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ABSTRACT

Streaming applications from cluster monitoring to algorith-
mic trading deploy Kleene queries to detect and aggregate
event trends. Rich event matching semantics determine how
to compose events into trends. The expressive power of state-
of-the-art streaming systems remains limited since they do
not support many of these semantics. Worse yet, they suf-
fer from long delays and high memory costs because they
maintain aggregates at a fine granularity. To overcome these
limitations, our Coarse-Grained Event Trend Aggregation
(CogRra) approach supports a rich variety of event match-
ing semantics within one system. Better yet, COGRA incre-
mentally maintains aggregates at the coarsest granularity
possible for each of these semantics. In this way, CoGRA min-
imizes the number of aggregates — reducing both time and
space complexity. Our experiments demonstrate that COGRA
achieves up to six orders of magnitude speed-up and up to
seven orders of magnitude memory reduction compared to
state-of-the-art approaches.
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1 INTRODUCTION

Complex Event Processing (CEP) is a technology for support-
ing streaming applications from cluster monitoring to algo-
rithmic trading. CEP systems continuously evaluate Kleene
pattern queries against high-rate streams of primitive events
to detect higher-level event trends [38, 39]. In contrast to
traditional event sequences of fixed length [29], event trends
have an arbitrary length. A rich variety of event matching
semantics were defined in the CEP literature to determine
trend contiguity [11, 49, 50]. Aggregation functions are ap-
plied to these trends to derive summarized insights. CEP
applications may need to react to critical changes of these
aggregates in near real time. We now describe three use cases
of time-critical event trend aggregation.

RETURN mapper, SUM(L.cpu)

PATTERN SEQ(Start S, Load L+, End E)
SEMANTICS contiguous

WHERE [job,mapper] AND L.cpu < NEXT(L).cpu
GROUP-BY job,mapper

WITHIN 1 minute SLIDE 30 seconds

q1:

e Cluster monitoring tools, such as Ganglia [32], gather
load measurements, combine them with workflow-specific
logs (e.g., start and end of Hadoop jobs) to form load distri-
bution trends per job over time. These trends are aggregated
to dynamically detect and then tackle cluster bottlenecks,
unbalanced load distributions, and data queuing issues by au-
tomatically tuning the cluster configuration in near real time.
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Each event carries a time stamp in seconds, job and map-
per identifiers. In addition, Load events carry various load
measurements. Query g; detects mappers that experience
contiguously increasing CPU load trends per job and com-
putes the total CPU cycles for such mappers and jobs during
a time window of 1 minute that slides every 30 seconds. A
load distribution trend consists of one Job-start event, any
number of Load events, and one Job-end event. All events in
one trend must carry the same job and mapper identifiers,
as required by the predicate [job, mapper].! The predicate
L.cpu < NEXT(L).cpu requires the CPU load to increase from
one event to the next in a trend. No events may be skipped
in between matched events per job and mapper, as expressed
by the contiguous semantics.

RETURN district, COUNT(*), AVG(T.speed)
PATTERN SEQ(Pickup P, Trip T+, Dropoff D)
SEMANTICS skip-till-next-match

WHERE [driver, rider, district] GROUP-BY district
WITHIN 30 minutes SLIDE 1 minute

q:

e Ridesharing service. With thousands of drivers and
over 150 requests per minute in New York City [10], real-time
traffic analytics and ride management are challenging. Uber
event stream analytics deploys event aggregation queries for
price computation, forecasting, and optimization [8]. Each
event carries a time stamp in seconds, district, speed, driver,
and rider identifiers. Query g, computes the number and
average speed of Uber trips per district during a time win-
dow of 30 minutes that slides every minute. Each Uber trip
corresponds to a sequence of one Pickup event, any num-
ber of Trip events, and one Dropoff event. All events that
constitute one trip must carry the same driver, rider, and
district identifiers, as required by the predicate [driver, rider,
district]. The skip-till-next-match semantics allows ignoring
irrelevant events, e.g., trip cancellation.

RETURN sector, COUNT(x)

PATTERN Stock S+

SEMANTICS skip-till-any-match

WHERE [company, sector] AND S.price > NEXT(S).price
GROUP-BY sector

WITHIN 10 minutes SLIDE 10 seconds

g3

e Algorithmic trading platforms, such as MetaTrader4
[6], evaluate trend aggregation queries against high-rate
streams of financial transactions to identify short-term profit
opportunities and avoid pitfalls. Each transaction carries a
time stamp in seconds, price, company and sector identifiers.
Since stock trends of companies that belong to the same
industrial sector tend to move as a group [20], query g3 com-
putes the number of down trends per sector to predict future

1The predicate [job] is commonly used syntactic sugar for the equivalence
predicate (S.job = L.job AND L.job = E.job) [11, 38, 39, 49, 50].
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trends for the sector. If the number of down trends exceeds
certain threshold, a sell signal is triggered for the whole sec-
tor. Query g3 detects down-trends within a time window of 10
minutes that slides every 10 seconds. All events that belong
to the same trend must carry the same company and sector
identifiers, as required by the predicate [company, sector].
The price in such a trend must decrease from one event to
the next, as expressed by the predicate S.price>NEXT(S).price.
The query may ignore local price fluctuations to detect longer
and thus more reliable trends [20]. Such flexible behavior is
enabled by the skip-till-any-match semantics.

Challenges. These application scenarios illustrate the
following open problems.

® Real-time event trend aggregation. Each event must
be considered in the context of other events in the stream
forming a trend to draw reliable conclusions. Kleene patterns
detect event trends of arbitrary length. However, the number
of these trends may grow exponentially in the number of
events [50]. With these applications requiring near real-time
responsiveness and thus efficient aggregation of event trends,
this amounts to a critical dilemma. Thus, any real-time solu-
tion must aim to aggregate trends without first constructing
them and ideally even without storing all matched events. At
the same time, correctness must be guaranteed, i.e., the same
aggregates must be returned as by the two-step approach.

e Rich event matching semantics. Event trends are de-
tected in high-rate streams under a rich variety of event
matching semantics [11, 49, 50] depending on the application.
These semantics range from the most restrictive contiguous
semantics (query q; above) to the most flexible skip-till-any-
match semantics (query gs). Their execution strategies differ
significantly, making the seamless support of online trend
aggregation on top of these diverse semantics challenging.

e Expressive predicates on adjacent events in a trend
determine whether an event is matched depending on other
events in a trend. Since a new event may be adjacent to any
previous event under the skip-till-any-match semantics, all
matched events must be kept. The need to store all matched
events contradicts the online aggregation requirement that
aims to incrementally update aggregates upon event arrival
and discard these events immediately thereafter.

In this paper, we tackle the open problems described above
with the ultimate objective to minimize the latency of such
expressive event trend aggregation queries.

State-of-the-Art Approaches to event aggregation can
be divided into the following groups (Tables 1 and 2).

o CEP approaches such as SASE [50], Flink [2], Cayuga
[15], and ZStream [33] support Kleene closure. However,
Cayuga and ZStream do not consider diverse event match-
ing semantics. While their languages support aggregation,
they do not provide any optimization techniques to compute
aggregation on top of Kleene patterns. Instead, they first
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constructs all trends and then compute their aggregation.
This two-step approach suffers from long delays or even fails
to return results within several hours due to the exponential
time complexity of event trend construction (Section 8).

In contrast, A-Seq [40] Incrementally computes aggrega-
tion of fixed-length event sequences. However, A-Seq does
not support Kleene closure. Thus, it does not tackle the ex-
ponential complexity of event trends. GRETA [39] introduces
online event trend aggregation. Since it avoids the expensive
event trend construction step, it reduces the time complexity
from exponential to quadratic in the number of events com-
pared to the two-step approaches. However, GRETA supports
only one semantics, namely, skip-till-any-match. Moreover,
it maintains aggregates at the finest granularity per each
matched event. We will show that its complexity is not opti-
mal in many cases. This also explains why GRETA returns
aggregation results with over an hour long delay for 20 mil-
lion events per window (Section 8.2). Such long delays are
unacceptable for time-critical applications.

o Streaming approaches [12, 16, 23, 25, 47] evaluate tra-
ditional Select-Project-Join queries, i.e., their execution par-
adigm is set-based. They support neither event sequences
nor Kleene closure. They construct join results prior to their
aggregation. Thus, they define incremental aggregation of
single raw events only. Industrial streaming systems such
as Esper [1] and Oracle Stream Analytics [7] only support
fixed-length event sequences. They do not explicitly support
Kleene closure. They construct all sequences prior to their
aggregation and thus follow the two-step approach.

