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Summary

� Climate change-driven extreme weather events, combined with increasing temperatures,

harsh soil conditions, low water availability and quality, and the introduction of many man-

made pollutants, pose a unique challenge to plants. Although our knowledge of the response

of plants to each of these individual conditions is vast, we know very little about how a combi-

nation of many of these factors, occurring simultaneously, that is multifactorial stress combi-

nation, impacts plants.
� Seedlings of wild-type and different mutants of Arabidopsis thaliana plants were subjected

to a multifactorial stress combination of six different stresses, each applied at a low level, and

their survival, physiological and molecular responses determined.
� Our findings reveal that, while each of the different stresses, applied individually, had a

negligible effect on plant growth and survival, the accumulated impact of multifactorial stress

combination on plants was detrimental. We further show that the response of plants to multi-

factorial stress combination is unique and that specific pathways and processes play a critical

role in the acclimation of plants to multifactorial stress combination.
� Taken together our findings reveal that further polluting our environment could result in

higher complexities of multifactorial stress combinations that in turn could drive a critical

decline in plant growth and survival.

Introduction

The accumulated impact of human life on our planet over the
past several decades has resulted in the introduction of many
extreme environmental conditions into our ecosystems and agri-
cultural lands (e.g. Sala et al., 2000; Grimm et al., 2008;
Lehmann & Rillig, 2014; Teuling, 2018; Rillig et al., 2019).
These include climate change-driven extreme and fluctuating
weather events (e.g. heat waves, cold snaps, flooding, and/or pro-
longed drought), combined with harsh soil conditions (e.g.
saline, basic, and/or acidic), different man-made contaminants
(e.g. heavy metals, microplastics, pesticides, antibiotics and per-
sistent organic pollutants), radiation (e.g. UV), limited nutrient
availability, and high content of airborne molecules and gases
(e.g. ozone, burn particles, CO2). In addition to directly impact-
ing plant growth and reproduction within many eco- and agricul-
tural systems (e.g. Mittler & Blumwald, 2010; Lobell & Gourdji,
2012; Bailey-Serres et al., 2019; Borghi et al., 2019), some of
these environmental conditions were also shown to increase the

vulnerability of plants to attack by different pathogens or insects
(e.g. Desaint et al., 2020; Hamann et al., 2020; Cohen & Leach,
2020; Savary & Willocquet, 2020).

Although our knowledge of the response of plants to each of
the above-mentioned extreme environmental conditions is vast,
we know very little about how a combination of many of these
factors, occurring simultaneously, that is multifactorial stress
combination, would impact plant growth, reproduction, interac-
tions with other organisms, and/or overall survival, and shape our
future. It was recently demonstrated for example that increasing
the number and complexity of different co-occurring environ-
mental stress factors, associated with global climatic changes,
resulted in a gradual decline in soil properties, processes, and
microbial populations (Rillig et al., 2019). Nevertheless, our
understanding of how complex environmental conditions, occur-
ring during a multifactorial stress combination, impact plant
growth and survival is at best rudimentary.

Simple stress combination experiments (i.e. a combination of
two or at maximum three different stresses), revealed that the
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response of plants to conditions of stress combination is unique
and cannot be predicted by studying the response of plants to
each of the different single stresses that compose the stress combi-
nation, applied individually (e.g. Rizhsky et al., 2004; Mittler,
2006; Mittler & Blumwald, 2010; Prasch & Sonnewald, 2013;
Suzuki et al., 2014; Choudhury et al., 2017; Shaar-Moshe et al.,
2017, 2019; Zhang & Sonnewald, 2017; Balfag�on et al., 2019;
Zandalinas et al., 2020a). Plants display therefore a complex and
plastic response to stress combination that may include compo-
nents of the response to each of the individual stresses that com-
pose the stress combination, as well as a large array of different
transcripts, metabolites and proteins unique to the stress combi-
nation.

Exploring some of the mechanisms utilised by different
prokaryotic organisms to withstand extreme and complex envi-
ronmental conditions, highlights pathways and proteins that reg-
ulate the levels of reactive oxygen species (ROS) and iron in cells,
as well as participate in protein and/or DNA repair and recycling,
as essential for survival (e.g. Slade & Radman, 2011; Yuan et al.,
2012; Mittler, 2017; Shuryak, 2019). It is possible therefore that
acclimation to multifactorial stress conditions in plants would
require similar mechanisms, and that these could be regulated by
different and perhaps unique multifactorial stress-specific tran-
scriptomic networks.

To begin addressing the response of plants to multifactorial
stress combination, we subjected seedlings of Arabidopsis plants
grown in peat soil or on plates to a combination of six representa-
tive abiotic stress conditions (heat, salt, excess light, acidity, heavy
metal, and oxidative stress imposed by the herbicide paraquat)
and studied their growth, survival and molecular responses.

Materials and Methods

Plant material and stress treatments

Seeds of Arabidopsis thaliana wild-type Col-0, respiratory burst
oxidase homologue D (rbohD; Fichman et al., 2019), cytosolic
ascorbate peroxidase 1 (apx1; Davletova et al., 2005), allene oxide
synthase (aos; Balfag�on et al., 2019), salicylic acid-induction defi-
cient 2 (sid2; Nawrath & M�etraux, 1999), ethylene-insensitive
protein 2 (ein2; Alonso et al., 1999), abscisic acid (ABA) deficient
2 (aba2; Gonz�alez-Guzm�an et al., 2002), multiprotein bridging
factor 1c (mbf1c; Suzuki et al., 2011), autophagy-related protein
9 (atg9; Floyd et al., 2015), and AtNEET-overexpressing and
RNAi plants (Nechushtai et al., 2012; Zandalinas et al., 2020b)
were sterilised and placed on rectangular (12 cm width) 1% agar
vertical plates containing ½ Murashige and Skoog (½MS)
medium at pH 5.8. Next, 25–30 seeds of each genotype were
placed side-by-side on the same plate, and each treatment was
repeated using three biological replicates for a total of 75–90
seeds per treatment, per genotype (Luhua et al., 2008, 2013).
Sterilised seeds of the different genotypes were then subjected to
the following individual treatments and their different combina-
tions: CT (control, ½MS, 21°C, 50 µmol m�2 s�1, pH 5.8),
Acidity (½MS, 21°C, 50 µmol m�2 s�1, buffered to pH 5.0), Cd
(½MS, 21°C, 50 µmol m�2 s�1, pH 5.8, 5 µM CdCl2), HL

