

1 **Short title:** Systemic ROS signaling during stress
2 **Corresponding author:** Ron Mittler, mittlerr@missouri.edu

3

4 **Vascular and non-vascular transmission of systemic reactive
5 oxygen signals during wounding and heat stress**

6

7 **Sara I. Zandalinas and Ron Mittler^{*}**

8 Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture Food and
9 Natural Resources, Christopher S. Bond Life Sciences Center University of Missouri. 1201
10 Rollins St, Columbia, MO 65201.

11

12 ORCID IDs: Sara I. Zandalinas (0000-0002-1256-9371), Ron Mittler (0000-0003-3192-7450)

13

14 **One-sentence summary:** In addition to vascular bundles, mesophyll cells can mediate the ROS
15 wave during systemic responses to wounding or heat stress in *Arabidopsis*.

16 **Author Contributions:** S.I.Z preformed the experiments. S.I.Z. and R.M. designed the
17 experiments, analyzed the results, and wrote the manuscript. All authors edited and approved the
18 manuscript. R.M. serves as the author responsible for contact and ensures communication.

19 **Footnotes:** This work was supported by funding from the National Science Foundation (IOS-
20 1353886, MCB-1936590, IOS-1932639), the Interdisciplinary Plant Group, and the University of
21 Missouri.

22

23 ^{*}**Email address of Author for contact:** mittlerr@missouri.edu

24

25 **ABSTRACT**

26 Sensing of heat, high light (HL), or mechanical injury by a single leaf of a plant results in the
27 activation of different systemic signals that reach systemic tissues within minutes and trigger
28 systemic acquired acclimation (SAA) or systemic wound responses (SWRs), resulting in a
29 heightened state of stress readiness of the entire plant. Among the different signals associated
30 with rapid systemic responses to stress in plants are electric, calcium and reactive oxygen species
31 (ROS) waves. These signals propagate from the stressed or injured leaf to the rest of the plant
32 through the plant vascular bundles, and trigger SWRs and SAA in systemic tissues. However,
33 whether they can propagate through other cell types, and whether or not they are interlinked,
34 remain open questions. Here we report that in response to wounding or heat stress (HS), but not
35 HL stress, the ROS wave can propagate through mesophyll cells of *Arabidopsis thaliana*.
36 Moreover, we show that **ROS production by mesophyll cells** during these stresses is sufficient to
37 restore SWR and SAA transcript accumulation in systemic leaves, as well as SAA to HS (but not
38 HL). We further show that propagation of the ROS wave through mesophyll cells could
39 contribute to systemic signal integration during HL&HS stress combination. Our findings reveal
40 that the ROS wave can propagate through tissues other than the vascular bundles of plants, and
41 that different stresses can trigger different types of systemic signals that propagate through
42 different cell layers and induce stress-specific systemic responses.

43

44 **Key words:** Abiotic stress, *Arabidopsis thaliana*, Heat stress, High light stress, Mesophyll, ROS
45 wave, Systemic signaling, Vascular bundles, Wounding.

46

47 **Abbreviations:** HL, high light; HS, heat stress; RBOHD, respiratory burst oxidase homolog D;
48 ROS, reactive oxygen species; SAA, Systemic acquired acclimation; SWR, systemic wound
49 response.

50

51 **INTRODUCTION**

52 In response to different abiotic stresses plants mount an acclimation response that counters the
53 adverse effects of stress on plant metabolism, reproduction, and overall survival (Zhu, 2016;
54 Kollist et al., 2019; Cheung et al., 2020). This response is triggered upon perception of stress at
55 the tissues immediately subjected to stress (termed local tissues), as well as in other tissues of the
56 plant that have not yet experienced the stress (termed systemic tissues). The perception of stress
57 at the local tissues activates therefore a signal transduction process that links the different tissues
58 (local to all systemic tissues) over long distances, sometime spanning the entire length of the
59 plant (e.g., Miller et al., 2009; Szechyńska-Hebda et al., 2010; Christmann et al., 2013; Choi et
60 al., 2014; Gilroy et al., 2016; Guo et al., 2016; Choi et al., 2017; Choudhury et al., 2018;
61 Devireddy et al., 2018; Takahashi et al., 2018; Toyota et al., 2018; Fichman et al., 2019; Wang et
62 al., 2019; Zandalinas et al., 2019; Devireddy et al., 2020b; Devireddy et al., 2020a; Farmer et al.,
63 2020; Fichman and Mittler, 2020). This process is termed systemic signaling, and the
64 acclimation of systemic tissues to stress, upon perception of the systemic signal, is called
65 systemic acquired acclimation (SAA; Karpinski et al., 1999). A similar systemic signaling
66 process occurs in plants upon wounding of a local leaf, and this process is termed systemic
67 wound response (SWR; Walker-Simmons et al., 1984). During SAA or SWR, many different
68 abiotic stress- or wound-response transcripts and hormones that rapidly accumulate in the local
69 leaf upon stress or wounding also accumulate within minutes in the systemic tissues, and these
70 transcripts and hormones are thought to mediate SAA or SWR at the systemic tissues (e.g.,
71 Galvez-Valdivieso et al., 2009; Miller et al., 2009; Suzuki et al., 2013; Zandalinas et al., 2019;
72 Fichman et al., 2020b). Although the process of SAA or SWR can be easily traced back to some
73 of the regulatory transcripts and hormones that accumulate in systemic tissues during stress, how
74 the systemic signal initiating at the local leaf and reaching the systemic tissues is propagated, and
75 what is its nature, are still ongoing subjects of active research (e.g., Fichman et al., 2020a;
76 Fichman and Mittler, 2020). Among the main candidates for systemic signals mediating SAA or
77 SWRs are electric, calcium, reactive oxygen species (ROS), and hydraulic pressure waves
78 (Miller et al., 2009; Christmann et al., 2013; Mousavi et al., 2013; Choi et al., 2014; Nguyen et
79 al., 2018; Toyota et al., 2018; Shao et al., 2020).

Because plants lack a true nervous system that connects different tissues, systemic signals that travel from the local tissue, initially subjected to stress, to the entire plant are transmitted by cell-to-cell signaling events that involve changes in calcium, membrane potential and ROS (Fichman and Mittler, 2020). It is thought that during this process the different cells along the path of the cell-to-cell signaling chain are being activated one-by-one (similar to a domino effect) starting at the initial (local) tissue and ending at the systemic tissue, and that this activation process propagates and maintains the different systemic signals. This concept was initially proposed as a way to transmit ROS signals over long distances in plants (Miller et al., 2009; Mittler et al., 2011), and was later adopted for explaining calcium and other systemic signals (Choi et al., 2014, 2017). According to this model, each cell along the cell-to-cell path that transmits the signal starts to actively generate ROS upon sensing that the cell preceding it in the chain is producing ROS. It was found that in *Arabidopsis thaliana* the ROS produced by each cell during this process is generated by the respiratory burst oxidase homolog D (RBOHD) protein and that this process is controlled by calcium-dependent activation of RBOHD (Fichman and Mittler, 2020; Fichman et al., 2021). The ROS being used as a systemic signal, most likely H₂O₂ (Miller et al., 2009), is therefore actively generated by each cell along the path of the signal, as opposed to being made in the local tissue and somehow transported over long distances (Mittler et al., 2011).

Recently, wound-induced systemic cell-to-cell electric and calcium signals were shown to be dependent on the function of glutamate receptor-like (GLR) calcium channels expressed at the vascular bundles of *Arabidopsis*, and a double mutant for *glr3.3;glr3.6* was shown to be deficient in wound-induced systemic signaling (Mousavi et al., 2013; Nguyen et al., 2018; Toyota et al., 2018; Shao et al., 2020). In contrast, systemic cell-to-cell signaling, and SAA to high light (HL) or heat stress (HS) were found to be dependent on ROS produced in each cell along the path of the signal by RBOHD and/or RBOHF (Miller et al., 2009; Fichman et al., 2019; Zandalinas et al., 2020b). At least in response to HL stress, this process was also found to occur at the vascular bundles of *Arabidopsis* (Zandalinas et al., 2020b). A new study has now revealed that GLR3.3 and/or GLR3.6 are not absolutely required for HL-induced systemic ROS signaling, and that the systemic signal mediating SAA to HL stress in *Arabidopsis* requires a coordinated function of plasmodesmata (PD) proteins (*i.e.*, plasmodesmata-localized proteins 1 and 5; PDLP1 and PDLP5) and RBOHD (Fichman et al., 2021). It was further found that RBOHD-produced ROS

111 opens PD pores between cells and facilitates cell-to-cell transport of carboxyfluorescein during
112 this process, suggesting that enhancing transport through PDs is one possible role for ROS
113 during systemic cell-to-cell signaling in plants (Fichman et al., 2021). In addition, aquaporins
114 such as PIP2;1 and calcium-permeable channels, such as cyclic nucleotide-gated calcium channel
115 2 (CNGC2), and mechanosensitive small conductance–like (MSL) channels 2 and 3 were found
116 to be involved in this process (Fichman et al., 2021). Moreover, in response to wounding the
117 systemic ROS signal was shown to induce a systemic redox signal (wave of change in the redox
118 state of the glutathione pool) that propagated throughout the plant within minutes (Fichman and
119 Mittler, 2021).

120 A recent study has also revealed that in contrast to the local application of HL or HS to a single
121 leaf of *Arabidopsis*, or the co-application of HL and HS to the same leaf (HL+HS), the co-
122 application of HL and HS to two different leaves of the same plant (HL&HS) resulted in a
123 stronger ROS wave response (Zandalinas et al., 2020a). It was further found that the plant
124 hormone jasmonic acid (JA) suppresses the activation of the ROS wave in local leaves
125 simultaneously subjected to a combination of HL and HS (HL+HS; Zandalinas et al., 2020a).
126 Although the ROS wave was found to propagate through the vascular bundles of *Arabidopsis*
127 during systemic responses to HL stress (Zandalinas et al., 2020b), it is unknown at present
128 whether it propagates through the same plant tissues during other stresses, such as HS or
129 wounding. Finding, for example, that the ROS wave propagates through other plant tissues
130 during HS, could provide a potential explanation to the stronger ROS wave signal observed
131 under conditions of HL&HS (Zandalinas et al., 2020a). In addition, it could provide initial
132 evidence for the propagation of rapid systemic signals outside the vascular bundles of plants.

133 To identify the plant tissues that mediate RBOHD-dependent systemic ROS signal propagation
134 during responses to HS or wounding, we used the *rbohD* transgenic lines we previously
135 developed to study the propagation of the ROS wave during HL stress (Zandalinas et al., 2020b).
136 Our findings reveal that in contrast to RBOHD-dependent systemic responses to HL stress, that
137 were exclusively mediated through the vascular bundles of *Arabidopsis* (Zandalinas et al.,
138 2020b), RBOHD-dependent systemic signaling during HS (Zandalinas et al., 2020a), or
139 wounding (Miller et al., 2009; Fichman et al., 2019; Fichman and Mittler, 2021), are mediated
140 through the vascular bundles and/or mesophyll cells. We further show that propagation of the

141 ROS wave through mesophyll cells could contribute to the stronger systemic ROS signal
142 observed in plants subjected to HL and HS simultaneously applied to two different leaves
143 (HL&HS; Zandalinas et al., 2020a). Our findings demonstrate that ROS production in mesophyll
144 cells is required for the propagation of rapid systemic ROS signals during responses to HS or
145 wounding.

