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Figure 1: Millimeter wave radar can image through fog and bad weather. However, specularity, artifacts and low resolution result in poor
perceptual quality as shown in Figure (d) and (e) above. To overcome this limitation, this paper leverages a cGAN architecture to recover
high resolution images from the low resolution mmWave radar heatmaps. The figure above shows (a) the original scene, (b) ground truth
depth map captured with stereo camera and cropped using MaskRCNN (before fog is generated), (c) the scene in fog, (d) the millimeter
wave radar point cloud generated in the presence of fog, (e) the corresponding radar heatmap, and (f) the recovered output of our system.

Abstract

This paper demonstrates high-resolution imaging using
millimeter wave (mmWave) radars that can function even
in dense fog. We leverage the fact that mmWave signals
have favorable propagation characteristics in low visibil-
ity conditions, unlike optical sensors like cameras and Li-
DARs which cannot penetrate through dense fog. Millime-
ter wave radars, however, suffer from very low resolution,
specularity, and noise artifacts. We introduce HawkEye,
a system that leverages a cGAN architecture to recover
high-frequency shapes from raw low-resolution mmWave
heatmaps. We propose a novel design that addresses chal-
lenges specific to the structure and nature of the radar sig-
nals involved. We also develop a data synthesizer to aid with
large-scale dataset generation for training. We implement
our system on a custom-built mmWave radar platform and
demonstrate performance improvement over both standard
mmWave radars and other competitive baselines.

1. Introduction

Achieving fully autonomous vehicles, referred to as
Level 5 in the standards for driving automation, has gain
significant interest from major companies like Tesla, Ford,
Honda, Waymo, Toyota, Uber, and NVIDIA [6, 7, 22, 37,

, 60] Level 5 autonomy requires the ability to operate in
severe weather conditions such as dense fog, smog, snow-
storms, and sandstorms [22, 23]. Autonomous vehicles,
however, mainly use cameras or LiDARs, to obtain an ac-

curate and reliable view of the environment, which suffer
in low visibility conditions and bad weather [39, 51, 52, 8,

, 21]. Cameras also suffer at night in low light condi-
tions. This is problematic as many manufacturers including
Tesla avoid using LiDAR altogether, making cameras their
primary sensory module [58].!

Millimeter wave (mmWave) radars offer more favorable
characteristics due to their ability to work at night and pen-
etrate through fog, snow and dust [25, 1 1]. However, car
manufacturers today, still use mmWave radar for the sole
purpose of unidirectional ranging, i.e., to determine the dis-
tance to other vehicles [24, 9]. Imaging using mmWave
radar is challenging for several reasons. First, the resolu-
tion of mmWave is extremely low compared to LiDARs or
cameras. Fig. 1 (d,e) show an example where the mmWave
image appears as blobs of radar reflections and carries lit-
tle to no contextual and perceptual information as compared
to the corresponding camera shown in Fig. 1 (a). Second,
unlike optical signals, wireless mmWave signals are highly
specular, i.e., the signals exhibit mirror-like reflections from
the car [43]. As a result, not all reflections from the car
propagate back to the mmWave receiver and major parts of
the car do not appear in the image, making it impossible to
detect its shape as can be seen in Fig. 1 (d.e). Finally, wire-
less reflections from the car can also bounce off the road and
other cars and travel along multiple paths to the mmWave
receiver creating shadow reflections and artifacts in various

!Other modalities such as thermal imaging also fail in dense fog [5].
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locations in the scene as shown in Fig. 1 (d,e).

Today’s commercial mmWave imaging systems, like air-
port scanners, use human-sized mechanically steerable ar-
rays to improve the resolution. They also isolate the ob-
ject being imaged in the near field to eliminate multipath
reflections and rotate the arrays around the object to address
specularity [45, 47]. However, such a design would be ex-
tremely bulky and not practical for self-driving cars as we
have no control over the cars being imaged.

In this paper, we present HawkEye, a system that consol-
idates advances to enable practical use of mmWave imaging
in realistic applications. Using a mmWave radar, we can
sense and predict shape for cars in the presence of dense
fog. Figure 1 column (e) shows our system’s predicted
depth (as predicted from the sensed radar signal visualized
in column (d)). Column (b) shows the ground truth depth
map (recovered using a stereo camera in the absence of fog).
While obviously, we are far from a practical system that can
use mmWave imaging on board self-driving cars, we have
made huge advances towards this. This paper describes the
different aspects that have enabled this advance.