(high light, ½MS, 21°C, pH 5.8, 700 µmol m�2 s�1), HS (heat
stress, ½MS, 50 µmol m�2 s�1, pH 5.8, 33°C), Salt (½MS,
21°C, 50 µmol m�2 s�1, pH 5.8, 50 mM NaCl), and PQ (½MS,
21°C, 50 µmol m�2 s�1, pH 5.8, 0.05 µM paraquat) (Luhua
et al., 2008, 2013; Zandalinas et al., 2020b). For stress combina-
tions involving HL and/or HS, seeds were allowed to germinate
and grow in the presence or absence of the other stress conditions
(CT, Acidity, Cd, Salt and/or PQ) for 6 d and then subjected to
a 3-d treatment of HL and/or HS. For abiotic stresses and their
combinations not involving HL and/or HS, seeds were allowed
to germinate and grow in the presence or absence of stress condi-
tions for 9 d. Percent survival and root length were measured for
all plates at the same time (9 d), followed by sampling of
seedlings for chlorophyll extraction as described (Luhua et al.,
2008, 2013; Zandalinas et al., 2020b; using five biological
repeats). Seedlings grown on separate sets of horizontal plates
were subjected to the different individual or combined stresses as
described above, but sampled together 1.5 h (for RNA-Seq analy-
sis), or 3 h (for imaging ROS; Fichman et al., 2019), in three bio-
logical repeats, following the initiation of the HS and/or HL
stresses. For experiments of multifactorial stress combination in
peat soil, Col, apx1 and rbohD seeds were germinated and grown
in peat pellets (Jiffy-7, Jiffy; http://www.jiffygroup.com/) at
21°C and 50 µmol m�2 s�1, and watered periodically with the
following solutions and their different combinations: CT (water;
pH 7.2), Salt (50 mM NaCl), PQ (0.05 µM paraquat), acidity
(water; buffered to pH 5 with HCl), and Cd (5 µM CdCl2). At 7
d following germination, seedlings grown under the different
conditions described above were untreated further or subjected to
heat stress (HS; 33°C, 50 µmol m�2 s�1), and/or high light stress
(HL; 21°C, 700 µmol m�2 s�1), for 3 d. All peat soil-grown
seedlings were sampled 10 d following germination, and percent
survival, seedling diameter, ROS imaging and chlorophyll con-
tent were determined as described above (Luhua et al., 2008,
2013; Fichman et al., 2019; Zandalinas et al., 2020b).

To study multifactorial stress combination in Arabidopsis, HS,
HL, Salt and PQ stresses were conducted in all possible combina-
tions (Salt, PQ, HL, HS, Salt + PQ, Salt +HL, Salt +HS,
PQ +HL, PQ +HS, HL +HS, Salt + PQ +HL, Salt + PQ +HS,
Salt +HL +HS, PQ +HL +HS, Salt + PQ +HL +HS), and
acidity and Cd were added to our analysis as single stresses, as
well as in combination with Salt + PQ +HL +HS to generate
two different five-stress (Salt + PQ +HL +HS + Acidity, and
Salt + PQ +HL +HS +Cd) and one six-stress (Salt + PQ +
HL +HS + Acidity +Cd) combination states. As a result, single
and all multifactorial combinations could be studied for HS, HL,
Salt and PQ stresses, but not for all combinations that included
Cd and acidity. For each treatment conducted, we used a mini-
mum of n = 75 replication level for root and rosette growth and
ROS accumulation analyses, n = 5 for chlorophyll determination,
and n = 3 for RNA-Seq and ROS analyses (please see below).
The impact of Cd and/or acidity could therefore be studied only
as added stresses, while the impact of HS, HL, Salt and PQ
stresses could be studied in all combinations. This means that,
when it comes to Cd and acidity, our resolution does not allow
statements on all specific or individual factor interactions
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involving these two stressors. Addressing all possible interactions
for the six different stresses would have resulted in an experimen-
tal design encompassing all factor combinations with 64 unique
treatments per each of the three genotypes (a total of 192), which,
applying our level of replication, would mean at least 14 400
experimental units. An approach similar to the one described in
this study was used by Rillig et al., (2019) to study the impact of
multifactorial stress combination on soil properties, processes
and microbial populations.