146

147 **RESULTS**148 **Vascular bundles or mesophyll cells can mediate the ROS wave during the systemic
149 response of *Arabidopsis* to wounding**

150 To identify the plant tissues that transmit RBOHD-dependent systemic signals (*i.e.*, the ROS
151 wave; Miller et al., 2009) in response to a local application of wounding, we used the different
152 transgenic lines we previously developed of *rbohD*, in which *RBOHD* was expressed under its
153 native promoter or different tissue-specific promoters (Zandalinas et al., 2020b). These lines
154 were previously characterized for their ROS wave propagation, SAA and *Zat12* expression in
155 response to a local application of HL stress, and the localization and stable expression of the
156 RBOHD protein in their different tissues was confirmed using GFP-RBOHD fusions driven by
157 the tissue-specific promoters (Zandalinas et al., 2020b). In our analysis we included wild-type,
158 *rbohD* null mutants, and *rbohD* mutants in which *RBOHD* was expressed under its native
159 promoter, or epidermis-, mesophyll- xylem parenchyma-, phloem- or bundles sheath-specific
160 promoters (Zandalinas et al., 2020b; Supplementary Figure S1). All plants were wounded on a
161 single local leaf and local and systemic ROS levels were imaged in whole-plants grown in soil
162 using the new live-imaging method we developed to image ROS (Fichman et al., 2019;
163 Zandalinas et al., 2020a; Zandalinas et al., 2020b). As shown in Figure 1 and Supplementary
164 Figure S2, wound-induced systemic ROS accumulation was suppressed in the *rbohD* mutant and
165 this suppression was complemented to wild type levels by expression of *RBOHD* in the *rbohD*
166 mutant using its native promoter. Expressing the RBOHD protein in *rbohD* plants using the
167 mesophyll-, xylem parenchyma- or phloem-specific promoters also complemented the systemic
168 accumulation of ROS to wild type levels in the *rbohD* mutant in response to wounding. In
169 contrast, as shown in Supplementary Figures S2, S3, as well as previously reported (Zandalinas
170 et al., 2020b), in response to a local application of HL stress, expression of the RBOHD protein
171 in *rbohD* plants using the native promoter of *RBOHD*, or using the xylem parenchyma- or
172 phloem-specific promoters (but not the mesophyll-specific promoter), complemented the
173 systemic accumulation of ROS in *rbohD* mutants to wild type levels in response to HL. These
174 finding reveal that in response to a local wounding treatment, the ROS wave can propagate
175 through the vascular bundles, or mesophyll cells of *Arabidopsis*.

177 **Vascular bundles or mesophyll cells can mediate the ROS wave during the systemic
178 response of *Arabidopsis* to heat stress**

179 As shown in Figure 2 and Supplementary Figure S2, a similar result to that shown in Figure 1
180 was obtained when a local *Arabidopsis* leaf was subjected to HS. Thus, similar to the local
181 application of wounding (Figure 1), but different from the local application of HL
182 (Supplementary Figures S2, S3; Zandalinas et al., 2020b), expression of the RBOHD protein in
183 *rbohD* plants using its native promoter, or using the mesophyll-, xylem parenchyma- or phloem-
184 specific promoters, complemented the systemic accumulation of ROS in *rbohD* mutants to wild
185 type levels in response to a local application of HS. The findings shown in Figures 1, 2, and
186 Supplementary Figure S2, reveal therefore that unlike rapid systemic ROS responses to HL, that
187 could only be complemented to wild type levels in the *rbohD* mutant by expressing the RBOHD
188 protein in xylem parenchyma or phloem cells (Supplementary Figures S2, S3; Zandalinas et al.,
189 2020b), tissues limited in their localization to the vascular bundles, systemic ROS signals (*i.e.*,
190 the ROS wave) to wounding or HS can be mediated by RBOHD protein found in mesophyll
191 cells, that are primarily localized outside the vascular bundles of plants.

192

193 **Complementing the ROS wave by expression of RBOHD in mesophyll cells restores SAA-
194 and SWR-associated transcript expression in systemic leaves in response to a local HS or
195 wounding treatment**

196 Complementing the ROS wave by expression of *RBOHD* in mesophyll cells (Figures 1, 2, and
197 Supplementary Figures S1, S2) might or might not complement the expression of systemic
198 transcripts previously associated with SAA or SWR in response to a local application of HS or
199 wounding, respectively. Complementation of *RBOHD* expression in the *rbohD* mutant using the
200 xylem parenchyma- or phloem- (but not mesophyll-) specific promoters restored the expression
201 of the *Zat12* SAA and SWR gene in response to local application of HL stress (measured using
202 *Zat12: luciferase; rbohD* double mutants complemented with the different tissue-specific *RBOHD*
203 transformation vectors; Zandalinas et al., 2020b). Because *Zat12* reporter plants might not be a
204 good experimental tool to study stress-specific responses to HS, HL or wounding (*Zat12* is
205 expressed in response to HL or wounding; Miller et al., 2009), we elected to study the expression
206 of different wounding-, HS-, or HL-specific transcripts in the different lines shown in Figures 1

207 and 2 in response to a local application or HS, wounding, or HL using quantitative RT-PCR
208 (qPCR). We chose the transcripts and timing for this analysis based on our previous RNA-Seq
209 studies of systemic signaling in response to HL and/or HS (Suzuki et al., 2013; Zandalinas et al.,
210 2019; Fichman et al., 2020b; Zandalinas et al., 2020a), as well as based on studies of systemic
211 wound responses using transcriptomics and qPCR analyses (Suzuki et al., 2013; Toyota et al.,
212 2018). As shown in Figure 3A, expression of the wound-response transcripts *JAZ5* and *JAZ7* was
213 enhanced in local and systemic leaves of wild type plants upon local wounding. In contrast, in
214 response to the same treatment, the expression of these transcripts was suppressed in systemic
215 (but not local) leaves of the *rbohD* mutant. Complementation of *RBOHD* expression with the
216 *RBOHD* native promoter, or the mesophyll-, xylem parenchyma-, or phloem-specific promoters
217 restored the systemic expression of *JAZ5* and *JAZ7* in response to a local wounding treatment. In
218 contrast, complementation of *RBOHD* expression with the bundle sheath- or epidermis-specific
219 promoters failed to restore the systemic expression of *JAZ5* and *JAZ7* to wild type levels in
220 response to the local wounding treatment. These findings reveal that complementing the ROS
221 wave by expression of *RBOHD* in mesophyll, xylem parenchyma or phloem cells of the *rbohD*
222 mutant was sufficient to restore some SWR-specific transcript expression in response to a local
223 wounding treatment.

224 To test the effect of restoring *RBOHD* expression in the different tissues on SAA responses to
225 HS, we studied the expression of *Rap2.4* and *ERF2*, two transcripts previously associated with
226 SAA to HS (Suzuki et al., 2013; Zandalinas et al., 2020a), in local and systemic leaves of the
227 different wild type, *rbohD* and *rbohD*-complemented lines, in response to a local HS treatment.
228 As shown in Figure 3B, expression of the HS-response transcripts *Rap2.4* and *ERF2* was
229 enhanced in local and systemic leaves of wild type plants upon a local HS treatment. In contrast,
230 in response to the same treatment, the enhanced expression of these transcripts was blocked in
231 systemic and suppressed in local leaves of the *rbohD* mutant. Complementation of *RBOHD*
232 expression with the *RBOHD* native promoter, or the mesophyll-, xylem parenchyma-, or phloem-
233 specific promoters restored the systemic expression of *Rap2.4* and *ERF2* in response to a local
234 HS treatment. In contrast, complementation of *RBOHD* expression with the bundle sheath- or
235 epidermis-specific promoters did not restore the systemic expression of *Rap2.4* and *ERF2* to
236 wild type levels in response to a local HS treatment. These findings reveal that similar to the
237 response of *JAZ5* and *JAZ7* to wounding (Figure 3A), restoring the ROS wave by expression of

238 *RBOHD* in mesophyll, xylem parenchyma or phloem cells was sufficient to restore some SAA
239 transcript expression in systemic leaves in response to a local HS treatment.

240 To study whether a similar effect would occur in complemented *rbohD* plants subjected to a
241 local treatment of HL, we studied the expression of *MYB30* and *ZHD5*, two transcripts associated
242 with the SAA response of *Arabidopsis* to HL stress (Zandalinas et al., 2019; Fichman et al.,
243 2020b; Zandalinas et al., 2020a). As shown in Figure 3C, similar to *Zat12* expression in the
244 different *rbohD*-complemented lines (Zandalinas et al., 2020b), complementation of *RBOHD*
245 expression in xylem parenchyma or phloem (but not mesophyll) cells of the *rbohD* mutant
246 supported the systemic expression of *MYB30* and *ZHD5* in response to a local treatment of HL
247 stress. Complementation of *RBOHD* expression in mesophyll cells of the *rbohD* mutant did
248 however result in enhanced local (but not systemic) expression of *MYB30* and *ZHD5* (Figure
249 3C), demonstrating that local leaves of these plants were able to sense the HL stress but were
250 unable to initiate the systemic ROS signal in response to it. Taken together, the results presented
251 in Figures 1-3 and Supplementary Figures S1-S3 reveal that complementing the expression of
252 *RBOHD* in the mesophyll, xylem parenchyma or phloem cells of the *rbohD* mutant restores not
253 only the ROS wave, but also the expression of certain systemic transcripts specific to wounding
254 or HS. In contrast, complementing the expression of *RBOHD* in mesophyll cells of the *rbohD*
255 mutant did not complement the ROS wave or systemic HL-specific SAA transcripts in response
256 to a local application of HL stress (Figure 3 and Supplementary Figure S3).

257

258 **Complementing the ROS wave by expression of *RBOHD* in mesophyll cells restores local
259 HS-induced SAA**

260 Complementing the expression of *RBOHD* in the xylem parenchyma or phloem cells of the
261 *rbohD* mutant restored SAA to HL (Supplementary Figure S4; Zandalinas et al., 2020b).
262 Although we do not have a biological assay for SAA during SWR, aside from measuring
263 systemic wound-induced transcript expression as shown in Figure 3, an assay for SAA to HS was
264 previously reported (Suzuki et al., 2013; Zandalinas et al., 2020a). We therefore used this assay
265 to study whether restoring *RBOHD* expression in mesophyll cells could restore SAA to HS of the
266 *rbohD* mutant. As shown in Figure 4, complementing the expression of *RBOHD* in the *rbohD*
267 mutant using its native promoter, or the mesophyll-, xylem parenchyma-, or phloem-specific

268 promoters restored SAA to HS. In contrast, complementing the expression of *RBOHD* in the
269 *rbohD* mutant using the mesophyll-specific promoter failed to restore SAA to HL
270 (Supplementary Figure S4; Zandalinas et al., 2020b). The findings presented in Figures 1-4 and
271 Supplementary Figures S1-S4 reveal therefore that expression of *RBOHD* in mesophyll cells can
272 restore the ROS wave, systemic transcript expression, and SAA to HS (but not HL stress) in the
273 *rbohD* mutant.