’ ‘ Event sequences ‘ Event trends ‘

Two- | Oracle Stream Ana- | SASE [50], Cayuga [15]
step lytics [7], Esper [1] | Flink [2], ZStream [33]
Online | A-Seq [40] GRETA [39]

Table 1: State-of-the-art event aggregation approaches

Our Proposed COGRA Approach is the first to define
online event trend aggregation under rich event matching se-
mantics at multiple granularities. CoGra pushes aggregation
inside the Kleene closure computation. Thus, it avoids the
event trend construction step which is known to suffer from
exponential complexity [50]. Similarly to SQL queries com-
puting aggregation over join, depending on query features,
Cocra adaptively selects the coarsest possible granularity at
which it incrementally computes trend aggregation. These
granularities range from coarse (per pattern), to medium
(per event type), to fine (per matched event) as per Figure 1.
CoGRA minimizes the number of maintained aggregates and
succeeds to discard all events as soon as they have been used
to update their respective type-grained or pattern-grained ag-
gregates. Thus, our approach represents a win-win solution
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Coarse

granularity
+———— Pattern-grained aggregates

+«—— Type-grained aggregates

-— Event-grained aggregates

Fine
granularity

Number of aggre-
gates decreases

Figure 1: Event trend aggregation at different granularities

that reduces both time and space complexity of trend aggre-
gation compared to state-of-the-art methods [2, 39, 40, 50].
Contributions. The key innovations of CoGRa include:
1) We define the problem of real-time event trend aggrega-
tion under rich event matching semantics. Based on these se-
mantics and other query features, we determine the coarsest
granularity at which event trend aggregates are maintained.
2) For each granularity, we propose efficient data struc-
tures and algorithms to incrementally compute event trend
aggregation. We prove the correctness of these algorithms.
3) We prove that COGRrA represents a win-win solution that
guarantees optimal time complexity, while keeping space
complexity linear in the number of events in the worst case.
4) Our experiments on real data sets [4, 10, 41] demon-
strate that for 100 million events per window, the latency of
CoGra stays within 3 seconds, while its throughput exceeds
39 million events per second. Based on these results, we con-
clude that CoGRA enables real-time in-memory event trend
aggregation as required for time-critical applications.
Outline. Section 2 describes our data and query model.
Section 3 provides an overview of the CoGra framework. For
each event matching semantics, Sections 4-6 define incre-
mental event trend aggregation at different granularities. We
consider the remaining query clauses in Section 7. Section 8
describes our experimental study. Section 9 discusses related
work, while Section 10 concludes the paper.

2 DATA AND QUERY MODEL
2.1 Basic Notions and Assumptions

Time is represented by a linearly ordered set of time points
(T, <), where T C Q" (the non-negative rational numbers).

An event is a message indicating that something of interest
to the application happened in the real world. An event e
has a time stamp e.time € T assigned by the event source.
An event e belongs to a particular event type E, denoted
e.type=E and described by a schema that specifies the set of
event attributes and the domains of their values.

Events are sent by event producers (e.g., sensors) on an
event stream I. An event consumer (e.g., health care system)
continuously monitors the stream with event queries. We
borrow the query language and semantics from SASE [11,
49, 50]. Queries in Section 1 are expressed using this syntax.
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Kleene | Skip-till- Skip-till- | Contiguous | Predicates on | Event trend | Online sequence/
Approaches . . . )
closure | any-match | next-match | semantics | adjacent events | grouping | trend aggregation
Flink + + + + + +
SASE + + + + + + -
GRETA + + - - + + +
A-Seq - + - - - + +
CoGRrA + + + + + + +

Table 2: Expressive power of the event aggregation approaches

Definition 2.1 (Pattern). A pattern has the form E, P+, or
SEQ(P1, P,), where E is an event type, P, Py, P, are patterns,
+ is a Kleene plus operator, and SEQ is an event sequence
operator. P is a sub-pattern of P+, while P, and P; are sub-
pattern of SEQ(P;, P2). If a pattern contains a Kleene plus
operator, it is called a Kleene pattern. It is an event sequence
pattern otherwise. The length of a pattern is the number of
event types in it. O

Assumptions. We focus on Kleene patterns that allow
us to specify arbitrarily long event pattern matches, called
event trends (Definitions 2.4, 2.6, and 2.8). To simplify our
discussion, we first consider Kleene patterns that do not
contain negation, Kleene star, optional sub-patterns, con-
junction, nor disjunction. Also, an event type may appear
at most once in a pattern. We later sketch extensions of our
approach to relax these assumptions in Appendix C.

We focus on event queries with predicates on single events
and on pairs of adjacent events in a trend (Section 3.2). Such
predicates allow us to specify expressive queries in diverse
application domains, e.g., queries q;—gs in Section 1. Predi-
cates on non-adjacent events are subject for future research.
We assume that events arrive in order by their time stamps.
Otherwise existing approaches can be applied [13, 27, 28, 45].

2.2 Event Matching Semantics

Event matching semantics [11, 49, 50] constrain event con-
tiguity in a trend to express queries for diverse streaming
applications. These semantics differentiate between relevant
events, i.e.,, events that can extend an existing partial trend
(Definition 3.1), and irrelevant events that cannot. Relevant
events either must extend existing trends or can be skipped
to preserve opportunities for alternative trends. Irrelevant
events either invalidate partial trends or can be skipped.

Example 2.2. In Figure 2, the pattern P = (SEQ(A+,B))+ is
evaluated under various event matching semantics against
the stream I (depicted at the bottom of the figure). In the
stream, letters denote types, while numbers represent time
stamps, e.g., al is an event of type A with time stamp 1.
Matched trends are depicted above the stream. They range
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from the shortest contiguous trend (a1, b2)? to the longest
non-contiguous trend (al, b2, a3, a4, b6, a7, b8).

Skip-Till-Any-Match Semantics (ANY) is the most flex-
ible semantics that detects all possible trends as follows. For
each event e and each partial trend tr that can be extended
by e, two possibilities are considered: (1) e is appended to
the trend tr to form a longer trend tr’ = (tr,e), and (2) e
is skipped and the trend tr remains unchanged to preserve
opportunities for alternative longer trends. If an event e can
extend all existing trends, then e doubles the number of
trends. Thus, the number of trends grows exponentially in
the number of events in the worst case. Skip-till-any-match
semantics skips irrelevant events. Query gs in Section 1 is
evaluated under this semantics.

al b7 @ a3 b6 a7 b8
ANY 2 o o5l el by 30 other
skips any event [as i ey W trends exist
al a3 b6
a3 b6
al b2 o3 a4 b6 a7 b8
al b2 a3 a4 b6 | | 43
NEXT [a3 a4 b6 a7 b8 trends
skips irrelevant [a4 b6 a7 bs
events = Be - 8d
5 " trends
CONT a7 b8 |
skips no event trends
Eventstream/: al b2 a3 a4 ¢S b6 a7 b8

Figure 2: Event trends matched by the Kleene pattern
P=(SEQ(A+, B))+ under various event matching semantics

Example 2.3. In Figure 2, when a7 arrives, the trend (a3,
b6) is extended to (a3, b6, a7) and the original trend (a3, b6) is
also kept. Based on only eight events in the stream, 43 trends
are detected. Only some of them are shown for compactness.
Irrelevant events are ignored, e.g., c5.

Definition 2.4 (Event Trend Under Skip-Till-Any-Match). An
event type E matches an event e € I of type E under skip-
till-any-match, denoted e € trendsa,,y(E, I).

2Constraints on minimal trend length exclude too short and thus not mean-
ingful trends as described in Appendix C.
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Let Py, P, be patterns and ey, ...,er € I be events. An
event sequence pattern SEQ(P;, P;) matches the trend s =
(e1, - . ., ex) under skip-till-any-match, denoted s € trendsgn,(
SEQ(Ps, P2), I), if the following two constraints hold:

e Pattern constraint: (e, ...,en) € trendsgy(Py,I) and
(em+1s - - - > ) € trendsgy(Pa, I).

e Temporal order constraint: e,,.time < ep4;.time.

Let P be a pattern, si,...,s; be trends, and “:” denote
concatenation. A Kleene plus pattern P+ matches the trend
tr = (s : -+ - : sg) under skip-till-any-match, denoted tr €
trendsgn,(P+, 1), if the following constraints hold:

e Pattern constraint: Vs; € {sq,...,sk}. 5 € trendsqn,(P,I).

e Temporal order constraint: s;.end.time < s;.start.time.
Start and end events of a trend are defined in Table 3. ]

Due to the temporal order constraint in Definition 2.4, an
event e can appear at most once in any trend ¢r. But an event
e can appear in k different trends (k € N, k > 0).

Skip-Till-Next-Match Semantics (NEXT) is more restric-
tive than ANY because NEXT requires that all relevant events
are matched. It allows skipping irrelevant events however.
Query g, in Section 1 is evaluated under this semantics.

Example 2.5. In Figure 2, the trend (a3, b6) does not con-
form to this semantics since it skipped over the relevant
event a4. In contrast, the trend (a3, a4, b6) is valid since ¢5
is an irrelevant event. Hence the trend (a3, a4, b6) skips no
relevant events between a3 and b6.

Definition 2.6 (Event Trend Under Skip-Till-Next-Match). A
pattern P matches a trend tr under skip-till-next-match, de-
noted tr € trendspex(P, I), if the following constraints hold:

e Pattern and temporal order constraints (Definition 2.4).

e Relevance constraint: Let tr = (eq, .. ., e,) be a finished
trend and (ey, . . ., €;y), m < n, be a partial trend of P (Defini-
tion 3.1). Ae € I such that e.time < e,,.time, e;,_; and e are
adjacent under skip-till-next-match (Definition 3.2) and e is

not part of the trend tr. O
’ Trend tr H tr.start \ tr.mid \ tr.end ‘
e e 0 e
(e1,...,ex) el {es,...,ex_1} ey
(sp:---:sg) || sp.start | {e | eisintr,e # s;. | sg.end
start,e # si.end}

Table 3: Start, mid, and end events of a trend

Contiguous Semantics (CONT) is the most restrictive
semantics since it does not skip events. Query ¢ in Section 1
detects contiguous trends.