RNA sequencing (RNA-Seq) and analysis

At least 100, 9 to 10-d-old Col-0 seedlings, growing on 1% hori-
zontal plates were subjected to the different control and stress
combination treatments as described above in three biological
replicates. For RNA-Seq experiments, HS, HL, Salt and PQ were
conducted in all possible combinations and acidity and Cd were
added to the four-stress combination state to generate two differ-
ent five-stress and one six-stress combination states, as described
above. Total RNA was isolated and subjected to RNA-Seq analy-
sis as described in Zandalinas et al. (2019, 2020b). Briefly, sin-
gle-end sequenced reads were quality tested using FASTQC
v.0.11.7 (Andrews, 2010) and aligned to the reference genome of
Arabidopsis (genome build 10) obtained from TAIR (https://
www.arabidopsis.org/) using STAR ALIGNER v.2.4.0.1 (Dobin
et al., 2013). Default mapping parameters (10 mismatches/read;
nine multi-mapping locations/read) were used. The genome
index was generated using the gene annotation file (GFF)
obtained from TAIR (ARAPORT11; https://www.arabidopsis.org/
download_files/Genes/TAIR10_genome_release/TAIR10_gff3/
TAIR10_GFF3_genes.gff) for the genome build 10. Differential
gene expression analysis was carried out using DESEQ2, an R
based package available from BIOCONDUCTOR (Love et al., 2014),
with mapped read counts generated using STAR ALIGNER v.2.4.0.1
(Dobin et al., 2013). Genes differentially expressed in two (or
more) conditions were identified by comparing mapped read
abundance under the different conditions. Gene expression was
measured as mean normalised counts of reads mapped onto the
different genes (Love et al., 2014). The difference in expression
was quantified in terms of the logarithm (log2) of the ratio of
mean normalised counts between two conditions (log fold
change). Differentially expressed genes were defined as those that
have a log fold change with an FDR-adjusted P-value < 0.05
(negative binomial Wald test followed by Benjamini–Hochberg
correction; Love et al., 2014). Genes with zero raw fold-change
expression value were omitted from further analysis. Differen-
tially expressed genes were classified into upregulated or
downregulated based on significant positive or negative log
fold-change values, respectively. Venn diagram overlap was calcu-
lated using (http://bioinformatics.psb.ugent.be/webtools/Venn/).
Functional annotation and quantification of overrepresented GO
terms were conducted using DAVID 6.8, heat maps were generated
using MEV v.4.9.0 software, and Venn diagram overlaps were
subjected to statistical significance tests (based on hypergeometric
distribution) using PHYPER (R package) (Zandalinas et al., 2019,
2020b). Perl scripts used in this study were uploaded to: https://

github.com/sohamsg90/RNA-Seq-perl-scripts. RNA-Seq analy-
ses results are shown in Supporting Information Tables S1–S49.

ROS detection and measurement

ROS imaging was conducted using 25–30, 9–10-d-old seedlings,
of the different genotypes, subjected to the different stress combi-
nations while growing on plates or in peat soil as described (Fich-
man et al., 2019), using three biological repeats. ROS
accumulation was analysed using Living IMAGE v.4.7.2 software
(Perkin Elmer) utilising the math tools. Images were generated
and total radiant efficiency (TRE) of regions of interest (ROI)
were calculated as described (Fichman et al., 2019). Radiant effi-
ciency is defined as fluorescence emission radiance per incident
excitation and is expressed as (p/s)/(µWcm�2); p, photons; s,
seconds; lW, microWatt; cm2, square centimetre (Fichman
et al., 2019).

Statistical analysis

All experiments were repeated at least three times. Results are pre-
sented as the mean� SD. Statistical analyses were performed
using two-way ANOVA followed using a Tukey post hoc test (dif-
ferent letters/asterisks denote statistical significance at P < 0.05;
Interaction terms and their associated P-values are shown in
Table S50). Statistical significance of Venn diagram overlap was
determined by performing a statistical hypothesis test based on
hypergeometric distribution using the R package PHYPER (http://
nemates.org/MA/progs/overlap_stats.html; Zandalinas et al.,
2019, 2020b).

Accession numbers

All data are available in the main text or the Supporting Informa-
tion files. RNA-Seq data files were deposited in Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) under
the accession no. GSE147962.

Results

Survival and growth of Arabidopsis seedlings subjected to
multifactorial stress combination

Arabidopsis thaliana seedlings grown on agarose plates were sub-
jected to a multifactorial stress combination of six different abi-
otic stress conditions including heat, salt, excess light, acidity,
heavy metal, and oxidative stress (imposed by the herbicide
paraquat), and their survival, root growth, chlorophyll and ROS
levels determined (Figs 1, S1–S4). The rationale for using
seedlings grown on plates, as opposed to soil, in our first set of
experiments (Figs 1–6, S1–S6), was to isolate and study the
impact of multifactorial stress combination on plants in the
absence of its impact on soils (Rillig et al., 2019). In addition, the
use of plates enabled us to quantify root growth, a very sensitive
measure of plant growth in the presence of stress (Luhua et al.,
2008, 2013; Dubois & Inz�e, 2020). To prevent lethality that
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could potentially result from conditions of stress combination,
the intensities and duration of each of the individual stresses
applied were calibrated based on our previous studies (Luhua
et al., 2008, 2013), to ensure minimal impact on plant growth
and survival (Figs 1, S1–S4). Markedly, while each of the individ-
ual stresses applied to seedlings had an overall minimal effect on
plants, with the increasing number and complexity of multifacto-
rial stress combinations, survival, root growth and chlorophyll
content declined (Figs 1a–c, S1–S3). By contrast, an opposite
trend was observed in whole-plant ROS levels (Figs 1d, S4).
These findings revealed that, although the effect of each individ-
ual stress on plant survival and growth is minimal (Figs 1, S1–
S4), the accrued impact of multifactorial stress combination on
plants is detrimental.

Survival and growth of Arabidopsis seedlings under
multifactorial stress conditions requires the function of two
different genes involved in the regulation of ROS levels

Because ROS play a key role in the response of plants to
almost all abiotic stresses studied to date (Van Breusegem
et al., 2008; Choudhury et al., 2017; Mittler, 2017), we com-
pared the multifactorial stress combination response of wild-

type seedlings to that of mutants impaired in ROS signalling
(rbohD), or scavenging (apx1). As with wild-type seedlings,
survival, root growth and chlorophyll content of the apx1 and
rbohD seedlings declined with the increased number and com-
plexity of multifactorial stress combinations (Figs 1a–c, S1–
S3). However, compared with wild-type, the decline in sur-
vival was overall augmented in the two mutants (Figs 1a, S1).
In the absence of stress, the levels of ROS in the two mutants
were higher compared with that of wild-type, while in the
presence of stress the overall levels of ROS were either similar
or higher compared with wild-type in the two mutants
(Figs 1d, S4). These findings suggested that managing the
overall levels of ROS in cells is essential for plant acclimation
to multifactorial stress combination.

