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Quantum coherence as a signature of chaos
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We establish a rigorous connection between quantum coherence and quantum chaos by employing coherence
measures originating from the resource theory framework as a diagnostic tool for quantum chaos. We quantify
this connection at two different levels: quantum states and quantum channels. At the level of states, we show how
several well-studied quantifiers of chaos are, in fact, quantum coherence measures in disguise (or closely related
to them). We further this connection for all quantum coherence measures by using tools from majorization
theory. Then we numerically study the coherence of chaotic-versus-integrable eigenstates and find excellent
agreement with random matrix theory in the bulk of the spectrum. At the level of channels, we show that
the coherence-generating power (CGP)—a measure of how much coherence a dynamical process generates
on average—emerges as a subpart of the out-of-time-ordered correlator (OTOC), a measure of information
scrambling in many-body systems. Via numerical simulations of the (nonintegrable) transverse-field Ising model,
we show that the OTOC and CGP capture quantum recurrences in quantitatively the same way. Moreover,
using random matrix theory, we analytically characterize the OTOC-CGP connection for the Haar and Gaussian
ensembles. In closing, we remark on how our coherence-based signatures of chaos relate to other diagnostics,
namely, the Loschmidt echo, OTOC, and the Spectral Form Factor.
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I. INTRODUCTION

Quantum coherence and quantum entanglement are ar-
guably the two cardinal attributes of quantum theory, origi-
nating from the superposition principle and the tensor product
structure (TPS), respectively [1–3]. While entanglement as
a signature of quantum chaos has been well-studied in both
the few- and many-body case [4–8], a rigorous connection
between quantum coherence and quantum chaos still remains
elusive. Here we clarify in a quantitative way the role that
quantum coherence plays in the study of chaotic quantum
systems. Apart from the foundational role that the superpo-
sition principle plays in “everything quantum,” there are (at
least) two distinct ways in which quantum coherence en-
ters the study of quantum chaotic systems. The first, and
perhaps the more conceptual one, is the Eigenstate Thermal-
ization Hypothesis (ETH) [9–11] and the diagonal ensemble
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associated with it. The notion of quantum coherence is a
basis-dependent one and the diagonal ensemble reveals the
Hamiltonian eigenbasis as the relevant physical basis, es-
pecially when studying thermalization, ergodicity, and other
temporal characteristics. Moreover, an initial state’s overlap
with sufficiently many energy levels—which is related to co-
herence in the energy eigenbasis—is a sufficient condition for
equilibration (under some additional assumptions) [12–14].
Second, the out-of-time-ordered correlator (OTOC) [15,16]
a quantifier of quantum chaos1 and information scrambling,
is usually studied via the input of two local unitaries and
grows when they start noncommuting as one of them spreads
under the Heisenberg time evolution. The locality of the ob-
servables in the OTOC “probes” the entanglement structure
and its growth [16,24]. At the same time, it is natural to
ask, what does the strength of the noncommutativity probe
(without reference to any TPS)? We argue that this is pre-
cisely a measure of quantum coherence (more specifically, the
incompatibility of the bases associated to the unitaries [25]).
For example, given two (nondegenerate) observables A,B and
the associated eigenbases BA,BB, we can ask, how coherent
are the eigenstates of A when expressed in the (eigen)basis
BB. Clearly, if [A,B] = 0 then the eigenstates of A are inco-
herent in BB. On the other hand, if BA and BB are mutually

1The precise role of the OTOC in characterizing chaoticity is nu-
anced, and we refer the reader to Sec. IV A and Refs. [17–23] for a
detailed discussion.
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unbiased, then the eigenstates of A are maximally coherent in
BB, and various measures of incompatibility are maximized
[25]. Following this intuition, we will show that the OTOC
is intimately related to a measure of incompatibility called
the coherence-generating power (CGP), as exemplified by our
Theorem 3.

A. Quantifying chaos

Signatures of quantum chaos can be broadly classified into
three categories: (i) spectral properties, such as level-spacing
distribution [26,27], level number variance [28], etc., (ii)
eigenstate structure, such as eigenstate entanglement (defined
as the average entanglement entropy over all eigenstates) and
the associated area and volume laws [29], and (iii) dynam-
ical quantities such as Loschmidt echo [30–33], entangling
power [4,34–37], quantum discord [38], OTOCs, etc. (see also
Ref. [27] for other examples), which, in general are a property
of both the eigenvalues and eigenvectors of the Hamilto-
nian. In this paper, we connect quantum chaos and quantum
coherence in the sense of (ii) and (iii), by examining the
coherence structure of chaotic-versus-integrable eigenstates,
and by studying the coherence-generating power of chaotic
dynamics.

B. Outline

This paper is organized as follows. In Sec. II we review
the resource theory of quantum coherence and the coherence
measures that will be used throughout this paper. In Sec. III A
we discuss connections between coherence measures and de-
localization measures, first via examples, and then via the
mathematical formalism of majorization. We also discuss the
connection between coherence and entanglement and how
their interplay affects coherence measures’ ability to diag-
nose quantum chaos. In Sec. III E we numerically examine
the coherence structure of integrable-vs-chaotic eigenstates
and introduce new tools inspired from majorization theory to
study quantum chaos. In Sec. IV we establish the connection
between OTOC and CGP and, in particular, show how the
CGP emerges as a subpart of the OTOC. Then, in Sec. IV E,
using tools from random matrix theory, we analytically per-
form averages over the CGP of random Hamiltonians and
unveil a connection between CGP and the spectral form factor.
We also study the short-time growth of the CGP and remark
on its connection with quantum fluctuations and the resource
theory of incompatibility. Furthermore, in Sec. IV G we nu-
merically vindicate our OTOC-CGP connection by studying
the integrable and chaotic regimes in a transverse-field Ising
model. Finally, in Sec. V we make some closing remarks and
discuss our results. Our main results are stated as theorems
and all proofs can be found in Appendix C.

II. PRELIMINARIES

A. Resource theory of quantum coherence

Despite the fundamental role that quantum coherence plays
in quantum theory, a rigorous quantification of coherence as a
physical resource was initiated only in recent years [2,39,40].
We briefly review the resource theory of coherence and the

quantification tools it provides. Let H ∼= Cd be the Hilbert
space associated to a d-dimensional quantum system and
S(H) the set of all quantum states. Quantum coherence of
states is quantified with respect to a preferred orthonormal
basis for the Hilbert space, B = {| j〉}dj=1. All states that are
diagonal in the basis B are deemed incoherent (that is, devoid
of any resource) while others are coherent. That is, incoherent
states have the form ρ = ∑d

j=1 p j� j , where � j ≡ | j〉〈 j| is
the rank-1 projector associated to the basis state | j〉 and p j �
0,

∑d
j=1 p j = 1 is a probability distribution. The collection of

all incoherent states forms a convex set IB (usually called the
“free states” of the resource theory).2 A common quantifier
of the amount of resource in a state σ is to measure its
(minimum) distance from the set IB, using appropriately cho-
sen distance measures, say, Rd(σ ) := minδ∈IB

d(σ, δ). where
d(·, ·) is a distance measure on the state space and Rd its
associated resource quantifier (usually called the “resource
measures” of the resource theory). The coherence quantifiers
that we will be working with in this paper are the l2-norm of
coherence3 (hereafter 2-coherence) and the relative entropy of
coherence, defined as [39]

c(2)
B (ρ) := min

σ∈IB

‖ρ − σ‖2
l2 = ‖ρ − DB(ρ)‖2

l2 , (1)

c(rel)
B (ρ) := min

σ∈IB

S(rel)(ρ||σ ) = S(DB(ρ)) − S(ρ), (2)

where, DB(X ) := ∑d
j=1 � jX� j is the dephasing superopera-

tor, S(rel)(ρ||σ ) is the quantum relative entropy, and S(ρ) is the
von Neumann entropy [39]. The 2-coherence4 has been iden-
tified as the escape probability, a key figure of merit for few-
and many-body localization [41], while the relative entropy of
coherence has several operational interpretations, prominent
among which are its role as the distillable coherence [42] and
as a measure of deviations from thermal equilibrium [43].

A final but key ingredient of quantum resource theories
are the so-called “free operations,” transformations that do not
generate any resource, but may consume it. For the resource
theory of coherence, we will focus on the class of incoherent
operations (IOs): completely-positive (CP) maps such that
there exists at least one Kraus representation which satisfies
KjρK

†
j / Tr(KjρK

†
j ) ∈ IB ∀ρ ∈ IB, ∀ j.5 Resource measures

that are nonincreasing under the action of free operations are
called resource monotones.

2We remark that to quantify coherence, indeed a weaker notion
than that of a basis is required, which takes into account the free-
dom in choosing arbitrary global phases and orderings for the basis
elements.

3Note that although the 2-coherence is a monotone for all unital
channels (which includes unitary evolution), it is not monotonic un-
der the full set of incoherent operations (IOs, introduced later) [39].
However, this is not a problem since we are concerned only with
unitary evolutions in this work.

4For the purposes of computing the 2-coherence, recall that the l2-
norm of a matrix is equal to its Hilbert-Schmidt norm.

5One can also think of them as generalized measurements instead,
since that requires a specific Kraus representation [1].
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III. AT THE LEVEL OF STATES

A. Why study quantum coherence?

The sudden delocalization of chaotic systems following a
quench has been well studied for both classical and quantum
systems; see Refs. [44,45] and the references therein. Vari-
ous quantifiers of this delocalization have been introduced in
the quantum chaos literature to characterize integrable and
chaotic quantum systems. Here we argue that many of these
delocalization measures are nothing but quantum coherence
measures in disguise. We argue this in two ways: first, we
consider some paradigmatic measures of delocalization such
as Shannon entropy, participation ratio, etc. [46], and connect
them with measures of quantum coherence studied in the re-
source theories framework. Moreover, this also reveals that the
notion of delocalization in the available phase space, energy
space, etc., is precisely the notion of quantum coherence in an
appropriate basis. Second, we show that the notion of when
one state is more delocalized than the other (and measures to
quantify them) is captured in a very general way by the math-
ematical formalism of majorization. This further allows us to
make a precise connection to the resource theory of coherence
since state transformation under incoherent operations is com-
pletely characterized in terms of majorization. Finally, using
the majorization result from the resource theoretic framework
of coherence, we argue that quantum coherence measures
capture precisely what delocalization measures set out to
quantify: how “localized” or “uniformly spread” a quantum
state is across a basis. Along the way we also remark on
coherence measures’ ability to probe entanglement measures,
which have long been used as quantifiers of chaos.

B. Connection with delocalization measures

Let us start with a simple example: Given a state |ψ〉
expressed in some basis B = {| j〉}, |ψ〉 = ∑d

j=1 c j | j〉, one
can consider various ways to quantify how uniformly spread
the probability distribution generated from {|c j |2} is. For in-
stance, an incoherent state | j〉 corresponds to the (extremely)
nonuniform probability distribution p| j〉 = {1, 0, . . . , 0}; that
is, it is the most “localized” state, while a highly coherent
state6 of the form |ψ〉 = 1√

d

∑d
j=1 e

−iθ j | j〉 corresponds to

the uniform probability distribution p|ψ〉 = { 1
d , 1

d , . . . , 1
d }, that

is, it is maximally “delocalized.” Therefore, if we quantify
the uniformity of the associated probability distributions by
evaluating, for example, their Shannon entropy, we see that
the incoherent state corresponds to the minimum entropy
S({|cα|2}) = 0, while the highly coherent state maximizes the
Shannon entropy, S({|cα|2}) = log(d ). This uniformity is pre-
cisely what coherence measures and delocalization measures
quantify.

We now discuss some examples where there is a precise
connection between them. We consider the same notation as

6In fact, this family of states are maximally coherent in the resource
theory of coherence with incoherent operations, analogous to how
Bell states are maximally entangled in the resource theory of pure
bipartite entanglement.

above, a pure state |ψ〉, a basis B = {| j〉}, and {p j}dj=1, where
p j ≡ |〈k|ψ〉|2 is the associated probability distribution.

