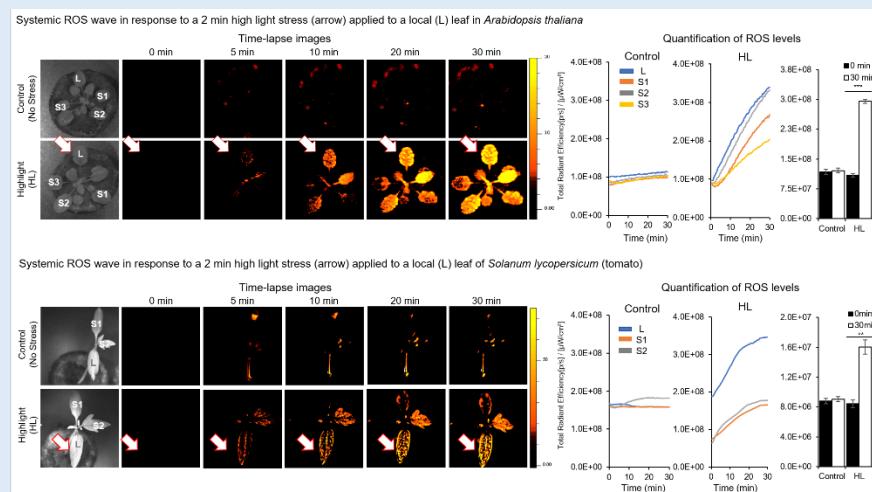

Non-invasive live ROS imaging of whole plants grown in soil

Yosef Fichman¹, Ron Mittler^{1,2,*}


¹The Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA

²Department of Surgery, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA

Keywords: Fluorescence, Imaging, ROS, stress, systemic signalling, whole plant

Reactive oxygen species (ROS) play a pivotal role in the biology of all aerobic organisms. Imaging of ROS in plants is critical to our understanding of plant responses to many different environmental and developmental cues. We developed a non-invasive technique to detect ROS in different plant species without the need to transform plants with a ROS reporter or sensor. Different dyes are fumigated into plants prior to a stress treatment and their fluorescence is imaged using an IVIS platform, initially developed to image different fluorescent proteins in mice.

Using this method, we can detect systemic ROS accumulation in response to different stresses applied a local leaf (e.g., following a local treatment of excess light stress we measured the whole plant increase in dye oxidation over time; Student t-test, SE, N=12, ***P < 0.005, **P < 0.01). The simplicity of the method allows it to be used with different crop plants, as well as to screen different *Arabidopsis thaliana* mutants.

Advantages:

The new method is fast and does not require plant transformation. It could be used for the screening of entire mutant libraries or different plants that are not easily transformed.

Soil-grown plants can be easily imaged allowing for the study of whole-plant responses at different developmental stages.

Different dyes, specific for different types of ROS, could be used with this method to dissect different forms of ROS signalling.

Systemic responses of whole plants or whole plants that are the outcome of different grafting combinations could be studied allowing the advanced study of systemic signalling.

Responses to different biotic or abiotic challenges (as well as mechanical injury), and their combinations could be easily studied

Challenges:

The method is based on the use of the IVIS Lumina S5, or a similar high resolution detection platform, which limits its availability.

The IVIS chamber is limited in size, restricting the number of and/or size of plants that can be imaged. Future developments and platform adjustments may solve this issue.

The oxidation of many of the ROS dyes, currently available, is irreversible allowing for the measurement of ROS accumulation processes only. Development of reversible ROS dyes would address this problem.

Although the dyes used are highly sensitive, they have a threshold of signal to noise ratio setting a ROS detection limit for the method. Newer dyes with a higher detection limit would address this issue.

*Correspondence:
mittlerr@missouri.edu (R. Mittler)

Acknowledgments

This work was supported by funding from the National Science Foundation (IOS-1353886, MCB-1936590, IOS-1932639) and the University of Missouri.

Literature

1. Miller, G. et al. (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signalling in response to diverse stimuli. *Sci. Signal.* 2, ra45
2. Dhondt, S. et al. (2013) Cell to whole-plant phenotyping: the best is yet to come. *Trends Plant Sci.* 18, 428-439
3. Exposito-Rodriguez, M. et al. (2017) Photosynthesis-dependent H₂O₂ transfer from chloroplasts to nuclei provides a high-light signalling mechanism. *Nat. Commun.* 8, 49
4. Fichman, Y. et al. (2019) Whole-Plant Live Imaging of Reactive Oxygen Species. *Mol. Plant* 12, 1203-1210
5. Kollist, H. et al. (2019) Rapid responses to abiotic stress: priming the landscape for the signal transduction network. *Trends Plant Sci.* 24, 25-37
6. Lim, S.D. et al. (2019) Quantitative ROS bioreporters: a robust toolkit for studying biological roles of ROS in response to abiotic and biotic stresses. *Physiol. Plant.* 165, 356-368
7. Nietzel, T. et al. (2019) The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H₂O₂ and thiol redox integration and elucidates intracellular H₂O₂ dynamics during elicitor-induced oxidative burst in *Arabidopsis*. *New Phytol.* 221, 1649-1664
8. Yang, W. et al (2020) Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. *Mol. Plant* 13, 187-214
9. Lew, T.T.S. et al. (2020) Real-time detection of wound-induced H₂O₂ signalling waves in plants with optical nanosensors. *Nat. Plants* 6, 404-415