within Set B:

We compare a vertex v, in Set B to all other vertices
within Set B by studying the path from v, to the vertex
va_yg, that uses the edge v4vz_4. This path will always be j
edges short of a cycle, where j =5 —4 —x, from a 2j+
2 cycle. Every v, in Set B has a unique j value because
j=%—4—x and every vertex has a uniquet x value
assigned. Thus, every vertex in Set B is unique, as every
vertex is short of a cycle by a unique number of edges.
In this way, every vertex in Set B is unique.
Comparing vertices in Set D to Set C:
The edge v,—3vzi3 is unique because v,—3 and vs; are
unique vertices: v,_3 is in V(IV) and distance three from
n, and vi,5 is always distance one from V(IV) and is
always distance three from V(II). We compare the verti-
ces in Set D to the vertices in Set C by comparing the
path from v, to the vertex wi.; that uses the edge
Vn—3Virs. We find that the path from any vertex v, in Set
D to the vertex viis, that uses the edge Vn—3Vii3, is
always m edges short, where m =n —x —2, from a 2m
cycle. Whereas, the path from any vertex v, in Set C to
the vertex Viis, that uses the edge Vn-3Vii3, 18 always ¢
edges short, where g =x —%+3, from a 29+ 2 cycle.
When comparing vertices in Set D to vertices in Set C
we assign an ordered pair (r, s) to each v, in each set,
where s is the number of edges that v, is short of an r-
cycle. In Set C each v, is assigned the ordered pair (2g +
2,q) and in Set D each v, is assigned the ordered pair
(2m, m). We will show that a vertex in Set D will never
have the same ordered pair as a vertex in set C. There
are two cases:
o Casel:m=gq
When m=gq, then (2m,m) and (2q + 2,q) will never
be the same, as if m=gq, we know 2m # 2q + 2.
Thus, the (2m,m) # (29 +2,q), and the vertices in
Set D are unique from the vertices in Set C.
o Case2:m#q
If m # g, then (2m,m) and (2q + 2,q) are different.
In this way the vertices in Set D are always unique
from the vertices in Set C.
In this way the vertices in Set D are always unique from
the vertices in Set C.
Comparing vertices within Set C:
We compare a vertex v, in Set C to all other vertices
within Set C by studying the path from v, to the vertex
Vi_g, that uses the edge Vn—3Viis. This path will always
be m edges short, where m =n—x—2, from a 2m
cycle. Every v, in Set C has a unique m value because
m=mn—x—2 and every vertex has a unique x value
assigned. Thus, every vertex in Set C is unique, as every
vertex is short of a cycle by a unique number of edges.
In this way, every vertex in Set C is unique.
Comparing vertices within Set D:
We compare a vertex v, in Set D to all other vertices
within Set D by studying the path from v, to the vertex
vi_g, that uses the edge Vn—3Viis. This path will always
be q edges short, where g =x—%+3, from a 2q+2
cycle. Every v, in Set D has a unique g value because
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Figure 6. An asymmetric 5-regular Hamiltonian graph with 12 vertices.

g=x—%+3 and every vertex has a unique x value
assigned. Thus, every vertex in Set D is unique, as every
vertex is short of a cycle by a unique number of edges.
In this way, every vertex in Set D is unique.

In this way, any vertex in any set A, B, C, and D, is
unique from all other vertices.

In this way, all vertices are unique in this construction of
a quartic Hamiltonian graph on any n > 20,#n =0 mod 4.
Therefore, the graph is asymmetric.

4.5.2. When n =2 mod 4

Vertices that are always contained in a 3-cycle

Vertices vy, vy, Vi, Va_1, Vi, Vi1, Va2, Va3, Va—2, Va—1, V. ar€
the only vertices contained in any C; subgraph.

e The vertex v: is unique because it is the only vertex con-
tained in two distinct Css.
e The vertices v, and v,_3 are the only vertices contained
in a C; that is not distance one away from another Cj.
e v, is distance three away from the vertex vz, while the
vertex v,,_3 is not.
e The vertices V1, Va1, Vit Va2, Vi1, V-2, Viga and v, are
all contained in a C; and are one away from a Cs.
e v, and v, are adjacent to v,.
e v, is only contained in one C; whereas v, is con-
tained in two Cgs.
® Vi, Vapy,vag, and viy, are adjacent to the vertex vs.
o v s adjacent to v,, while Vi1, Voo, and Vi

are not.

® iy s adjacent to v;, while Va1, Viog, and Vi)
are not.

® i, is distance two away from v,, while viiy
is not.

vp—1 and v,_, are not adjacent to V2 NOT V3.
vn_1 is adjacent to v,, while the vertex v,_; is not.

Vertices that are not contained in a 3-cycle
Let any vertex v such that n —6 < k< 6,5 -5<k<%5+4
be an element of U.

In order to show that the vertices, 6 <x <% —5 and §+
4 < x < n—6, are unique, we begin with a vertex v, and
check to see if its adjacent vertices are elements of /. If all
of the vertices adjacent to v, are unique, we can say that the
vertex is unique and conclude it belongs to U.

We begin with the vertex veys, where t=0 and visit the
vertices adjacent to veis that is: vsiy, V744, Ve_s—s, and
Vn—a—¢. We check if the adjacent vertices are elements of Uf.
If at least two of these vertices belong to U/, then compare
the distance from each of the vertices to vei; 3. We find
that the shortest path from v;.; to vei,—3 is always two, and
the shortest path from v,_s_; to veis—3 is always four. Thus,
the vertices are different, as they have different distances to
Vest—3. We can now conclude the vertices vs_ ¢, V7yt, Vu_g_s»
and v,_4_; belong to U.

If there are fewer than two vertices belonging to U/, then
check the distance from each vertex to vg,,_3. We find that
the shortest paths from the vertices vy, vy—g—¢, and v, 4
to the vertex vei ;3 are, two, four, and two, respectively.
Since two vertices have the same distance to vei;—3, we
compare their distances to ve,; 4. Since the shortest path
distance from v;4; to veys—4 is always three, and since the
shortest path from v,_4_; to ve1;—4 is always one, the verti-
ces are unique, as each vertex has a unique distance to both
Vert—3 and Verr—4. We can now say the
Vs> Vot Va—g—t, and v,_4_ belong to U.

We then add one to t and check the adjacent vertices as
described, until we reach the vertex vig. We know the ver-

vertices

tex vz_¢ is unique because all of its adjacent vertices are ele-
ments of U{. At this point, the cardinality of I/ is equal to

the number of vertices in the graph, which implies the graph
is asymmetric.

5. Conclusion

We constructed and presented an infinite family of cubic
and quartic Hamiltonian graphs of even orders, starting at
n=12. We note that the complement of an asymmetric 3-
regular Hamiltonian graph on n vertices is an asymmetric
(n — 4)-regular graph. An application of Dirac’s Theorem
shows that this graph is Hamiltonian. This covers all even
n>8. The complement of an asymmetric 4-regular
Hamiltonian graph on n vertices is an asymmetric
(n — 5)-regular graph. An application of Dirac’s Theorem
shows that this graph is Hamiltonian. This covers all
odd n>7.

In Figure 6, we present an asymmetric 5-regular
Hamiltonian graph with 12 vertices. The complement of
this graph will be an asymmetric 6-regular graph on 12
vertices. It follows by Dirac’s Theorem that this graph is
Hamiltonian.

We established the existence of infinite families of k-
regular asymmetric Hamiltonian graphs for k=3 and
k=4. It would be interesting to determine for which k>4
there exists an infinite family of asymmetric k-regular
Hamiltonian graphs.
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