Our central contribution is to cast the problem of pre-
dicting high-frequency shape from raw mmWave heatmaps
as a learning problem. Use of learning provides robust-
ness to hard-to-model radar reflections and sources of noise
like specularity and multipath reflections. At the same
time, learning can effectively leverage priors on shapes of
cars to make reasonable predictions from coarse mmWave
heatmaps. However, use of learning for this task was non-
trivial. We had to innovate on the design of the neural net-
work, loss functions for training, and development of large-
scale realistic datasets for training. We employed Genera-
tive Adversarial Network [31] based architectures that con-
sume mmWave heatmaps and predict high-resolution depth
maps. The specific nature of the signal required the design
of custom neural network architectures (that map 3D in-
put heatmaps to 2D depth maps, and skip connections that
project 3D information to 2D), and custom loss functions
(combination of perceptual, L;, and adversarial loss). We
built a realistic radar data synthesizer that captures unique
characteristics of radar. We used this module to create a
synthesized dataset which was used to train our expressive
neural networks. Finally, we built a real-world data collec-
tion platform to collect real data for fine-tuning and bench-
marking. These all collectively enable the end-to-end sys-
tem of HawkEye, which to the best of our knowledge, is the
first system that can deliver the results shown in Fig. 1(f).

HawkEye has four modules as shown in Fig. 2: (i)
A custom-built mmWave imaging module to capture 3D
mmWave heatmaps, (ii) A wide baseline stereo camera sys-
tem to capture high-resolution 2D depth maps for ground
truth, (iii) Synthesizer to augment training dataset with syn-
thesized data from 3D CAD models of cars and mmWave
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Figure 2: HawkEye’s System Overview.

ray tracing algorithms, and (iv) a GAN architecture cus-
tomized for mmWave imaging in the context of self-driving
cars. Our results show that HawkEye is able to gen-
erate high-resolution depth maps from raw 3D mmWave
heatmaps and accurately reconstruct the car in the real scene
even in low visibility conditions like fog. Our data synthe-
sizer code and datasets are available at our project webpage.

2. Related Work

Super-Resolution: Neural networks have been used to in-
crease the resolution of camera images and near-Infrared
images [28, 32, 38, 40]. Such techniques rely on the corre-
spondence of image patches between low and high resolu-
tion images and can achieve an upscaling factor of 4x. The
closest to our work are techniques for upsamplng sparse 3D
LiDAR data to create dense 2D depth maps [18, 12, 34, 61,

, 49]. However, these works either require an RGB cam-
era in addition to LiDAR [18, 12, 34, 61] and, hence, do
not work in low visibility conditions, or rely on high fre-
quency visual features like edges to cluster and upsample
objects [17, 49]. Millimeter wave images, however, have
significantly lower spatial resolution where high frequency
visual features like boundaries and edges are not apparent.
Millimeter wave also suffers from artifacts and specularities
that cannot be addressed with traditional super-resolution
and upsampling techniques.

LiDAR in Fog: Recent work aims to improve the perfor-
mance of LiDAR in fog [39, 51, 52]. However, even state-
of-the-art research systems either require knowing a depth
map of the scene a priori [39] or work only when the ob-
ject is static by estimating the statistical distribution of the
photon reflected off the object [51, 52]. These systems also
work only up to 54 cm and have limited resolution (32 x 32
pixels) and field of view. Millimeter wave radar, on the
other hand, can penetrate through dense fog and does not
require the object to be static [29, 14].

Radar Imaging Systems: There exist millimeter wave
radar imaging systems that can achieve high resolution [47,

, 53, 27, 45]. However, these systems can only work at
very near distances (< 50cm) and use very bulky human-
sized arrays similar to airport security scanners [47]. Other
radar systems that can achieve high resolution at longer dis-
tances, are integrated with optical components like a large
focusing lens and a mechanically scanning raster [46, 27, 2].
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(a) Scene

(c) 2D Top View of Radar Heatmap (d) 2D Front View of Radar Heatmap
Figure 3: Output of the Millimeter Wave Imaging Radar.