(1) The Shannon entropy (also known as the informational
entropy in the quantum chaos literature) of the probability
distribution {p j}dj=1 has been used as a measure of delocal-
ization [44–46]. We note that for pure states, this is equal to
the relative entropy of coherence, that is,

c(rel)
B (ρ) = S({p j}). (3)

This follows from the definition in Eq. (1) and the fact that the
Shannon entropy of pure states is zero, that is, S(|ψ〉〈ψ |) = 0.
It is worth noting that the Shannon entropy is the first Rényi
entropy [47], a family of entropies which provide powerful
connections with majorization theory and state transformation
in resource theories [48].

(2) The second participation ratio (also known as the num-
ber of principal components) [44–46], defined as

PR2,B(|ψ〉) :=
∑
j

|〈 j|ψ〉|4. (4)

Note that for pure states and any given basis B, the PR2,B is
equal to one minus the 2-coherence, that is,7

PR2,B(|ψ〉) = 1 − c(2)
B (|ψ〉〈ψ |). (5)

Moreover, the negative logarithm of PR2 is equal to the
second Rényi entropy [47] of the probability distribution {p j},
and both the first and second Rényi entropies are measures of
quantum coherence [2].

(3) We now review three quantities, the Loschmidt echo,
the escape probability and the effective dimension, which find
a multitude of applications in quantum chaos, thermalization,
and localization. The Loschmidt echo is defined as the over-
lap between the initial state |ψ〉 and the state after time t
[30,31,33],

Lt (|ψ〉) := ∣∣〈ψ |e−iHt |ψ〉∣∣2
. (6)

The effective dimension of a quantum state is defined as its
inverse purity [12,13],

deff (ρ) = 1

Tr[ρ2]
, (7)

which intuitively corresponds to the number of pure states that
contribute to the (in general) mixed state ρ. In Refs. [12,13],
deff (ρ) was used to provide a sufficient condition for equili-
bration in closed quantum systems. And, finally, we recall that
the infinite-time average of a quantity A is defined as

A := lim
T→∞

1

T

T∫
0

A(t ) dt . (8)

Infinite-time averaging connects these various quantities as
follows (with ρ = |ψ〉〈ψ |):

Lt (|ψ〉) = PR2,BH (ρ) = 1

deff (ρ)
= 1 − Pψ, (9)

7A proof of this follows immediately by expanding the formula for
2-coherence of pure states, c(2)

B (ρ ) = 1 − 〈ρ,DB(ρ )〉.
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where BH is the Hamiltonian eigenbasis and Pψ := 1 −
|〈ψ |e−iHt |ψ〉|2 is the escape probability of the state |ψ〉,
which using Proposition 4 of Ref. [25] is also equal to the
2-coherence in the Hamiltonian eigenbasis.

Note that, the proof of Proposition 4 in Ref. [25] can
potentially reveal many more connections since there it was
observed that the infinite time average of the time evolution
operator (for a nondegenerate Hamiltonian) Ut := U (·)U † is
equivalent to dephasing in the Hamiltonian eigenbasis, that
is, Ut = DBH . The action of DBH reveals the “diagonal en-
semble,” fundamental to the study of thermalization in closed
quantum systems [11].

C. Arbitrary coherence measures and majorization

Given two vectors �v, �w ∈ Rn, we say that “�v is majorized
by �w” (equivalently �w majorizes �v), written as �v ≺ �w, if [49]

k∑
j=1

v[ j] �
k∑
j=1

w[ j],∀k = 1, . . . , n − 1,

n∑
j=1

v[ j] =
n∑
j=1

w[ j], (10)

where v[ j] is the jth element of �v when sorted in a nonincreas-
ing order. Majorization induces a preorder8 on the vectors in
Rn, and it is natural to ask what functions preserve this pre-
order? All functions f :Rn → R such that �v ≺ �w ⇒ f (�v) �
f ( �w) are called Schur-convex [equivalently, Schur-concave if
�v ≺ �w ⇒ f (�v) � f ( �w)]. Many functionals employed in the
study of quantum chaos like Shannon entropy, the family of
Rényi entropies, and others, are an example of Schur-concave
functions that preserve the ordering imposed from majoriza-
tion. Using a theorem of Hardy-Littlewood-Polya [49], we
have

�v ≺ �w ⇐⇒
n∑
j=1

g(v j ) �
n∑
j=1

g(w j ), (11)

for all continuous convex functions g:R → R.
That is, studying majorization is equivalent to studying the

ordering induced from all continuous convex functions. It is
in this sense that majorization allows us to go beyond any
specific quantum coherence measure and discuss the behavior
of all coherence measures.

To make the connection to quantum coherence, we note
that given two states ρ, σ and a coherence measure cB(·), if
cB(ρ) > cB(σ ) then σ cannot be transformed into ρ via inco-
herent operations (since IO can only nonincrease the amount
of coherence in a state). On the other hand, cB(ρ) � cB(σ )
provides a necessary (but not sufficient) condition on the state
transformation σ �→ ρ using IO. A necessary and sufficient
condition was obtained in Ref. [50] in terms of majorization
(the theorem has been rephrased for simplicity). In the fol-
lowing, DB is the dephasing superoperator in the basis B;
and the notion of matrix majorization has been used, with

8A preorder is a binary relation that is reflexive and transitive but
not necessarily antisymmetric.

A ≺ B ⇐⇒ spec(A) ≺ spec(B), where spec(A) is the vector
of eigenvalues of A.

Theorem 1 ([50]). A quantum state |ψ〉 can be trans-
formed to another state |φ〉 via incoherent operations if and
only if DB(|ψ〉〈ψ |) ≺ DB(|φ〉〈φ|).

Remark: First, note that DB(|ψ〉〈ψ |) ≡ pψ is isomorphic
to the probability vector obtained from the state |ψ〉 expressed
in the basis B. Therefore, the condition DB(|ψ〉〈ψ |) ≺
DB(|φ〉〈φ|) = pψ ≺ pφ , that is, it is equivalent to the state
|ψ〉 being more uniformly spread in the basis B than the state
|φ〉, in the sense of majorization. Now, since the majoriza-
tion condition is equivalent9 to transforming |ψ〉 �→ |φ〉 via
an incoherent operation, the amount of coherence in |ψ〉 is
greater than or equal to the amount of coherence in |φ〉, for
every quantum coherence measure. Formally, cB(|ψ〉〈ψ |) �
cB(|φ〉〈φ|), for every coherence monotone cB:S (H) → R+

0 .
Therefore, quantum coherence measures capture in a precise
sense what traditional delocalization measures set out to quan-
tify: how uniformly spread is a quantum state with respect to
a basis B; in fact, the above theorem quantitatively shows that
these two notions are equivalent.

Having established a web of connections between several
key quantities used in the study of quantum chaos and equi-
libration, we now discuss how quantum coherence measures
can inherit their ability to diagnose quantum chaos from their
interplay with entanglement measures.

D. Coherence and its interplay with entanglement

The study of quantum coherence per se, makes no refer-
ence to the locality (or TPS) of a quantum system. However,
many-body systems are often endowed with a natural TPS
and to study the interplay between coherence and entan-
glement, it is often convenient to choose incoherent states
that are compatible with the TPS, namely, the incoherent
states are also product states [51,52]. Consider, for example,
a two-qubit system, H ∼= C2 ⊗ C2, with an incoherent basis
B = {|00〉, |01〉, |10〉, |11〉} that is also separable.10 Then no-
tice that any entangled state is automatically coherent, since
|
AB〉 is entangled if and only if |
AB〉 �= |φ〉A ⊗ |φ〉B for
any |φ〉A(B) ∈ HA(B). Therefore, when expressed as a linear
combination of the basis elements in B, we note that, for
every entangled state, |
AB〉 = ∑1

j,k=0 c jk| j〉A|k〉B, we have
at least two nonzero coefficients c jk—that is, they are co-
herent as well. Clearly, not every coherent state is entangled;
for example, consider the state |0〉 ⊗ |+〉. This construction
can be generalized to the (simplest) multipartite11 case as
follows: Let H ∼= H1 ⊗ H2 ⊗ · · ·Hn be a n-partite Hilbert

9The condition is only sufficient but becomes necessary for the
generic case of full-rank pure states (which can be obtained by an
arbitrarily small perturbation) and holds true for physically relevant
scenarios.

10An example of “incompatible” quantum coherence would be, for
instance, if the incoherent basis for a 2-qubit system is chosen to be
the Bell basis.

11In general, multipartite entanglement is much richer and less
tractable than bipartite entanglement and that is why we consider the
simplest scenario here [3].
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space with Fe being the set of fully separable states (that
is, they are convex combinations of states that factorize over
any tensor factor) and Fc being the set of incoherent states
that are also fully separable. Then it is easy to see that
Fc ⊂ Fe (since the Fc is compatible with the TPS). As an
immediate consequence, note that, if R(·, ·):S (H) → R+

0 is
a contractive distance (under the associated free operations,
that leave the set of free states invariant), then one can de-
fine a “distance-based measure,” Rα (ρ) := minσ∈Fα

R(ρ, σ ),
where α = {c, e}. Then, using the set inclusion of Fc,Fe, we
have ∀ρ,Rc(ρ) � Re(ρ), that is, the amount of coherence is
lower bounded by the entanglement or the amount of coher-
ence is an upper bound on the amount of entanglement.12

In light of the above observation, it is worth noting that
there is a semantical issue in calling these functionals delo-
calization measures since there is, per se, no locality in their
definition. At this point, it is more appropriate to think of
them as quantifying the coherence of a state in some basis,
B; in fact, their definition reveals that this is precisely what
they do. To connect quantum coherence with entanglement
in a quantitative way (apart from the bounds realized from
the discussion above), as a first step, one needs to define a
quantity that removes the basis-dependenc of coherence (since
entanglement is basis-independent), which can be obtained by
optimizing over various choices of bases. Here we prove one
such result by minimizing the amount of coherence over all
local bases: Given pure states in H ∼= Ha ⊗ Hb, we have the
following theorem.

Theorem 2.

min
Ba,Bb

c(2)
Ba⊗Bb

(|
〉〈
|) = 1 − ‖ρa‖2
2 =: Slin(ρa), (12)

where ρa = Trb(|
〉〈
|) is the reduced density matrix and
Slin(·) is the linear entropy, a quantifier of entanglement.

That is, by minimizing the amount of coherence over
all local bases, we can (indirectly) compute a measure of
entanglement. Another quantitative connection was obtained
in Ref. [54], where, by maximizing the amount of coher-
ence over all bases, the amount of coherence in a state
was connected with its purity. In summary, quantum coher-
ence measures can provide both upper bounds and in some
cases precise connections with entanglement measures. Since
entanglement measures have been widely used to detect quan-
tum chaos, we now turn to studying quantum coherence in
chaotic systems.

E. Coherence of many-body eigenstates:
XXZ spin chain with defect

The entanglement structure of excited states has been
shown to be a successful diagnostic of quantum chaos
[55–57]. Here we numerically study the coherence structure
of Hamiltonian eigenstates, using an open XXZ spin chain
with an onsite defect,13 described via a Hamiltonian of the

12This construction holds not only for contractive distances but the
general class of functionals called gauge functions [53].