274

275 **Could expression of *RBOHD* in mesophyll cells contribute to the stronger systemic ROS**
276 **signal observed in plants subjected to HL&HS?**

277 We previously reported that HS and HL, when applied to two different leaves of the same
278 *Arabidopsis* plant (HL&HS), result in a stronger ROS wave response compared to HS or HL
279 applied to a single leaf, or to the same leaf (HL+HS; Zandalinas et al., 2020a). Our current
280 findings that in response to HS the ROS wave could be mediated through mesophyll, xylem
281 parenchyma, and/or phloem cells (Figures 2-4), but in response to HL it could only be mediated
282 through xylem parenchyma and/or phloem cells (Supplementary Figures S2-S4; Zandalinas et
283 al., 2020b), might provide a potential explanation to this phenomena. In response to HL and HS
284 applied to two different leaves (HL&HS), the systemic ROS wave might be stronger because it
285 would propagate through an additional cell layer (mesophyll, contributed by the HS treatment).
286 This could not occur of course when the two stresses are applied to the same leaf because under
287 these conditions the ROS wave induced by HL+HS applied to the same leaf is suppressed by JA
288 (Zandalinas et al., 2020a). To test whether the ROS wave could propagate through mesophyll
289 cell layers during HL&HS combination, we compared the intensity of the ROS wave between
290 wild type, *rbohD*, and *rbohD* in which *RBOHD* expression was complemented at the mesophyll
291 or phloem cells, subjected to a HL&HS treatment (Figure 5 and Supplementary Figure S5). As
292 shown in Figure 5, compared to wild type plants, the ROS wave was suppressed in *rbohD* plants
293 subjected to the HL&HS treatment. Complementation of *RBOHD* expression with *RBOHD*
294 expressed under the control of its native promoter, or a phloem specific promoter (that could
295 restore HS- or HL-response ROS wave functions from the two different leaves; Figures 2-4 and
296 Supplementary Figures S2, S3 and S5; Zandalinas et al., 2020b) restored the ROS wave to its
297 high level of expression. In contrast, complementation of the *rbohD* mutant with *RBOHD*

298 expressed under the mesophyll- specific promoter (that could only restore HS-, but not HL-
299 response ROS wave functions from the HL-treated leaf; Figures 2-4 and Supplementary Figures
300 S2, S3 and S5; Zandalinas et al., 2020b), could not restore the ROS wave to its maximal
301 intensity. These finding demonstrate that under conditions of HL&HS at least part of the ROS
302 wave that spreads throughout the plant (originating from the HS-treated leaf) could be mediated
303 through mesophyll cells. Complementation of *RBOHD* expression with *RBOHD* expressed under
304 the control of the phloem-specific promoter was nonetheless sufficient to restore the ROS wave
305 to wild type or *rbohD* mutant complemented with *RBOHD* under its native promoter levels
306 (Figure 5), suggesting that in wild type plants transmission of the ROS wave signal through
307 phloem cells is sufficient to cause a higher signal during HL&HS combination.

308

309

310 **DISCUSSION**

311 Abiotic, mechanical injury, and biotic stresses trigger a rapid systemic signal transduction
312 process that activates different acclimation and defense mechanisms in systemic tissues within
313 minutes of stress sensing at the local tissues (Fichman et al., 2019; Kollist et al., 2019; Fichman
314 and Mittler, 2020). Up until now, the systemic electric, calcium and ROS waves, triggered by
315 wounding or HL stress, were shown to be mediated through the vascular bundles of plants
316 (Mousavi et al., 2013; Nguyen et al., 2018; Toyota et al., 2018; Farmer et al., 2020; Shao et al.,
317 2020; Zandalinas et al., 2020b). Here, we present evidence that in addition to vascular bundles,
318 mesophyll cells can also mediate the systemic ROS wave in response to a local treatment of
319 wounding or HS (Figures 1-6). Mesophyll cells are not typically considered part of the vascular
320 bundles of plants and are found within leaves and stems as cell layers that connect the vascular
321 tissues to the epidermis, stomata and/or other leaf/stem structures and cell types. Because the
322 ROS wave propagates from cell-to-cell via mechanisms that require apoplastic and symplastic
323 connectivity between cells (Miller et al., 2009; Fichman et al., 2021), and mesophyll cells are
324 connected with each other via PD and/or their shared apoplastic microenvironment, as well as
325 express *RBOHD* under controlled growth conditions (Supplementary Figure S1; Zandalinas et
326 al., 2020b), the basic mechanisms that allow the ROS wave to propagate from cell-to-cell
327 through mesophyll cell layers appear to be present. In contrast, GLR3.3 and/or GLR3.6 that are
328 required for rapid wound-response systemic signaling are not thought to be localized to
329 mesophyll cells (they are thought to be exclusively localized to the xylem parenchyma and
330 phloem cells; Mousavi et al., 2013; Nguyen et al., 2018; Toyota et al., 2018; Shao et al., 2020).
331 A recent study has shown that GLR3.3 and/or GLR3.6 are not absolutely required for the ROS
332 wave to propagate in response to a local treatment of HL stress (Fichman et al., 2021). Taking
333 this study into consideration, it is plausible that the ROS wave will propagate through tissues that
334 do not express GLR3.3 and/or GLR3.6, possibly using other calcium-permeable channels such as
335 CNGCs or MSLs (Fichman et al., 2021). Having many of the required proteins and physical
336 connections/proximity required for ROS cell-to-cell signals to function, support the possibility
337 that the ROS wave can propagate through layers of mesophyll cells that are outside the vascular
338 bundles (Figure 6).

339 Considering the extensive literature and established role of chloroplasts in the perception of light
340 stress, as well as ROS production (Karpinski et al., 1999; Mittler, 2002), it is somewhat
341 surprising that perception of light stress in *rbohD* mutants expressing RBOHD in mesophyll cells
342 does not trigger the systemic ROS wave (Supplementary Figure S3; Zandalinas et al., 2020b).
343 Although local leaves of *rbohD*/pCAB3::GFP-RbohD plants express MYB30 and ZHD5 in
344 response to HL stress, showing that they can perceive the stress, they are nevertheless unable to
345 trigger the systemic ROS signal and cause accumulation of these transcripts in systemic leaves
346 (Figure 3 and Supplementary Figure S3). One possible explanation to this finding stem from
347 recent studies showing that HL-induced ROS in *Arabidopsis* leaves and bundle sheath cells of
348 rice requires RBOH proteins (Devireddy et al., 2020b; Xiong et al., 2021). It is therefore possible
349 that triggering of the systemic ROS signal during light stress requires RBOH present in vascular
350 cells and that this process is independent of ROS accumulation in chloroplasts of mesophyll
351 cells. In addition, it is possible that under longer and more pervasive HL treatments additional
352 ROS signaling mechanisms may be involved, and these could be mediated through additional
353 cell layers. Further studies are required to address this intriguing possibility.

354 In addition to showing that the ROS wave can propagate outside the vascular bundles of
355 *Arabidopsis* (Figures 1 and 2 and Supplementary Figure S2), supporting systemic wound- and
356 HS-induced transcript expression in systemic leaves (Figure 3) and mediating SAA to HS
357 (Figure 4), our findings further highlight the interesting possibility that different stresses, e.g.,
358 HS, HL and wounding, trigger different types of systemic waves that propagate through different
359 tissues, and could even be spatially separated from each other. For example, complementing
360 *RBOHD* expression in mesophyll cells of the *rbohD* mutant can complement systemic responses
361 to wounding (Figure 3). Under these conditions, the electric and calcium waves could propagate
362 through the vascular bundles (supported by GLR3.3;GLR3.6; Mousavi et al., 2013; Nguyen et
363 al., 2018; Toyota et al., 2018; Shao et al., 2020), while the ROS wave could propagate through
364 mesophyll cells (supported by RBOHD; Figures 1 and 3; Zandalinas et al., 2020b). This
365 possibility suggests that the ROS wave can be spatially separated from the calcium and electric
366 waves. Different stresses could therefore trigger different combinations of waves that could
367 travel through different tissues and cell layers of the plant. During systemic responses to HL
368 stress however the separation of systemic signals cannot occur (for reasons unknown at present),

369 and the ROS wave must propagate together with the electric and calcium waves through the
370 vascular bundles. Further studies are of course needed to address these intriguing possibilities.

371 Under all stresses studied here (HL, HS, wounding), RBOHD appeared to be required for
372 systemic transcript accumulation (Figure 3), suggesting that even though GLRs were present and
373 most likely functional in the *rbohD* mutant, they could not mediate their function to drive the
374 expression of systemic transcript accumulation in the absence of the ROS wave. The ROS wave,
375 even occurring at tissues other than the vascular bundles (*i.e.*, mesophyll cell layers; Figures 1
376 and 2) could therefore be required to support other systemic signal propagation (such as electric
377 and calcium waves) occurring at the vascular bundles during HS or wound responses. Although
378 it is unknown at present how changes in ROS at the mesophyll cell layers impact electric and
379 calcium signaling at the vascular bundles, one intriguing possibility is that different metabolites,
380 ions, ROS, hormones, and/or pH changes, occurring at the mesophyll cell layers are
381 diffused/transported to the vascular bundles, and these are needed to link the different waves
382 (Fichman et al., 2020a; Fichman and Mittler, 2020). In this respect, it should be mentioned that
383 changes in localized pH levels were recently linked to the triggering and propagation of electric
384 and calcium waves in *Arabidopsis* (Shao et al., 2020). An alternative explanation could of course
385 be that RBOHF at the vascular tissues replaces the function of RBOHD in linking the different
386 waves during all stresses studied, and that the levels of RBOHF-produced ROS in the vascular
387 bundles of *rbohD* plants complemented by *RBOHD* expressed under the control of a mesophyll-
388 specific promoter are too low to be detected by our assay. Further studies, for example,
389 transformation of the *rbohD;rbohF* double mutant with the pCAB3::RbohD construct, are of
390 course needed to address these possibilities, as well as to resolve the different spatial and
391 temporal relationships that could potentially exist between the different waves, signals and
392 hormones involved in systemic signaling (*e.g.*, Kangasjärvi et al., 2009; Miller et al., 2009;
393 Mittler et al., 2011; Dubiella et al., 2013; Gilroy et al., 2014; Evans et al., 2016; Gilroy et al.,
394 2016; Choi et al., 2017; Fichman et al., 2020a; Fichman and Mittler, 2020).

395 Our findings that the ROS wave can propagate through multiple cell layers in response to
396 different stresses could also partially explain how the integration of different systemic signals
397 during a combination of HL and HS results in a stronger ROS wave signal (Zandalinas et al.,
398 2020a). It is possible that during a combination of HL and HS applied to two different leaves of

399 the same plant (HL&HS; Zandalinas et al., 2020a), the ROS wave initiated from the two
400 different leaves propagates through all three cell types of the plant (mesophyll, xylem
401 parenchyma and phloem, initiated by the local HS treatment, and xylem parenchyma and
402 phloem, initiated by the local HL treatment). In contrast, during a combination of HL+HS
403 applied to the same leaf, JA suppresses the ROS wave and the signal is lower (Zandalinas et al.,
404 2020a). Our findings that restoring RBOHD expression in mesophyll cells did not result in a
405 stronger systemic ROS signal during a HL&HS treatment (Figure 5), reveals that during HL&HS
406 combination in *Arabidopsis* the ROS wave could indeed propagate through mesophyll cells
407 (Figures 5 and 6 and Supplementary Figure S5). The ROS wave triggered by the HL treatment
408 (propagating through xylem parenchyma and/or phloem cells) could therefore merge with the
409 ROS wave triggered by the HS treatment (propagating through mesophyll and xylem
410 parenchyma and/or phloem cells) to generate a stronger systemic ROS signal during HL&HS
411 combination that is mediated through multiple cell layers (Figures 5 and 6 and Supplementary
412 Figure S5). Because complementing *RBOHD* expression in the *rbohD* mutant using *RBOHD*
413 expressed under the phloem-specific promoter was sufficient to restore the strong signal
414 observed during HL&HS combination (Zandalinas et al., 2020a; Figure 5, Supplementary Figure
415 S5), it is also possible that the stronger signal observed during HL&HS combination is simply
416 the result of two different ROS wave signals merging together, regardless of the type of tissue
417 supporting their transmission. Further studies are of course needed to dissect the mode of
418 systemic signal integration through the different cell layers during stress combination.