Example 2.7. In Figure 2, (al, b2) and (a7, b8) are the only
contiguous trends. Since ¢5 cannot be ignored, al-a4 cannot
form contiguous trends with later events.
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Definition 2.8 (Event Trend Under Contiguous Semantics). A
pattern P matches a trend ¢r under the contiguous semantics,
denoted tr € trendscon:(P, I), if the constraints below hold:

e Pattern and temporal order constraints (Definition 2.4).

e Contiguity constraint: fle € I such that tr.start.time <
e.time < tr.end.time and e is not part of the trend tr. ]

By Definitions 2.4, 2.6, and 2.8, the skip-till-next-match
and contiguous semantics impose additional relevance and
contiguity constraints on trends matched under skip-till-any-
match. Contiguity constraint is more strict than relevance
constraint. Thus, there is a containment relation among the
sets of trends matched by a pattern P under these semantics
as illustrated in Figure 2.

2.3 Event Trend Aggregation Query

An event trend aggregation query constrains the trends that
are detected under various event matching semantics by
predicates, grouping, and windows as follows.

Definition 2.9 (Event Trend Aggregation Query). An event
trend aggregation query g consists of six clauses:

e Aggregation result specification (RETURN clause),

o Kleene pattern P (PATTERN clause),

e Event matching semantics S (SEMANTICS clause),

e Predicates 6 (optional WHERE clause),

e Grouping G (optional GROUP-BY clause), and

e Window w (WITHIN and SLIDE clause).
A query g matches a trend ¢ if the following conditions hold:

e Pattern, temporal order, (relevance or contiguity) con-
straints (Definitions 2.4, 2.6, and 2.8).

e Predicate constraint: All events in tr satisfy the predi-
cates 6.

e Grouping constraint: All events in tr carry the same
values of the grouping attributes G.

e Window constraint: All events in ¢r belong to the same
window w. ]

Aggregation Functions. Within each window of query
q, event trends are grouped by the values of grouping at-
tributes G. Aggregates are computed per group. We focus
on distributive (such as COUNT, MIN, MAX, SUM) and alge-
braic aggregation functions (such as AVG) since they can be
computed incrementally [17].

COUNT(x) returns the number of trends per group. Let
tr.COUNT(E) be the number of events of type E in a trend
tr. COUNT(E) corresponds to the sum of trCOUNT(E) of all
trends tr per group.

Let tr.MIN(E.attr) be the minimal value of an attribute attr
of events of type E in a trend tr. MIN(E.attr) returns the
minimal value of tnMIN(E.attr) of all trends tr per group.
MAX(E.attr) is defined analogously to MIN(E.attr).
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Let trSUM(E.attr) be the sum of values of an attribute attr
of events of type E in a trend tr. SUM(E.attr) corresponds to
the sum of tnSUM(E.attr) of all trends tr per group. Lastly,
AVG(E.attr) = SUM(E.attr) /| COUNT(E) per group.

As discussed in Section 2.2, an event e may appear in k
different trends (k € N, k > 0). In this case, e contributes k
times to an aggregate. In contrast, distinct event aggregation
enforces that e contributes at most once to an aggregate.
Distinct event aggregation is subject to future research.

3 COGRA APPROACH OVERVIEW

Problem Statement. To support time-critical streaming ap-
plications, we solve the following event trend aggregation
problem. Given an event trend aggregation query g (Def-
inition 2.9) evaluated under an event matching semantics
(Definitions 2.4, 2.6, and 2.8) over an event stream I, our goal
is to compute the results of ¢ with minimal latency. Figure 3
illustrates our CoGra framework. To select the granularity
at which the aggregates are maintained for a query ¢ (Sec-
tion 3.3), the Static Query Analyzer analyzes the pattern of
q (Section 3.1) and classifies the predicates of g (Section 3.2).
The results of this query analysis are encoded into the CoGra
configuration to guide our Runtime Executor (Sections 4-6).

Event Static Query Analyzer

ue .
q‘w Pattern Predicate Granularity

Analyzer Classifier Selector
‘ Cogra configuration

Event Runtime Executor Aggregation

stream K K . . results
Type-Grained Mixed-Grained Pattern-Grained
- Aggregator Aggregator Aggregator -p

Figure 3: CoGra framework

3.1 Pattern Analyzer

To facilitate the analysis of a pattern P, we follow the tra-
ditional approach that translates P into its Finite State Au-
tomaton (FSA)-based representation [11, 15, 33, 39, 49, 50].
We briefly describe this translation here. The algorithm can
be found in the literature [39].

G

Figure 4: FSA representation of the pattern P=(SEQ(A+,B))+

States are labeled by event types in the pattern P. Accord-
ing to our assumption in Section 2.1, a type may occur at
most once in P. Thus, state labels are distinct. The first state
is the start type start(P) and the final state is the end type
end(P). All other states are labeled by middle types mid(P).
There is exactly one start type, exactly one end type, and any
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number of middle types in P [39]. In Figure 4, start(P) = A,
end(P) = B, and mid(P) = 0, meaning that a trend matched
by P always starts with an event a (i.e., an event of type A)
and ends with an event b (i.e., an event of type B).

Transitions are labeled by operators in P. They connect
types of events that are adjacent in a trend matched by P
(Definition 3.2). If a transition connects a type E’ with a
type E, then E’ is called a predecessor type of E, denoted
E’ € P.predTypes(E). In Figure 4, P.predTypes(A) = {A, B}
and P.predTypes(B) = {A}, meaning that an event a may be
preceded by previously matched a’s and b’s, while an event
b is preceded by previously matched a’s.

Definition 3.1 (Finished and Partial Event Trend). Given
a pattern P evaluated under an event matching semantics
S (Definitions 2.4, 2.6, and 2.8), a trend tr = (ey,...,e,) €
trendss(P,I) is called a finished trend of P, while a trend
(e1,...,em), m < n, is called a partial trend of P. O

Definition 3.2 (Adjacent Events, Predecessor Event). Lete,, e €
I be events such that e, is in a partial trend matched by a
query g and e is new. The events e, and e are adjacent un-
der the skip-till-any-match semantics in a window w if they
satisfy the following constraints:

(1) Pattern constraint: e,.type € P.predTypes(e.type).

(2) Temporal order constraint: e,.time < e.time.

(3) Predicate constraint: e, and e satisfy the predicates 0.

(4) Grouping constraint: e, and e have the same values of
grouping attributes G.

(5) Window constraint: e, and e belong to the same win-
dow w.

The events e, and e are adjacent under the skip-till-next-
match semantics in a window w if constraints 1-5 above and
the relevance constraint hold:

(6) Relevance constraint: Ale’ € I such that e’.time <
e.time and e, and e’ are adjacent in a window w under skip-
till-any-match.

The events e, and e are adjacent under the contiguous
semantics in a window w if constraints 1-5 above and the
contiguity constraint hold:

(7) Contiguity constraint: fle’ € I such that e,.time <
e’.time < e.time.

If e, and e are adjacent in a window w, then e, is called a
predecessor event of e in the window w. ]

3.2 Predicate Classifier

We distinguish between predicates on single events and pred-
icates on adjacent events since they determine the granular-
ity at which aggregates are maintained (Section 3.3).
Predicates on single events either filter or partition the
stream. For example, query g4 in Appendix A uses the predi-
cate (A.type = passive) to select only passive activities and
the predicate [patient] to partition the stream by patient.
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Predicates on adjacent events restrict the adjacency rela-
tion between events in a trend. For example, the predicate
(L.cpu < NEXT(L).cpu) of query g; requires CPU load mea-
surements to increase from one event to the next in a trend.

3.3 Granularity Selector

The number of event trends matched by a pattern P is deter-
mined by the presence of Kleene plus in P and the semantics
under which P is evaluated (Table 4). The number of event
trends matched by P ranges from linear to exponential in
the number of matched events in the worst case [40, 50].

Event matching || Event sequence Kleene
semantics pattern pattern
ANY Polynomial Exponential
NEXT, CONT Linear Polynomial

Table 4: Number of trends in the number of events [40, 50]

State-of-the-art two-step approaches [1, 2, 7, 15, 50] first
construct all event trends (Figure 2) and then compute their
aggregation. These approaches are not feasible in real-time
applications, since they suffer from the exponential overhead
of event trend construction in the worst case (Table 4).

To overcome this limitation, we omit the trend construc-
tion step and incrementally compute trend aggregation. Events
are discarded once they have been used to update aggregates.
Better yet, depending on the semantics of a query g, our gran-
ularity selector chooses the coarsest granularity at which
trend aggregates are maintained by g such that both correct-
ness and optimal time complexity of trend aggregation are
guaranteed for g. More precisely, our granularity selector
decides whether to maintain trend aggregates for g at the
pattern, type, or mixed granularity as follows (Table 5).

Event matching || Predicates on adjacent events
semantics without ‘ with
ANY Type \ Mixed
NEXT, CONT Pattern

Table 5: Granularity selection

Type-grained aggregator. If the query q is evaluated un-
der the skip-till-any-match semantics and has no predicates
on adjacent events, our executor maintains an aggregate per
each event type in the pattern (Section 4).

Mixed-grained aggregator. If q is evaluated under skip-
till-any-match and has predicates on adjacent events 8, our
executor maintains the aggregates at mixed granularities,
namely, either per event e if e is required to evaluate the
predicates 0 or per event type e.type otherwise (Section 5).

Pattern-grained aggregator. If the query q is evaluated
under the contiguous or skip-till-next-match semantics, our
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executor adopts the pattern-grained aggregation strategy.
Namely, only the final aggregate of g and the intermediate
aggregate of the last matched event are kept (Section 6).