13See Ref. [58] for other Hamiltonian systems that become quan-
tum chaotic in the presence of defects.

form [59,60]

H = 1

4

L−1∑
j=1

(
Jxy

(
σ x
j σ

x
j+1 + σ

y
j σ

y
j+1

) + Jzσ
z
j σ

z
j+1

)
︸ ︷︷ ︸

HXXZ

+ 1

2

(
L∑
j=1

ωσ z
j + εδσ

z
δ

)
︸ ︷︷ ︸

Hz

, (13)

where δ ∈ {1, 2, . . . ,L} is the label for the defect site. We set
h̄ = 1 and all sites have the same energy splitting, except the
site δ, which has a splitting of ω + εδ (the defect corresponds
to a different value of the Zeeman splitting). We assume
open boundary conditions and set the various parameters to
the following values: ω = 0, εδ = 0.5, Jxy = 1, Jz = 0.5; for
a detailed discussion of the physics surrounding the choice
of parameters and how this leads to the onset of chaos,
see Sec. II of Refs. [59,60]. It is easy to see that the total
spin in the z-direction is conserved, that is, [H, σ z

total], where
σ z

total ≡ ∑L
j=1 σ z

j . The Hamiltonian in Eq. (13) is integrable
when the defect is on the edges of the chain, that is, δ = 1
or L, while it is nonintegrable for the defect in the middle
of the chain δ = �L/2� [59,60]. One way to observe this
transition to nonintegrability is via the level-spacing distri-
bution of the Hamiltonian, as studied in Refs. [59,60] and
reproduced independently in Fig. 5 in the Appendices. The
level-spacing distribution transitions from a Poisson to a (uni-
versal) Wigner-Dyson form, a common signature of quantum
chaos. Note that, in general, to obtain a Wigner-Dyson level-
spacing distribution for chaotic systems, one needs to make
sure that all the symmetries have been removed, that is, we
are working in a specific symmetry sector of the system. For
the system in Eq. (13), we consider the spin subspace corre-
sponding to � L

3 � spins up; once we are in this subspace, there
are no degeneracies in the Hamiltonian, see Refs. [59,60]
for more details. Moreover, for the XXZ model with defect,
Refs. [61–63] verified other signatures of quantum chaos such
as local observables satisfying diagonal ETH [44,45] and the
long-time dynamics developing spectral correlations. Further-
more, in recent years, this model has also been employed in
the study of many-body chaos [64], thermalization [65,66],
and quantum transport [67].

In Ref. [68] the participation ratio as an indicator of chaos
was studied and results similar to Fig. 6 in the Appen-
dices were obtained. Using the relative entropy of coherence,
2-coherence, inverse participation ratio (IPR), and 1-norm
coherence, we study the onset of chaos, as the defect site
is moved to the middle of the chain. We study coherence
in two different bases, the “site basis” and the “mean-field
basis.” The site basis is simply the local σ z basis at each site
and coherence in this basis is a measure of how uniformly
spread is the eigenstate with respect to the local subsystems.
To define the mean-field basis, we start by expressing the total
Hamiltonian as Htotal = H0 +V , where H0 is the Hamilto-
nian of noninteracting particles (or, more generally, degrees
of freedom) and V the interaction between them [69,70].
The mean-field basis is then the eigenbasis of the “mean-
field Hamiltonian,” H0. This is, in fact, quite similar to the
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FIG. 1. Relative entropy of coherence for eigenstates of the Hamiltonian defined in Eq. (13) as a function of their energy, normalized
with the GOE prediction using Eq. (14), 〈c(rel)

B 〉GOE ≈ 10.49. Results are reported for L = 15 with five spins up and ω = 0, εδ = 0.5, Jxy = 1,
Jz = 0.5. The plot markers 1,3,5,7 correspond to the various choices of the defect site, with δ = 1 and δ = 7 corresponding to the integrable
and chaotic limits, respectively. Panels (a) and (b) correspond to the two different bases, the site basis and mean-field basis, respectively.

mean-field approach used in atomic and nuclear physics (and
hence the terminology). It is immediately apparent that such a
decomposition of the total Hamiltonian is not unique, how-
ever, in many physical scenarios, there is a natural choice
of the mean-field basis. The intuition here is that as the
interaction strength increases, the eigenstates of the total
Hamiltonian will become more uniformly spread when ex-
pressed in the mean-field basis. Following Refs. [59,60], we
take the mean-field Hamiltonian to be Jxy �= 0, εδ �= 0, Jz = 0.
Notice that this is not the same as the integrable limit above.

F. Random matrix theory

Before going into the details of our numerical studies, let
us briefly recall some key ideas from random matrix theory
(RMT) and its predictions for quantum chaotic systems. First
introduced by Wigner [71–73] and later developed by Dyson
[74], RMT has been widely used to study complex systems
and in particular, quantum chaotic systems (see Refs. [44,45]
for a pedagogical review). Many of the originally introduced
measures (like level-spacing distribution) were purely spectral
properties, but in recent years, there has been more interest
in going beyond the spectral properties to understand the
eigenstate structure of chaotic systems [44,45]. For instance, if
quantum chaotic systems can be well described by RMT, then
their eigenstate properties are expected to resemble those of
random vectors in the Hilbert space (namely, the eigenvectors
of RMT Hamiltonians). However, this is not the complete
picture. Many of the traditional Gaussian ensembles like
the Gaussian Orthogonal Ensemble (GOE), Gaussian Unitary
Ensemble (GUE), etc., are ensembles of many-body interac-
tions and not two- and three-body interactions (reminiscent
of physical Hamiltonians), and the properties of few-body
Hamiltonians can be modeled more accurately by the use of
the so-called embedded ensembles [46]. Moreover, numerical
studies have revealed that generically, only eigenstates in the
middle of the spectrum correspond well to the (usual) RMT

prediction (as will also be relevant for our numerical studies)
[46,68,69].

We also note that using the connection between Shannon
entropy and relative entropy of coherence as discussed in
Sec. III A, we can infer analytically the ensemble averaged
relative entropy of coherence for GOE eigenstates (see Sec.
2.3.2 of Ref. [46])

〈
c(rel)
B

〉
GOE = ln (0.48d ) + O

(
1

d

)
, (14)

where d is the Hilbert space dimension. Since GOE eigenvec-
tors are (Haar) uniformly distributed, the basis B is a generic
basis, that is, the estimate for the ensemble average holds true
for any basis [44,45]. We use this analytical expression for
normalizing the quantities studied in Figs. 1 and 2.

The Hamiltonian in Eq. (13) is real and symmetric and
belongs to the Gaussian Orthogonal Ensemble (GOE) uni-
versality class. In Figs. 1 and 2 and Figs. 6 and 7 in the
Appendices, we study the aforementioned coherence mea-
sures normalized by the GOE prediction and find that, in
the middle of the spectrum, the chaotic model does repro-
duce the GOE prediction, which is consistent with previously
known results (that the eigenstates of systems with few-
body interactions delocalize in the middle of the spectrum)
[46,59,60,68,69]. Thus, this vindicates the various coherence
measures as a signature of the transition to chaos.

G. What about other quantum coherence measures?

Apart from the specific quantum coherence measures stud-
ied above, what, if anything, can be said about an arbitrary
coherence measures’ ability to probe quantum chaos in a
similar way? To answer this question, we turn to the pow-
erful mathematical formalism of majorization theory [49] as
discussed in Sec. III A. We numerically study the majorization
condition in Theorem 1 for the integrable and chaotic eigen-
states of the XXZ spin chain in Eq. (13) and analyze the extent
to which the induced preorder order holds true. Specifically,
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FIG. 2. 2-coherence for eigenstates of the Hamiltonian defined in Eq. (13) as a function of their energy, normalized with the GOE prediction
obtained numerically, 〈c(2)

B 〉GOE ≈ 0.9991. Results are reported for L = 15 with five spins up and ω = 0, εδ = 0.5, Jxy = 1, Jz = 0.5. The plot
markers 1,3,5,7 correspond to the various choices of the defect site, with δ = 1 and δ = 7 corresponding to the integrable and chaotic limits,
respectively. Panels (a) and (b) correspond to the two different bases, the site basis and mean-field basis, respectively.

for a given system size L, we consider the set of integrable
and chaotic eigenstates ordered respectively by the energies of
the corresponding Hamiltonians. Then we numerically check
for the majorization condition in Theorem 1 between the kth
chaotic eigenstate and the kth integrable eigenstate (where
the index k is ordered with respect to the energy). We find
that the majorization condition does not hold for all pairs of
eigenstates (ordered by energy). For this reason, we intro-
duce a weaker notion of “majorization fraction,” which is the
fraction of eigenstates for which the majorization condition
is true. Let η be the number of chaotic eigenstates that are
majorized by the corresponding integrable eigenstates and d
the total number of eigenstates, then the majorization fraction
is simply the ratio η

d . In Fig. 3 we plot the majorization
fraction as a function of the system size L, for both the site
basis and the mean-field basis. We see that, for larger system
sizes, a chaotic eigenstate picked at random (uniformly) is,
with relatively high probability, majorized by its integrable
counterpart and thus will have a larger value for any coherence
measure, for example, as displayed by the relative entropy

of coherence and the 2-coherence in Figs. 1 and 2. Since
physical eigenstates resemble random vectors in the middle
of the spectrum, we further consider the majorization fraction
for 20% of eigenstates in the middle of the spectrum and find
a similar increase with system size (and a nonmonotonicity at
small sizes).

IV. AT THE LEVEL OF CHANNELS

Having demonstrated the ability of quantum coherence
measures to distinguish chaotic-versus-integrable eigenstates
and a flurry of connections with delocalization measures,
we now turn to chaos at the level of quantum dynamics (or
more generally quantum channels).14 In particular, the ability

14We remark that quantum channels [1] provide a general frame-
work that encapsulates the notions of unitary dynamics as well as
open system effects, and therefore we refer to the connections hence-
forth as “at the level of channels,” for its generality.

FIG. 3. Fraction of integrable eigenstates that majorize chaotic eigenstates for the Hamiltonian defined in Eq. (13) system size L. Here
δ = 1 for integrable eigenstates, and δ = �L/2� for chaotic eigenstates. The plot markers correspond to the two different bases, the site basis
and mean-field basis, respectively. Panels (a) and (b) correspond to the full spectrum and 20% of eigenvectors in the middle of the spectrum,
respectively.
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of chaotic dynamics to generate quantum correlations has
proven to be a rich framework [4,36,38], and here we establish
rigorous connections with their ability to generate quantum
coherence.

A. The OTOC, quantum chaos, and its connection with CGP

In recent years, the out-of-time-ordered correlator (OTOC)
has emerged as a prominent diagnostic for quantum chaos at
the level of dynamics [15,16,75–79]. The precise role that the
OTOC plays in characterizing quantum chaos via its short-
time exponential growth is better understood in systems with
either a semiclassical limit or systems with a large number of
local degrees of freedom [16,75]. On the other hand, the short-
time growth does not seem to play any role for quantum chaos
in finite systems such as spin chains (without a semiclassical
analog) [17–22]. However, the long-time limit of OTOCs may
be expected to play a more clear role; see Refs. [80,81].
Moreover, to further our understanding of the OTOC, several
works have tried to establish a connection to well-studied sig-
natures of chaos such as Loschmidt echo [82] and entangling
power [83], which suggest that an information-theoretic in-
vestigation of the OTOC’s properties might provide a fruitful
direction.

The OTOC quantifies the rapid delocalization of quantum
information initialized in local subsystems, which has been
termed “information scrambling.” One way to quantify this
spread is to consider the growth of local operators under
Heisenberg time evolution, captured by the following quan-
tity (hereafter referred to as the “squared commutator” for
brevity):

C(β )
V,W (t ) := Tr([V,W (t )]†[V,W (t )]ρβ )

= ‖[V,W (t )]‖2
β, (15)

where W (t ) = U†
t (W ) is the Heisenberg-evolved operator,

ρβ ≡ e−βH/ Tr[e−βH ] is the Gibbs state at inverse temperature
β, and ‖ · ‖β be the norm induced from the inner product

〈X,Y 〉β := Tr(X †Yρβ ). Re-expressing C(β )
V,W (t ) in the com-

mutator form resembles a (state-dependent) variant of the
Lieb-Robinson construction, which in turn imposes funda-
mental limits on the speed of information propagation in
nonrelativistic systems [24,84–86]. In this way, C(β )

V,W (t ) cap-
tures the spread of information through nonlocal degrees of
freedom of a system.