Gene expression analysis of the response of Arabidopsis
seedlings to multifactorial stress combination highlights
unique and common gene expression patterns associated
with multifactorial stresses

A gene expression RNA-Seq study of Arabidopsis seedlings sub-
jected to a representative set of multifactorial stress conditions that
included six different stresses (i.e. Salt, PQ, HL, HS, Salt + PQ,
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Fig. 1 The impact of multifactorial stress combinations on growth and survival of Arabidopsis thaliana seedlings. (a–d) The effect of multifactorial stress
conditions (heat, salt, excess light, acidity, heavy metal, and oxidative stresses) applied in different combinations (up to a combination of all six factors) was
determined on the survival (a), root growth (b), chlorophyll content (c) and whole-plant ROS levels (d), of wild-type, rbohD and apx1 seedlings. Box plots
show the median (horizontal line), the lower and upper bounds of each box plot denote the first and third quartiles (the 25th and 75th percentiles,
respectively), and whiskers above and below the box plot indicate 1.5 times the interquartile range. Statistical analysis was performed by two-way ANOVA
followed by a Tukey post hoc test (different letters denote statistical significance at P < 0.05; Table S50). Abbreviations: Apx1, ascorbate peroxidase 1; Chl,
chlorophyll; RbohD, respiratory burst oxidase homologue D; TRE, total radiant efficiency.
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Salt +HL, Salt +HS, PQ +HL, PQ +HS, HL +HS, Salt + PQ
+HL, Salt + PQ +HS, Salt +HL +HS, PQ +HL +HS, Salt + PQ
+HL +HS, Salt + PQ +HL +HS +Acidity, Salt + PQ +HL +
HS +Cd, and Salt + PQ +HL +HS +Acidity +Cd) was

conducted. As shown in Fig. S5a, each of the individual stresses
analysed (i.e. Salt, PQ, HL, or HS) resulted in a gene expression
response that contained genes unique to it, as well as genes shared
with other stresses. Similarly, each of the different two-stress
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Fig. 2 Gene expression analysis of multifactorial stress responses. Gene expression analysis of the response of Arabidopsis thaliana seedlings to different
multifactorial stress combinations of heat, salt, excess light, oxidative stress (induced by the herbicide paraquat), acidity and heavy metal (cadmium) is
shown (see also Fig. S5). Venn diagrams depicting the overlap between genes upregulated in their expression in response to several different three-factor
stress combinations (left), or four-, five- and six-stress factor combinations (right) are shown on top. A Venn diagram showing the overlap between genes
upregulated in their expression in response to several different three-factor stress combinations and genes upregulated in their expression in response to
four-, five- and six- stress factor combinations (136 genes) is shown underneath, together with bar and pie charts of biological process and molecular
function (GO) annotations for these genes, and a heat map showing the expression level and clustering of these genes under all treatment combinations
tested. Statistical significance of Venn diagram overlap was determined by hypergeometric testing analysis using the R package PHYPER (Table S50).
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combination states studied resulted in a gene expression response
that contained unique and shared genes with other two-stress com-
bination states (Fig. S5b). Similar results were obtained for the
higher-level multifactorial combinations of three, four, five and six
different stresses, cumulating in the identification of 8778 and 8766
genes as significantly enhanced or suppressed, respectively, in
response to all six stresses combined (Figs 2, S5c,d; Tables S1–S41).
As shown in Figs 2 and S5, in addition to gene expression patterns

common between the different stresses and their different combina-
tions, each different combination of stresses, defining a multifacto-
rial stress condition, resulted in the expression of unique sets of
genes induced only under its own set of multifactorial stress condi-
tions (included within the representative set of multifactorial stress
conditions studied). A set of 432 and 428 genes significantly
enhanced or suppressed, respectively, was for example found to be
unique to the state of six-stress multifactorial combination (Figs 2,
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S5c; Tables S39–S41). These findings not only highlight the plastic-
ity of the plant response to multifactorial stress combination, but
also suggest that each different combination of stresses could result
in a unique set of conditions that elicits a unique gene expression
response. By contrast with the unique sets of gene expression pat-
terns specific to each stress combination, the expression of 136 and
127 genes was significantly enhanced or suppressed, respectively, in
response to all different multifactorial stress combinations included
within the representative set of multifactorial stress conditions stud-
ied (Figs 2, S5c,d; Tables S37, S38). Interestingly, the expression
pattern of some of these common genes clustered in a unique pat-
tern suggesting that some multifactorial stress combinations (e.g.
PQ +HL +HS, Salt + PQ +HL and Salt + PQ +HL +HS) are dif-
ferent compared with others (Fig. 2). The set of genes significantly
enhanced in response to all multifactorial stress conditions studied
included genes involved in the regulation of transcription, redox
control, stress responses and the plant hormone ABA, as well as
2Fe–2S binding, hydrolase and glutaredoxin activities (Fig. 2). By
contrast, the set of genes significantly suppressed in response to all
multifactorial stress conditions included genes involved in amino

acid and carbohydrate metabolism, heme-binding, and glutathione
transferase and peroxidase activities (Fig. S5c).