Hence, they are bulky and perform poorly on mobile plat-
forms like self driving cars [55].

Past work also leverages deep learning in the context of
millimeter wave radar data. [15] extends the PointNet ar-
chitecture from [10] to perform 2D object detection from
radar data but cannot perform high resolution depth imag-
ing. [19] and [3] apply neural networks to radar acquisitions
to enhance their resolution. Both [19, 3], however, work
only at short distances and use radar data both as input and
ground-truth to their system, making them inherently inca-
pable of dealing with challenges like specularity and mul-
tipath. HawkEye, on the other hand, achieves much better
results by training using high resolution depth maps to re-
cover the visual representation of the cars and learn to cope
with specularity and multipath.

Recent work showed significant progress in using low
frequency wireless radar (below 6 GHz) to estimate the 3D
pose of humans and track them through walls and occlu-
sions [1, 64, 62, 63]. The work leverages human motion
to combat specularity by combining reflections from differ-
ent body parts over time and stitching them to form the full
human body. The work also uses deep convolutional neu-
ral networks to label limbs and joints and map them to 3D
models of the human skeleton. However, unlike humans
in indoor settings, cars move as one single rigid body and
only a single viewpoint of the car is typically observed in
practice. Therefore, even during motion, most portions of
the car will remain invisible due to specularity. Our system
adopts a conditional GAN [44] architecture that is able to
address specularity without relying on the object’s mobility
and, hence, can also image static objects like parked cars
and cars stopped at traffic lights.

3. Millimeter Wave Imaging Background

Millimeter wave radar works by transmitting a wireless
signal and receiving back the reflections from various ob-
jects in the scene. It operates in the high frequency bands
such as 24 GHz, 60 GHz, and 77 GHz and uses techniques
like FMCW (Frequency Modulated Continuous Wave) and

mmWave

(a) Specularity and Multipath (b) 2D sinc function

Figure 4: Challenges in Millimeter Wave Imaging.

antenna arrays to separate the received reflections.” The an-
tenna arrays are electronically steered to capture and sepa-
rate reflections from the scene based on their spatial direc-
tion (¢, #) whereas FMCW is used to separate reflections
based on the range (p) from the reflecting object. This al-
lows us to compute a 3D heatmap z(¢, 6, p) where each
point represents the energy reflected from a voxel in space.

Figure 3 shows an example of the output of our radar.
The 3D heatmap corresponding to the car in (a) is shown as
a point cloud in (b). The point cloud is generated by thresh-
olding out the voxels where the reflected signal energy is
very weak. We also show projections of the 3D heatmap in
the 2D top view in (c), and the 2D front view in (d). The fig-
ure also overlays the car’s silhouette on the 2D heatmaps to
better demonstrate where the reflections are coming from.

As can be seen from the figure, mmWave radar imaging
has fundamentally different challenges compared to camera
and LiDAR data. First, the imaging resolution is signifi-
cantly lower than vision. For example, in our system, the
range resolution is 10 cm which is 3.3x worse than that
of the commercial LiDAR [42]. The azimuth and eleva-
tion resolution is 5° which is 50 x worse than LiDAR [42].
Range resolution depends on the FMCW signal bandwidth
and can potentially be improved using more expensive hard-
ware. However, angular resolution depends on the aperture
of the antenna array. To achieve sub-degree angular reso-
lution, similar to LiDAR, we would need a 9 m long an-
tenna array which is impractical both in terms of cost and
form factor.? For practical aperture sizes (few centimeters),
the output mmWave radar image gets convolved with a very
wide 2D sinc function along the azimuth and elevation di-
mensions similar to the one shown in Fig. 4 (b). The 2D
sinc function eliminates almost all high frequency percep-
tual content such as object boundaries. That is why the
mmWave image in Fig. 3 looks like blobs. The sinc side-
lobes also create artifacts and noise in the image as can be
seen in the 2D projections in Fig. 3

Resolution, however, is not the only challenge. Unlike
light, mmWave signals do not scatter as much and mainly
reflect off surfaces. Hence, the car is highly specular and
acts as a mirror reflector of radar signals. As a result, most

2 At such high frequencies, there is abundant bandwidth available for
FMCW signals. The signal wavelength is also small (millimeters) which
enables the design of large compact antenna arrays [54, 65].