The connection between the squared commutator and the
OTOC is revealed when we chooseV,W to be unitary [15,16]:

C(β )
V,W (t ) = 2

(
1 − Re

{
F (β )
V,W (t )

})
,

where F (β )
V,W (t ) ≡ Tr[W (t )†V †W (t )Vρβ] (16)

is a four-point function (with unusual time ordering) called
the OTOC. Since the squared commutator above and the
OTOC are related via a simple affine function, we will focus
here on the squared commutator and refer to it interchange-
ably as the OTOC (the distinction should be clear from
the context). In this paper, we will focus on the infinite-
temperature (β = 0) case, that is, ρβ = I

d . Hereafter, we

define C(β=0)
V,W (t ) ≡ CV,W (t ) and F (β=0)

V,W (t ) ≡ FV,W (t ). In the
following, we will connect the out-of-time-ordered correlator
with the coherence-generating power, which we are now ready
to introduce.

B. Coherence-generating power

How much coherence does an evolution generate on aver-
age? Motivated from the resource theory of coherence, several
meaningful quantifiers for this were obtained in Refs. [87–89].
Here we will consider the “extremal CGP,” defined as [41]

CB(U ) = 1

d

d∑
j=1

cB(U (� j )), (17)

where U (·) = U (·)U † is a unitary channel, cB(·) is a coher-
ence measure, and B = {� j}dj=1 is an orthonormal basis for
the d-dimensional Hilbert space (see Sec. II for more details).
The CGP measures the average coherence generated under
time evolution U by its action on the pure states in B. For the
rest of the paper we choose c(2)

B (·) in the above equation, that

is, CB(U ) = 1
d

∑d
j=1 c

(2)
B (U (� j )), which has a closed form

expression as [41]

CB(U ) = 1 − 1

d
Tr

(
XT
U XU

)
,

where [XU ] j,k = Tr[� jU (�k )]. (18)

Hereafter, we will refer to the above quantity simply as CGP
for brevity. It is worth mentioning that the formalism intro-
duced in Refs. [41,87–89] is much more general than the
definition Eq. (17). In particular, one can consider various
choices of coherence measures and distributions over inco-
herent states.

The CGP defined above has many interesting properties,
some of which we review now. First, in the context of An-
derson localization and many-body localization, it was shown
that the CGP acts as an “order parameter” for the ergodic-to-
localization transition [41]. Second, in the resource-theoretic
study of incompatibility of quantum measurements, the CGP
arises naturally as an incompatibility measure [25]. And,
third, the CGP lends itself to a power geometric connection:
the CB(U ) is proportional to the (square of the) Grasmman-
nian distance between two maximally Abelian subalgebras,
the one generated by all bounded observables diagonal in B
and those diagonal in U (B) [89]. Using this connection, a
closed form expression for CGP in a commutator form can
be obtained as follows:15

CB(U ) = 1

2d

d∑
j,k=1

‖[� j,U (�k )]‖2
2

= 1

2d

d∑
j,k=1

Tr([� j,U (�k )]†[� j,U (�k )]). (19)

15Note that this formula uses the extremal probability distribution
over the incoherent states, instead of the uniform distribution, which
accounts for the differing factors of d (d + 1).
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With the CGP expressed in the commutator form in
Eq. (19), we are now ready to introduce its connection to
the OTOC CV,W (t ). In anticipation of the theorem below, we
define the following: Let V,W be two nondegenerate uni-
taries with a spectral decomposition V = ∑d

j=1 v j� j,W =∑d
j=1 w j�̃ j . Let BV = {� j},BW = {�̃ j} be the correspond-

ing eigenbases, then VBV →BW is a unitary intertwiner con-
necting BV to BW , whose action is VBV →BW (� j ) = �̃ j ∀ j ∈
{1, 2, . . . , d}.

Theorem 3. Given a unitary evolution operator Ut , and
two nondegenerate unitary operators V and W , the infinite-
temperature out-of-time-ordered correlator [CV,W (t )] and the
CGP [CB(·)] are related as

CV,W (t ) = 2CBV

(
Ut ◦ VBV →BW

)
− 2

d
Re

⎧⎨⎩ ∑
j �=l,k �=m

v∗
jw

∗
kvlwmTr(�̃k (t )� j�̃m(t )�l )

⎫⎬⎭.

(20)

Remarks: (a) While quantum coherence (and hence the
CGP) is a basis-dependent quantity, the above theorem relates
the OTOC to a CGP naturally. Intuitively, the OTOC measures
the growth of the noncommutativity between the operators
W (t ) and V , and this intuition is made precise by the CGP
CBV (Ut ), which measures the incompatibility [25] between the
bases BV and BUt .

(b) In Theorem 3 it is important to emphasize that the
CGP emerges as a subpart of the OTOC. By plugging in the
spectral decomposition of the operators V and W , we obtain
a summation over four indices, and by considering a subset
of these terms, we obain the CGP. The “extra” term is of the
form Tr(�̃k (t )� j�̃m(t )�l ) [which is the second term on the
RHS of Eq. (20)], and we refer to this as the “off-diagonal”
term; that is, the CGP is “contained” in the OTOC. We refer
the reader to the proof in Appendix C for more details.

(c) To help understand Theorem 3, let us consider a simple
case: assume that the two operators commute at time t =
0, that is, [V,W ] = 0. This is a common assumption when
studying the OTOC’s dynamical features, for example, by
choosing local operators on different sites (or, if they are on
the same site, by choosing them to be the same operator),
then VBV →BW = I, that is, the intertwiner can be chosen to
be the (trivial) identity superoperator. To fulfill the nondegen-
eracy criteria (which we assumed initially), we can choose
V and W to be quasilocal. Now, since [V,W ] = 0, the first
term becomes equal to 2CB(Ut ), with BV = BW ≡ B; that is,
simply (twice) the CGP of the time evolution unitary when
measured in the basis of the operators V and W . Using the
forthcoming discussion [see Eq. (26)], let the eigenvalues of
V and W be uniformly distributed over [0, 2π ), then we have
〈CV,W (t )〉V,W = 2CB(Ut ), where 〈· · · 〉V,W denotes averaging
overV,W—that is, the “extra term” vanishes and the averaged
OTOC is exactly equal to twice the CGP.

C. Projection OTOCs

Here we establish another connection between the OTOC
and the CGP by choosing V and W to be projection operators

in the OTOC. Similar constructions have been considered
before; for example, in Ref. [90], the authors used “projection
OTOCs” to connect with the participation ratio. In particular,
similar a quantity known as “fidelity OTOCs” was proposed in
Ref. [91] as an experimentally promising approach to measure
OTOCs and, in turn, to the study of scrambling and thermal-
ization. Let BV = {�α} and BW = {�̃β}, we start by plugging
in V = �α,W = �̃β into the OTOC to obtain C�α,�̃β

(t ) =
1
d ‖[�α, �̃β (t )]‖2

2. Then, by summing over α, we have

d∑
α=1

C�α,�̃β
(t ) = 1

d

d∑
α=1

‖[�α, �̃β (t )]‖2
2 = 2

d
c(2)
BV

(�̃β (t )),

(21)

where c(2)
BV

(·) is the 2-norm coherence. Then, if we sum over
β, we have

d∑
α=1,β=1

C�α,�̃β
(t ) = 2

d

d∑
β=1

c(2)
BV

(�̃β (t ))

= 2CBV

(
Ut ◦ VBV →BW

)
. (22)

Therefore, given two bases, BV ,BW , we have that the OTOC
“averaged” over these bases is equal to (twice) the coherence-
generating power of the unitary evolution (and the intertwiner
connecting the bases). Moreover, if BV = BW , we have

d∑
α,β

C�α,�β
(t ) = 2CBV

(Ut ). (23)

That is, the OTOC averaged over various projectors is equal to
the CGP of the time evolution unitary. Note that for a nonde-
generate Hamiltonian, the CGP is equal to the average escape
probability [25], which is intimately connected to quantities
like the Loschmidt echo, participation ratio, and others, as
discussed in Sec. III A.

D. Average OTOC, coherence, and geometry

In the following we establish a connection between the
average OTOC and the geometry of the set of maximally
Abelian subalgebras of the operator space (associated to the
quantum system). For this, let us briefly introduce the ge-
ometric results obtained in Ref. [89] concerning CGP and
2-coherence. Given a basis B, let AB be the Abelian algebra
generated by its elements. Then AB is a subspace of the op-
erator algebra B(H) viewed as a Hilbert space HHS, endowed
with the Hilbert-Schmidt inner product, 〈A,B〉HS := Tr(A†B),
which induces the norm, ‖A‖HS = √〈A,A〉HS =

√
Tr(A†A).

If B is obtained via a maximal orthogonal resolution of the
identity in B(H), then AB is a maximal Abelian subalgebra
(MASA) [89,92]. The set of all MASAs is a topologically
nontrivial subset of the Grassmannian of d-dimensional sub-
spaces of HHS and we can define a distance between two
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MASAs, AB and AB̃ as [89]

D(AB,AB̃ ) := ‖DB − DB̃‖HS, (24)

where for superoperators, we have, TrHS(E ) :=∑d
j,k=1 〈| j〉〈k|, E (| j〉〈k|)〉. In fact, the CGP turns out to

be proportional to the (squared) distance between the algebras
AB and U (AB ), that is [89],

CB(U ) = 1

2d
D2(AB,U (AB )). (25)

We are now ready to introduce the main result of this
section, the detailed proofs of which can be found in Ap-
pendix C 3. Let BV = {�α} and BW = {�̃β} be two bases.
Consider unitaries diagonal in the respective bases, V =∑

α e
iθα�α and W = ∑

β e
ĩθβ �̃β , with {θα} and {̃θβ} inde-

pendent and identically distributed uniformly on the interval
[0, 2π ). Then〈‖[V,W (t )]‖2

2

〉
θ

= 2dCBV

(
Ut ◦ VBV →BW

)
; (26)

that is, the OTOC averaged over diagonal unitaries with
phases distributed uniformly reveals the CGP of the dynam-
ics. Moreover, if BV = BW , then the relation simplifies to
〈‖[V,W (t )]‖2

2〉θ = 2dCBV
(Ut ). Using the connection with dis-

tance in the Grassmannian, we have〈‖[V,W (t )]‖2
2

〉
θ

= D2(ABV ,Ut
(
ABV

))
. (27)

Therefore, this average OTOC quantifies exactly the distance
(squared) in the Grassmannian between MASAs ABV and
Ut (ABV ). This is yet another way to understand the OTOC
as measuring the incompatibility between the operatorsV and
Ut and the bases associated to them.

Furthermore, we can also use average OTOCs to estimate
the coherence of a state. For this, we first prove the following
result: given a state ρ and a unitary V , we have

〈‖[DB(V ), ρ]‖2
2

〉
V∈Haar = 2

d
c(2)
B (ρ). (28)

Then, as a corollary, we consider the following open system
OTOC, 〈‖[Et (V ), ρ]‖2

2〉V∈Haar, where {Et }t is a family of quan-

tum channels [93]. If {Et }t is such that Et
t→∞−→ DB, that is, in

the long-time limit, Et converges to the dephasing channel in
the basis B [93], then the equilibration value of this averaged
OTOC reveals the 2-coherence of the state ρ; that is,

〈‖[Et (V ), ρ]‖2
2

〉
V∈Haar

t→∞−→ 2

d
c(2)
B (ρ). (29)

One can also consider instead of the quantum channel Et ,
unitary dynamics under a (time-independent) nondegenerate
Hamiltonian. However, in this case, the limit lim

t→∞Ut does not

exist (as opposed to lim
t→∞ Et , which does), and so we consider

the infinite-time averaged value of the OTOC, which can be
used to extract equilibration values of physical quantities for
unitary dynamics that does equilibrate [12,13].

The above result can also be generalized to the following
scenario: consider two unitaries V,W and two bases B, B̃.
Then the following Haar-averaged OTOC is proportional
to the (squared) distance in the Grassmannian between the
MASAs associated to the bases B, B̃; that is,

〈‖[DB(V ),DB̃(W )]‖2
2

〉
V,W∈Haar

= 1

d2
D2(AB,AB̃ ). (30)

Following a similar corollary as above, consider two channels
Et and Nτ , whose long-time limit are the dephasing channels
DB and DB̃, respectively. Then the equilibration value of the
following OTOC reveals the Grassmannian distance (squared)
between the MASAs AB and AB̃,

〈‖[Et (V ),Nτ (W )]‖2
2

〉
V,W∈Haar

t,τ→∞−→ 1

d2
D2(AB,AB̃ ); (31)

that is, average OTOCs of the above form can be used to probe
geometrical distance in the Grassmannian between the two
MASAs above.