419

420 MATERIALS AND METHODS

421 Plant material, growth conditions and stress treatments

422 *Arabidopsis thaliana* Col-0 (cv. Columbia-0), *rbohD* plants (Fichman et al., 2019) and two
423 independent lines each of the different *rbohD* complemented plants (Zandalinas et al., 2020b)
424 were grown in peat pellets (Jiffy-7, Jiffy, <http://www.jiffygroup.com/>) at 23°C under short day
425 growth conditions (10-hour light/14-hour dark, 50 $\mu\text{mol m}^{-2} \text{s}^{-1}$). Wounding was achieved by
426 puncturing a single leaf with 18 dressmaker pins (Singer, Murfreesboro, TN, USA) as described
427 in (Fichman et al., 2019). Heat stress (HS) was induced by placing a heat block 2 cm underneath
428 the treated leaf for 2 min, increasing the leaf temperature to 31-33°C (Zandalinas et al., 2020a).

429 High light stress was applied by subjecting a single leaf to a light intensity of 1700 $\mu\text{mol m}^{-2} \text{s}^{-1}$
430 for 2 min using a ColdVision fiber optic LED light source (Schott A20980, Southbridge, MA,
431 USA) as described in (Devireddy et al., 2018; Zandalinas et al., 2019; Zandalinas et al., 2020a;
432 Zandalinas et al., 2020b). The spectrum of this light stress treatment was shown in previous
433 studies to contain all components required for triggering the systemic ROS signal through
434 phytochrome B-mediated signaling (Devireddy et al., 2020b), as well as, when applied for more
435 than 45 min, cause photosynthetic inhibition and light-induced cell death (Balfagón et al., 2019;
436 Zandalinas et al., 2019; Zandalinas et al., 2020a; Zandalinas et al., 2020b). However, when
437 applied for 2 min, this light stress treatment did not increase leaf temperature (Supplementary
438 Table S1; Zandalinas et al., 2020a). Local and systemic leaf temperatures were measured under
439 all conditions and treatment using an infrared camera (C2; FLIR Systems; Zandalinas et al.,
440 2020a).

441 **Measurements of ROS accumulation**

442 To image whole-plant ROS levels, plants were fumigated with 50 μM
443 H_2DCFDA (excitation/emission 495 nm/517 nm; Millipore-Sigma, St. Louis, MO, USA) in
444 50 mM phosphate buffer (pH 7.4) containing 0.01% Silwet L-77 (LEHLE seeds, Round Rock,
445 TX, USA), using a portable mini nebulizer (Punasi Direct, Hong Kong, China) for 30 min as
446 described previously (Fichman et al., 2019; Zandalinas et al., 2020a; Zandalinas et al., 2020b).
447 Following H_2DCFDA application, local leaves were exposed to wounding, HL stress, HS, or HL
448 and HS applied to two different leaves located at opposite sides of the plant as described by
449 Zandalinas et al., (2020a). Imaging of ROS accumulation in response to a local stress treatment
450 was conducted with an IVIS Lumina S5 platform using Living Image 4.7.2 software
451 (PerkinElmer) as described in (Fichman et al., 2019; Zandalinas et al., 2020a; Zandalinas et al.,
452 2020b). All experiments were repeated at least three times each with 10 wild type, *rbohD* and the
453 different complemented plants.

454 **RT-qPCR analysis**

455 To analyze transcript expression by RT-qPCR, plants were subjected to a local treatment of
456 wounding, 8-min HL or 8-min HS as described above. Local and systemic leaves were collected
457 and immediately frozen in liquid nitrogen following the 8-min HL or HS treatments, or 30 min
458 following wounding. Relative expression analysis by RT-qPCR was performed according to

459 (Balfagón et al., 2019) by using the CFX Connect Real-Time PCR Detection System (Bio-Rad)
460 and gene-specific primers (Supplementary Table S2; Primer efficiency range of 0.99-1.04). All
461 experiments were repeated at least three times each with at least 5 wild type, *rbohD* and the
462 different *rbohD* complemented plants.

463 **Heat stress acclimation assay**

464 For heat stress acclimation, a single leaf was pre-treated for 15 min at 31-33°C by placing a heat
465 block 2 cm underneath the treated leaf (Zandalinas et al., 2020a). Plants were then incubated for
466 45 minutes under controlled conditions. Following the recovery period, a systemic leaf of pre-
467 treated and untreated plants was dipped in a 42°C (or 23°C as control) water bath for 60 min and
468 allowed to recover under controlled growth conditions. Systemic leaves were sampled 6 days
469 after the water bath heat stress treatment for chlorophyll measurements, as previously described
470 (Zandalinas et al., 2020a; Zandalinas et al., 2020c). For HL-induced SAA, a single leaf was pre-
471 treated for 15 min with a light intensity of 1700 $\mu\text{mol m}^{-2} \text{ sec}^{-1}$ using a ColdVision fiber optic
472 LED light source (Schott A20980, Southbridge, MA, USA). Plants were then incubated for 45
473 minutes under controlled conditions. Following the recovery period, a systemic leaf was exposed
474 to a light intensity of 1700 $\mu\text{mol m}^{-2} \text{ sec}^{-1}$ for 45 minutes. Control systemic leaves (untreated)
475 and systemic leaves of plants that were pretreated with HL stress, as described above (SAA),
476 were then analyzed for electrolyte leakage as previously described (Zandalinas et al., 2019;
477 Zandalinas et al., 2020a; Zandalinas et al., 2020b). Acclimation assays were repeated at least 3
478 times with 10 plants per repeat.

479 **GFP imaging**

480 Localization of RBOHD-GFP in leaves of mature (4-5-week-old) *rbohD* plants complemented
481 with the RBOHD-GFP protein driven by its native or CAB3 promoter was performed using a
482 TCS SP8 (Leica) multiphoton confocal microscope (Buffalo Grove, IL, USA) as described in
483 Zandalinas et al., 2020b.

484 **Statistical analysis**

485 Results are presented as the mean \pm SD. Statistical analyses were performed by a two-tailed
486 Student's t-test (asterisks denote statistical significance at $p < 0.05$ with respect to controls).

487

488 **SUPPLEMENTAL DATA**

489 **Supplementary Table S1.** FLIR camera measurements showing the surface temperature of
490 treated (local) and systemic leaves for each stress treatment (C2, FLIR systems AB).
491 *Abbreviations used:* CT, control; HL, high light; HS, heat stress.

492 **Supplementary Table S2.** Transcript-specific primers used for relative expression analysis by
493 RT-qPCR.

494 **Supplementary Figure S1.** Representative confocal images of RBOHD-GFP fusion protein
495 expression in mature leaves of transgenic *rbohD* mutants. The RBOHD-GFP protein was
496 expressed in the *rbohD* mutant background under the control of the native RbohD or the CAB3
497 promoters. *Abbreviations used:* RBOHD, respiratory burst oxidase homolog D; CAB,
498 chlorophyll A/B binding protein (Scale bar = 20 μ m).

499 **Supplementary Figure S2.** Linear regression analysis conducted using scatter plots of
500 continuous ROS measurements in local and systemic leaves of wild type, *rbohD* and the
501 different complemented lines over the entire course of each experiment (0 to 30 min). Best-fit
502 regression lines (in black) and the slope of each signal progression are shown. *Abbreviations*
503 *used:* HL, high light; HS, heat stress; RBOHD, respiratory burst oxidase homolog D; CER,
504 eceriferum; CAB, chlorophyll A/B binding protein; SCR, scarecrow; XCP, xylem cysteine
505 peptidase; Sultr, sulfate transporter; TRE, total radiant efficiency; W, wounding.

506 **Supplementary Figure S3.** Complementation of light (HL) stress-induced local and systemic
507 ROS signaling in the *rbohD* mutant with *RBOHD* driven by different tissue-specific promoters.
508 Representative time-lapse images of whole-plant ROS levels in wild type, *rbohD* and the
509 different *rbohD* complemented *Arabidopsis thaliana* plants subjected to a local HL-stress
510 treatment (red circles), are shown on left; representative line graphs showing continuous
511 measurements of ROS levels in local and systemic leaves of wild type, *rbohD* and two
512 independent homozygous complemented lines (#1 and #2), over the entire course of the
513 experiment (0 to 30 min) are shown in the middle (ROIs for some of them are indicated with
514 blue boxes); and statistical analysis of ROS levels in local and systemic leaves at 0 and 30 min is
515 shown on right (Student t-test, SD, N=10, *p < 0.05). All experiments were repeated at least 3
516 times with similar results. Scale bar indicates 1 cm. *Abbreviations used:* HL, high light; RBOHD,

517 respiratory burst oxidase homolog D; CER, eceriferum; CAB, chlorophyll A/B binding protein;
518 SCR, scarecrow; XCP, xylem cysteine peptidase; ROI, region of interest; Sultr, sulfate
519 transporter; TRE, total radiant efficiency. The experiments shown were conducted in parallel to
520 the experiments shown in Figures 1 and 2 and are a repeat of the study reported previously
521 (Zandalinas et al., 2020b), with similar results.

522 **Supplementary Figure S4.** Complementation of light stress (HL)-induced SAA in the *rbohD*
523 mutant with *RBOHD* driven by different tissue-specific promoters. Light stress-induced systemic
524 leaf cell injury (measured as electrolyte leakage) of wild type, *rbohD* and the different *rbohD*-
525 complemented *Arabidopsis thaliana* plants is shown. Systemic leaves were either untreated and
526 unstressed (Control) or subjected to a systemic light stress following a local pretreatment of a
527 local leaf with light stress (SAA). Ten different plants each from two independent complemented
528 lines for each construct were subjected to light stress and cell injury was determined by
529 measuring electrolyte leakage from systemic leaves. Student t-test, SD, N=10, *p < 0.05.
530 *Abbreviations used:* HL, high light; RBOHD, respiratory burst oxidase homolog D; CER,
531 eceriferum; CAB, chlorophyll A/B binding protein; SCR, scarecrow; XCP, xylem cysteine
532 peptidase; Sultr, sulfate transporter; EL, electrolyte leakage; SAA, systemic acquired
533 acclimation. The experiments shown were conducted in parallel to the experiments shown in
534 Figure 4 and are a repeat of the study reported previously (Zandalinas et al., 2020b), with similar
535 results.

536 **Supplementary Figure S5.** Complementation of light (HL)- and heat (HS)-induced local and
537 systemic ROS signaling in the *rbohD* mutant with *RBOHD* driven by the phloem- or mesophyll
538 tissue-specific promoters, during stress combination. Representative images of whole-plant ROS
539 levels in *rbohD* and *rbohD*-complemented *Arabidopsis thaliana* plants 20 min following a local
540 light (HL)- or heat (HS)- treatments, or a combination of light- and heat-stress treatments applied
541 to two leaves of the same plant (HL&HS; Zandalinas et al., 2020a; red circles) are shown. All
542 experiments were repeated at least 3 times with similar results. Scale bar indicates 1 cm.
543 *Abbreviations used:* HL, high light; HS, heat stress; RBOHD, respiratory burst oxidase homolog
544 D; CAB, chlorophyll A/B binding protein; Sultr, sulfate transporter.