3Note that for systems like the airport security scanners, the target being
imaged is in short range and hence, human sized arrays are sufficient.
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Figure 5: Network Architecture of the Generator GG and Discriminator D.

reflections never trace back to the mmWave receiver. This
leads to specularity as shown in Fig. 4 (a), making certain
portions of the car impossible to image as can be seen in
Fig. 3, where a large portion of the car’s surface is missing.
Moreover, due to multipath propagation, some reflections
bounce off the street and other obstacles and trace back to
the receiver as shown in Fig. 4 (a) creating many artifacts in
the image as can be seen in Fig. 3 (c,d). Finally, radar data
has a different representation and perspective as compared
to cameras. We must accommodate the above challenges
in designing a neural network framework that is able to re-
cover the shape, size, location, ... of the car being imaged.

4. HawkEye’s Architecture

Overview: We propose a conditional GAN [44] based ar-
chitecture. Given an input mmWave RF heatmap =, we
learn a conditional generator G. This conditional gener-
ator employs an encoder decoder architecture. Although
mmWave heatmaps have low spatial resolution, they can
achieve high resolution in the depth dimension due to their
large sensing bandwidth. In order to retain these high-
frequency details in depth, we use skip-connections [50] in
our design. Our discriminator D takes in (x, y) or (z, G(z))
pairs, and learns to discriminate between them. The gener-
ator and discriminator are trained jointly, with the discrim-
inator trying to distinguish generated output from ground
truth, and the generator trying to fool the discriminator. We
additionally use L; and perceptual losses to make the output
of the generator consistent with the instance being input to
it. Figure 5 shows our architecture. The peculiarities of the
raw mmWave signal requires us to carefully consider the
design choices involved. We next provide necessary tech-
nical details and emphasize the important design choices.
Further details of HawkEye’s neural network architecture
can be found in the supplementary material.

Input and Output Representation: We use the per-voxel
energy in the sensed mmWave heatmap as our input rep-
resentation in the 3D spherical coordinate system (¢, 8, p).
The output from the GAN is the high-frequency shape of
the object. We represent the predicted shape in the form of
a 2D depth map in the stereo camera frame, where the GAN
predicts the depth for each pixel in the image. The generator

learns a mapping from R64%32X96 (o R256x 128

Most past works that employ conditional GANs, either
study 2D to 2D or 3D to 3D transformations. However, our
problem requires design of a hybrid 3D to 2D transforma-
tion. The sensed mmWave signal is very low resolution, and
we do not want to introduce further aliasing by projecting
the sensed 3D heatmap to 2D. At the same time, we de-
sire the high-frequency shape as output. It is challenging to
predict high-resolution 3D heatmap for computational and
optimization reasons [57, 41]. Thus, we chose to represent
our outputs as 2D depth maps. Further, note that mmWave
signals only provide reflections from metal surfaces in the
line-of-sight, since mmWave is shielded by metal surfaces.
Thus, the 2D depth map representation of the car serves as
a meaningful intermediate representation that can be post-
processed to construct full 3D predictions.

Generator Architecture: We follow standard encoder-
decoder architecture [4] for representing the generator. The
generator is implemented using a deep neural network that
maps the input 3D heatmap to a low-dimensional represen-
tations z using the encoder. This low-dimensional represen-
tation is used by a decoder to produce the 2D depth predic-
tion. We use a 2048 dimensional z-vector. The encoder con-
sists of 6 3D convolution layers along with Leaky-ReLU
activation functions and BatchNorm layers. The decoder
starts with the 2048 dimensional z vector and uses 8 decon-
volution layers to produce the 2D depth map. We use Batch-
Norm and ReLU activations for the deconvolution layers.
Finally, we apply the hyperbolic tangent function alongside
a linear transformation that map the output of the generator
to the absolute depth in the scene.

