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Coordinated and rapid whole-
plant systemic stomatal responses

Stomata play a pivotal role in protecting plants from immediate or
long-term damage associated with changes in environmental
conditions or pathogen attack (Melotto et al., 2006; Cutler et al.,
2010; Vahisalu et al., 2010; Woolfenden et al., 2018; Lawson &
Vialet-Chabrand, 2019). They can respond rapidly, by closing or
opening their aperture within minutes, or more slowly over hours
(Melotto et al., 2006; Cutler et al., 2010; Vahisalu et al., 2010;
Raven, 2014; Guzel Deger et al., 2015; Chen et al., 2017;
Woolfenden et al., 2018; Zhang et al., 2018; Lawson & Vialet-
Chabrand, 2019). Rapid changes in stomatal aperture were
reported to occur in treated leaves of plants in response to changes
in air humidity, CO2 concentration, light stress, or pathogen attack
(Melotto et al., 2006; Vahisalu et al., 2010; Raven, 2014; Guzel
Deger et al., 2015;Chen et al., 2017;Devireddy et al., 2018;Zhang
et al., 2018). Remarkably, stomatal responses to light stress,
initiated at a single treated leaf, were recently shown to trigger a
systemic signal that caused the activation of a rapid whole-plant
stomatal closure response in almost all untreated systemic leaves of
the plant (Devireddy et al., 2018). This rapid systemic responsewas
shown to be mediated by the reactive oxygen species (ROS) wave
and to require abscisic acid (ABA;Miller et al., 2009; Mittler et al.,
2011; Devireddy et al., 2018). It is unclear, however, whether this
response is unique to light stress, or whether it represents a more
general systemic response involved in the acclimation of plants to
other environmental conditions. To address this question we
subjected a single Arabidopsis thaliana leaf to heat stress, dark-to-
light transition, or wounding and measured changes in stomatal
aperture at 0 and 10 or 15 min in the local leaf, as well as in different
untreated systemic leaves (Fig. 1a–d; Supporting Information
Methods S1). While heat stress and dark-to-light transition
initiated a rapid local and systemic stomatal opening responses,
wounding induced rapid local and systemic stomatal closure
responses, similar to the light stress-induced local and systemic
responses previously reported (Devireddy et al., 2018). Taken
together, the results shown in Fig. 1(a–d) reveal that rapid whole-
plant systemic stomatal responses (opening or closure) are a general
acclimation response of plants triggered by different stimuli.

The plant tissues conducting the propagation of rapid systemic
responses to wounding and other environmental stimuli have
recently been the subject of intense investigation, with increasing
evidence pointing to the plant vascular system, and in particular the
phloem network, as a key mediator (Kangasjarvi et al., 2009;
Choudhury et al., 2018; Nguyen et al., 2018; Toyota et al., 2018;
Kollist et al., 2019). To determine whether systemic stomatal
responses are mediated via a signal that propagates through the

plant vascular system, we measured the kinetics of the stomatal
closure response to excess light stress in local and different systemic
leaves (Fig. 1e). Interestingly, although the local (treated) leaf is
primarily connected to only two to three systemic leaves via the
vascular phloem system (Toyota et al., 2018), the rapid systemic
stomatal response occurred at an almost similar rate in all systemic
leaves measured (with the exception of faster kinetics observed in
younger leaves; S4–6), suggesting that the systemic signal medi-
ating rapid systemic stomatal responses to excess light stress is not
limited in its transport to vascular phloem cells. Nevertheless, as
shown in Fig. 1(f–h), in contrast to the rate of stomatal closure in
local leaves, which was similar between stomata located at different
parts of the leaf (i.e. stomata in areas A–C; Fig. 1g), the rate of
stomatal closure in the different systemic leaves was faster in
stomata closest to the midvein (stomata in areas A) and slower in
stomata at the periphery of the leaf (stomata in areas B and C;
Fig. 1h). The findings presented in Fig. 1(e,f–h) point to a
possibility that two different signals are involved in mediating
systemic stomatal responses, one that travels through, or is
associated with, the vascular system (e.g. ABA; Schachtman &
Goodger, 2008; Kangasjarvi et al., 2009; Gorecka et al., 2014;
Yoshida & Fernie, 2018), and another that travels rapidly through
the entire plant (e.g. the ROS wave; Miller et al., 2009; Mittler
et al., 2011). At least when it comes to wounding, it was recently
shown that although systemic wound responses were primarily
mediated through the phloem and involve glutamic acid signaling,
locally applied glutamic acid triggered a whole-plant glutamate
receptor-like-dependent systemic calcium wave (Toyota et al.,
2018). Excess light and wounding may therefore trigger several
different rapid systemic signals (e.g. calcium, ROS electric and/or
hydraulic waves) that interact and control different aspects of the
plant systemic responses, such as transcript expression, metabolite
accumulation and stomatal responses (Gorecka et al., 2014;
Devireddy et al., 2018; Yoshida & Fernie, 2018; Kollist et al.,
2019; Zandalinas et al., 2019; Fig. 1a–h). It is possible, for
example, that the rapid signal that travels throughout the entire
plant (ROS/hydraulic/electric/calcium wave) triggers ABA pro-
duction in the vascular system of systemic leaves and that this ABA
(produced by the vascular system of systemic leaves) reaches the
stomata of systemic leaves and signals their closure (Fig. 1e–h).