The response of Arabidopsis to multifactorial stress
combination involves genes encoding proteins associated
with the regulation of iron and ROS levels in cells

Further analysis of gene expression during multifactorial stress
combination revealed a high representation of ROS-, iron- and
other stress hormone-response genes, such as ABA, jasmonic acid
(JA), ethylene (ET), and salicylic acid (SA), among the genes with
enhanced expression in all of the studied stress treatments, as well
as their representative multifactorial combinations (Fig. 3a;
RNA-Seq data from the current study was compared with RNA-
Seq data from Zandalinas et al., 2019, 2020a,b). In addition, as
shown in Fig. 3a,b considerable overlap was found between genes
altered in their expression in seedlings in response to a combina-
tion of three, four, five, and six different stresses [359 + 1568
from Fig. 2, + 339 + 1511 from Fig. S5c = 3777, – (136 from
Fig. 2, +127 Fig. S5c = 263) = 3514], or genes common in their
expression in response to all six different stress combinations (136
from Fig. 2, + 127 from Fig. S5c = 263), and genes altered in
their expression in plants in response to elevated levels of H2O2

or alterations in iron levels (from Zandalinas et al., 2020b). The
different gene expression signatures described above (Figs 2, 3,
S5), the established link between iron and ROS levels in different
biological systems (Schieber & Chandel, 2014; Halliwell & Gut-
teridge, 2015; Mittler, 2017), and our findings that mutants
impaired in ROS metabolism and signalling are highly sensitive
to multifactorial stress combination (Figs 1a, S1), strongly sug-
gest that managing iron and ROS levels could be crucial for plant
survival under conditions of multifactorial stress combination.

Recent studies highlighted a key role for the iron–sulfur
(2Fe–2S) protein AtNEET (At5g51720), and its mammalian
counterparts (mitoNEET and NAF-1), in the regulation of iron
and ROS levels in cells (Nechushtai et al., 2012; Sohn et al.,
2013; Darash-Yahana et al., 2016; Mittler et al., 2019; Zandali-
nas et al., 2020b). While overexpression of the AtNEET protein
had a negligible impact on Arabidopsis growth, a disruption in
AtNEET function by overexpression of a dominant-negative
variant of AtNEET (H89C), resulted in the over-accumulation
of iron and ROS in cells and the premature death of seedlings
(Zandalinas et al., 2020b). Interestingly, comparing the gene
expression patterns of seedlings overexpressing AtNEET or
H89C (from Zandalinas et al., 2020b) with that of seedlings
subjected to a combination of three, four, five, and six different
stresses (3514 genes; see above), or genes common in their
expression in response to all six different stress combinations
(263 genes; see above), revealed a significant overlap (Fig. 3c).
Moreover, as shown in Figs 3d and S6, overexpressing AtNEET
mitigated some of the effects of multifactorial stress combina-
tion on root growth. These findings are in agreement with the
high representation of iron-, ROS- and 2Fe-2S-related genes
among the genes significantly enhanced in their expression in
response to all six multifactorial stresses, and the overlap
between gene expression patterns significantly altered in
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response to multifactorial stress combination and AtNEET- or
H89C-expressing plants (Figs 2, 3).

Unique and common pathways associated with the
response of plants to multifactorial stress combination

To further dissect the gene expression responses of Arabidopsis to
multifactorial stress combinations, we focused on the complete
set of Salt, PQ, HL and HS treatments and determined their rela-
tive gene expression patterns among all stresses and their

combinations. As shown in Fig. 4a,b considerable overlap was
found between the gene expression responses of Arabidopsis to
each of the individual stress treatments (i.e. Salt, PQ, HL and
HS), with 65–85% of genes included in each individual response
showing a common response to the different single-stress treat-
ments (see also Fig. S5a). By contrast, once the different single
stresses were combined (in two, three or four combinations),
none of the gene expression responses to each individual stress
reached its maximum and the degree of individual gene expres-
sion responses for each stress decreased as the combinations
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became more complex (Fig. 4a). By contrast with genes involved
in the response of Arabidopsis to each individual stress (Fig. 4a),
the percentage of unique gene expression responses associated
with each different treatment or their combinations increased as
the combinations became more complex, with the highest num-
ber of unique gene expression responses found for the combina-
tions of PQ +HL +HS, Salt + PQ +HL and Salt + PQ +HL +
HS (Fig. 4b). The findings presented in Fig. 4 suggest that with
the increased complexity of stress combination, the number of
genes responding to each individual stress decreases while the
number of gene expression responses unique to the different
stress combination(s) increases.

To determine the relative involvement of a representative set
of different acclimation, defence and recycling pathways in the
response of Arabidopsis to the different stresses and their combi-
nations, we calculated the percentage of genes altered in their
expression in different pathways (i.e. chlorophyll and osmoregu-
lation metabolism, autophagy, DNA repair, proteolysis, senes-
cence, and heat shock factor (HSF), and unfolded protein
response (UPR) pathways; Tables S42–S49) in response to each
individual stress and their combination. We chose this represen-
tative set of pathways based on prior studies suggesting that they
could be important for plant acclimation to stress (Mittler &
Blumwald, 2010; Zhu, 2016; Bailey-Serres et al., 2019; Zandali-
nas et al., 2020a). As shown in Fig. 5, different stress combina-
tions were different in the percentage of gene
activation/suppression belonging to the different pathways. Of
particular interest were stress combinations that included
PQ +HL +HS, Salt + PQ +HL, and Salt + PQ +HL +HS.
These combinations appeared to display a lower proportion of
gene expression events associated with many of the pathways acti-
vated by the other stresses and their combinations (Fig. 5). Inter-
estingly, the percentage of unique gene expression responses
activated by these specific combinations was also higher com-
pared with those found to be triggered by all other stresses and
their combinations (Fig. 4b), suggesting that the response of Ara-
bidopsis to these particular combinations (PQ +HL+HS,
Salt + PQ +HL, and Salt + PQ +HL +HS) is different com-
pared with that to many other stresses and their combinations
and may involve pathways or metabolites with a defence/acclima-
tion role, not identified/studied yet. Alternatively, during these
combinations, Arabidopsis plants might enter a state of sup-
pressed activity, or undergo cell death and therefore do not trig-
ger many of the studied pathways. Direct evidence in support of
the latter possibility was however not found in the survival,
growth and chlorophyll content measurements conducted for
these specific stress combinations (Figs S1–S4, S6). Further stud-
ies are of course needed to address these interesting possibilities.