Skip Connections: We also use skip connections [50] in
the generator. Skip connections provide higher layers in the
decoder with high-frequency information from the input /
early layers of the encoder. While this is simple in networks
that map 2D to 2D or 3D to 3D, our network learns a 3D to
2D projection. Thus, our skip connection design projects
the input 3D heatmap into a 2D image, which is concate-
nated with the higher layers of the decoder. This projection
is done as follows. We compute the following 2D image by
recording the location that corresponds to the highest value
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Figure 6: HawkEye’s qualitative performance on real test data in clear weather conditions. Column (a) and (b) show the original clear
scene with the car and the corresponding stereo depth map. Column (c) and (d) show the radar heatmap as 3D point cloud and 2D front-
view projection. Column (e) shows the output from HawkEye, while Columns (f) and (g) show the output from L1 and Nearest Neighbor
baselines. The scalebar shows the absolute depth metric in the depth map.

along a ray that projects at that location:
22p(0,0) = argmax z3p(¢,0,7). (D

Simply choosing the depth corresponding to the largest
value is unstable. Thus, we choose the m largest values
and create m = 8 channels of 2D feature maps, ordered
from highest to lowest power. These 2D feature maps are
concatenated with the features maps at the 6" layer in the
decoder, so that the high-resolution depth information from
the radar heatmap is directly extracted and passed to the
output in order to retain the high-frequency details in depth.
Note that, this projection is done in a spherical coordinate
frame, while our output is in the camera coordinate frame.
As the field of view of the camera is not very large, the
two images are still reasonably well aligned. This is a non-
differentiable operation and is only done with the input.

Discriminator Architecture: The discriminator takes two
inputs: the 3D heatmap x and a 2D depth map that either
was the ground-truth y or was generated G(x). It outputs
the probability of the input being real. Typically, the input
and output to the generator are of the same type (both 2D
or both 3D). However, in our case input is 3D and output
is 2D. Thus, we adopt a two-stream architecture that uses
two separate networks to map x and y to 1D feature vectors,
and then fuses them to classify real vs generated samples, as
shown in Fig. 5. Heatmap z is processed through a 3D CNN
with the same architecture as used in the generator but with
different weights, while the depth map y or G(x) is passed
through an 8 layer CNN. Both networks produce 512 di-
mensional representation that are concatenated and passed
to 2 fully connected layers to output the final classification.

Loss Function: The output of the discriminator D and gen-
erator GG are used to calculate the vanilla GAN loss function
L(G) [31]. As with past work [36, 38], we also include
L1 loss (between the ground truth and the prediction), and
a perceptual loss term L, [38, 26] (on activations of a pre-
trained neural network, VGG [56] in our case, on y and
G(zx)). During training, D and G are optimized to mini-
mize the L (G) loss as below:

L,(G) = Elly — G(2)]lh )
L,(G) = E|VGG(y) - VGG(G(2))| 3)
ﬁH(G) = [,(G) + ML+ )\pﬁp @

While £; losses aren’t effective for pixel prediction, our
outputs are depth values and thus £; makes sense. We
use the feature space of a VGG network [56] to compute
the perceptual loss. We replicate the depth image into a 3
channel image and feed it into a pre-trained VGG network.
HawkEye employs a combination of three losses (Eq. 4),
A1 and A, are hand-tuned relative weights of the loss func-
tions. Using this loss function enables HawkEye to accu-
rately capture both the low and high frequency components
in the image. This results in perceptually interpretable high-
resolution images that faithfully represent the scene.

5. HawkEye’s Data Synthesizer

Collecting real-world mmWave data using our custom-
built mmWave module is very time-consuming. Hence,
trainig with real data would take a prohibitively long time.
To address this, we build a synthesizer to generate paired
3D mmWave heatmaps and 2D depth maps of cars from
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Figure 7: HawkEye’s performance with fog in scene. Column (a) and (b) show the original scene and corresponding stereo depth map.
Column (c) shows the scene filled with fog. Column (d) and (e) show the radar heatmap in the fog scene as 3D point cloud and 2D front-
view projection. Column (f) shows the output from HawkEye, while Column (g) and (h) show the output from L1 and Nearest Neighbor
baselines. The scalebar shows the absolute depth metric in the depth map.