Three of themajor players thought to be involved in the root-to-
shoot, or leaf-to-leaf, systemic response of plants to different
environmental stimuli are ABA, jasmonic acid (JA) and salicylic
acid (SA) (Schachtman&Goodger, 2008; Kangasjarvi et al., 2009;
Gorecka et al., 2014; Devireddy et al., 2018; Yoshida & Fernie,
2018; David et al., 2019; F€orster et al., 2019; Kollist et al., 2019).
Although the systemic leaf-to-leaf stomatal response to excess light
was previously shown to depend on local light-induced ABA
accumulation, which leads to ROS production and the initiation of
the ROS wave, the role of open stomata 1 (OST1) in this response
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was not determined (Devireddy et al., 2018). Here it is shown that
rapid local and systemic stomatal responses of Arabidopsis to excess
light are dependent on the function of the serine/threonine protein
kinase OST1, demonstrating that this systemic response could be
dependent onABA-derivedROSproduction viaOST1-respiratory
burst oxidase protein D (OST1-RBOHD)-mediated signaling, or
ABA-derivedOST1–SLAC1 interactions (Fig. 1i; Devireddy et al.,
2018). As shown in Fig. 1(j), the rapid excess light-induced local
and systemic stomatal closure responses of Arabidopsis were further
suppressed in coronatine insensitive 1 (coi1) and allene oxide
synthase (aos) mutants, demonstrating that JA is involved in this
response. In contrast to ABA and JA, which were required for
stomatal closure in local and systemic leaves, suppression of SA
biosynthesis in the SA induction deficient 2 (sid2) mutant only

affected stomatal responses in systemic leaves (Fig. 1k), potentially
suggesting that systemic stomatal responses to light stress could be
associated with pathogen-induced stomatal closure pathways
(Chen et al., 2017; Devireddy et al., 2018; David et al., 2019;
Kollist et al., 2019). The findings presented in Fig. 1(i–k), suggest
that JA and ABA could interact during local and systemic stomatal
responses to excess light. Because rapid systemic responses to excess
light or wounding depend on ROS and calcium signaling
(Devireddy et al., 2018; Toyota et al., 2018; Kollist et al., 2019),
it is possible that JA- and ABA-regulated calcium and ROS
concentrations mediate systemic stomatal responses via OST1-
SLAC1 (Murata et al., 2001), and/or calcineurin B-like protein
(CBL)-CBL-interacting protein kinase (CIPK)-GORK modula-
tion (F€orster et al., 2019).
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Fig. 1 Activation of systemic stomatal responses in Arabidopsis in response to wounding, transition from dark to light, heat stress and excess light. (a) The
experimental design used to measure systemic stomatal responses to the different stimuli. (b–d) Systemic stomatal responses at 10min after wounding (b),
15min after transitionof the treated leaf fromdark to light (c), and15min after heat stress (d). The heat stress experimental systemwas calibrated such that the
temperatureof the treated leafwas38°C (17°Caboveambient) and the temperature of anyof the systemic leaves didnot exceed2°Caboveambient. In control
experiments itwas found thata2°Crise in leaf temperaturedidnotaffect stomataaperture significantly (d). (e) Experimental designused tomeasure thekinetics
of the systemic stomatal response to light stress (left) andmeasurements of local and systemic stomatal responses at 1, 2, and8min in thedifferent leaves (right;
S4–S6 are leaves younger than S1–S3 or leaf L). (f) A representative leaf image showing the position of the different stomata groups (A–C)measured in local or
systemic leaves. (g, h) Graphs showing the kinetics of stomatal responses in the different areas of local (g) or systemic (h) leaves. (i–k) Local and systemic
stomatal responses measured 10min after the application of light stress to a local leaf in wild-type and different mutants impaired in abscisic acid (i), jasmonic
acid (j) and salicylic acid (k) signaling. Statistical analyses in (b–d) and (i–k) were donewith two-tailed Student’s t-test (� SE, n = 500 stomata from 10 different
plants: ***, P < 0.001; **, P < 0.01). Statistical analyses in (e, g, h) were done with ANOVA followed by Dunnett’s post hoc test (n = 500 stomata from 10
different plants).
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The involvement of ROS, JA and ABA in regulating systemic
stomatal responses to excess light (Fig. 1i–k; Devireddy et al.,
2018;) prompted us to test whether these plant hormones are also
involved in the regulation of stomatal responses towounding, dark-
to-light transition and heat (Fig. 1a–d). Rapid systemic, but not
local, stomatal closure responses to wounding required ROS
production via RBOHD (Fig. 2a) and ROS production/redox
alterations along the systemic path of the signal (inhibited by the
application 50 lMdiphenyleneiodonium (DPI), an RBOH, ROS
and redox modulator/inhibitor (Riganti et al., 2004; Devireddy