545 **FIGURE LEGENDS**

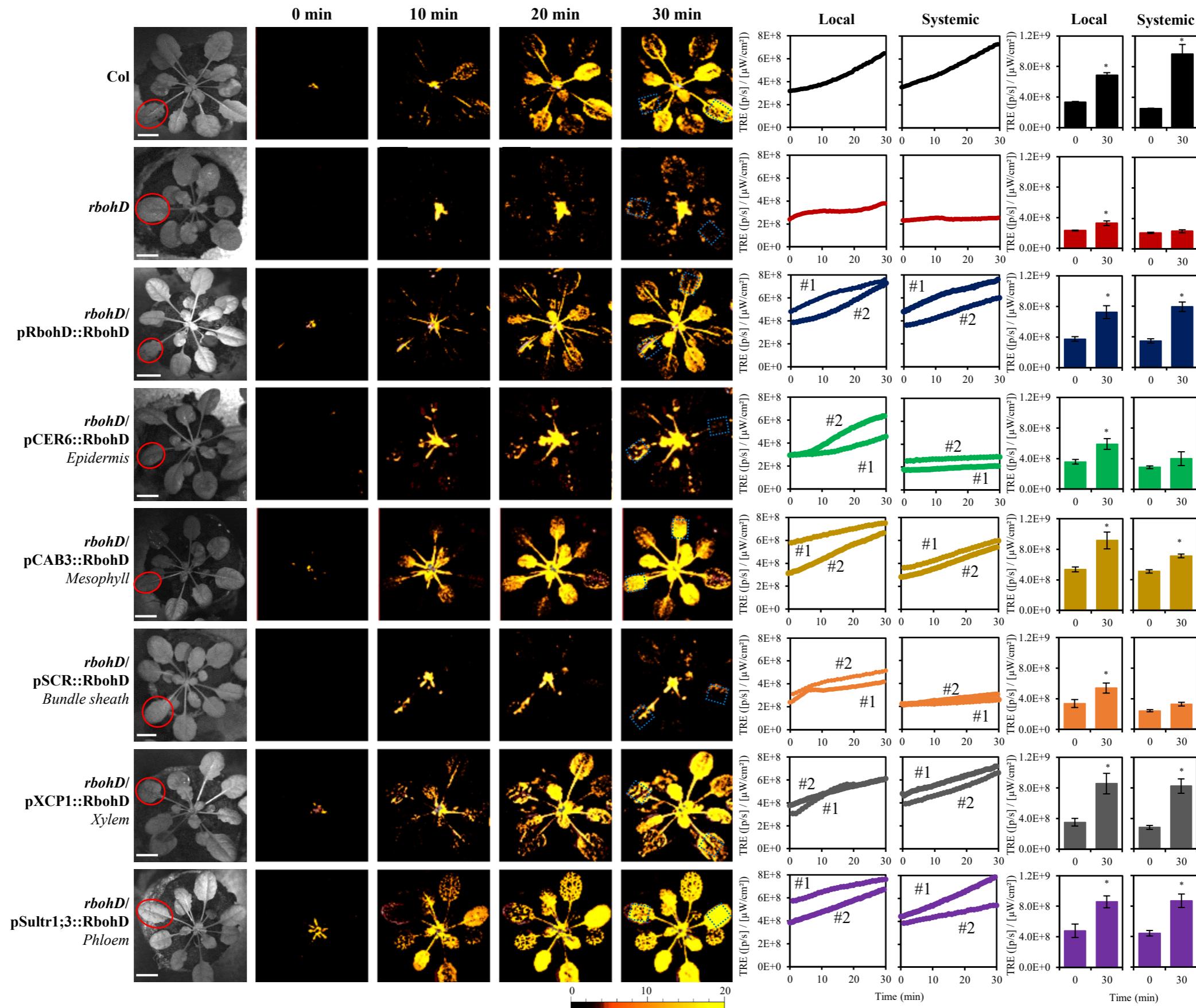
546 **Figure 1.** Complementation of wound-induced local and systemic ROS signaling in the *rbohD*
547 mutant with *RBOHD* driven by different tissue-specific promoters. Representative time-lapse
548 images of whole-plant ROS levels in wild type, *rbohD* and the different *rbohD*-complemented
549 *Arabidopsis thaliana* plants subjected to a local wound treatment (red circles), are shown on left;
550 representative line graphs showing continuous measurements of ROS levels in local and
551 systemic leaves of wild type, *rbohD*, and two independent homozygous complemented lines (#1
552 and #2), over the entire course of the experiment (0 to 30 min) are shown in the middle (ROIs for
553 some of them are indicated with blue boxes); and statistical analysis of ROS levels in local and
554 systemic leaves at 0 and 30 min is shown on right (Student t-test, SD, N=10, *p < 0.05). All
555 experiments were repeated at least 3 times with similar results. Scale bar indicates 1 cm.
556 *Abbreviations used:* RBOHD, respiratory burst oxidase homolog D; CER, eceriferum; CAB,
557 chlorophyll A/B binding protein; SCR, scarecrow; XCP, xylem cysteine peptidase; ROI, region
558 of interest; Sultr, sulfate transporter; TRE, total radiant efficiency.

559 **Figure 2.** Complementation of heat stress-induced local and systemic ROS signaling in the
560 *rbohD* mutant with *RBOHD* driven by different tissue-specific promoters. Representative time-
561 lapse images of whole-plant ROS levels in wild type, *rbohD* and the different *rbohD*-
562 complemented *Arabidopsis thaliana* plants subjected to a local heat stress treatment (red circles),
563 are shown on left; representative line graphs showing continuous measurements of ROS levels in
564 local and systemic leaves of wild type, *rbohD* and two independent homozygous complemented
565 lines (#1 and #2), over the entire course of the experiment (0 to 30 min) are shown in the middle
566 (ROIs for some of them are indicated with blue boxes); and statistical analysis of ROS levels in
567 local and systemic leaves at 0 and 30 min is shown on right (Student t-test, SD, N=10, *p <
568 0.05). All experiments were repeated at least 3 times with similar results. Scale bar indicates 1
569 cm. *Abbreviations used:* RBOHD, respiratory burst oxidase homolog D; CER, eceriferum; CAB,
570 chlorophyll A/B binding protein; SCR, scarecrow; XCP, xylem cysteine peptidase; ROI, region
571 of interest; Sultr, sulfate transporter; TRE, total radiant efficiency.

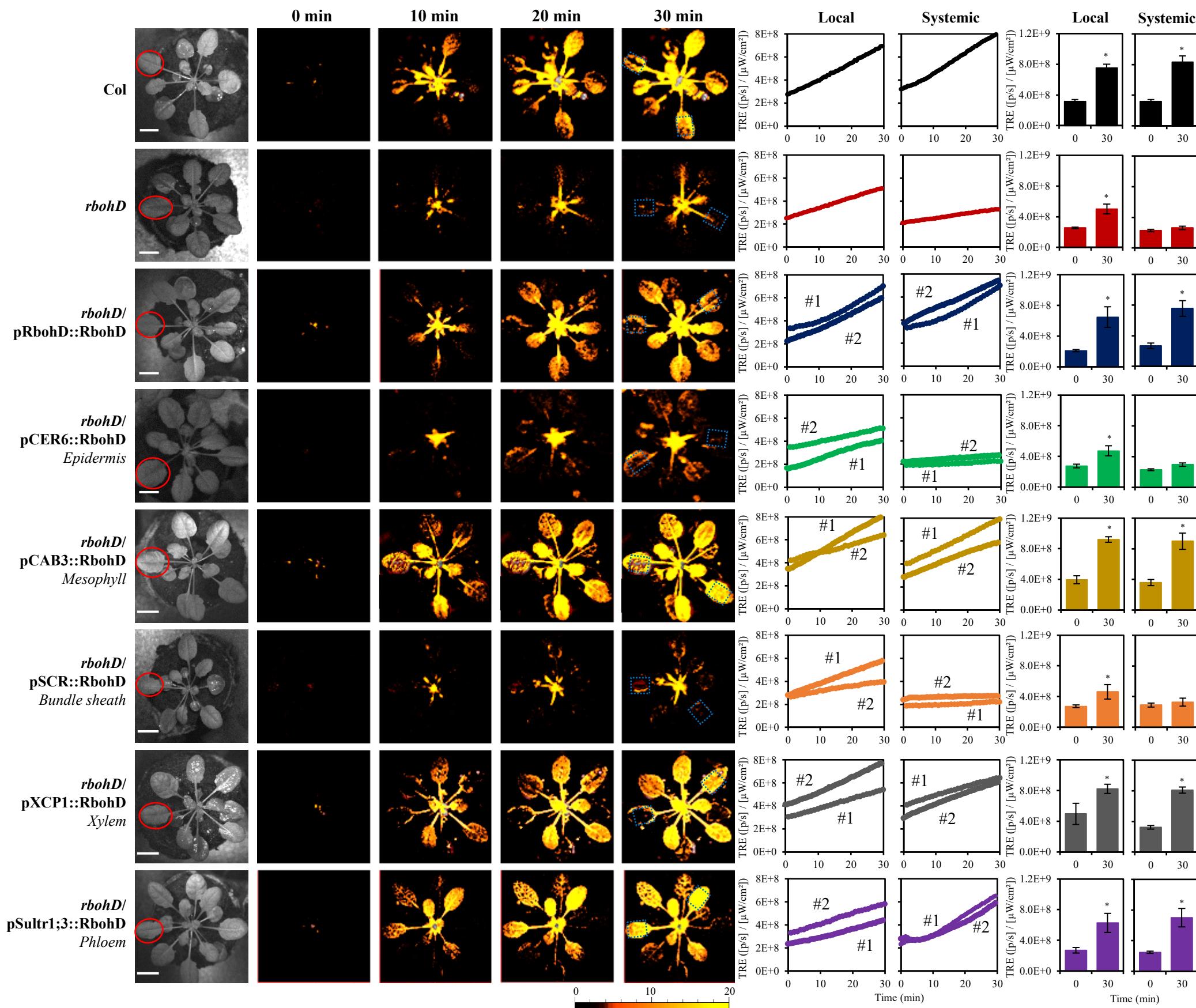
572 **Figure 3.** Local- and systemic stress-induced transcript expression in wild type, *rbohD*, and the
573 *rbohD* mutant complemented with *RBOHD* driven by different tissue-specific promoters. (A)
574 Local and systemic steady-state levels of *JAZ5* (AT1G17380) and *JAZ7* (AT2G34600)

575 transcripts in wild type, *rbohD*, and the different *rbohD*-complemented *Arabidopsis thaliana*
576 plants subjected to a local wound treatment. (B) Local and systemic steady-state levels of *Rap2.4*
577 (AT1G78080) and *ERF2* (AT5G47220) transcripts in wild type, *rbohD*, and the different *rbohD*-
578 complemented *Arabidopsis* plants subjected to a local heat-stress treatment. (C) Local and
579 systemic steady-state levels of *MYB30* (AT3G28910) and *ZHD5* (AT1G75240) transcripts in
580 wild type, *rbohD*, and the different *rbohD*-complemented *Arabidopsis* plants subjected to a local
581 high light-stress treatment. Student t-test, SD, N=3, *p < 0.05. Abbreviations used: RBOHD,
582 respiratory burst oxidase homolog D; CER, eceriferum; CAB, chlorophyll A/B binding protein;
583 SCR, scarecrow; XCP, xylem cysteine peptidase; Sultr, sulfate transporter; JAZ, jasmonate-zim-
584 domain protein; ERF, ethylene response factor; ZHD, zinc-finger homeodomain.