3D CAD models. Our synthesizer is designed to create 3D
point reflector models of cars and then simulate mmWave
radar signals using ray tracing. It takes into account mul-
tipath reflections as well as specularity based on reflection
angles to generate realistic mmWave 3D heatmaps. Simu-
lation has 3 stages:

(1) Scene Generation: We first generate scenes of cars based
on two types of datasets: 3D CAD models for autonomous
driving [20] and Cityscapes [13], a street view video record-
ings dataset. The 3D CAD models provide us with precise
3D meshes of a wide variety of vehicles, while the street
view photos offer references for car placement in the cam-
era frame. We apply Mask R-CNN [33] on the street views
to detect objects of interest.

(2) Ray Tracing: Here we model the mmWave reflectors
in the scene. First, we remove occluded bodies through
spherical projection. Then, we model the remaining parts as
clusters of point reflectors, where the number of points rep-
resents the size of the radar cross section. We classify the
specularity of each cluster as scattering corners or mostly
specular surfaces by referring to the known car outline. Fi-
nally, we perform standard ray tracing [16] on the point re-
flectors with their specularity taken into account.

(3) mmWave Heatmap and Ground-truth Generation: We
simulate the received signal based on the point reflector
model with background noise introduced. We add thermal
noise and phase noise to the mmWave signals. Addition-
ally, to avoid the nontrivial extrinsic calibration for the field
point and point of view between the mmWave and stereo
camera modules in our experimental setup, we import the
same displacement into our synthesizer to make predictions
at the stereo camera view point, and to accurately train and
test HawkEye’s GAN architecture. Similarly, our model can

be re-trained to make predictions from any other viewpoint
as well (with appropriately modified skip connections). By
applying mmWave processing as described in Section 3, we
get the 3D mmWave heatmap. The ground-truth 2D depth
map is generated to match the stereo camera frame.

6. Experiments
6.1. Dataset and Implementation

Dataset: Since there is no publicly available mmWave
radar dataset, we collect our own dataset using a custom-
built mmWave imaging platform. We emulate a 2D antenna
array with a 60 GHz radio and transmit a standard radar
waveform to capture 3D mmWave heatmaps. To capture the
corresponding high resolution 2D depth maps for ground
truth, we build a custom wide baseline stereo camera sys-
tem. We mount an iPhone camera on a linear slider with
sub-mm accuracy to capture multiple images of the scene,
and apply a standard stereo image processing algorithm [35]
to extract 2D depth maps. The linear slider setup is stable,
which allows us to calibrate once and apply the same recti-
fication to all experiments. In the ground truth, we filter out
pixels that do not belong to the vehicles of interest using
labeled object masks generated from Mask R-CNN [33].
Supplementary material includes a more detailed descrip-
tion of our data collection platform.

We imaged 327 scenes of cars in 3 types of backgrounds:
indoor parking garage, outdoor lot, and outdoor house
drive-through. The dataset includes 9 categories of cars
spanning 60 different models: 2 Sub-compact, 12 Compact,
16 Mid-sized, 7 Full-sized, 5 Sports, 11 SUVs, 1 Jeep, 2
Vans, and 4 Trucks. We tested all 360° orientations of the
car with respect to the radar. The distance from the radar
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to the car is between 3.3 to 11.9 meters, with a mean of 6.2
m and a standard deviation of 1.66 m. We then created a
dataset of paired 3D mmWave heatmaps, RGB camera im-
ages, and stereo camera depth maps. In addition to real
data, we also have 4000 synthesized scenes generated from
HawkEye’s data synthesizor for 120 car models.

Controlled Experiments in Fog/Rain: Out of the 327 real
scenes we imaged, there are 101 experiments in fog and rain
to test HawkEye’s performance in poor visibility conditions
where today’s optical sensors fail. Due to practical limi-
tations such as the risk of water damage to our setup, we
conduct controlled experiments where we emulate real fog
and rain. We use a fog machine along with a high-density
water-based fog fluid to emulate severe and realistic fog
conditions, similar to previous studies [29, 30]. We emu-
late rain using a water hose in a confined region around the
object of interest (the car).