In Sections 4-6, we present the core COGRA techniques
under the assumption that the number of input events is
finite and they belong to the same window and same event
trend group to keep the discussion focused. In Section 7,
we then describe how CoGRA can be generalized to support
windows, grouping, and other query features.

4 TYPE-GRAINED AGGREGATOR

To overcome the exponential time overhead of trend con-
struction under the skip-till-any-match semantics (Table 4),
we now propose to incrementally compute event trend ag-
gregation at the event type granularity. Coarse-grained trend
aggregation under skip-till-any-match is complicated by the
flexibility of this semantics, especially, by its ability to skip
any event in between adjacent events in a trend (Defini-
tion 2.4). Thus, any previously matched event e, may be a
predecessor event of a new event e in a trend (Definition 3.2).
Therefore, each previously matched event e, must be kept
in order to evaluate predicates on adjacent events while
deciding whether e, and a new event e are adjacent. This re-
quirement contradicts our goal of incrementally computing
trend aggregation and immediately discarding all events.
However, if the query has no predicates on adjacent events,
then incremental trend aggregation is possible at the type
granularity. Indeed, when a new event e of type E arrives,
all previously matched events of predecessor types of E in a
pattern P are adjacent to e (Definition 3.2). Thus, an aggregate
can be assigned to each type in the pattern P. The event e
updates the aggregate of E and is discarded thereafter. The
final aggregate corresponds to the aggregate of the end type
of P. In the following, we illustrate the type-grained trend
count computation, i.e., COUNT(*). The same principles apply
to other aggregation functions as defined in Appendix C.

Example 4.1. Continuing our running example in Figure 2,
the type-grained trend count computation is shown in Ta-
ble 6. For example, when event a7 is matched, the interme-
diate count a7.count captures the number of partial trends
that end at a7. According to our predecessor relationship
analysis in Section 3.1, all previously matched a’s and b’s
are adjacent to a7. Thus, a7.count is set to the sum of the
counts of all previously matched a’s and b’s to accumulate
the number of trends extended by a7. We further increment
a7.count by one since a7 is of a start type of the pattern P
and thus begins one new trend (Section 3.1).

a7.count = A.count + B.count +1 =10+ 11+ 1 = 22.

A.count accumulates the number of partial trends that end
at any a. Thus, each a increments A.count by a.count.



Research 6: Streams

A.count = A.count + a7.count = 10 + 22 = 32.

B.count is computed analogously to A.count. Since an
event b is of an end type of the pattern P, it finishes all
trends that it extends. Thus, B.count corresponds to the final
count. 43 event trends are detected in this example (Figure 2).

= A.count = 32.
= B.count + b8.count = 11 + 32 = 43.

b8.count
B.count

Only the most recent values of the type-grained aggregates
are stored at a time. They are highlighted in bold in Table 6.
An event grained aggregate is discarded after it contributed
to its respective type-grained aggregates.

’ Event H a.count \ b.count H A.count \ B.count ‘

al 1 1
b2 1 1
a3 3 4
a4 6 10
b6 10 11
a7 22 32
b8 32 43

Table 6: Type-grained trend count

THEOREM 4.2. (TypE-GRAINED TREND COUNT). Let q be a
query that is evaluated under skip-till-any-match and has no
predicates on adjacent events, P be its pattern, E be an event
type in P, and e € I be an event of type E. Then the event-
grained count e.count associated with the event e corresponds
to the number of (partial) trends that end at e:

e.count = E’.count.

E’€P.predTypes(E)

IfE = start(P), e.count is incremented by one.

The type-grained trend count E.count associated with the
type E captures the number of (partial) trends that end at an
event of type E:

E.count = Z e.count.
e.type=E

The final count corresponds to the number of finished trends
matched by q:

final_count = end(P).count.

Theorem 4.2 is proven by induction in Appendix B.

Type-Grained Trend Count Algorithm maintains a
hash table H that maps each type E in the pattern P to the
count for E. Initially, all counts are set to 0 (Lines 1-2 in
Algorithm 1). For each event e of type E, e.count = 1if Eisa
start type of P. Otherwise, e.count = 0 (Lines 3-5). For each
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Algorithm 1 Type-grained trend count algorithm

Input: Query q with pattern P, event stream [
Output: Count of event trends matched by g in I
: H < empty hash table

: for each event type E in P do H.put(E,0)

: for each e € I of type E do

: ‘ if E = start(P) then e.count «— 1

else e.count < 0

for each E’ € P.predTypes(E) do

‘ e.count += H.get(E’)

E.count « H.get(E) + e.count; H.put(E, E.count)
: return H.get(end(P))

1
2
3
4
5
6
7
8
9

predecessor type E’ of E, e.count is incremented by E’.count
(Lines 6-7). E.count is incremented by e.count (Line 8). The
count of the end type of P is returned (Line 9).

THEOREM 4.3 (COMPLEXITY). Let q be a query that is eval-
uated under skip-till-any-match and has no predicates on ad-
jacent events. Let P be its pattern of length | and n be the
number of events per window of q. Algorithm 1 has linear time
complexity: O(n) and linear space complexity: ©(l).

Proor. For each matched event of type E, the type-grained
trend counts of all predecessor types of E are accessed. E
has [ predecessor types in the worst case. The length of the
pattern [ is negligible compared to the number of events per
window n for high-rate events streams [4, 10, 41] and mean-
ingful patterns. Thus, the time complexity of Algorithm 1
is linear in n, i.e., O(n). Its space complexity is determined
by the number of counts. Since one count is stored per type,
the space costs are linear in [, i.e., ©(). O

THEOREM 4.4 (TiME OPTIMALITY). The linear time com-
plexity O(n) of Algorithm 1 is optimal.

ProoF. Any event aggregation algorithm must process n
events to ensure correctness of the final count. Even if one
event is not processed, the final result may be incorrect. Thus,
the time complexity O(n) of Algorithm 1 is optimal. ]

5 MIXED-GRAINED AGGREGATOR

We now extend our coarse-grained trend aggregation tech-
niques to the most general class of queries under skip-till-
any-match with predicates on adjacent events 6. To this end,
we propose to maintain aggregates at mixed granularities.
Namely, we classify the event types in a pattern P into two
disjoint sets 7, and 7;. Events of types 7, must be stored
to evaluate the predicates 0 as new events arrive. Thus, an
event-grained trend aggregate is computed for each event of
type in 7.. In contrast, events of types 7; do not have to be
kept. Thus, a type-grained trend aggregate is maintained for
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each type in 7;. Only in the extreme case when expressive
predicates restrict all events (i.e., 7; = 0), CoGra defaults to
the fine-grained trend aggregation [39].

Example 5.1. Continuing our example in Figure 2, assume
that the predicates 0 restrict the adjacency relations between
b’s and a’s. When an a arrives, we have to compare it to
each previously matched b to select those b’s that satisfy
the predicates 6. Thus, event-grained trend counts must be
maintained for b’s (Table 7). In contrast, all a’s are adjacent
to the following b’s. Thus, a type-grained trend count can be
maintained for type A. Assuming that a7 is adjacent to b2 but
not to b6, a7.count is computed based on the mixed-grained
trend counts as follows:

a7.count = A.count + Xy, a7) satisty 6 b-count +1
= A.count + b2.count +1 =10+ 1+ 1= 12.

All matched b’s, their counts, and the most recent values
of type-grained counts are stored at a time (Table 7).

’ Event H a.count \ b.count H A.count \ B.count ‘

al 1 1
b2 1 1
a3 3 4
a4 6 10
b6 10 11
a7 12 22
b8 22 33

Table 7: Mixed-grained trend count

THEOREM 5.2 (MIXED-GRAINED TREND COUNT). Let q be
a query that is evaluated under skip-till-any-match, 0 be its
predicates on adjacent events, P be its pattern, attr and attr’’ be
attributes of types E and E”” in P respectively, ando € {>, >, <,
<,=, #} be a comparison operator. A type-grained trend count
is maintained for a type E if either there is no predicate of
the form (E.attr o E”.attr”’) in 0 or E ¢ P.predTypes(E").
Otherwise, an event-grained trend count is computed for each
matched event of type E. Let T; (T, ) be the set of event types
in P for which type-grained (event-grained) trend counts are
maintained. Let e € I be an event of type E. A mixed-grained
trend count is computed as follows:

e.count = Ypeqinp. predTypes(E) E -count+

ZepJypee?}ﬂP.predTypes(E), (ep,e) satisfy 0 ep.count.
IfE = start(P), e.count is incremented by one. E.count and
final_count are computed as defined in Theorem 4.2.

Theorem 5.2 can be proven similarly to Theorem 4.2.

Mixed-Grained Trend Count Algorithm. At compile
time, for each type E in the pattern P, Algorithm 2 decides
whether to maintain a single type-grained trend count E.count
or an event-grained trend count for each matched event of
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Algorithm 2 Mixed-grained trend count algorithm

Input: Query q with pattern P and predicates 0, stream I
Output: Count of event trends matched by g in I

1: H < empty hash table; V < 0; final_count < 0
2: for each event type E in P do H.put(E,0)

3: for each (E.attr Op E”.attr’") € 6 do

4: ‘ if E € P.predTypes(E”’) then H.remove(E)

5: for each e € I of type E do

6 if E = start(P) then e.count « 1

7 else e.count < 0

8 for each E’ € P.predTypes(E) do

9 ‘ if E’ € H then e.count += H.get(E’)

10: ‘ else for each e, € V.predEvents(e) of type E’
11: ‘ ‘ | do V « V Ue; e.count += ep.count

12: if E € H then E.count «— H.get(E) + e.count

13: ‘ H.put(E, E.count)

14: else if E = end(P) then final_count += e.count
15: if end(P) € H then return H.get(end(P))

16: else return final_count

type E. Type-grained trend counts are maintained in a hash
table H. Initially, the table H contains all types P with counts
set to 0 (Lines 1-2). For each predicate that restricts the
adjacency relation between events of type E and events of
type E”, if E is a predecessor type of E”, then E is removed
from the table H since event-grained trend counts must be
computed for events of type E (Lines 3-4).