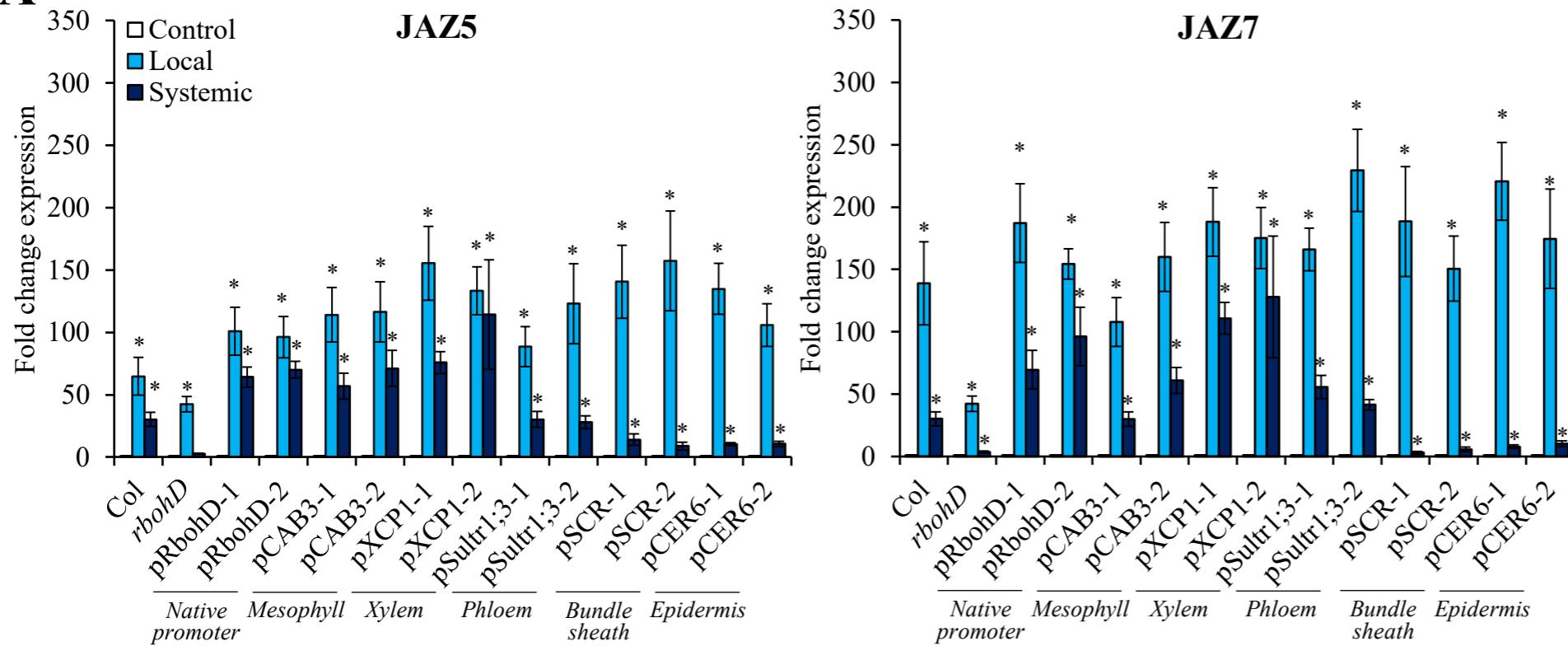
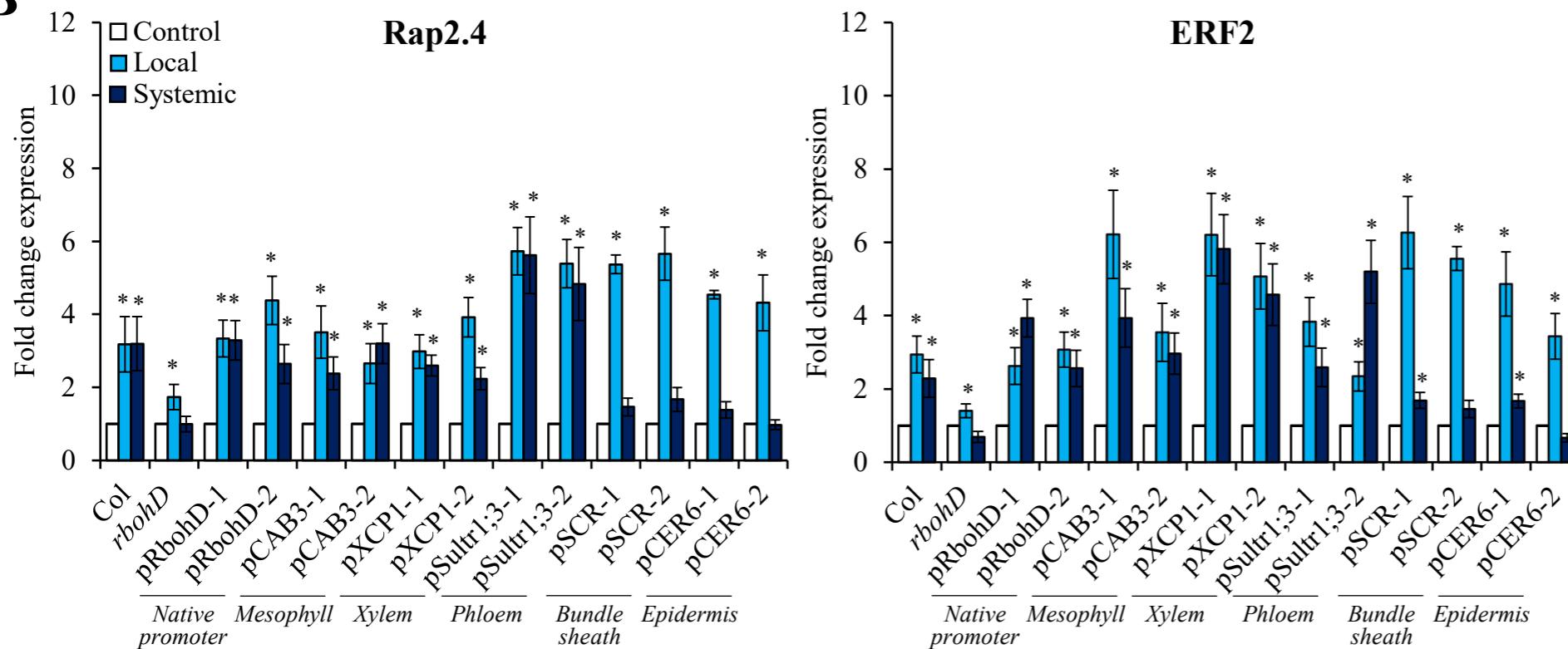
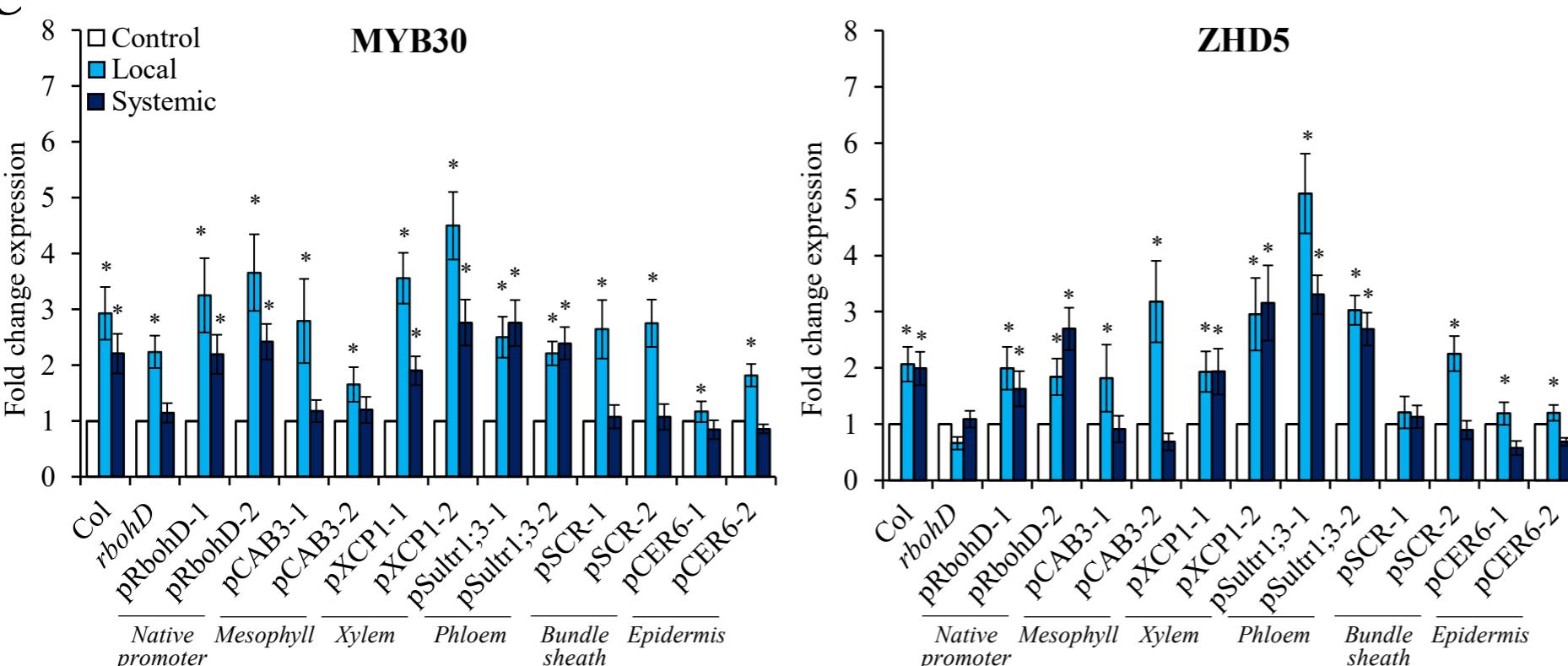
585 **Figure 4.** Complementation of heat stress-induced SAA in the *rbohD* mutant with *RBOHD*
586 driven by different tissue-specific promoters. Heat stress-induced changes in systemic leaf
587 chlorophyll content of wild type, *rbohD* and the different *rbohD*-complemented *Arabidopsis*
588 *thaliana* plants are shown. Systemic leaves were obtained from plants that were either untreated
589 and unstressed (Control), untreated at their local leaves and subjected to a systemic heat-stress
590 treatment (No pretreatment), or subjected to a local heat stress pre-treatment before being
591 subjected to a systemic heat stress treatment (Pretreatment). SAA is evident when the systemic
592 leaf of a pre-treated plant does not show a loss of chlorophyll content following a systemic heat
593 stress treatment. Ten different plants each from two independent complemented lines for each
594 construct were subjected to the SAA heat stress assay and chlorophyll content was measured in
595 systemic leaves. Student t-test, SD, N=10, *p < 0.05. Abbreviations used: RBOHD, respiratory
596 burst oxidase homolog D; CER, eceriferum; CAB, chlorophyll A/B binding protein; SCR,
597 scarecrow; XCP, xylem cysteine peptidase; Sultr, sulfate transporter.