Training: HawkEye’s GAN is trained in two stages. In
the first stage, we train for 170 epochs using a synthesized
dataset of 3000 images with batch size 4. In the second
stage, we fine-tune the model for 60 additional epochs with
100 real mmWave images captured in clear weather. It
is important to note that HawkEye’s GAN model is never
trained on examples collected in fog or rain. The train-
ing takes 12 hours on an Nvidia Titan RTX GPU. We test
HawkEye’s performance on 1000 synthesized images, and
the remaining 227 real images including the fog and rain
experiments. For testing, we follow standard k-fold cross-
validation with k£ = 5 to test all 327 scenes while ensuring
examples in the test dataset are not used during training.

Baselines: We compare HawkEye to:

(i) mmWave Radar: We compare against raw mmWave
radar heatmaps to evaluate HawkEye’s improvement over
the low resolution and artifact-ridden radar images.

(i1) L1 Based Loss: To determine the utility of the GAN and
discriminator in HawkEye, we compare against an identical
neural network trained only with the L; based loss function,
L =Ly + ALy, as defined in Eq. (1) and (2).

(iii) Nearest Neighbor: One could argue that our method
overfits and simply memorizes sample points from the train-
ing dataset. To understand this, we compare against a Near-
est Neighbor scheme, which retrieves samples in the input
feature space of 3D radar heatmaps with the minimum Eu-
clidean distance.

6.2. Qualitative Results

We show HawkEye’s performance in clear weather and
fog in Fig. 6 and Fig. 7 respectively.* In both visibility con-
ditions, HawkEye accurately reconstructs the shape and size

4 We show additional qualitative results for the synthetic test dataset
and for experiments in rain in the supplementary material.

Figure 8: Examples where HawkEye fails. The first and second
rows show the original scene and corresponding stereo depth map.
Third and fourth row show the radar heatmap as point cloud and
front view projection. The fifth row shows HawkEye’s output.

of the car in the scene, and captures key defining features
such as its wheels and orientation comparably better than
the other baselines. HawkEye can also accurately determine
the distance to the car in 3D space, as can be seen from the
intensity in the depth maps. HawkEye’s ability to accurately
image in fog and rain’, despite not being trained with such
examples, demonstrates that our model can generalize well
in different weather conditions due to the favorable propa-
gation characteristics of mmWave signals. Further, note that
although HawkEye is trained primarily on synthesized data,
it could generalize well to real scenes with different back-
grounds and visibility conditions with only a small amount
of fine-tuning. Hence, the simulator faithfully emulates the
real mmWave heatmaps.

Failure Examples: Figure 8 shows some typical failure
cases for HawkEye. (i) and (ii) are from the fog exper-
iments. In (i), although HawkEye estimates the correct
bounding box, it misjudges the front and back of the car.
In (ii), although HawkEye successfully detects the corner of
the car, due to both strong fictitious reflections and specular-
ity in the heatmap, it incorrectly estimates the orientation of
the car. Lastly, a current limitation of our system is that its
performance deteriorates when the scene has multiple cars
(Fig. 8(iii)). To address this, a potential future direction is
to adopt a Region Proposal Network, similar to [64], where
HawkEye can first isolate the reflections from the cars in the
scene, and then reconstruct each car individually.

6.3. Quantitative Results

Metrics: We evaluate on range, size (length, width, height),
and orientation of the car, as they represent the contextual
information of the car in the scene. We define the distance to

5See supplementary material for results in rain.
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Experiment System Errorin | Errorin | Errorin | Errorin Error in % Fictitious | % Car Surface
Ranging | Length Width Height | Orientation | Reflections Missed
HawkEye 30 cm 47 cm 29 cm 9 cm 27° 1.5% 12.9%
Clean Air mmWave 53 cm 179 cm 89 cm 45 cm 64° 15.6% 30.5%
L1 Based Loss 40 cm 97 cm 76 cm 13 cm 37° 2.5% 13.1%
Nearest Neighbor 90 cm 114 cm 70 cm 17 cm 68° 3.5% 16.0%
HawkEye 50 cm 83 cm 44 cm 11 cm 29° 2.5% 15.4%
Fog mmWave 67 cm 222 cm 99 cm 53 cm 72° 20.9% 31.9%
L1 Based Loss 60 cm 108 cm 80 cm 12 cm 38° 3.5% 13.8%
Nearest Neighbor 121 cm 117 cm 76 cm 18 cm 45° 3.6% 22.3%
HawkEye 23 cm 64 cm 37 cm 8 cm 30° 1.3% 10.2%
Synthesized mmWave 29 cm 182 cm 77 cm 3l cm 62° 10.8% 19.2%
Data L1 Based Loss 20 cm 113 cm 73 cm 14 cm 47° 3.4% 9.3%
Nearest Neighbor 81 cm 81 cm 57 cm 13 cm 64° 5.2% 17.5%