When event e of type E arrives at runtime, e.count = 1 if
E is a start type of P. Otherwise, e.count = 0 (Lines 5-7). For
each predecessor type E’ of E, if a type-grained trend count
E’.count is maintained, e.count is incremented by E’.count
(Lines 8-9). If event-grained trend counts are computed for
events of type E’, e.count is incremented by the count of
each predecessor event e’ of type E’ (Lines 10-11). If a type-
grained trend count E.count is maintained, E.count is incre-
mented by e.count in the table H (Lines 12-13). If event-
grained trend counts for events of type E are computed and
E is an end type of P, then the final count is incremented
by e.count (Line 14). Lastly, if a type-grained trend count is
maintained for the end type of P, it is returned as a result.
Otherwise, final_count is returned (Lines 15-16).

THEOREM 5.3 (COMPLEXITY). Let g be a query evaluated
under skip-till-any-match, P be its pattern of length I, and n
be the number of events per window of q. Let T; (7.) be the
set of event types for which type-grained (event-grained) trend
counts are maintained. Let t < | be the number of types in 7;
andn, < n be the number of events of a type in T, per window
of q. Algorithm 2 has quadratic time complexity: O(n n.) and
linear space complexity: ©(t + n.).
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Proor. The time complexity of the static analysis (Lines
1-4) is linear in the length of the pattern / and the number
of predicates 6. These values are negligible compared to the
number of events per window n for high-rate streams and
meaningful queries. During runtime execution (Lines 5-16),
for each event, O(t) type-grained and O(n,.) event-grained
trend counts are accessed. Since the number of types t < |
is negligible compared to the number of events per win-
dow n, the time complexity is quadratic: O(n n.). The space
complexity is linear in the number of counts: ©(¢ + n.). O

THEOREM 5.4 (TIME OPTIMALITY). The quadratic time com-
plexity O(n n.) of Algorithm 2 is optimal.

Proor. By Theorem 4.4, the type-grained trend count
computation has optimal time complexity O(n).

By Definition 2.4, any event can be skipped in between
adjacent events in a trend under skip-till-any-match. Thus,
any previously matched event e, may be a predecessor event
of a new event e in a trend (Definition 3.2). Therefore, each
previously matched event e, must be kept in order to evalu-
ate predicates on adjacent events while deciding whether e,
and a new event e are adjacent. Algorithm 2 maintains event-
grained trend counts only for those events that are needed to
verify their adjacency to future events. In the worst case, one
event requires access to O(n.) event-grained trend counts
to guarantee correctness. In summary, the quadratic time
complexity O(n n.) is optimal. O

6 PATTERN-GRAINED AGGREGATOR

To avoid polynomial time overhead of trend construction
under the skip-till-next-match and contiguous semantics
(Table 4), we now propose to incrementally compute trend
aggregation at the coarsest possible pattern granularity. This
is possible because an event can have at most one predecessor
event under these restrictive semantics.

THEOREM 6.1 (PREDECESSOR EVENT UNIQUENESS). Let g be
a query evaluated under the skip-till-next-match or contiguous
semantics. For any event e € I that is part of an event trend
matched by q, e has the same predecessor event in all trends

matched by q (if e has a predecessor).

Proor. Suppose e has different predecessors e; and e; in
trends tr; and try, respectively. By Definition 3.2, e;.time <
e.time and e;.time < e.time. Without loss of generality, as-
sume e;.time < ey.time. By Definitions 2.8 and 2.6, relevant
events must be matched under the skip-till-next-match and
contiguous semantics. Thus, the relevant event e; cannot be
skipped in tr; and e; cannot be predecessor event of e. O

By Theorem 6.1 and Definition 3.2, event adjacency can
be determined based on the last matched event and a new
event. Thus, only the last matched event must be stored.
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Algorithm 3 Pattern-grained trend count algorithm

Input: Query q with pattern P, event stream [
Output: Count of event trends matched by g in I
1: e < null; e;.count < 0; final_count < 0

2: for each e € I of type E do

3: if isMatched(e;, e) then

4 ‘ if E = start(P) then e.count « 1

5: ‘ else e.count « 0

6 ‘ if isAdjacent(e;, e) then e.count += e;.count
7 ‘ if E = end(P) then final_count += e.count
8 ‘ e —e

9 else if g.semantics = CONT then

10: ‘ | ey « null; e;.count « 0

11: return final_count

Example 6.2. Under skip-till-next-match, the trend count
computation for our running example is shown in Table 8.
Each a increments the intermediate count a.count by one
since it is of a start type of P. Each b increments the final
count since it is of an end type of P. The irrelevant event ¢5
is skipped and eight trends are detected (Figure 2). Only the
most recent values of the final count and the count of the
last matched event are stored at a time.

Under the contiguous semantics, the trend count is com-
puted analogously. The only difference is that ¢5 cannot be
ignored. To invalidate all partial trends that end at the last
matched event a4, we set the last matched event to null and
its intermediate count to 0. Since b6 is neither of a start type
of P, nor adjacent to the last matched event (null), b6 cannot
be matched. Two contiguous trends are detected (Figure 2).

’ Event H a.count ‘ b.count H Final count ‘

al 1

b2 1 1
a3 2

a4 3

c5

b6 3 4
a7 4

b8 4 8

Table 8: Pattern-grained trend count

THEOREM 6.3 (PATTERN-GRAINED TREND COUNT). Let q be
a query evaluated under the contiguous or skip-till-next-match
semantics and P be its pattern. Let e;, e € I be events such that
e; is the predecessor event of e in a trend matched by q. Then,
the pattern-grained counts are computed as follows.

e.count
final_count

ej.count.
Yiend.type=end(p) €Nd.count.
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IfE = start(P), e.count is incremented by one.

Theorem 6.3 can be proven similarly to Theorem 4.2.

Pattern-Grained Trend Count Algorithm. Initially, the
last matched event ¢; is null, e;.count and the final count are
set to 0 (Line 1 in Algorithm 3). An event e is matched by the
query gq if one of the following conditions holds: (1) If e is of
a start type of P, e starts a new trend and e.count is set to
one (Lines 2-4). Otherwise, e.count is set to 0 (Line 5). (2) If
e; and e are adjacent, e continues existing partial trends and
e.count is increased by ej.count to accumulate the number
of previously started partial trends (Line 6). If e is of an end
type of P, the final count is increased by e.count (Line 7).
The event e becomes the new last event (Line 8). If e is not
matched by the query g that detects contiguous trends, then
the last matched event e; and its count are reset to invalidate
partial trends that end at e; (Lines 9-10). The final count is
not reset, however, because it accumulates the number of
contiguous trends that were detected before the irrelevant
event e arrived. The final count is returned (Line 11).

THEOREM 6.4 (COMPLEXITY). Let q be a query evaluated
under the contiguous or skip-till-next-match semantics and
n be the number of events per window of q. Algorithm 3 has
linear time complexity: O(n) and constant space complexity.

Proor. The time complexity is determined by the number
of events per window, i.e., O(n). The space complexity is
constant since only two counts and the last matched event
are stored. O

THEOREM 6.5 (TIME OPTIMALITY). The linear time com-
plexity O(n) of Algorithm 3 is optimal.

Theorem 6.5 can be proven analogously to Theorem 4.4.

7 OTHER QUERY CLAUSES

So far we have focused on Kleene patterns, matching seman-
tics, and predicates on adjacent events. We now generalize
CoGRa to support other query clauses (Definition 2.9). Ex-
tensions of the language are discussed in Appendix C.
Windows partition the unbounded stream into intervals
with a finite number of events in each interval. Our ap-
proach is applicable to any window type (e.g., sliding, hop-
ping, count-based). Since windows may overlap (aka sliding
windows), an event e may fall into k > 1 windows. This
implies that an event e may expire in some windows but
remain valid in others. To tackle this contiguous nature of
streaming, we maintain aggregates per window [26]. Each
aggregates is assigned a window identifier and is computed
based on previous aggregates within the same window [39].
Predicates on Single Events are classified into local and
equivalence predicates [39, 40]. Local predicates restrict the
attribute values of matched events. For example, the predi-
cate (A.type = passive) in query g4 in Appendix A selects only
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passive physical activities. Such predicates filter the stream,
before our approach applies. Equivalence predicates require
that all events in a trend have the same attribute value. For
example, query ¢, has a predicate [driver] that requires all
events in an Uber pool trip to have the same driver identi-
fier [11, 49, 50]. Such predicates partition the stream into
non-overlapping sub-streams by the values of this attribute.
Thereafter, our approach applies to each sub-stream.

Event Trend Grouping ensures that all events in a trend
carry the same values of grouping attributes [38-40]. Simi-
larly to equivalence predicates, event trend grouping parti-
tions the stream into non-overlapping sub-streams. There-
after, our approach applies to each sub-stream.