598 **Figure 5.** Complementation of light- and heat-induced local and systemic ROS signaling in the
599 *rbohD* mutant with *RBOHD* driven by the phloem- or mesophyll tissue-specific promoters,
600 during stress combination. Representative time-lapse images of whole-plant ROS levels of wild
601 type, *rbohD* and *rbohD*-complemented *Arabidopsis thaliana* plants subjected to a local light
602 (HL) and heat stress (HS) treatments, simultaneously applied to two leaves of the same plant (red
603 circles; HL&HS; Zandalinas et al., 2020a) are shown on left (ROIs for some of them are
604 indicated with blue boxes), and statistical analysis of ROS levels in systemic leaves of treated

605 plants at 0, 10, 15 and 20 min is shown on right (Student t-test, SD, N=10, *p < 0.05). All
606 experiments were repeated at least 3 times with similar results. Scale bar indicates 1 cm.
607 *Abbreviations used:* HL, high light; HS, heat stress; RBOHD, respiratory burst oxidase homolog
608 D; CAB, chlorophyll A/B binding protein; Sultr, sulfate transporter.


609 **Figure 6.** A model showing that when light stress is applied to a local leaf, the ROS wave is
610 mediated through vascular bundles. In contrast, when heat stress or wounding are applied to a
611 local leaf, both vascular and mesophyll cells can mediate the ROS wave. *Abbreviations used:*
612 HL, high light; HS, heat stress; W, wounding; ROS, reactive oxygen species.

613

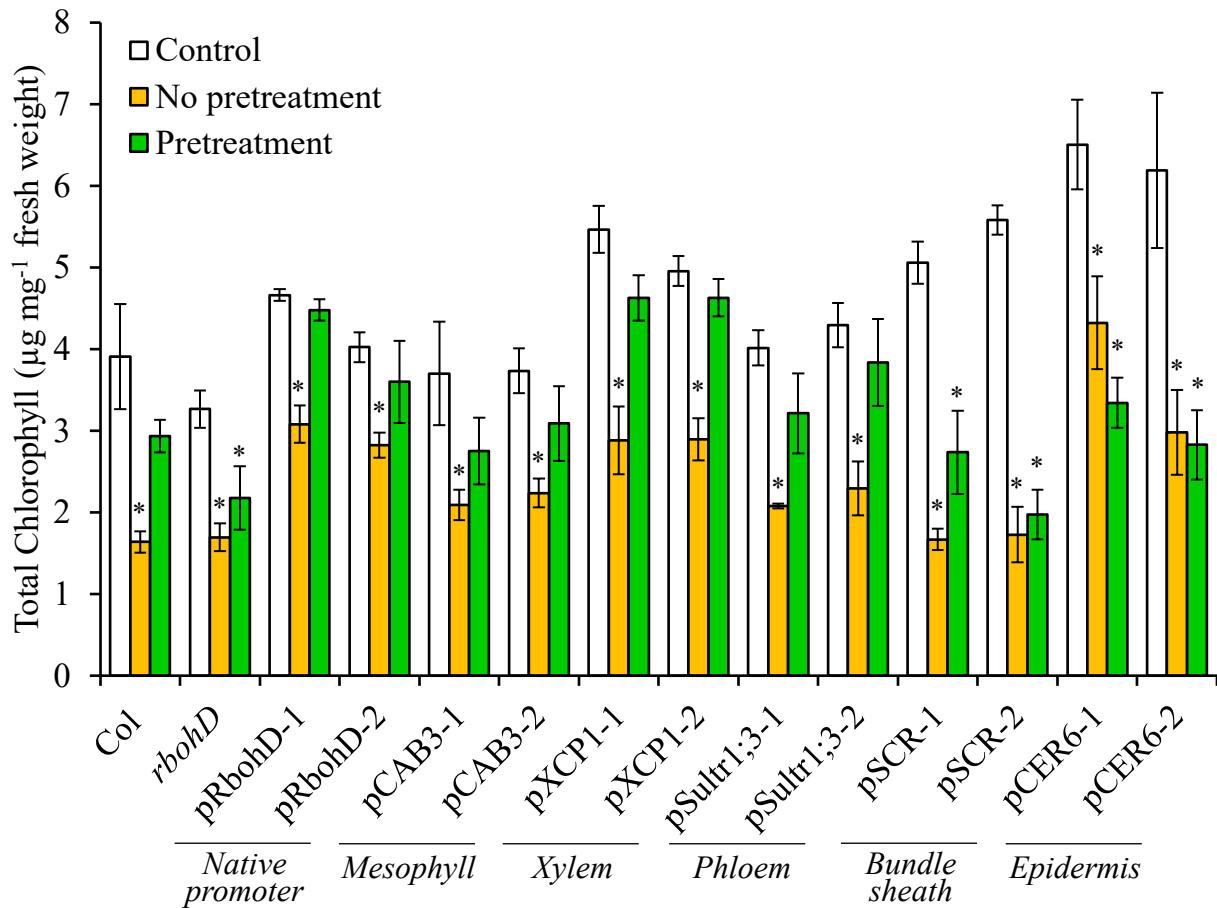

Figure 1. Complementation of wound-induced local and systemic ROS signaling in the *rbohD* mutant with *RBOHD* driven by different tissue-specific promoters. Representative time-lapse images of whole-plant ROS levels in wild type, *rbohD* and the different *rbohD*-complemented *Arabidopsis thaliana* plants subjected to a local wound treatment (red circles), are shown on left; representative line graphs showing continuous measurements of ROS levels in local and systemic leaves of wild type, *rbohD*, and two independent homozygous complemented lines (#1 and #2), over the entire course of the experiment (0 to 30 min) are shown in the middle (ROIs for some of them are indicated with blue boxes); and statistical analysis of ROS levels in local and systemic leaves at 0 and 30 min is shown on right (Student t-test, SD, N=10, *p < 0.05). All experiments were repeated at least 3 times with similar results. Scale bar indicates 1 cm. Abbreviations used: RBOHD, respiratory burst oxidase homolog D; CER, eceriferum; CAB, chlorophyll A/B binding protein; SCR, scarecrow; XCP, xylem cysteine peptidase; ROI, region of interest; Sultr, sulfate transporter; TRE, total radiant efficiency.

Figure 2. Complementation of heat stress-induced local and systemic ROS signaling in the *rbohD* mutant with *RBOHD* driven by different tissue-specific promoters. Representative time-lapse images of whole-plant ROS levels in wild type, *rbohD* and the different *rbohD*-complemented *Arabidopsis thaliana* plants subjected to a local heat stress treatment (red circles), are shown on left; representative line graphs showing continuous measurements of ROS levels in local and systemic leaves of wild type, *rbohD* and two independent homozygous complemented lines (#1 and #2), over the entire course of the experiment (0 to 30 min) are shown in the middle (ROIs for some of them are indicated with blue boxes); and statistical analysis of ROS levels in local and systemic leaves at 0 and 30 min is shown on right (Student t-test, SD, N=10, * $p < 0.05$). All experiments were repeated at least 3 times with similar results. Scale bar indicates 1 cm. Abbreviations used: RBOHD, respiratory burst oxidase homolog D; CER, eceriferum; CAB, chlorophyll A/B binding protein; SCR, scarecrow; XCP, xylem cysteine peptidase; ROI, region of interest; Sultr, sulfate transporter; TRE, total radiant efficiency.

A**B****C**

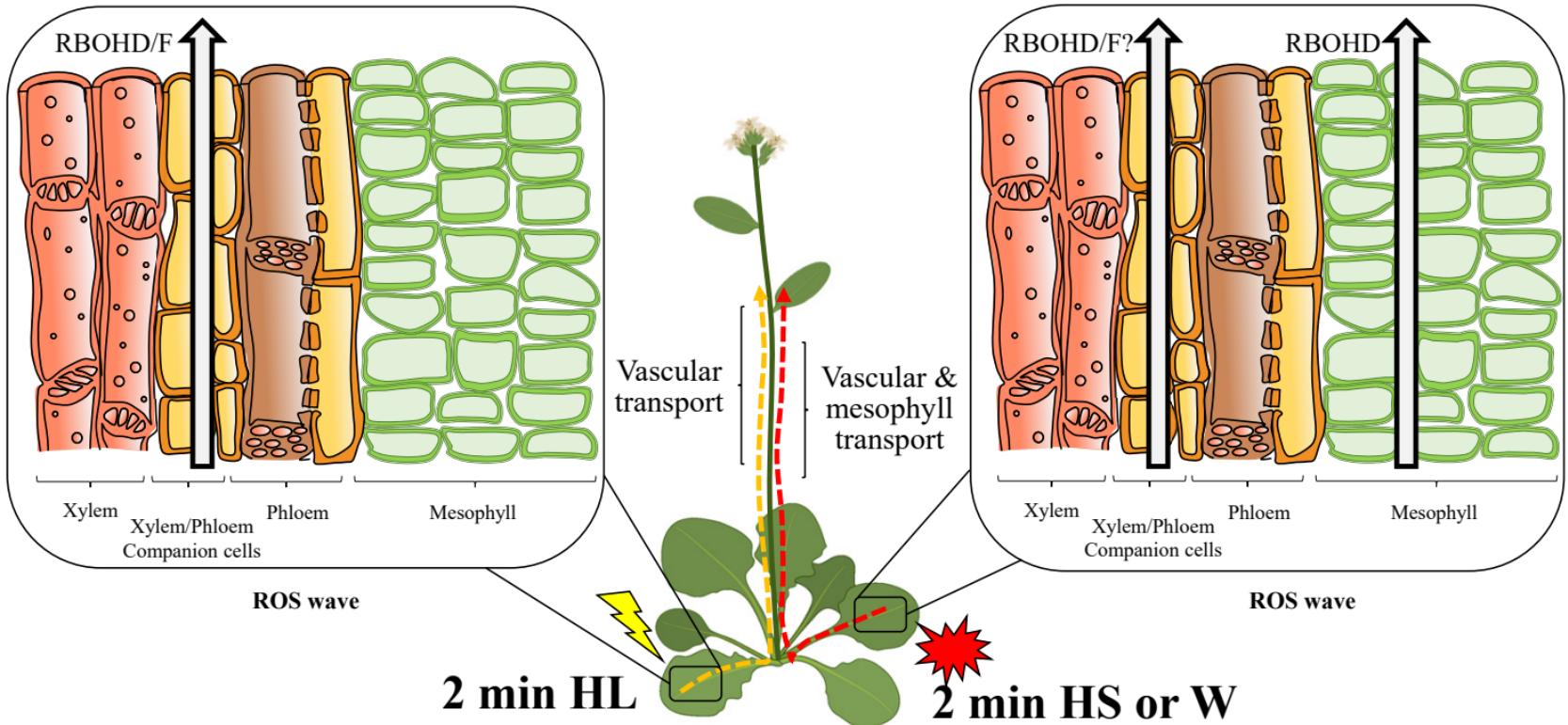

Figure 3. Local and systemic stress-induced transcript expression in wild type, *rbohD*, and the *rbohD* mutant complemented with *RBOHD* driven by different tissue-specific promoters. (A) Local and systemic steady-state levels of *JAZ5* (AT1G17380) and *JAZ7* (AT2G34600) transcripts in wild type, *rbohD*, and the different *rbohD*-complemented *Arabidopsis thaliana* plants subjected to a local wound treatment. (B) Local and systemic steady-state levels of *Rap2.4* (AT1G78080) and *ERF2* (AT5G47220) transcripts in wild type, *rbohD*, and the different *rbohD*-complemented *Arabidopsis* plants subjected to a local heat-stress treatment. (C) Local and systemic steady-state levels of *MYB30* (AT3G28910) and *ZHD5* (AT1G75240) transcripts in wild type, *rbohD*, and the different *rbohD*-complemented *Arabidopsis* plants subjected to a local high light-stress treatment. Student t-test, SD, N=3, *p < 0.05. Abbreviations used: RBOHD, respiratory burst oxidase homolog D; CER, eceriferum; CAB, chlorophyll A/B binding protein; SCR, scarecrow; XCP, xylem cysteine peptidase; Sultr, sulfate transporter; JAZ, jasmonate-zim-domain protein; ERF, ethylene response factor; ZHD, zinc-finger homeodomain.