Table 1: Quantitative Results. See text for more details.

the closest corner of the car as the range, and orientation as
the angle between the longer edge of the car and the 0° az-
imuth of the mmWave heatmap. We also evaluate accuracy
in shape prediction by comparing (a) % of Car’s Surface
Missed (false negatives) and (b) % of Fictitious Reflections
(false positives) in HawkEye’s output along the front view
of the scene. Note that (a) is indicative of the specularity ef-
fects whereas (b) is indicative of artifacts such as multipath
and ambient reflections in the image. Supplementary mate-
rial includes a more detailed description of how we extract
our quantitative metrics.

Results: Table 1 shows median errors comparing Hawk-
Eye to the baseline schemes. These results are extracted
from 168 scenes in clean air, 59 scenes in fog, and 510 syn-
thesized scenes. We summarize HawkEye’s performance
compared to each baseline below.

(i) mmWave radar: HawkEye achieves an improvement in
ranging accuracy of 1.35x in fog and 2x in clear weather.
Although mmWave radars can achieve high ranging resolu-
tion, the artifacts in the radar heatmaps lead to high ranging
error. The skip connections in HawkEye’s design allow for
the direct transfer of the high ranging resolution from the
mmWave radar input to HawkEye’s output, while addition-
ally HawkEye’s GAN model corrects for the sinc artifact
to achieve lower median ranging error. However, note that
HawkEye’s gains over mmWave radar become more appar-
ent for the other metrics, spanning from 2x to 12X gain for
percentage of fictitious reflectors. This is because the other
metrics are a lot more sensitive to the specularity and multi-
path artifacts, and HawkEye can significantly improve these
metrics by correcting for these noise sources.

(ii) Ly based Loss: The L loss baseline achieves good per-
formance in terms of ranging error compared to HawkEye.
This is expected since optimizing for L loss over 2D depth
maps would directly optimize for ranging error. However,
L, loss cannot capture the high frequency components of
the output shape, resulting in blurring of boundaries. As
a result, the errors in estimated size, orientation and ficti-

tious reflectors are high for L; loss, with HawkEye achiev-
ing approximately 2x performance gains across these met-
rics. These results demonstrate the importance of the GAN
architecture in HawkEye.

(iii) Nearest Neighbor: HawkEye outperforms the Nearest
Neighbor baseline, achieving an improvement of 1.3x to
3% in clear weather, and 1.4 to 2.4 x in fog across various
metrics. This demonstrates that our model is not overfitting
and can generalize well to new data points in the test set.

For the synthesized dataset, the performance trends are
similar. The above results show that HawkEye can faith-
fully reconstruct an accurate and high resolution image of
the car in the scene in both clear weather and in low visi-
bility conditions. One should note that HawkEye’s perfor-
mance in fog degrades slightly compared to clear weather.
This can be attributed to the poor propagation characteris-
tics of 60 GHz RF signals in the presence of water particles
in fog. It is worth noting that due to FCC regulations, we
are constrained to build our experimental setup at the 60
GHz unlicensed spectrum, which suffers from higher atten-
uation from water particles compared to other frequencies
in the mmWave band. We believe that implementing Hawk-
Eye with commercial grade mmWave radars built at the 77
GHz frequency band, which is allocated specifically for au-
tomotive radar applications, would resolve the performance
degradation observed here.

7. Conclusion

In this paper, we show that HawkEye is a promising ap-
proach for achieving high resolution imaging with mmWave
wireless systems, through the novel design of neural net-
work architectures for processing mmWave data. We eval-
uate HawkEye in low visibility conditions such as heavy
fog and show that it can significantly improve performance
over mmWave radars today. While significant future work
is required before HawkEye becomes a practical system that
can be used on board self-driving cars, we have made huge
advances toward this goal.
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