To further study the involvement of different hormone-re-
sponse pathways (Fig. 3a), AtNEET (Fig. 3c,d), autophagy
(Fig. 5), and thermotolerance (Fig. 5) in the acclimation of Ara-
bidopsis plants to multifactorial stress combination, we compared
the survival of mutants impaired in ABA (aba2; Gonz�alez-
Guzm�an et al., 2002), JA (aos; Balfag�on et al., 2019), SA (sid2;
Nawrath & M�etraux, 1999), ET (ein2; Alonso et al., 1999),
AtNEET (AtNEET RNAi; Nechushtai et al., 2012), autophagy

(atg9; Floyd et al., 2015) and basal thermotolerance (mbf1c;
Suzuki et al., 2011) functions to a combination of six different
stresses (Fig. 6). Interestingly, while the function of ABA2,
MBF1c or AtNEET was absolutely required for plant survival
under conditions of multifactorial stress combination of six dif-
ferent stresses, the function of AOS, SID2, EIN2 or ATG9 was
not (Fig. 6). These findings support a role for ABA signalling,
MBF1c-regulated heat stress response, and AtNEET (Figs 3–6),
in the tolerance of Arabidopsis plants to multifactorial stresses.

Survival and growth of Arabidopsis seedlings subjected to
multifactorial stress combinations in peat soil

Although the study of seedlings growing on plates enabled us to
precisely analyse plant survival and root growth in response to
different multifactorial stress combinations (Figs 1–6, S1–S6),
the responses of plants grown on plates may not always reflect
those of plants grown in soil (Mittler & Blumwald, 2010). We
therefore subjected Arabidopsis wild-type, apx1 and rbohD
seedlings grown in peat soil to the same multifactorial stress com-
binations as those grown on plates. As shown in Figs 7 and S7–
S9, the response of peat soil-grown wild-type and apx1 seedlings
to the multifactorial stress combination was similar to that of
plants grown on plates, with apx1 seedlings demonstrating a sig-
nificant decrease in growth and survival, coupled with an increase
in overall ROS levels, compared with wild-type, in response to all
six stresses combined (Figs 1, 7, S1–S4, S7–S9). By contrast,
although rbohD displayed a similar decline to that of wild-type
and apx1 in growth and survival, and a similar increase in overall
ROS levels, in response to the increasing number and complexity
of multifactorial stress combinations, compared with its survival
on plates, the impact of the multifactorial stress combination on
rbohD was not as severe in peat soil (Figs 1, 7, S1–S4, S7–S9).
Compared with seedlings grown on plates (Fig. 1a), the overall
survival of seedlings grown in peat soil (Fig. 7a) was higher in
response to the different stresses and their combinations.
Although it is hard to draw conclusions from such a comparison,
it is possible that the presence of the plant microbiome (e.g. De
Vries et al., 2020; Liu et al., 2020), and/or the buffering effects of
the peat soil on the different stressors (i.e. altering the pH, or
binding of Cd or PQ), enhanced the ability of seedlings to with-
stand different abiotic stresses and their combinations. Taken
together, the results shown in Figs 1 and 7, and Figs S1–S4 and
S7–S9, demonstrate that multifactorial stress combinations have
a similar overall impact on plants grown in peat soil (Figs 7, S7–
S9) or on plates (Figs 1, S1–S4), and that the role of ROS scav-
enging, mediated by APX1, is important for plant survival under
both conditions.

Discussion

While each of the different stresses, applied individually, had a
minimal effect on plant growth and survival, the accumulated
impact of multifactorial stress combination on plants, growing
both in peat soil and on plates, was detrimental (Figs 1, 7, S1–
S4,S7–S9). This finding is important as it demonstrates that
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different stresses could interact to negatively impact plant health
and performance, even if the effect of each stress applied individ-
ually is negligible. A multifactorial stress combination could
therefore impact an ecosystem or an agricultural area in ways that
we may not be able to currently predict. For example, we may
not observe a clear decline in an ecosystem or a field due to a low
level of one stress factor, but once additional factors are intro-
duced, even at low levels, they could negatively interact with each
other and push the system towards a rapid collapse. Together
with the pioneering study of Rillig et al., (2019), our results
therefore suggest that with the increasing number and complexity
of simultaneously occurring environmental stress factors on our
planet, plant life (Figs 1, 7, S1–S4, S7–S9) as well as soils (Rillig
et al., 2019), are likely to deteriorate further. The similar trends
observed in our study (Figs 1, 7, S1–S4, S7–S9) and that of Rillig
et al. (2019), should serve as a dire warning to our society. Fur-
ther polluting our environment could result in even higher com-
plexities of multifactorial stress combinations that in turn would
drive a critical decline in plant growth, soil conditions and overall
agricultural productivity.