et al., 2018), to themidpoint between the local and systemic leaves;
Figs 2b, S1). By contrast, rapid local and systemic responses to
wounding required JA signaling via COI1, as well as signaling
through OST1 (Fig. 2a). Rapid local and systemic stomatal
opening responses to heat stress required ROS production via
RBOHD (Fig. 2c), ROS production/redox alterations along the
systemic path (inhibited byDPI; Figs 2d, S1), JA signaling through
COI1, and signaling through OST1 (Fig. 2c). Rapid systemic, but
not local, stomatal opening response to a dark-to-light transition
required ROS production via RBOHD (Fig. 2e) and ROS
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Fig. 2 Open stomata 1 (OST1), coronatine insensitive1 (COI1) and respiratory burst oxidase protein D (RBOHD) are involved in the systemic stomatal
response of Arabidopsis to wounding, transition from dark to light, and heat stress. (a) Local and systemic stomatal responses of wild-type Arabidopsis plants,
coi1 (SALK_045434C), ost1 (SALK_067550C) and rbohDmutants subjected to wounding for 10min. (b) Inhibition of systemic stomatal responses to
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local leaf only. The experimental design for (a), (c), and (e) is shown in Fig. 1(a), and the experimental design for (b), (d), and (f) is shown in Supporting
Information Fig. S1. Statistical analyses in (a–f) were done using two-tailed Student’s t-test (� SE, n = 500 stomata from 10 different plants: ***, P < 0.001; **,
P < 0.01; *, P < 0.05).
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production/redox alterations along the systemic path (inhibited by
DPI application; Figs 2f, S1). By contrast, rapid local and systemic
stomatal opening responses to a dark-to-light transition did not
occur in ost1 and coi1 mutants (Fig. 2e). The results presented in
Fig. 2 suggest that local wounding and dark-to-light transition
stomatal responses did not require RBOHD, and that systemic
stomatal responses to all treatments require ROS production/redox
alterations along the path of the systemic signal. AlthoughABA and
JA appear to be required for both local and systemic stomatal
responses to all treatments, the role of COI1 and OST1 in these
responses is not entirely clear, because coi1 and ost1 display a
constitutively open stomata phenotype that might not be further
affected by wounding, heat stress or dark-to-light transition.
Further studies are therefore required to decipher the involvement
of JA and ABA in coordinating systemic stomatal responses to
different stresses.

Rapid alterations in stomatal aperture were previously shown to
regulate leaf temperature, rates of CO2 exchange, water vapor loss
and responses to pathogen infection (Melotto et al., 2006; Vahisalu
et al., 2010; Raven, 2014; Guzel Deger et al., 2015; Chen et al.,
2017; Devireddy et al., 2018; Yoshida & Fernie, 2018; Zhang
et al., 2018; Kollist et al., 2019). Here, it is shown that rapid
alterations in stomatal aperture (opening or closing) induced by
different environmental stimuli in a local leaf trigger a ROS-
dependent systemic signal that alters the stomatal aperture in
multiple systemic untreated leaves within minutes (Figs 1, 2).
Much likemultiple coral reef sponge cells responding in unison to a
local stimulus, plants can therefore mount a systemic cell (guard
cell) movement response that is mediated by an intricate balance of
hormone signaling, calcium and ROS concentrations, electric
signals and ion channel activation. This type of whole-plant
systemic stomatal response most likely evolved to augment the
fitness of land plants and enable them to rapidly acclimate to
changes in their environment, helping to cement their role as the
key energy convertors sustaining life on Earth.
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