Note that the Haar averages discussed above consist of a
single adjoint action of V (or W ), and therefore, the same
estimate can be obtained by simply averaging over elements of
a 1-design instead [94–97]. For qubit systems, Pauli matrices
form a 1-design, and so these averages can be accessed in
a relatively simpler way. The same also holds true for the
Haar-averaged four-point OTOCs as they do not probe the
full Haar randomness either, which would (generally) require
considering even higher-point functions [98]. In summary,
suitably averaged OTOCs can probe 2-coherence of a state,
the CGP of the dynamics, and the Grassmannian distance
(squared) between MASAs and in this sense quantitatively
connect with the notion of coherence and incompatibility.
And, finally, it is worth emphasizing that although the CGP is
related to quantities such as the Loschmidt echo (or survival
probability) and effective dimension; see the discussion in
Ref. [41], it remains unclear if the OTOC-CGP connection
has any direct implications for characterizing quantum chaos.

E. CGP, random matrices, and short-time growth

The unusual effectiveness of RMT in predicting the physics
of quantum chaotic systems is quite astonishing, especially
since physical Hamiltonians (and their eigenstates) are far
from random. In Sec. III A we saw that the coherence of
eigenstates in the middle of the spectrum is close to the
ensemble averages obtained from RMT. We now turn to dy-
namical features which are relevant for experimental systems
such as cold atoms and ion traps [7,99] which focus on time
evolution, as opposed to spectral features, useful in other
setups such as nuclear scattering experiments [71,72]. Here
we provide an analytical upper bound on the CGP averaged
over GUE Hamiltonians and unravel a connection with the
Spectral Form Factor (SFF) [27,46,98,100,101], a prominent
measure of spectral correlations for quantum chaos. We be-
gin by recalling that the GUE is defined via the following
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probability distribution over d × d Hermitian matrices:

P(H ) ∝ exp

[
−d

2
Tr(H2)

]
. (32)

It is easy to see that transformations of the form H �→ UHU †

leave the ensemble invariant (that is, it is unitarily invariant).
The probability measure can also be written in terms of the
eigenvalues {λ j}dj=1 as the following joint probability distri-
bution:

P(λ1, λ2 . . . , λd ) = exp

(
−d

2

∑
i

λ2
i

)∏
i< j

(λi − λ j )
2. (33)

Then, defining the joint probability distribution of n eigen-
values, that is, the spectral n-point correlation function (for
n < d) as

ρ (n)(λ1, . . . , λn) =
∫

dλn+1 . . . dλdP(λ1, . . . , λd ), (34)

where we integrate all eigenvalues from n + 1 to d . We are
now ready to define the SFF, which is the Fourier transform
of the n-point correlation function [27,46,98,101],

R2k (t ) =
∑

i1, i2, · · · , ik
j1, j2, · · · , jk

∫
dλρ (2k)(λ1, . . . , λ2k )

ei(λi1 +···+λik −λ j1 −···−λ jk )t , (35)

where k is any positive integer. In particular, the four-point
SFF is

R4(t ) =
∑

k,l,m,n

∫
dλρ (4)(λk, λl , λm, λn)

e−i(λk+λl−λm−λn )t . (36)

By considering the Hamiltonian in the CGP CB(e−iHt ) as a
random variable over the GUE, we provide an analytical upper
bound on its average value in terms of the four-point SFF.

Theorem 4. The coherence-generating power averaged
over the Gaussian Unitary Ensemble (GUE) is upper bounded
by the four-point spectral form factor as

〈CB(e−iHt )〉GUE

� 1 − 1

d (d + 1)(d + 2)(d + 3)

×
∑

k,l,m,n

∫
dλρ (4)(λk, λl , λm, λn)e−i(λk+λl−λm−λn )t

︸ ︷︷ ︸
R4

.

(37)

Moreover, the bound is tight for short times.
Theorem 3 and Theorem 4 establish a three-way connec-

tion between CGP, OTOCs, and SFF; with the CGP a subpart
of the OTOC and its GUE average upper bounded by the SFF.
The SFF as a function of time has a characteristic qualitative
features for quantum chaotic systems resembling a slope, dip,
ramp, and plateau [98,102]. As a future work, it would be
interesting to see whether the CGP—which is connected to
the SFF via Theorem 4—can capture similar features and in
turn be used to detect associated quantum signatures of chaos.

In a similar spirit to the RMT average above, one can
treat the time evolution unitary U itself as a random variable.
This allows us to address an important question: How well
can chaotic dynamics be approximated by random unitaries?
The pursuit of this question has revealed many physical in-
sights into the nature of strongly interacting systems, from
condensed matter systems to black holes, and has inspired
a multitude of quantitative connections between chaos and
random unitaries; see, for example, Refs. [98,102,103]. To es-
tablish similar connections, we now compute the Haar average
of the OTOC-CGP relation using Theorem 3.

Proposition 1. The Haar-averaged OTOC is given by

〈CV,W 〉U∼Haar = 2(d − 1)

(d + 1)
+ 2

d2(d2 − 1)
Re

×
⎧⎨⎩ ∑

j �=l and k �=m

v∗
jw

∗
kvlwm

⎫⎬⎭ − 2

d (d + 1)
Re

×
⎧⎨⎩∑

j �=l

v∗
j vl +

∑
k �=m

w∗
kwm

⎫⎬⎭, (38)

where U ∼ Haar represents Haar-averaging over the time-
evolution unitary.

The first term in this expression is obtained from the Haar-
average of the 2-CGP, while the other two terms originate
from the off-diagonal contribution. We briefly remark that
since the functionCV,W (t ) is Lipschitz continuous, using tools
from measure concentration and Levy’s lemma [104], we
have that the probability of a random instance of CV,W (t )
deviating from its Haar average 〈CV,W 〉U∼Haar is exponentially
suppressed; that is, the Haar-average is representative of al-
most all instances of the OTOC. Furthermore, similar to the
discussion following Theorem 3, that is, using the result of
Eq. (26), we note that averaging over commuting unitaries
with their phases distributed uniformly on [0, 2π ), the extra
terms vanish for the averaged OTOCs. Moreover, for generic
operators V and W , the main contribution comes from the
Haar-average of the CGP, which gets exponentially close to 2
in the dimension (if d scales as 2n for n qubits). Therefore, the
typical OTOC for Haar-random evolutions is exponentially
well approximated by the CGP value.

F. Short-time growth

To further establish dynamical features of the CGP, we
focus on its short-time behavior. While the OTOC’s short-
time growth has been used as a diagnostic of chaos for
systems with a semiclassical or large-N limits, its behavior
for general many-body systems with local interactions and
finite degrees of freedom can simply be understood via Lieb-
Robinson bounds [19,84,105,106] and does not necessarily
characterize chaos [17–23,107–110]. To provide information-
theoretic meaning to a subpart of the OTOC (that is, the
CGP), we connect it to the notion of quantum fluctuations and
incompatibility. Incompatibility of observables in quantum
theory is perhaps most commonly understood in terms of a
nonvanishing commutator (for example, the canonical [x̂, p̂]
commutator) and the related Heisenberg uncertainty relations.
In recent years, however, entropic uncertainty relations have
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emerged as a generalized and more robust way to quantify the
incompatibility of observables [111]. In Ref. [25] the authors
introduced a formalism that encompasses both and quantified
the notion of incompatibility between bases B0 and B1 (and
not just observables). Among many interesting connections,
it was shown how this incompatibility manifests itself as
the coherence of states |ψ〉 ∈ B0 when expressed as a linear
combination of elements from B1. Moreover, using tools from
matrix majorization, a partial order on bases was unveiled,
with the order quantifying incompatibility. In particular, the
CGP was established as a measure of incompatibility between
different bases, and its connection to entropic uncertainty
relations was discussed. In the theorem below, we find that
the short-time growth of the CGP captures incompatibility
between the basis B in which we measure coherence and the
basis of the Hamiltonian BH .

Proposition 2. The short-time growth of the CGP is con-
nected to the variance of the Hamiltonian as

1

2

d2CB(Ut )

dt2

∣∣∣∣
t=0

= 1

d

d∑
j=1

var j (H ), (39)

where var j (H ) ≡ 〈H2〉� j − 〈H〉2
� j

is the variance of the
Hamiltonian in the basis state � j . Moreover, the following
bounds hold:

1

d

d∑
j=1

var j (H ) � ‖H‖2
2

d
‖1 − XT (B,BH )X (B,BH )‖∞

� ‖H‖2
∞q(B,BH ), (40)

where [X (B,BH )] j,k ≡ Tr(� jPk ) and q(BH ,B0) ≡
‖1 − XT (B,BH )X (B,BH )‖∞.

To understand the upper bound, 1
2
d2CB (Ut )

dt2 |t=0 �
‖H‖2

∞q(B,BH ), first note that the matrix X (B,BH ) is
bistochastic, and so is XT (B,BH )X (B,BH ), using the
fact that the set of bistochastic matrices is closed under
transposition and multiplication [49]. Using this, it is
easy to see that q(B,BH ) � 1; therefore, we have the

bound 1
‖Ha‖2

∞
1
2
d2CB (Ut )

dt2 |t=0 � 1. Note that this quantity
also provides a physically meaningful normalization on
the short-time growth of the CGP: when comparing the
timescales generated by Hamiltonian dynamics, Ut = e−iHt ,
one can increase/decrease the associated timescales by
scaling the Hamiltonian H �→ αH . To fix this arbitrariness,
when comparing two different dynamics, it makes sense to
normalize the norm of various Hamiltonians, which, in this
case happens naturally via the operator norm.

To further elucidate the theorem above and the associated
bounds, we introduce a family of commuting k-local Hamil-
tonians of the form

H (k) :=
L−(k−1)∑

j=1

(
σ x
j ⊗ σ x

j+1 ⊗ · · · ⊗ σ x
j+(k−1)

)
. (41)

Recall that a Hamiltonian is called k-local (k � L) if it can be
written as a sum over terms which act on at most k subsystems

[112]. Let B be the computational basis (that is, the local σ z

basis), then we prove the following:

1

‖H (k)‖2
∞

1

2

d2CB(Ut )

dt2

∣∣∣∣
t=0

= 1

L − (k − 1)
. (42)

We provide a brief sketch of the proof in Appendix C 7. For
k = 1 this generates a 1-local Hamiltonian, that is, composed
of purely local interactions, H (1) = ∑L

j=1 σ x
j , which does not

generate entanglement or correlations. And, for k = L, we
have a highly nonlocal Hamiltonian, H (L) = ⊗L

j=1σ
x
j , which

can generate an L-qubit Greenberger-Horne-Zeilinger (GHZ)
state starting from product states16 [1,113]. Using the general
result above, we notice that if k = O(1), then the normalized
short-time growth 1

‖H (k=O(1))‖2
∞

1
2
d2CB (Ut )

dt2 |t=0 ∼ O(1/L) to lead-

ing order, while it is saturated for the nonlocal Hamiltonian
. 1
‖H (k=L)‖2

∞
1
2
d2CB (Ut )

dt2 |t=0 = 1. Finally, we note that the variance

of the Hamiltonian that shows up in the theorem above is
intimately related to (1) quantum speed limits and the resource
theory of asymmetry (see Refs. [114,115] and the references
therein) and (2) the “strength function,” widely used in quan-
tum chaos literature (see Sec. 3 of Ref. [45] for more details).
It would be an interesting future direction to quantitatively
establish these connections further.