The combined phenotypic and representative gene expression
analyses presented by our study (Figs 1–7, S1–S9) further high-
light the uniqueness of plant responses to stress combination
(Rizhsky et al., 2004; Mittler, 2006; Mittler & Blumwald, 2010;

Prasch & Sonnewald, 2013; Suzuki et al., 2014; Choudhury
et al., 2017; Shaar-Moshe et al., 2017, 2019; Zhang & Son-
newald, 2017; Balfag�on et al., 2019; Zandalinas et al., 2020a),
even at the multifactorial level. The identification of six-stress
combination-specific gene expression patterns included within
the representative set of multifactorial stress conditions studied
(Tables S39–S41) suggests for example that even in response to a
combination of six different stresses, certain aspects of the plant
response are likely to be unique and cannot be predicted from
the response of plants to different stress combinations applied as
four- or five-factor stresses. It is surprising that even under such a
high level of stress complexity, distinct gene expression signatures
can be identified, suggesting that each different combination of
stresses is unique in its effects on plant metabolism, physiology
and survival and requires a unique gene expression response for
plant acclimation.

Our study further reveals that maintaining two critical biologi-
cal processes, namely, iron and ROS homeostasis, is essential for
plant acclimation to multifactorial stress combinations (Figs 1–3,
7, S1–S9). Balancing iron and ROS levels is thought to be essen-
tial for the survival of different microorganisms growing under
extreme environmental conditions (Slade & Radman, 2011;
Yuan et al., 2012; Schieber & Chandel, 2014; Halliwell & Gut-
teridge, 2015; Mittler, 2017; Shuryak, 2019), providing further
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support to our findings with plants. The observation that plants
overexpressing AtNEET, a protein essential for the management
of iron and ROS in plant and animal cells (Nechushtai et al.,
2012; Darash-Yahana et al., 2016; Mittler et al., 2019; Zandali-
nas et al., 2020b) could maintain root growth under conditions
of multifactorial stress combinations (Figs 3d, S6), and that an
RNAi line for AtNEET is highly sensitive to multifactorial stress
combinations (Fig. 6), lends further support to this hypothesis.

In addition to iron and ROS metabolism, other cellular pro-
cesses such as autophagy, hormone signalling (in particular ABA),
heat stress responses (in particular MBF1c-regulated), DNA
repair and osmoregulation are likely to be important for plant
acclimation to multifactorial stress combinations (Fig. 6). Inter-
estingly, not all stresses and their combinations resulted in the
activation/suppression of these pathways to a similar extent. Of
particular interest are the combinations of PQ +HL +HS,
Salt + PQ +HL and Salt + PQ +HL +HS, that appear to involve
a lower proportion of transcripts involved in many of the path-
ways activated by the other stresses (Fig. 5). Interestingly, the per-
centage of unique genes activated by these specific combinations
(PQ +HL +HS, Salt + PQ +HL and Salt + PQ +
HL +HS) was also higher compared with those found to be trig-
gered by all other stresses (Fig. 4b), suggesting that the response
of Arabidopsis to these particular combinations is unique and
may involve pathways or metabolites with a defence/acclimation
role, not identified/studied yet. This possibility is further sup-
ported by the hierarchical clustering analysis shown in Fig. 2,
which reveals distinct clustering of genes expressed in response to
PQ +HL +HS, Salt + PQ +HL, and Salt + PQ +HL +HS,
among all gene expression patterns common to all three, four,
five and six-stress combinations. Although further studies are
needed to address this possibility, our findings highlight the
unique impact of multifactorial stress combination on plants and
its effect on the regulation of multiple stress-response pathways
in Arabidopsis.

In addition to impacting plant growth and survival (Figs 1, 7),
multifactorial stress combinations are also likely to impact plant
reproduction and different biotic interactions (not addressed in
this study). In this respect it should be noted that reproductive
processes and yield of important grain crops such as corn (Zea
mays), soybean (Glycine max) and wheat (Triticum aestivum) are
negatively impacted by stress combinations such as drought and
heat stress (e.g. Mittler, 2006; Li et al., 2015; Lawas et al., 2018;
Qaseem et al., 2019; Cohen et al., 2021). In addition, plant–
pathogen and/or insect interactions are also negatively impacted
by different stresses and their combinations (e.g. Prasch & Son-
newald, 2013; Desaint et al., 2020; Hamann et al., 2020; Cohen
& Leach, 2020; Savary & Willocquet, 2020). If simple stress
combinations involving two or at most three factors can have
such dramatic effects on plant reproduction and/or pathogen/in-
sect interactions, it stands to reason that more complex stress
interactions, such as those comprising a multifactorial stress com-
bination, would have an even more dramatic effect on these pro-
cesses. Considering the increased rate of changes in global
environmental conditions, further studies that address the
impacts of multifactorial stress combination on reproductive

processes and yield could prove critical for our global food, feed
and fibre security.

Taken together, our findings demonstrated that, with the
increasing number and complexity of multifactorial stress combi-
nations, plant growth and survival declines. This decline is evi-
dent in the presence (Figs 7, S7–S9) or absence (Figs 1, S1–S4)
of soil, that is potentially also impacted by multifactorial stress
conditions (Rillig et al., 2019), and is dependent on the ability of
plants to scavenge ROS (Figs 1, 7, S1–S4, S6–S9), manage iron
levels (Figs 3, 5), mediate ABA signalling (Figs 3a, 5), and mount
a heat stress response utilizing MBF1c (Fig. 6). Although the
study of multifactorial stress combination in plants is in its
infancy, it could potentially lead to new and exciting discoveries,
as well as reveal new strategies to mitigate the impact of multifac-
torial stress conditions on our eco- and agricultural systems that
are facing a growing challenge due to global climatic changes and
human interventions.
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mium.

Fig. S3 Chlorophyll content of Arabidopsis wild-type, rbohD
and apx1 seedlings subjected to multifactorial stress combinations
of heat, salt, light, oxidative stresses, acidity and cadmium.

Fig. S4 Whole-plant ROS accumulation of Arabidopsis wild-
type, rbohD and apx1 seedlings subjected to multifactorial stress
combinations of heat, salt, light, oxidative stresses, acidity and
cadmium.