Figure 4. Complementation of heat stress-induced SAA in the *rbohD* mutant with *RBOHD* driven by different tissue-specific promoters. Heat stress-induced changes in systemic leaf chlorophyll content of wild type, *rbohD* and the different *rbohD*-complemented *Arabidopsis thaliana* plants are shown. Systemic leaves were obtained from plants that were either untreated and unstressed (Control), untreated at their local leaves and subjected to a systemic heat-stress treatment (No pretreatment), or subjected to a local heat stress pre-treatment before being subjected to a systemic heat stress treatment (Pretreatment). SAA is evident when the systemic leaf of a pre-treated plant does not show a loss of chlorophyll content following a systemic heat stress treatment. Ten different plants each from two independent complemented lines for each construct were subjected to the SAA heat stress assay and chlorophyll content was measured in systemic leaves. Student t-test, SD, N=10, * $p < 0.05$. Abbreviations used: RBOHD, respiratory burst oxidase homolog D; CER, eceriferum; CAB, chlorophyll A/B binding protein; SCR, scarecrow; XCP, xylem cysteine peptidase; Sultr, sulfate transporter.

Figure 5. Complementation of light- and heat-induced local and systemic ROS signaling in the *rbohD* mutant with *RBOHD* driven by the phloem- or mesophyll tissue-specific promoters, during stress combination. Representative time-lapse images of whole-plant ROS levels of wild type, *rbohD* and *rbohD*-complemented *Arabidopsis thaliana* plants subjected to a local light (HL) and heat stress (HS) treatments, simultaneously applied to two leaves of the same plant (red circles; HL&HS; Zandalinas et al., 2020a) are shown on left (ROIs for some of them are indicated with blue boxes), and statistical analysis of ROS levels in systemic leaves of treated plants at 0, 10, 15 and 20 min is shown on right (Student t-test, SD, N=10, *p < 0.05). All experiments were repeated at least 3 times with similar results. Scale bar indicates 1 cm. Abbreviations used: HL, high light; HS, heat stress; RBOHD, respiratory burst oxidase homolog D; CAB, chlorophyll A/B binding protein; Sultr, sulfate transporter.

Figure 6. A model showing that when light stress is applied to a local leaf, the ROS wave is mediated through vascular bundles. In contrast, when heat stress or wounding are applied to a local leaf, both vascular and mesophyll cells can mediate the ROS wave. Abbreviations used: HL, high light; HS, heat stress; W, wounding; ROS, reactive oxygen species.

Parsed Citations

Balfagón D, Sengupta S, Gómez-Cadenas A, Fritschi FB, Azad R, Mittler R, Zandalinas SI (2019) Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. *Plant Physiol* 181: 1668–1682
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cheung AY, Qu LJ, Russinova E, Zhao Y, Zipfel C (2020) Update on receptors and signaling. *Plant Physiol* 182: 1527–1530
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Choi WG, Miller G, Wallace I, Harper J, Mittler R, Gilroy S (2017) Orchestrating rapid long-distance signaling in plants with Ca²⁺, ROS and electrical signals. *Plant J* 90: 698–707
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Choi WG, Toyota M, Kim S-H, Hilleary R, Gilroy S (2014) Salt stress-induced Ca²⁺ waves are associated with rapid, long-distance root-to-shoot signaling in plants. *Proc Natl Acad Sci U S A* 111: 6497–6502
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Choudhury FK, Devireddy AR, Azad RK, Shulaev V, Mittler R (2018) Local and systemic metabolic responses during light-induced rapid systemic signaling. *Plant Physiol* 178: 1461–1472
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Christmann A, Grill E, Huang J (2013) Hydraulic signals in long-distance signaling. *Curr Opin Plant Biol* 16: 293–300
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Devireddy AR, Arbogast J, Mittler R (2020a) Coordinated and rapid whole-plant systemic stomatal responses. *New Phytol* 225: 21–25
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Devireddy AR, Liscum E, Mittler R (2020b) Phytochrome B is required for systemic stomatal responses and ROS signaling during light stress. *Plant Physiol* 184: 1563–1572
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte C-P, Schulze WX, Romeis T (2013) Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. *Proc Natl Acad Sci U S A* 110: 8744–8749
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Evans MJ, Choi W-G, Gilroy S, Morris RJ (2016) A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress. *Plant Physiol* 171: 1771–1784
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Farmer EE, Gao YQ, Lenzoni G, Wolfender JL, Wu Q (2020) Wound- and mechanostimulated electrical signals control hormone responses. *New Phytol* 227: 1037–1050
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fichman Y, Miller G, Mittler R (2019) Whole-plant live imaging of reactive oxygen species. *Mol Plant* 12: 1203–1210
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fichman Y, Mittler R (2020) Rapid systemic signaling during abiotic and biotic stresses: Is the ROS wave master of all trades? *Plant J* doi: 10.1111/tpj.14685
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fichman Y, Mittler R (2021) A systemic whole-plant change in redox levels accompanies the rapid systemic response to wounding. *Plant Physiol.* In press
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fichman Y, Myers RJ, Grant DG, Mittler R (2021) Plasmodesmata-localized proteins and reactive oxygen species orchestrate light-induced rapid systemic signaling in *Arabidopsis*. *Sci. Signal.* 14: eabf0322
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fichman Y, Zandalinas SI, Mittler R (2020a) Untangling the ties that bind different systemic signals in plants. *Sci Signal* 13: eabb9505
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fichman Y, Zandalinas SI, Sengupta S, Burks D, Myers RJ, Azad RK, Mittler R (2020b) MYB30 orchestrates systemic reactive oxygen signaling and plant acclimation. *Plant Physiol* 184: 666–675
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Galvez-Valdivieso G, Fryer MJ, Lawson T, Slattery K, Truman W, Smirnoff N, Asami T, Davies WJ, Jones AM, Baker NR, et al (2009) The high light response in *Arabidopsis* involves ABA signaling between vascular and bundle sheath cells. *Plant Cell* 21: 2143–2162
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gilroy S, Bialasek M, Suzuki N, Górecka M, Devireddy AR, Karpinski S, Mittler R (2016) ROS, calcium, and electric signals: Key mediators of rapid systemic signaling in plants. *Plant Physiol* 171: 1606–1615

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gilroy S, Suzuki N, Miller G, Choi W-G, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. *Trends Plant Sci* 19: 623–630

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guo Z, Wang F, Xiang X, Ahammed GJ, Wang M, Onac E, Zhou J, Xia X, Shi K, Yin X, et al (2016) Systemic induction of photosynthesis via illumination of the shoot apex is mediated sequentially by phytochrome b, auxin and hydrogen peroxide in tomato. *Plant Physiol* 172: 1259–1272

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kangasjärvi S, Nurmi M, Tikkannen M, Aro EME, Kangasjärvi S, Nurmi M, Tikkannen M, Aro EME (2009) Cell-specific mechanisms and systemic signalling as emerging themes in light acclimation of C3 plants. *Plant Cell Environ* 32: 1230–1240

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in *Arabidopsis*. *Science* 284: 654–657

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kollist H, Zandalinas SI, Sengupta S, Nuhkat M, Kangasjärvi J, Mittler R (2019) Rapid responses to abiotic stress: Priming the landscape for the signal transduction network. *Trends Plant Sci* 24: 25–37

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. *Sci Signal* 2: ra45

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. *Trends Plant Sci* 7: 405–410.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? *Trends Plant Sci* 16: 300–309

Mousavi SARR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. *Nature* 500: 422–426

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nguyen CT, Kurenda A, Stolz S, Chételat A, Farmer EE (2018) Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. *Proc Natl Acad Sci U S A* 115: 10178–10183

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shao Q, Gao Q, Lhamo D, Zhang H, Luan S (2020) Two glutamate- and pH-regulated Ca²⁺ channels are required for systemic wound signaling in *Arabidopsis*. *Sci Signal* 13: eaba1453

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Suzuki N, Miller G, Salazar C, Mondal HA, Shulaev E, Cortes DF, Shuman JL, Luo X, Shah J, Schlauch K, et al (2013) Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. *Plant Cell* 25: 3553–3569

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Szechyńska-Hebda M, Kruk J, Górecka M, Karpinska B, Karpinski S (2010) Evidence for light wavelength-specific photoelectrophysiological signaling and memory of excess light episodes in *Arabidopsis*. *Plant Cell* 22: 2201–2218

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K (2018) A small peptide modulates stomatal control via abscisic acid in long-distance signalling. *Nature* 556: 235–238

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T, Koo AJ, Howe GA, Gilroy S (2018) Glutamate triggers long-distance, calcium-based plant defense signaling. *Science* 361: 1112–1115

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xiong H, Hua L, Reyna-Llorens I, Shi Y, Chen K-M, Smirnoff N, Kromdijk J, Hibberd JM (2021) The rice bundle sheath produces reactive oxygen species during high light stress via NADPH oxidase. *bioRxiv* 2020.07.06.189381; doi: <https://doi.org/10.1101/2020.07.06.189381>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Walker-Simmons M, Hollander-Czytko H, Andersen JK, Ryan CA (1984) Wound signals in plants: A systemic plant wound signal alters plasma membrane integrity. *Proc Natl Acad Sci* 81: 3737–3741

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang G, Hu C, Zhou J, Liu Y, Cai J, Pan C, Wang Y, Wu X, Shi K, Xia X, et al (2019) Systemic root-shoot signaling drives jasmonate-based root defense against nematodes. *Curr Biol* 29: 3430–3438.e4

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zandalinas SI, Fichman Y, Devireddy AR, Sengupta S, Azad RK, Mittler R (2020a) Systemic signaling during abiotic stress combination in plants. *Proc Natl Acad Sci U S A* 117: 13810–13820

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zandalinas SI, Fichman Y, Mittler R (2020b) Vascular bundles mediate systemic reactive oxygen signaling during light stress in *Arabidopsis*. *Plant Cell* 32: 3425–3435

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zandalinas SI, Sengupta S, Burks D, Azad RK, Mittler R (2019) Identification and characterization of a core set of ROS wave-associated transcripts involved in the systemic acquired acclimation response of *Arabidopsis* to excess light. *Plant J* 98: 126–141

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zandalinas SI, Song L, Sengupta S, McInturf SA, Grant DG, Marjault H, Castro-Guerrero NA, Burks D, Azad RK, Mendoza-Cozatl DG, et al (2020c) Expression of a dominant-negative AtNEET-H89C protein disrupts iron–sulfur metabolism and iron homeostasis in *Arabidopsis*. *Plant J* 101: 1152–1169

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhu JK (2016) Abiotic stress signaling and responses in plants. *Cell* 167: 313–324

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)