G. Quantifying chaos with recurrences: Numerical simulations

OTOCs capture the scrambling of quantum information.
As localized information spreads through the nonlocal degrees
of freedom of a system, it becomes inaccessible to local ob-
servables and their expectation values reveal an equilibration
of the subsystem state. This apparent irreversible loss of infor-
mation under unitary dynamics (which is reversible) has been
termed scrambling. Signatures of scrambling can be observed
in the long-time averages of both simple physical quantities
like local expectation values and in “complex” quantities such
as the OTOC and CGP. However, in finite systems, such long-
time averages do not converge in the limit t → ∞, instead
they typically oscillate around some equilibrium value. This
equilibrium value can be obtained from the infinite-time aver-
age, A := limT→∞ 1

T

∫ T
0 A(t ) dt . In Ref. [83], the infinite-time

average of the averaged OTOC (with a bipartition in the sys-
tem Hilbert space) was studied for both integrable and chaotic
models and its equilibration value was used to successfully
distinguish the two phases; see also related work studying
the long-time limit of OTOCs for the integrability-to-chaos
transition [80,81]. Along the way, connections with entropy
production, operator entanglement, and channel distinguisha-
bility were also discussed.

It was previously shown that in the long-time limit, the
strength of recurrences can distinguish chaotic and integrable
systems [116,117]. Let n be the number of qubits (or more
generally, the system size), then integrable systems typically
have a quantum recurrence time, that is, a polynomial in n,

16This follows immediately by expanding exp[−iHbt] = cos(t )I −
i sin(t )Hb, letting t = π/4, and choosing the initial state to be |0〉⊗n,
using which, we get |ψ (t = π/4)〉 = 1√

2
(|0〉⊗n − i|1〉⊗n).
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FIG. 4. (a) Log-Log plot of the variance of CGP and OTOC for n = 9 qubits. We study the dynamics of the Hamiltonian given by Eq. (43)
with g = 1, h = 0 as the integrable limit and g = −1.05, h = 0.5 as the chaotic one. We set V = σ z

1 ,W = σ z
9 for the OTOC and CGP in

Eq. (20). (b) Fraction of the long-time average of the variance of chaotic and integrable OTOC, CGP, that is,
Varintegrable−Varchaos

Varintegrable
for the Hamiltonian

given by Eq. (43) with g = 1, h = 0 as the integrable limit and g = −1.05, h = 0.5 as the chaotic one. We set V = σ z
1 ,W = σ z

9 for the OTOC
and CGP in Eq. (20).

while chaotic systems typically have recurrence times that
are doubly exponential in n, that is, O(ee

n
). Therefore, when

studying recurrences in the expectation values of observables
for a finite (but large) time, one expects integrable systems
to show larger recurrences than chaotic systems. Building on
the work of Refs. [98,103], we show that by considering the
OTOC and the CGP as “complex observables” and quanti-
fying their recurrences via their temporal variance, one can
distinguish integrable and chaotic regimes. We also argue that
for the purposes of distinguishing these two phases via the
strength of their recurrences, the OTOC and CGP capture
effectively the same behavior, vindicating our Theorem 3.

The physical system we use to study this temporal variance
is the paradigmatic transverse-field Ising model with open
boundary conditions,

HTFIM = −
(

L−1∑
j=1

σ z
j σ

z
j+1 +

L∑
j=1

gσ x
j + hσ z

j

)
. (43)

The system has an integrable limit for h = 0, where the
Hamiltonian can be mapped onto free fermions; we set g =
1, h = 0 as the integrable point. The system is quantum
chaotic for the parameter choices g = −1.05, h = 0.5, which
can be seen, for example, by studying the level spacing
distribution. In Ref. [103] the OTOC averaged over local
observables was used to distinguish the two phases, and it
was observed that in the chaotic limit, the system quickly
asymptotes to just below the Haar-averaged value, while in the
integrable regime, the systems displays large recurrences and
does not show any features of scrambling. A similar behavior
was observed for the mutual information between different
subsystems. Here we compare the dynamical behavior of the
OTOC and the CGP forV = σ z

1 ,W = σ z
L for an L-site system.

Notice that our numerical simulations use exact dynamics but
are limited to timescales far below the expected recurrence
time for the chaotic limit. However, we are able to observe

and quantify recurrences for the integrable case in a way that
is sufficient to distinguish the two phases.

For systems satisfying the ETH Ansatz [9–11], fluctua-
tions around the long-time averages of expectation values of
observables will be exponentially small in the system size
[44,45]. While the CGP and OTOC are “complex” quantities,
their behavior can be expected to resemble that of simpler
observables, especially for finite systems and simple local
operators such as Pauli matrices. Since quantum chaotic sys-
tems typically obey the ETH Ansatz (after removing trivial
symmetries), the fluctuations in the OTOC and CGP around
their long-time average may be expected to become expo-
nentially small in the system size. Our numerical findings
summarized in Fig. 4 vindicate this intuition: we consider the
long-time average of the OTOC and the CGP in the integrable
and chaotic regimes. In the chaotic regime the variance of the
CGP and the OTOC are equal up to numerical error (≈10−10

in dimensionless units), while in the integrable regime the
variance seems to asymptote to different values for the CGP
and the OTOC, which is simply a consequence of the different
timescales of recurrences in these two quantities. A more
meaningful comparison can be obtained by computing the
relative fluctuations in the integrable and chaotic regimes, for
which we compute the ratio

Varintegrable − Varchaos

Varintegrable
,

where Varintegrable is the long-time average of the temporal
variance of the CGP/OTOC in the integrable regime, per-
formed numerically. We find that for both the OTOC and
CGP, this quantity becomes exponentially close to one as a
function of the system size. Therefore, the fluctuations around
the average in the chaotic regime are exponentially smaller
than that in the integrable case, as expected, and both the
OTOC and its subpart, the CGP can diagnose chaoticity in
this way.
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V. DISCUSSION

While the role of quantum entanglement in characterizing
quantum chaos has been widely explored, it remained un-
clear what precise role quantum coherence plays, if any, in
diagnosing quantum chaos. Our work affirmatively answers
this question by establishing rigorous connections between
measures of quantum coherence and signatures of quantum
chaos. Coherence of Hamiltonian eigenstates is shown to be
an “order parameter” for the integrable-to-chaotic transition
and we numerically demonstrate this by studying quantum
chaos in an XXZ spin chain with defect and find excellent
agreement with random matrix theory (RMT) in the bulk of
the spectrum, as expected (see also Figs. 5–7). Furthermore,
using the mathematical formalism of majorization theory and
fundamental results from the resource theory of coherence,
we argue why every quantum coherence measure is a “delo-
calization” measure—a class of signatures of quantum chaos
that quantify spread, in say, the position eigenbasis, energy
eigenbasis, and others. Moreover, our Theorem 2 shows that
for pure states in a bipartite system, the 2-coherence mini-
mized over product bases is equal to the linear entropy of the
reduced state. That is, quantum coherence measures can be
used to detect the entanglement in a quantum state, as has also
been demonstrated previously [51].

For dynamical signatures of chaos, our Theorem 3 estab-
lishes the coherence-generating power (CGP) as a subpart
of the OTOC, a prominent measure of information scram-
bling in quantum systems. In particular, the (associated)
squared-commutator’s growth signals the increasing incom-
patibility of the operators under time evolution. Our theorem
paves a way to make this intuition precise as the CGP quan-
tifies incompatibility between the bases associated to the
time-evolving operator in the OTOC and the fixed one. More-
over, we analytically show, in many different ways, how the
OTOC, suitably averaged, connects with 2-coherence of a
state, the CGP of dynamics, and the geometric distance be-
tween the MASAs associated to the bases of the operators in
the OTOC. Among a plethora of other reasons, the CGP is
particularly well suited to quantify this incompatibility since
it also happens to be a formal measure in the resource theory
of measurement incompatibility [25].

Furthermore, using RMT we provide an upper bound on
the average CGP for GUE Hamiltonians in terms of the
Spectral Form Factor, a well-established measure of quantum
chaos. We also find an analytical expression for the Haar-
averaged OTOC-CGP relation, which allows us to argue that
under certain assumptions, the OTOC is approximated expo-
nentially well (in the system size) by the CGP.

The short-time behavior of the OTOC has received con-
siderable attention in recent years, and so we analyze the
short-time growth of the CGP (a subpart of the OTOC),
which, to leading order, is characterized by the variance of
the Hamiltonian with respect to a basis; for the OTOC this
basis is inherited from the choice of the OTOC operators. We
remark that this variance of the Hamiltonian (for pure states)
is related to quantum speed limits and the resource theory
of asymmetry [114]. And, finally, we numerically study the
long-time behavior of the OTOC and CGP in a transverse-field
Ising model and find that their temporal variances quantify
chaos in effectively the same way.

In closing, our results establish quantum coherence as a
signature of quantum chaos, both at the level of states and
dynamics. As a future work, it would be interesting to see
how well suited measures of quantum coherence are to the
study few-body chaos, in particular, using paradigmatic sys-
tems like the quantum kicked top [4]. Few-body systems
provide a powerful experimental testbed for studying signa-
tures of thermalization and scrambling, which are intimately
linked with quantum coherence measures. Quantitatively es-
tablishing these connections will also be a promising future
direction.
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APPENDIX A: LEVEL SPACING DISTRIBUTION

In the following we show that the level-spacing statistics of the Hamiltonian in Eq. (13) transitions from the Poisson
distribution to the universal Wigner-Dyson form as we move the defect towards the middle of the spin-chain.
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FIG. 5. The transition in level-spacing distribution from Poisson to the (universal) Wigner-Dyson distribution for the Hamiltonian described
in Eq. (13) as we move the defect site to the middle of the chain. Panels (a), (b), (c), and (d) correspond to the defect at sites δ = 1, δ = 3, δ = 5,

and δ = 7, respectively. Results are reported for L = 15 with five spins up and ω = 0, εδ = 0.5, Jxy = 1, Jz = 0.5. Similar results were obtained
for L = 15 and δ = 1, 7 in Ref. [60] (but not for intermediate positions of the defect site).

APPENDIX B: COHERENCE QUANTIFIERS FOR INTEGRABLE AND CHAOTIC EIGENSTATES

In the following we numerically study the eigenstate properties of the Hamiltonian in Eq. (13). Namely, we consider the
inverse participation ratio and 1-norm coherence of the integrable and chaotic eigenstates, in the site basis and mean-field basis,
respectively.

FIG. 6. Inverse participation ratio for eigenstates of the Hamiltonian defined in Eq. (13) as a function of their energy. Results are reported
for L = 15 with five spins up and ω = 0, εδ = 0.5, Jxy = 1, Jz = 0.5. The plot markers 1,3,5,7 correspond to the various choices of the defect
site, with δ = 1, 7 corresponding to the integrable and chaotic limits, respectively. Panels (a) and (b) correspond to the two different bases, the
site basis and the mean-field basis, respectively. Similar results were obtained for L = 18 and δ = 1, 9 in Ref. [60] (but not for intermediate
positions of the defect site).
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FIG. 7. 1-coherence for eigenstates of the Hamiltonian defined in Eq. (13) as a function of their energy. Results are reported for L = 15
with five spins up and ω = 0, εδ = 0.5, Jxy = 1, Jz = 0.5. The plot markers 1,3,5,7 correspond to the various choices of the defect site, with
δ = 1, 7 corresponding to the integrable and chaotic limits, respectively. Panels (a) and (b) correspond to the two different bases, the site basis
and the mean-field basis, respectively.

APPENDIX C: PROOFS

Here we restate the propositions and theorems as well as other mathematical claims appearing in the main text and give their
proofs.

1. Proof of Theorem 2

Proof. We start by collecting a few simple results. First, recall that the 2-coherence is

c(2)
B (ρ) = ‖ρ − DB(ρ)‖2

2 = 〈ρ − DB(ρ), ρ − DB(ρ)〉
= 〈ρ, ρ〉 − 〈ρ,DB(ρ)〉 − 〈DB(ρ), ρ〉

+ 〈DB(ρ),DB(ρ)〉 (C1)

= 〈ρ, ρ〉 − 〈ρ,DB(ρ)〉, (C2)

where in the second line, we have used 〈ρ,DB(ρ)〉 = 〈DB(ρ), ρ〉 since DB is a self-adjoint superoperator and
〈DB(ρ),DB(ρ)〉 = 〈ρ,DB(ρ)〉 since DB is a projection superoperator, that is, (DB )2 = DB.