Fig. S5 Gene expression analysis of multifactorial stress
responses.

Fig. S6 Total and delta (D) root growth, and whole-plant ROS
accumulation of Arabidopsis wild-type and AtNEET seedlings
subjected to multifactorial stress combinations of heat, salt, light
and oxidative stresses applied in all possible combinations.

Fig. S7 Survival and seedling diameter of Arabidopsis wild-type,
rbohD and apx1 seedlings growing in soil subjected to multifacto-
rial stress combinations of heat, salt, light, oxidative stresses, acid-
ity and cadmium.

Fig. S8 Chlorophyll content of Arabidopsis wild-type, rbohD
and apx1 seedlings growing in soil subjected to multifactorial
stress combinations of heat, salt, light, oxidative stresses, acidity
and cadmium.

Fig. S9 Whole-plant ROS accumulation of Arabidopsis wild-
type, rbohD and apx1 seedlings growing in soil subjected to mul-
tifactorial stress combinations of heat, salt, light, oxidative
stresses, acidity and cadmium.

Table S1 Genes significantly upregulated compared with control
(P < 0.05) in Col seedlings subjected to salt stress.

Table S2 Genes significantly upregulated compared with control
(P < 0.05) in Col seedlings subjected to paraquat.

Table S3 Genes significantly upregulated compared with control
(P < 0.05) in Col seedlings subjected to high light stress.

Table S4 Genes significantly upregulated compared with control
(P < 0.05) in Col seedlings subjected to heat stress.

Table S5 Genes significantly upregulated compared with control
(P < 0.05) in Col seedlings subjected to salt + high light stress
combination.

Table S6 Genes significantly upregulated compared with control
(P < 0.05) in Col seedlings subjected to paraquat + high light
stress combination.

Table S7 Genes significantly upregulated compared with control
(P < 0.05) in Col seedlings subjected to salt + heat stress combi-
nation.

Table S8 Genes significantly upregulated compared with control
(P < 0.05) in Col seedlings subjected to paraquat + heat stress
combination.

Table S9 Genes significantly upregulated compared with control
(P < 0.05) in Col seedlings subjected to salt + paraquat stress
combination.

Table S10 Genes significantly upregulated compared with con-
trol (P < 0.05) in Col seedlings subjected to high light + heat
stress combination.

Table S11 Genes significantly upregulated compared with con-
trol (P < 0.05) in Col seedlings subjected to salt + paraquat +
high light stress combination.

Table S12 Genes significantly upregulated compared with con-
trol (P < 0.05) in Col seedlings subjected to salt + paraquat +
heat stress combination.

Table S13 Genes significantly upregulated compared with con-
trol (P < 0.05) in Col seedlings subjected to salt + high light +
heat stress combination.

Table S14 Genes significantly upregulated compared with con-
trol (P < 0.05) in Col seedlings subjected to paraquat + high light
+ heat stress combination.

Table S15 Genes significantly upregulated compared with con-
trol (P < 0.05) in Col seedlings subjected to paraquat + salt +
high light + heat stress combination.
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Table S16 Genes significantly upregulated compared with con-
trol (P < 0.05) in Col seedlings subjected to paraquat + salt +
high light + heat stress + acid combination.

Table S17 Genes significantly upregulated compared with con-
trol (P < 0.05) in Col seedlings subjected to paraquat + salt +
high light + heat stress + cadmium combination.

Table S18 Genes significantly upregulated compared with con-
trol (P < 0.05) in Col seedlings subjected to paraquat + salt +
high light + heat stress + acid + cadmium combination.

Table S19 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to salt stress.

Table S20 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to paraquat.

Table S21 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to high light stress.

Table S22 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to heat stress.

Table S23 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to salt + high light
stress combination.

Table S24 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to paraquat + high
light stress combination.

Table S25 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to salt + heat stress
combination.

Table S26 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to paraquat + heat
stress combination.

Table S27 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to salt + paraquat
stress combination.

Table S28 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to high light + heat
stress combination.

Table S29 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to salt + paraquat +
high light stress combination.

Table S30 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to salt + paraquat +
heat stress combination.

Table S31 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to salt + high light
+ heat stress combination.

Table S32 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to paraquat + high
light + heat stress combination.

Table S33 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to paraquat + salt +
high light + heat stress combination.

Table S34 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to paraquat + salt +
high light + heat stress + acid combination.

Table S35 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to paraquat + salt +
high light + heat stress + cadmium combination.

Table S36 Genes significantly downregulated compared with
control (P < 0.05) in Col seedlings subjected to paraquat + salt +
high light + heat stress + acid + cadmium combination.

Table S37 List of genes common between genes upregulated in
all four-stress possible three-stress combinations and genes upreg-
ulated in response to all four, five and six stresses combined
(Fig. 2).

Table S38 List of genes common between genes downregulated
in all four possible three-stress combinations and genes downreg-
ulated in response to all four, five and six stresses combined
(Fig. S5).

Table S39 List of significantly up and downregulated genes
unique to each stress condition.

Table S40 List of significantly upregulated genes unique to the
state of six-stress combination.

Table S41 List of significantly downregulated genes unique to
the state of six-stress combination.

Table S42 List of genes involved in chlorophyll metabolism.

Table S43 List of genes involved in osmoregulation metabolism.

Table S44 List of genes involved in autophagy.

Table S45 List of genes involved in DNA repair.

Table S46 List of genes involved in proteolysis.

Table S47 List of genes involved in senescence.
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Table S48 List of heat shock factor (HSF) genes.

Table S49 List of genes involved in unfolded protein response
(UPR).

Table S50 P-values for Figs 1–7.
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