8 PERFORMANCE EVALUATION
8.1 Experimental Setup

Infrastructure. We have implemented our approach in Java
with JDK 1.8.0_181 running on Ubuntu 14.04 with 16-core
3.4GHz CPU and 128GB of RAM. We execute each experi-
ment three times and report their average results here.

Methodology. We compare our CoGRra approach to two
two-step approaches (Flink version 1.6.1 [2] and SASE [50])
and two online approaches (A-Seq [40] and GRETA [39]) to
cover the spectrum of state-of-the-art event aggregation ap-
proaches (Tables 1 and 2). We run Flink on the same hardware
as our platform. To achieve a fair comparison, we imple-
mented SASE, A-Seq, and GRETA on top of our platform.

o Flink [2] is a popular open-source streaming platform
that supports pattern matching. In contrast to other indus-
trial systems [1, 7], Flink supports Kleene closure and vari-
ous semantics. We express our queries using Flink operators
such as Kleene closure, event sequence, window, grouping,
and filtering [3]. Flink implements a two-step approach that
constructs all event trends prior to their aggregation.

e SASE [50] supports Kleene closure and all event match-
ing semantics. It implements the two-step approach. Namely,
it first stores each event e in a stack and computes the point-
ers to e’s previous events in a trend. For each window, a
DFS-based algorithm traverses these pointers to construct
all trends. One current trend is saved during this traversal.
Once the trend is complete, it is aggregated, and backtracking
is applied to construct other trends.

® GRETA [39] captures all matched events and their adja-
cency relationships as a graph. Based on the graph, it com-
putes event trend aggregation online, that is, it avoids trend
construction. However, it supports only skip-till-any-match
semantics and maintains aggregates at a fine granularity.

e A-Seq [40] avoids event sequence construction by dy-
namically maintaining a count for each prefix of a pattern.
Since A-Seq does not support Kleene closure, we flatten our
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Figure 5: Skip-till-any-match (Physical activity data)

queries as follows. For each Kleene pattern P, we first deter-
mine the length [ of the longest match of P. We then specify
a set of fixed-length event sequence queries that cover all
possible lengths up to I. A-Seq supports only the skip-till-any-
match semantics. It does not support arbitrary predicates on
adjacent events beyond equivalence predicates (Section 7).

Data Sets. We compare our COGRA approach to the state-
of-the-art techniques using the following data sets.

e New York city taxi and Uber real data set [10] contains
1.3 billion taxi and Uber trips in New York City in 2014-
2015. Each event carries a time stamp in seconds, driver and
rider identifiers, pick-up and drop-off locations, number of
passengers, and price. The size of the data set is 330GB.

e Stock real data set [4] contains transaction records of
more than 3K companies for one week. Each event carries a
time stamp in minutes, company identifier, sector identifier,
transaction identifier, and price. The size of the data is 1.3GB.

e Physical activity real data set [41] contains physical
activity reports for 14 people during 1 hour 15 minutes. 18
activities are considered. A report carries a time stamp in
seconds, person identifier, activity identifier, and heart rate.
The size of the data set is 1.6GB.

Event Trend Aggregation Queries. We evaluate varia-
tions of g in Section 1 against the Uber data, variations of
gs in Section 1 against the stock data, and variations of g4 in
Appendix A against the physical activity data. These queries
vary the event matching semantics and the event rates per
window in Section 8.2, the number of event trend groups in
Appendix D.1, and the predicate selectivity in Appendix D.2.
Since A-Seq does not support predicates on adjacent events
(Table 2), we exclude such predicates by default.

Metrics. Latency is measured in milliseconds as the aver-
age time difference between the result output and the arrival
of the latest event that contributed to this result. Throughput
corresponds to the average number of events processed by
all queries per second. Peak memory is measured in bytes
as the memory for storing aggregates and sub-graphs for
CoGRaA, the graph for GRETA, the prefix counters for A-Seq,
the events in stacks, the pointers between them, and one
current trend for SASE, and all trends for Flink.
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8.2 Event Matching Semantics and Event
Rate per Window

In Figures 5-11, we compare the performance of CoGra to
the state-of-the-art approaches under diverse event matching
semantics, while varying the event rate per window. If an ap-
proach does not support a semantics (Table 2), the approach
is not shown in the chart for this semantics.

Two-Step Approaches. Flink is not optimized for the
type of queries we target by this work. In particular, Flink
first constructs all event trends and only then aggregates
them. This event trend construction introduces exponential
(polynomial) overhead under the skip-till-any-match (skip-
till-next-match) semantics (Table 4). Consequently, Flink
does not return results within several hours for high-rate
event streams under these semantics (Figures 5 and 6). COGRA
outperforms Flink by 6 orders of magnitude with respect to
latency and 7 orders of magnitude with respect to memory
usage for 30k events per window under skip-till-any-match
(Figure 5). Similar performance difference can be observed
under skip-till-next-match (Figure 6). Flink performs better
under the contiguous semantics because the number and
length of detected trends is much less than under other se-
mantics. Nevertheless, the latency of Flink is 4 orders of
magnitude higher than the latency of CoGRra for 4 million
events per window (Figure 7). Figures 8-11 do not show mea-
surements for Flink because Flink does not return results for
several hours for these high-rate event streams.

SASE also implements a two-step approach that constructs
all trends prior to aggregating them. Such an approach suf-
fers from exponential complexity under skip-till-any-match
(Table 4). Thus, the latency and memory usage of SASE grow
exponentially in the number of events, while its throughput
degrades exponentially (Figure 8). SASE fails to return re-
sults when the number of events exceeds 40k. For 40k events,
CogRra achieves 3 orders of magnitude speed-up and 4 orders
of magnitude memory reduction compared to SASE.

Under the skip-till-next-match semantics the time com-
plexity of SASE is polynomial. While for 4 million events
SASE returns results with an over 3 hours long delay — which



Research 6: Streams

25 S <40 R
& Sase —y— > Sase —x—
8320 Greta —e— o 30 Greta —g—
= A-Seq —a— @ A-Seq —a—
815 Cogra —y— %20 Cogra —p—
~ Q
3109 al d——O———O——-‘
c 2 5 a2 5104 .
£ 5‘k—a——v——V’—*r E A
3 o 2o

2 3 4561789
Number of events x 104

10 2 3 456789

Number of events x 104

10

(a) Latency (b) Memory

Figure 8: Skip-till-any-match semantics (Stock data)

“N40 | | Greta —— Cogra mmm 3‘40 Greta —— Cogra mmmm
2 A-Seq 2 A-Seq

g30 . é?:o

—20 Y £20

> § =

§10 § 510

©

-0 | | 2o

10
107

Number of events x

(a) Latency

(b) Memory

Figure 10: Skip-till-any-match semantics (Stock data)

is unacceptable for time-critical applications, it fails to pro-
duce results if a window contains over 4 million events (Fig-
ure 9). CoGra achieves 4 orders of magnitude speed-up and
5 orders of magnitude memory reduction compared to SASE
for 4 million events.

SASE performs well for high-rate streams only under the
most restrictive contiguous semantics when the number and
length of trends are relatively small (Figure 11). Nevertheless,
Cogra achieves 3 orders of magnitude speed up and 6 orders
of magnitude memory reduction compared to SASE when
the number of events per window reaches 10 million.

Online Approaches perform well for low-rate streams
(Figures 5-8), while for high-rate streams the differences
between them are revealed (Figure 10). GRETA captures all
matched events and their trend relationships as a graph.
While the overhead of graph construction is negligible for
low-rate streams, it becomes a bottleneck when the stream
rate is high. Under skip-till-any-match, GRETA fails to com-
pute results within several hours if the stream rate exceeds
20 million events per window (Figure 10(a)). For 20 million
events, GRETA suffers from over an hour long delay which
is 4 orders of magnitude higher compared to CoGRra.

A-Seq performs best among the state-of-the-art approaches
because it neither constructs event trends nor stores events.
However, its expressive power is limited (Table 2). In partic-
ular, it does not support Kleene closure. Thus, A-Seq must
evaluate a workload of event sequence queries to express one
Kleene pattern. The number of queries grows linearly in the
number of events. Thus, the latency of A-Seq is 3 orders of
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567

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

25
v N Sase —x—
'Y 8’20 EventGrained g
- Cogra —wp—
© 15
Sase —x— £
Greta —o— =10
A-Seq —a— 2
Cogra —w— 85
3 0

2 3 4561789
Number of events x 104

10

2 3 456 7 8
Number of events x 10°

9 10

(c) Throughput Figure 9: Skip-till-next-match

semantics (Uber data)

25 .
Greta —— Cogra s ‘N |Sase/EventGrained —y—
A-Seq 220 Cogra —wy—
k) e
73
£ 15;/W
=10
2 ,—f——v——"—"”—‘ Y
g 5
©
-0

6 10 2 3 456 78 910

Number of events x 107

Number of events x 107

(¢) Throughput Figure 11: Contiguous seman-

tics (Uber data)

magnitude higher compared to CoGrA when the number of
events per window reaches 100 million (Figure 10(a)). Each
event sequence query maintains a fixed number of aggre-
gates [40]. Thus, the memory usage of A-Seq grows linearly
with the number of queries (i.e., with the number of events).
A-Seq requires 4 orders of magnitude more memory than
Cogra for 100 million events (Figure 10(b)).