For pure states, we have 〈ρ, ρ〉 = 1 and therefore, the 2-coherence for pure states is equal to c(2)
B (ρ) = 1 − 〈ρ,DB(ρ)〉.

Second, a pure bipartite state, |
〉AB ∈ H ∼= HA ⊗ HB can be written in the Schmidt form (that is, using Schmidt decompo-
sition theorem) [1],

|
〉AB =
min{dA,dB}∑

j=1

λ j | j〉A ⊗ | j̃〉B, (C3)

where {| j〉A}, {| j̃〉B} is an orthonormal basis for subsystems A, B, respectively, and {λ j} are non-negative coefficients satisfying∑
j λ

2
j = 1. The coefficients λ2

j are the eigenvalues of the reduced density matrix ρA; recall also that ρA and ρB are isospectral.
Then, reexpressing the state in this form, we have (dropping the subscripts for the subsytems A,B)

|
〉〈
| =
∑
j,k

λ jλk| j〉〈k| ⊗ | j̃〉〈̃k|. (C4)

And, third, the dephasing superoperator factorizes, that is,

DBa⊗Bb = DBa ⊗ DBb . (C5)

To see this, let Ba = {�(a)
j }dj=1 and Bb = {�(b)

k }dk=1; then the action of DBa⊗Bb is

DBa⊗Bb (X ) =
d∑

j,k=1

(
�

(a)
j ⊗ �

(b)
k

)
X
(
�

(a)
j ⊗ �

(b)
k

)
(C6)
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and the action of DBa ⊗ DBb is

DBa ⊗ DBb (X ) = DBa

(
d∑

k=1

(
I ⊗ �

(b)
k

)
X
(
I ⊗ �

(b)
k

))
(C7)

=
d∑

j,k=1

(
�

(a)
j ⊗ I

)(
I ⊗ �

(b)
k

)
X
(
I ⊗ �

(b)
k

)(
�

(a)
j ⊗ I

)
(C8)

=
d∑

j,k=1

(
�

(a)
j ⊗ �

(b)
k

)
X
(
�

(a)
j ⊗ �

(b)
k

) = DBa⊗Bb (X ). (C9)

We are now ready to prove the main result:

min
Ba,Bb

c(2)
Ba⊗Bb

(|
〉〈
|) = min
Ba,Bb

{1 − 〈|
〉〈
|,DBa⊗Bb
(|
〉〈
|)〉} = 1 − max

Ba,Bb

{〈|
〉〈
|,DBa⊗Bb
(|
〉〈
|)〉}. (C10)

Let us consider the term inside the maximization, 〈|
〉〈
|,DBa⊗Bb (|
〉〈
|)〉. We use the Schmidt form of |
〉 and substitute
DBa⊗Bb by DBa ⊗ DBb to get

〈|
〉〈
|,DBa⊗Bb
(|
〉〈
|)〉 =

d∑
j,k,l,m

λ jλkλlλm Tr
[|l〉〈m| ⊗ |̃l〉〈m̃|DBa

(| j〉〈k|) ⊗ DBb (| j̃〉〈̃k|)
]

(C11)

=
d∑

j,k,l,m

λ jλkλlλm Tr
(|l〉〈m|DBa

(| j〉〈k|)) Tr
[|̃l〉〈m̃|DBb (| j̃〉〈̃k|)

]
. (C12)

It is easy to see that to maximize these inner products, we need to choose the dephasing basis to be the same as the local basis
{| j〉}, {| j̃〉}, respectively. To see this, let Ba = {|φ j〉〈φ j |}, then the term Tr(|l〉〈m|DBa (| j〉〈k|)) becomes

d∑
j=1

〈φ j |l〉〈m|φ j〉〈φ j | j〉〈k|φ j〉, (C13)

an upper bound on which can be obtained using Cauchy-Schwarz inequality repeatedly to see that it is maximized when |φ j〉 =
| j〉 ∀ j; that is, the local basis in the Schmidt decomposition of the state and the dephasing basis are the same. Therefore,
DBa (| j〉〈k|) = | j〉〈k|δ j,k and DBb (| j̃〉〈̃k|) = | j̃〉〈̃k|δ j,k . Plugging it back, we have

max
Ba,Bb

{〈|
〉〈
|,DBa⊗Bb
(|
〉〈
|)〉} =

d∑
j,k,l,m

λ jλkλlλmδ jkδm, jδl, j =
d∑
j=1

λ4
j = ‖ρa‖2

2. (C14)

Therefore, putting everything together, we have

min
Ba,Bb

c(2)
Ba⊗Bb

(|
〉〈
|) = 1 − ‖ρa‖2
2 =: Slin(ρa). (C15)

�

2. Proof of Theorem 3

Proof. Consider the infinite-temperature OTOC, C(β=0)
V,W (t ) = 1

d Tr([V,W (t )]†[V,W (t )]). Then, plugging in the spectral de-
composition of V,W , that is, V = ∑

j v j� j,W (t ) = ∑
j w j�̃ j (t ), we have

CV,W (t ) = 1

d

∑
j,k,l,m

v∗
jw

∗
kvlwm Tr([� j, �̃k (t )]†[�l , �̃m(t )]).

Then, extracting the j = l and k = m terms, we have

CV,W (t ) = 1

d

∑
j,k

|v j |2|wk|2 Tr([� j, �̃k (t )]†[� j, �̃k (t )]) + 1

d

∑
j �=l,k �=m

v∗
jw

∗
kvlwm Tr([� j, �̃k (t )]†[�l , �̃m(t )]). (C16)

Since V,W are unitary, we have |v j |2 = 1 = |w j |2 ∀ j ∈ {1, 2, . . . , d}. Therefore,

CV,W (t ) = 1

d

∑
j,k

Tr([� j, �̃k (t )]†[� j, �̃k (t )]) + 1

d

∑
j �=l,k �=m

v∗
jw

∗
kvlwm Tr([� j, �̃k (t )]†[�l , �̃m(t )]). (C17)
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Then, recalling Eq. (19), we have

CV,W (t ) = 2CBV

(
Ut ◦ VBV →BW

) + 1

d

∑
j �=l,k �=m

v∗
jw

∗
kvlwm Tr([� j, �̃k (t )]†[�l , �̃m(t )]), (C18)

where VBV →BW is the intertwiner connecting the bases BV to BW as VBV →BW (� j ) = �̃ j ∀ j ∈ {1, 2, . . . , d}.
Next, we would like to simplify the second term of the summation. For this, note that

Tr([� j, �̃k (t )]†[�l , �̃m(t )]) = Tr({�̃k� j − � j�̃k}{�l�̃m − �̃m�l}) (C19)

= Tr(�̃k� j�l�̃m) − Tr(�̃k� j�̃m�l ) − Tr(� j�̃k�l�̃m) + Tr(� j�̃k�̃m�l ) (C20)

= δkmδ jl Tr(� j�̃k ) − Tr(�̃k� j�̃m�l ) − Tr(� j�̃k�l�̃m) + δ jlδkm Tr(� j�̃k ) (C21)

= 2δkmδ jl Tr(� j�̃k ) − 2Re{Tr(�̃k� j�̃m�l )}. (C22)

The summation indices for the second term are j �= l OR k �= m, which has three possibilities: j �= l and k �= m, j �= l but k =
m, and finally, j = l but k �= m. In each case, the product of delta functions, δkmδ jl vanishes, and we are left with the second
term only. Therefore,

CV,W (t ) = 2CBV

(
Ut ◦ VBV →BW

) − 2

d
Re

⎧⎨⎩ ∑
j �=l,k �=m

v∗
jw

∗
kvlwm Tr(�̃k (t )� j�̃m(t )�l )

⎫⎬⎭, (C23)

where we emphasize that the indices of the summation have the three possibilities listed above.
The relation between FV,W (t ) and CBV is obtained simply by usingCV,W (t ) = 2[1 − Re{FV,W (t )}]. This completes the proof.�

3. Proof of Eq. (26), Eq. (28), and Eq. (30)

Let’s start with Eq. (30). We have two unitaries V,W and two bases B, B̃. Then the following Haar-averaged squared
commutator is proportional to the (squared) distance in the Grassmannian between the MASAs associated to the bases B, B̃; that
is, 〈‖[DB(V ),DB̃(W )]‖2

2

〉
V,W∈Haar

= 1

d2
D2(AB,AB̃ ) (C24)

We start by expanding ‖[DB(V ),DB̃(W )]‖2
2 with vα := Tr(�αV ),wβ := Tr(�̃βW ). Then

‖[DB(V ),DB̃(W )]‖2
2 =

∥∥∥∥∥
d∑

α,β

vαwβ[�α, �̃β]

∥∥∥∥∥
2

2

=
d∑

α,β,γ ,η

v∗
αw∗

βvγ wη Tr([�α, �̃β]†[�γ , �̃η]). (C25)

Now, v∗
αvγ = Tr(�αV †) Tr(�γV ) = Tr[(�α ⊗ �γ )(V † ⊗V )], and using the lemma∫

Haar
dAA† ⊗ A = S

d
, where S is the SWAP operator, (C26)

we have

〈v∗
αvγ 〉V∈Haar =

∫
Haar

dV Tr[(�α ⊗ �γ )(V † ⊗V )] = 1

d
Tr[(�α ⊗ �γ )S] = 1

d
Tr(�α�γ ) = 1

d
δα,γ . (C27)

Similarly, for 〈w∗
βwη〉W∈Haar

= 1
d δβ,η. Putting everything together, we have

〈‖[DB(V ),DB̃(W )]‖2
2

〉
V,W∈Haar = 1

d2

d∑
α,β,γ ,η

δα,γ δβ,η Tr([�α, �̃β]†[�γ , �̃η]) = 1

d2

d∑
α,β

‖[�α, �̃β]‖2
2 = 1

d2
D2(AB,AB̃ ).

(C28)

To prove Eq. (28), 〈‖[DB(V ), ρ]‖2
2〉V∈Haar = 2

d c(2)
B (ρ), we follow a similar sequence of arguments as above. We prove a

slightly general version of the result here, whereV is a unitary and X an arbitrary operator (and not necessarily a quantum state):

‖[DB(V ),X ]‖2
2 =

d∑
α,β

v∗
αvβ Tr([�α,X ]†[�β,X ]). (C29)
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As above, 〈v∗
αvβ〉V∈Haar = 1

d δα,β . Therefore,

〈‖[DB(V ),X ]‖2
2

〉
V∈Haar = 1

d

d∑
α

‖[�α,X ]‖2
2 = 2

d
c(2)
B (X ). (C30)

And finally, to prove Eq. (26), 〈‖[V,W (t )]‖2
2〉θ = 2dCBV

(Ut ◦ VBV →BW ), we proceed as above and note that the key step is

〈v∗
αvγ 〉

θ
= 〈ei(θγ −θα )〉θ = 1

2π

2π∫
0
ei(θγ −θα )dθ = δα,γ , and similarly for 〈w∗

βwη〉θ = δβ,η. Putting everything together, we then have

the desired result.

4. Proof of Theorem 4

Proof. Let Ŝ be the SWAP operator defined in Eq. (C40). Then

CB(e−iHt ) � 1 − 1

d

∑
j

[Tr (PjUPjU
†)]2 (C31)

= 1 − 1

d

∑
j

Tr
(
Pj

⊗2U⊗2Pj
⊗2U †⊗2)

(C32)

= 1 − 1

d

∑
j

Tr
[
ŜP⊗4

j (U⊗2 ⊗U †⊗2
)
]

(C33)

= 1 − 1

d

∑
j

∑
k,l,m,n

Tr
[
P⊗4
j V⊗4(Pk ⊗ Pl ⊗ Pm ⊗ Pn)

] × e−i(Ek+El−Em−En )t , (C34)

where in the first inequality, we have dropped the off-diagonal terms in the CGP, that is, using CB(U ) = 1 −
1/d

∑
j,k[Tr(� jU�kU †)]2 [see Eq. (18)] and keeping only the terms with j = k. In the second line, we have simply reexpressed

the trace by using [Tr(A)]2 = Tr(A ⊗ A). And, in the last line, we have plugged in U = ∑
k e

−iEktV PkV †, where V (·) = V (·)V †

is the unitary intertwiner connecting the Hamiltonian eigenbasis with the basis B.
In the following we will make a simple change of notation for both convenience and consistency with other works: Ej �→ λ j .