In summary, our CoGRrA approach performs well across
all semantics, data sets, and stream rates because it guaran-
tees optimal time complexity. Its latency grows linearly in
the number of events. For 100 million events per window,
the latency of CoGRra stays within 3 seconds (Figure 10(a)),
while its throughput is over 39 million events per second
(Figure 10(c)). Since CoGRA maintains a fixed number of
aggregates per Kleene pattern, its memory usage is con-
stant (Figures 8(b) and 10(b)). Thus, we conclude that Cogra
achieves real-time in-memory event trend aggregation.

Trend Aggregation at Different Granularities under
the Same Event Matching Semantics. GRETA corresponds
to the event-grained aggregation, while CoGrA implements
the type-grained aggregation under the skip-till-any-match
semantics in Figures 5, 8, and 10. The pattern-grained aggre-
gation would not be correct under skip-till-any-match since
the pattern constraint may be violated (Definition 2.4).

Unfortunately no state-of-the-art approach implements
online trend aggregation under the skip-till-next-match nor
the contiguous semantics (Table 2). Thus, Figure 9 shows how
our proposed pattern-grained aggregation COGRA compares
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to the suboptimal event-grained aggregation under the skip-
till-next-match semantics. The event-grained aggregation
does not construct all trends. Consequently, its latency is 4
orders of magnitude lower than the latency of SASE for 4
million events. However, its latency is 12-fold higher than the
latency of CoGRa due to the overhead of storing all matched
events and propagating event-grained aggregates.

Under the contiguous semantics in Figure 11, the event-
grained aggregation and SASE have the same latency. Indeed,
since the number and length of contiguous trends is small,
the overhead of storing all matched events and propagating
event-grained aggregates by the event-grained aggregation
equals to the overhead of constructing all trends by SASE.

The type-grained aggregation performs similarly to the
pattern-grained aggregation CoGRA because the number of
event types is small in meaningful queries (g, in Section 1).

9 RELATED WORK

Complex Event Processing approaches including SASE [11,
49, 50], Flink [2], Cayuga [15], ZStream [33], AFA [13], E-
Cube [29], and CET [38] solve orthogonal problems. Many

of them deploy a Finite State Automaton-based query ex-
ecution paradigm [11, 13-15, 36, 49, 50]. AFA supports dy-
namic pattern detection over disordered streams. ZStream

translates an event query into an operator tree optimized

using rewrite rules. Similarly, Kolchinsky et al. apply tradi-
tional join-query optimization techniques to evaluate event

sequence and Kleene closure queries [22] and adapt an opti-
mization plan to changing data characteristics [21]. E-Cube

employs hierarchical event stacks to share events across dif-
ferent event queries. CET solves the trade-off between the

CPU and memory during event trend detection. Some ap-
proaches focus on XPath-based query processing over XML

streams [14, 36]. Others implement hardware-based CEP on

FPGAs at gigabit wire speed [48]. The expressive power of

these approaches is limited since they do not support Kleene

closure [29], nor aggregation [13, 21, 22, 36, 38, 48], nor var-
ious event matching semantics [13-15, 21, 29, 33, 36, 38, 48].

In contrast, SASE and Flink support all these language con-
structs but they do not design any optimization techniques

for event trend aggregation. Thus, they require trend con-
struction with exponential time complexity (Table 4) and fail

to respond within a few seconds (Section 8).

In contrast, A-Seq [40] proposes online aggregation of
fixed-length event sequences under skip-till-any-match. How-
ever, it supports neither Kleene closure, nor various seman-
tics, nor expressive predicates. Thus, A-Seq does not tackle
the challenges of this work. GRETA [39] defines online event
trend aggregation under skip-till-any-match. GRETA does
not support other semantics. It captures all event trends and
aggregates as a graph. It avoids event trend construction and
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thus reduces the time complexity from exponential to qua-
dratic in the number of events in the worst case. Since GRETA
maintains aggregates at the event granularity, it does not
achieve optimal time complexity for several query classes
and thus suffers from long delays (Section 8).

Traditional Data Streaming approaches [12, 16, 23, 25,
26, 44, 46, 47, 51, 52] support aggregation computation over
data streams. Some incrementally aggregate raw input events
for single-stream queries [25, 26]. Others share aggregation
results among overlapping sliding windows [12, 25, 46] or
multiple queries [23, 51, 52] or both [44]. However, these
approaches are restricted to Select-Project-Join queries with
window semantics. That is, their execution paradigm is set-
based. They support neither various event matching seman-
tics nor CEP-specific operators such as event sequence and
Kleene closure that treat the order of events as a first-class
citizen. These approaches require the construction of join re-
sults prior to their aggregation, i.e., they define incremental
aggregation of single raw events but implement a two-step
approach for join results.

Industrial streaming systems such as Esper [1], and Oracle
Stream Analytics [7] support fixed-length event sequences.
They support neither Kleene closure nor different semantics.
While Kleene closure computation can be simulated by a
set of event sequence queries covering all possible lengths
of event trends, this approach is possible only if the max-
imal length of a trend is known apriori. This is rarely the
case in practice. Furthermore, this approach is highly inef-
ficient for two reasons. One, it must execute a set of event
sequence queries for each Kleene query. This increased work-
load degrades system performance. Two, since this approach
requires trend construction prior to their aggregation, it has
exponential time complexity in the worst case (Table 4).

Additional related work is discussed in Appendix E.

10 CONCLUSIONS

Our CoGRA approach is the first to aggregate Kleene pat-
tern matches under various event matching semantics with
optimal time complexity. To this end, COGRA incrementally
maintains trend aggregates at the coarsest possible granu-
larity among several alternative design strategies. Thus, it
achieves up to six orders of magnitude speed-up and up to
seven orders of magnitude memory reduction compared to
state-of-the-art solutions.
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ADDITIONAL USE CASES

RETURN patient, COUNT(x)

PATTERN SEQ(Activity S, Activity A+, Activity F)

SEMANTICS contiguous

WHERE [patient] AND S.rate < 60 AND F.rate > 100 AND
A.type = passive GROUP-BY patient

WITHIN 10 minutes SLIDE 30 seconds

q4:

Health Care Analytics devices, such as KardiaMobile [5],
allow users to record, review, and analyse electrocardiograms
in real time. It helps to detect, monitor, and cure serious
heart diseases such as cardiac arrhythmia, i.e., too fast, too
slow, or irregular heartbeat. Cardiac arrhythmia can lead
to life-threatening complications causing 325K sudden car-
diac deaths in United States per year [9]. Thus, the prompt
detection of abnormal heartbeat is critical to enable imme-
diate lifesaving measures. Query g4 consumes a stream of
activities of intensive care patients. Each event carries a time
stamp in seconds, a patient identifier, an activity type, and
a heart rate. The query computes the number of heart rate
changes from too slow (below 60) to too fast (above 100) per
patient despite passive physical activities during a time win-
dow of 10 minutes that slides every 30 seconds. All events
that belong to one trend must carry the same patient identi-
fier as required by the predicate [patient]. No events may be
skipped in between matched events per patient, as expressed
by the contiguous semantics.

B ADDITIONAL PROOFS

THEOREM 4.2. (TyPE-GRAINED TREND COUNT). Let q be a
query that is evaluated under skip-till-any-match and has no
predicates on adjacent events, P be its pattern, E be an event
type in P, and e € I be an event of type E. Then the event-
grained count e.count associated with the event e corresponds
to the number of (partial) trends that end at e:

e.count = E’.count.
E’€P.predTypes(E)
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IfE = start(P), e.count is incremented by one.

The type-grained trend count E.count associated with the
type E captures the number of (partial) trends that end at an
event of type E:

E.count = Z e.count.
e.type=E

The final count corresponds to the number of finished trends
matched by q:

final_count = end(P).count.

PROOF BY INDUCTION. Let nbe the number of input events.
Induction Basis. n = 1. If only one event e of type E is
matched, then there are no trends to extend and e starts a
new trend. Thus, e.count = 1 and E.count = 1. If E is the end
type of P, final_count = 1. Otherwise, final_count = 0.
Induction Assumption. This statement holds for n events.
Induction Step. Assume n + 1 events arrive. According
to the induction assumption, for a type E’ in P, E’.count
corresponds to the number of (partial) trends that end at an
event of type E’ after n events have been processed. Let e be
a new event of type E. By Definition 2.4 without predicates
on adjacent events, e is adjacent to all previously matched
events of type E’ € P.predTypes(E), i.e., e continues all these
trends. To accumulate the number of trends extended by e,
e.count is computed as the sum of counts of all predecessor
types of E, i.e., E’.count. In addition, if E is a start type of P,
e begins a new trend and e.count is incremented by 1. Since
events arrive in order by time stamps (Section 2), no event
after e can change e.count. E.count is increased by e.count
to accumulate the number of trends extended by e. Lastly,
the query ¢ counts the number of finished trends only. By
Definition 3.1 and Section 3.1, only events of end type of
P may finish trends. Thus, the count of the end type of P
captures the number of finished trends. ]

C OTHER LANGUAGE FEATURES

We now discuss how to relax our simplifying assumptions.

Aggregation Functions. While Sections 4-6 focused on
event trend count computation (i.e., COUNT(*)), Table 9 de-
fines coarse-grained computation of COUNT(E), MIN(E.attr),
and SUM(E.attr) as per Section 2.3. In contrast to COUNT(*),
only matched events e of type E update these aggregates. All
other matched events x of type X # E propagate the aggre-
gates from previous to more recent events in a trend matched
by a pattern P (or event types in P). MAX(E.attr) is maintained
analogously to MIN(E.attr). AVG(E.attr) is computed based
on SUM(E.attr) and COUNT(E).