Now, recall that for GUE, we have P(H ) ∝ exp[− d
2 Tr(H2)]; therefore,∫

dHP(H ) =
∫

dλP(λ) ×
∫

dV, (C35)

where the average decomposes into the eigenvalues and the eigenvectors. Recall that V is Haar distributed. Then

P(λ) = c|�(λ)|2e
− d

2

∑
j

λ2
j

, where �(λ) ≡
∏

1� j<k�d

(λ j − λk ) is the Vandermonde matrix. (C36)

Then〈
CB(e−iHt )

〉
GUE � 1 − 1

d

∑
j

∑
k,l,m,n

(∫
dλP(λ)e−i(λk+λl−λm−λl )t ×

∫
dV Tr

[
P⊗4
j V⊗4(Pk ⊗ Pl ⊗ Pm ⊗ Pn)

])
. (C37)

Notice that if λ j = λk for any j, k then �(λ) = 0. Therefore, in the summation
∑

k,l,m,n, we need to consider only λk �= λl �=
λm �= λn. Then one can show that

∫
dV Tr[P⊗4

j V⊗4(Pk ⊗ Pl ⊗ Pm ⊗ Pn)] = 1
d (d+1)(d+2)(d+3) ; see Ref. [118] for integrals of this

form. Therefore,

〈CB(e−iHt )〉GUE � 1 − 1

d (d + 1)(d + 2)(d + 3)

∑
k,l,m,n

∫
e−i(λk+λl−λm−λn )tP(λ) dλ︸ ︷︷ ︸

R4

. (C38)

To see that the bound is tight for short times, notice that in order to establish the connection to the spectral form factor, the
first step in the proof is the inequality, CB(e−iHt ) � 1 − 1

d

∑
j[Tr(PjUPjU †)]2, which is obtained by ignoring the off-diagonal

terms in the CGP, CB(U ) = 1 − 1/d
∑

j,k[Tr(� jU�kU †)]2 (we drop the j �= k terms). Now, for short times, let t = O(ε), then
the contribution from the off-diagonal terms scales as O(ε4) � 1, making the bound tight. �
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5. Proof of Proposition 1

Proof. First, note that using Theorem 3, we can Haar average the CGP and the “off-diagonal” terms independently. Following
Refs. [41,87], we have that

〈CB(U )〉Haar = (d − 1)

(d + 1)
. (C39)

Now, for the “off-diagonal” term, let us look at terms of the form Tr(�̃k (t )� j�̃m(t )�l ). Let H = HA ⊗ HA′ , where HA
∼=

HA′ ; that is, we take two copies of the Hilbert space. The SWAP operator acting on this doubled space is defined as

Ŝ =
∑
i, j

|i〉A〈 j| ⊗ | j〉A′ 〈i|. (C40)

It is easy to show that Tr(XY ) = Tr(ŜX ⊗ Y ), which we use in the following (and variants thereof). Then

Tr(�̃k (t )� j�̃m(t )�l ) = Tr(�l�̃k (t ) ⊗ � j�̃m(t )Ŝ) (C41)

= Tr[(�l ⊗ � j )(�̃k (t ) ⊗ �̃m(t ))Ŝ] = Tr
[
(�l ⊗ � j )U⊗2

t (�̃k ⊗ �̃m)Ŝ
]
. (C42)

Then, to Haar average the above term, we collect a few results:

〈U⊗2(X )〉Haar = 1

2

(I + Ŝ)

d (d + 1)
Tr[(I + Ŝ)X ] + 1

2

(I − Ŝ)

d (d − 1)
Tr[(I − Ŝ)X ]. (C43)

Now, taking X = �̃k ⊗ �̃m, we have

Tr[(I ± Ŝ)�̃k ⊗ �̃m] = 1 ± δkm. (C44)

Then

〈Tr(�̃k (t )� j�̃m(t )�l )〉Haar (C45)

= Tr((�l ⊗ � j )
〈
U⊗2
t (�̃k ⊗ �̃m)

〉
HaarŜ). (C46)

Using (I ± Ŝ)Ŝ = (Ŝ ± I ), we have Tr[(�l ⊗ � j )(Ŝ ± I)] = δl j ± 1.
Putting everything together, and recalling that the “off-diagonal” term has the form∑
j �=l,k �=m v∗

jw
∗
kvlwm Tr(�̃k (t )� j�̃m(t )�l ), where we recall that the indices have the form j �= l OR k �= m.

Then, for different choices of indices, we have

For j �= l and k �= m:
1

2d (d + 1)
− 1

2d (d − 1)
= − 1

d (d2 − 1)
, (C47)

For j �= l and k = m:
1

d (d + 1)
, (C48)

For j = l and k �= m:
1

d (d + 1)
. (C49)

Combining with the phases, we have

2

d (d2 − 1)
Re

⎧⎨⎩ ∑
j �=l and k �=m

v∗
jw

∗
kvlwm

⎫⎬⎭ − 2

d (d + 1)
Re

⎧⎨⎩ ∑
j �=l,k=m

|wk|2v∗
j vl

⎫⎬⎭ − 2

d (d + 1)
Re

⎧⎨⎩ ∑
j=l,k �=m

|vk|2w∗
kwm

⎫⎬⎭. (C50)

Then, since V,W are unitaries, |wk|2 = 1 = |vk|2 ∀k ∈ {1, 2, . . . , d}. Therefore, the above term becomes

2

d (d2 − 1)
Re

⎧⎨⎩ ∑
j �=l and k �=m

v∗
jw

∗
kvlwm

⎫⎬⎭ − 2

d (d + 1)
Re

⎧⎨⎩∑
j �=l

v∗
j vl +

∑
k �=m

w∗
kwm

⎫⎬⎭. (C51)

Collecting the CGP and “off-diagonal” terms together, we have the desired result. �
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6. Proof of Proposition 2

Proof. Using Proposition 1 of Ref. [41], we have

CB(Ut ) = 1 − 1

d

∑
j,k

Tr(� j�k (t )� j�k (t )), where � j (t ) ≡ Ut (� j ), (C52)

= 1 − 1

d

∑
j,k

Tr
(
(� j ⊗ � j )U⊗2

t (�k ⊗ �k )Ŝ
)
, (C53)

where Ŝ is the SWAP operator on the doubled Hilbert space defined in Eq. (C40).
Now, recall that the time evolution superoperator can be expanded at short times as

Ut ≈ I − iHt − 1
2H

2t2 + · · · , (C54)

where I is the Identity superoperator and H(X ) ≡ [H,X ]. Therefore,

U⊗2
t ≈ I ⊗ I − it (H ⊗ I + I ⊗ H) − t2

2
(H ⊗ I + I ⊗ H)2 + · · · . (C55)

Let us consider the various terms in the short-time expansion of the doubled evolution.
Zeroth order:

Tr((� j ⊗ � j )I⊗2(�k ⊗ �k )Ŝ) = Tr(� j�k ⊗ � j�kŜ) = δ jkδ jk (C56)

⇒ 1

d

∑
j,k

Tr(· · · ) = 1. (C57)

Therefore, the zeroth-order term is one.
First order:

Tr
(
�⊗2

j (H ⊗ I + I ⊗ H)�⊗2
k Ŝ

)
(C58)

= Tr
(
�⊗2

j (H ⊗ I )�⊗2
k Ŝ

) + Tr
(
�⊗2

j (I ⊗ H)�⊗2
k Ŝ

)
. (C59)

Let us consider the first term in the summation:

= Tr(� jH(�k ) ⊗ � j�kŜ) (C60)

= Tr(� jH(�k )� j�k ) = δ jk Tr(� jH(�k )) = Tr(� jH(� j )) = 0. (C61)

The same holds for the second term in the summation above. Therefore, the linear term is zero.
Second order:

Tr
(
�⊗2

j (H ⊗ I + I ⊗ H)⊗2�⊗2
k Ŝ

) = Tr
(
�⊗2

j (H2 ⊗ I + I ⊗ H2 + 2H ⊗ H)�⊗2
k Ŝ

)
(C62)

= 2 Tr
(
�⊗2

j (H ⊗ I + H ⊗ H)�⊗2
k Ŝ

)
, (C63)

where the last equality follows from a simple symmetry argument.
Note that H2 ⊗ I (X ⊗ Y ) = [H, [H,X ]] ⊗ Y and H ⊗ H(X ⊗ Y ) = [H,X ] ⊗ [H,Y ]. Therefore,

H2 ⊗ I (�k ⊗ �k ) = [H, [H,�k]] ⊗ �k = {H (H�k − �kH ) − (H�k − �kH )H} ⊗ �k (C64)

= (H2�k − 2H�kH + �kH
2) ⊗ �k. (C65)

Plugging this back into the trace, we have

Tr
(
�⊗2

j (H2 ⊗ I )�⊗2
k Ŝ

)
(C66)

= Tr
(
�⊗2

j (H2�k − 2H�kH + �kH
2) ⊗ �kŜ

)
(C67)

= δ jk Tr[� j (H
2�k − 2H�kH + �kH

2)] (C68)

= Tr[� j (H
2�k − 2H�kH + �kH

2)] (C69)

= 2(Tr[� jH
2� j ) − (Tr(� jH ))2] (C70)

= 2var j (H ), where var j (H ) ≡ 〈H2〉� j − 〈H〉2
� j

. (C71)
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Now, we need to look at the H ⊗ H term:

Tr
(
�⊗2

j [H,�k] ⊗ [H,�k]Ŝ
) = Tr(� j[H,�k]� j[H,�k]) (C72)

= Tr [(� jH�k − � j�kH )(� jH�k − � j�kH )] = 0; (C73)

that is, the H ⊗ H term is zero.
Therefore, putting everything together, we have

1

2

d2CB(Ut )

dt2

∣∣∣∣
t=0

= 1

d

d∑
j=1

var j (H ). (C74)

�

7. Proof of short-time growth of k-local commuting Hamiltonians, Eq. (42)

To prove this we need three ingredients. First, notice that since each term in the Hamiltonian H (k) commutes, we have
‖H (k)‖∞ = ∑L−(k−1)

j=1 ‖σ x
j ⊗ σ x

j+1 ⊗ · · · ⊗ σ x
j+(k−1)‖∞ = L − (k − 1), where in the second equality, we have used the fact that

σ x
j ⊗ σ x

j+1 ⊗ · · · ⊗ σ x
j+(k−1) is a unitary for each j and ‖U‖∞ = 1 for all unitaries. Second, to compute 1

2
d2CB (Ut )

dt2 |t=0, we can use

its equality with 1
d

∑d
j=1 var j (H ).

Then we note that

1

d

d∑
j=1

var j (H ) = 1

d

(
d∑
j=1

Tr(H2� j ) −
d∑
j=1

(Tr (H� j ))2
)

= 1

d

(
Tr(H2) −

d∑
j=1

H2
j j

)
, (C75)

where Hj j = 〈 j|H | j〉.
Third, for each H (k) notice that

Tr[(H (k) )2] =
L−(k−1)∑
α,β=1

Tr
[(

σ x
α ⊗ σ x

α+1 ⊗ · · · ⊗ σ x
α+(k−1)

)(
σ x

β ⊗ σ x
β+1 ⊗ · · · ⊗ σ x

β+(k−1)

)]
. (C76)

It is easy to see that since Tr[σ x] = 0 the above trace is only nonzero if α = β, and therefore, we have, using Tr[I] = d ,

Tr[(H (k) )2] = d[L − (k − 1)]. (C77)

Moreover, notice that, Hj j = 0 ∀ j (since σ x’s flip the spins). Therefore,

1

d

d∑
j=1

var j (H ) = L − (k − 1). (C78)

And, finally, normalizing this with the (squared) operator norm of the Hamiltonian, we have the desired result.
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