Negated Sub-Patterns. We split the pattern into positive
and negative sub-patterns and maintain aggregates for each
sub-pattern separately [39]. If aggregates are maintained per
matched event, whenever a negative sub-pattern N finds a
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| Type-grained aggregates

\ Mixed-grained aggregates

Pattern-grained aggregates

e.countg = e.count+
Y peg E .countg

e.countg = e.count+
2per, E'.countg+

x.countg = ),y .y X'.countg

T.countg = }}; ;ype-1 t.cOuntg
COUNT(E) = end(P).countg

Ze”.typee‘n, (e”, e) satisfy 6 e .countg
x.countg = 3,y y, X' .countg+

»
Zx”‘typeeyg, (x7,x) satisfy 0 X .countg

ej.countg += e.count

COUNT(E) = Y., .type=end(p) €1-COUNtg

e.min = ming cq(e.attr, E'.min)
(e.attr,E’.min, e”.min)
x.min = miny cy(X'.min)
(X’.min, x”.min)
Tmin = min; ;ype-7(t.min)
MIN(E.attr) = end(P).min

e.min = minE'e?}, e”.typecT,, (e”,e) satisfy 0

x.min = minX’e%, x”.type€Ye, (x”,x) satisfy 0

e;.min = min(e.attr, e;.min)

MIN(E.attr) = ming, type=end(p)(€1-min)

esum = e.attr * e.count+

Y peg E .sum Yper; B .sum+

x.sum = Y, ycy X .sum

Tsum =3, ;ype-7 t.sum
SUM(E.attr) = end(P).sum

e.sum = e.attr x e.count+

Ze”.typee‘ﬁ, (e”,e) satisfy 6 € -SUM
_ ’
xsum = Y xcy X' .sum+

Zx”.typeeye, (x7,x) satisfy 6 X -SUM

el.sum += e.attr x e.count

SUM(E.attr) = Zel_type:end(p) e;.sum

Table 9: Coarse-grained event trend aggregation (e, x,e”,x”,t € I are matched events, e.type = E, x.type = X # E, T is any event
type in P, P.predTypes(E) = T = T; U T, P.predTypes(X) = Y = Y; U Y, where type-grained aggregates are maintained for types
7: and Y; and event-grained aggregates are maintained for events of types 7, and Y,)

match (i.e., its COUNT(*) = 1), all previously matched events
of predecessor types 7, of N are marked as incompatible with
all future events of following types 7 of N. If aggregates are
maintained per type, the aggregates of all predecessor types
7, are marked as invalid to contribute to aggregates of the
following types 7. Lastly, if aggregates are maintained per
pattern, the last matched event e; of the previous sub-pattern
of N is set to null.

Disjunction and Conjunction can be supported by CoGra
without changing its complexity because the aggregates for
a disjunctive or a conjunctive pattern P can be computed
based on the aggregates for the sub-patterns of P [39].

Kleene Star and Optional Sub-Patterns can also be
supported without changing the complexity since they are
syntactic sugar operators. Indeed, SEQ(P;*, P2) = SEQ(P;+, P2)
VP, and SEQ(P]?, Pz) = SEQ(Pl, Pg) V Ps.

Multiple Event Type Occurrences in a Pattern. If a
type appears several time in a pattern, our approach applies
with the following modifications. (1) We assign an identifier
to each type. For example, SEQ(A+, B, A) is translated into
SEQ(A1+, B, A2). Then, each state in an FSA representation of
the pattern has a unique label (Section 3.1). (2) An event e may
be inserted into several sub-graphs (or update several type-
grained aggregates) under the skip-till-any-match semantics.
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However, e may not be its own predecessor event since an
event may occur in a trend at most once [39].

Predicates on Minimal Trend Length exclude too short
and thus unreliable trends. One way of modeling such con-
straints is to unroll a pattern to its minimal length. For exam-
ple, if we are interested in trends matched by the pattern A+
and with length > 3, then we unroll the pattern A+ to length
3 as follows: SEQ(A, A, A+). Our approach applies thereafter.

D ADDITIONAL EXPERIMENTS

In all experiments below, we evaluate our queries under
skip-till-any-match since all state-of-the-art approaches sup-
port this semantics (Table 2). To ensure that the two-step
approaches return results in most cases, we run these exper-
iments against a low-rate stream of 50k events per window.

D.1 Event Trend Grouping

As described in Section 7, event trends are constructed per
group. Since the event rate is constant 50k events per window,
each group has a lot of events when the number of groups is
small. Thus, the number and length of trends increase with
a decreasing number of groups. As Figure 12 illustrates, the
latency and memory usage of all approaches increase with a
decreasing number of groups.
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Figure 12: Event trend grouping (Uber data)

Two-Step Approaches. Since Flink is optimized for par-
allel execution, it returns results in all cases. Due to the trend
construction in Flink, CoGRA wins 4 orders of magnitude
with respect to latency and 6 orders of magnitude regarding
memory compared to Flink for 5 groups in Figure 12.

SASE constructs all trends but stores only one current
trend at a time. Thus, its latency reduces exponentially, while
its memory consumption decreases linearly with the growing
number of trend groups in Figure 12. SASE fails to respond
within hours for fewer than 25 groups. For 25 groups, COGRA
achieves 4 orders of magnitude speed-up and 3 orders of
magnitude memory reduction compared to SASE.

Online Approaches perform well independently from
the number of groups because trends are not constructed.
Since A-Seq evaluates a workload of event sequence queries
for each Kleene query, its latency is 5-fold higher than the la-
tency of CoGRa for 5 groups. A-Seq maintains aggregates per
group. Thus, its memory costs increase linearly in the num-
ber of groups. CoGRA wins 2 orders of magnitude regarding
memory usage compared to A-Seq for 30 groups.

Due to the GRETA graph construction overhead and edge
traversal, the latency of GRETA is 7—fold higher than the
latency of Cogra for 5 groups. The memory usage of GRETA
remains stable when varying the number of groups because
the same number of events is stored in the GRETA graphs.
Edges are traversed exactly once and thus are not stored. The
memory costs of GRETA are 3 orders of magnitude higher
compared to CoGRa in all cases in Figure 12(b).

D.2 Predicate Selectivity

Two-Step Approaches. When the predicate selectivity in-
creases, more and longer trends are constructed and stored
by Flink. Thus, its latency and memory usage grow exponen-
tially (Table 4, Figure 13) until it fails to return results within
several hours when the predicate selectivity exceeds 50%. In
this case with predicate selectivity 50%, COGRrA achieves 3
orders of magnitude speed-up and 3 orders of magnitude
memory reduction compared to Flink.

Since SASE constructs all trends, its latency grows expo-
nentially. It is 2 orders of magnitude higher than the latency
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Figure 13: Predicate selectivity (Stock data)

of CoGRra for 90% predicate selectivity. The number of stored
pointers between events increases linearly with growing
predicate selectivity. SASE uses 13—fold more memory than
CogGra for 90% selectivity.

Online Approaches perform well for low-rate streams
of 50k events per window. When the predicate selectivity
increases, the number of edges in the GRETA graph grows.
Since each edge is traversed exactly once, latency of GRETA
grows linearly in the number of edges. Memory consumption
remains stable because edges are not stored.

The number of aggregates maintained by CoGra stays the
same with the growing predicate selectivity. Since COGRA
maintains aggregates per event type (not per event), it achieves
double speed-up and memory reduction compared to GRETA
when the predicate selectivity reaches 90%.

Since A-Seq does not support predicates on adjacent events,
it is excluded from this experiment.

E ADDITIONAL RELATED WORK

Static Sequence Databases extend traditional SQL queries
by order-aware join operations and support aggregation of
their results [24, 30]. However, they do not support Kleene
closure. Instead, single data items are aggregated [24, 35, 42,
43]. They also do not support various matching semantics.
Lastly, these approaches assume that the data is statically
stored and indexed prior to processing. Hence, they do not
tackle challenges that arise due to dynamically streaming
data such as event expiration and real-time processing.

Sequential Pattern Mining aims at detecting top-k item
sequences that frequently occur in a data set. The sequence
patterns of interest are not known prior to processing. These
approaches employ a Prefix tree and the Apriori algorithm [18,
19, 31, 34, 37]. This problem is distinct from our problem in
which the event patterns of interest are specified by the user
prior to processing. Frequent pattern mining approaches do
not tackle real-time aggregation of event trends detected
by Kleene patterns under various semantics. However, our
approach can be used to count the number of sequences and
then select the top-k frequent among them.



	Abstract
	1 Introduction
	2 Data and Query Model
	2.1 Basic Notions and Assumptions
	2.2 Event Matching Semantics
	2.3 Event Trend Aggregation Query

	3 Cogra Approach Overview
	3.1 Pattern Analyzer
	3.2 Predicate Classifier
	3.3 Granularity Selector

	4 Type-Grained Aggregator
	5 Mixed-Grained Aggregator
	6 Pattern-Grained Aggregator
	7 Other Query Clauses
	8 Performance Evaluation
	8.1 Experimental Setup
	8.2 Event Matching Semantics and Event Rate per Window

	9 Related Work
	10 Conclusions
	Acknowledgments
	References
	A Additional Use Cases
	B Additional Proofs
	C Other Language Features
	D Additional Experiments
	D.1 Event Trend Grouping
	D.2 Predicate Selectivity

	E Additional Related Work



