














Experiment System
Error in Error in Error in Error in Error in % Fictitious % Car Surface

Ranging Length Width Height Orientation Reflections Missed

Clean Air

HawkEye 30 cm 47 cm 29 cm 9 cm 27◦ 1.5% 12.9%

mmWave 53 cm 179 cm 89 cm 45 cm 64◦ 15.6% 30.5%

L1 Based Loss 40 cm 97 cm 76 cm 13 cm 37◦ 2.5% 13.1%

Nearest Neighbor 90 cm 114 cm 70 cm 17 cm 68◦ 3.5% 16.0%

Fog

HawkEye 50 cm 83 cm 44 cm 11 cm 29◦ 2.5% 15.4%

mmWave 67 cm 222 cm 99 cm 53 cm 72◦ 20.9% 31.9%

L1 Based Loss 60 cm 108 cm 80 cm 12 cm 38◦ 3.5% 13.8%

Nearest Neighbor 121 cm 117 cm 76 cm 18 cm 45◦ 3.6% 22.3%

HawkEye 23 cm 64 cm 37 cm 8 cm 30◦ 1.3% 10.2%

Synthesized mmWave 29 cm 182 cm 77 cm 31 cm 62◦ 10.8% 19.2%

Data L1 Based Loss 20 cm 113 cm 73 cm 14 cm 47◦ 3.4% 9.3%

Nearest Neighbor 81 cm 81 cm 57 cm 13 cm 64◦ 5.2% 17.5%

Table 1: Quantitative Results. See text for more details.

the closest corner of the car as the range, and orientation as

the angle between the longer edge of the car and the 0◦ az-

imuth of the mmWave heatmap. We also evaluate accuracy

in shape prediction by comparing (a) % of Car’s Surface

Missed (false negatives) and (b) % of Fictitious Reflections

(false positives) in HawkEye’s output along the front view

of the scene. Note that (a) is indicative of the specularity ef-

fects whereas (b) is indicative of artifacts such as multipath

and ambient reflections in the image. Supplementary mate-

rial includes a more detailed description of how we extract

our quantitative metrics.

Results: Table 1 shows median errors comparing Hawk-

Eye to the baseline schemes. These results are extracted

from 168 scenes in clean air, 59 scenes in fog, and 510 syn-

thesized scenes. We summarize HawkEye’s performance

compared to each baseline below.

(i) mmWave radar: HawkEye achieves an improvement in

ranging accuracy of 1.35× in fog and 2× in clear weather.

Although mmWave radars can achieve high ranging resolu-

tion, the artifacts in the radar heatmaps lead to high ranging

error. The skip connections in HawkEye’s design allow for

the direct transfer of the high ranging resolution from the

mmWave radar input to HawkEye’s output, while addition-

ally HawkEye’s GAN model corrects for the sinc artifact

to achieve lower median ranging error. However, note that

HawkEye’s gains over mmWave radar become more appar-

ent for the other metrics, spanning from 2× to 12× gain for

percentage of fictitious reflectors. This is because the other

metrics are a lot more sensitive to the specularity and multi-

path artifacts, and HawkEye can significantly improve these

metrics by correcting for these noise sources.

(ii) L1 based Loss: The L1 loss baseline achieves good per-

formance in terms of ranging error compared to HawkEye.

This is expected since optimizing for L1 loss over 2D depth

maps would directly optimize for ranging error. However,

L1 loss cannot capture the high frequency components of

the output shape, resulting in blurring of boundaries. As

a result, the errors in estimated size, orientation and ficti-

tious reflectors are high for L1 loss, with HawkEye achiev-

ing approximately 2× performance gains across these met-

rics. These results demonstrate the importance of the GAN

architecture in HawkEye.

(iii) Nearest Neighbor: HawkEye outperforms the Nearest

Neighbor baseline, achieving an improvement of 1.3× to

3× in clear weather, and 1.4× to 2.4× in fog across various

metrics. This demonstrates that our model is not overfitting

and can generalize well to new data points in the test set.

For the synthesized dataset, the performance trends are

similar. The above results show that HawkEye can faith-

fully reconstruct an accurate and high resolution image of

the car in the scene in both clear weather and in low visi-

bility conditions. One should note that HawkEye’s perfor-

mance in fog degrades slightly compared to clear weather.

This can be attributed to the poor propagation characteris-

tics of 60 GHz RF signals in the presence of water particles

in fog. It is worth noting that due to FCC regulations, we

are constrained to build our experimental setup at the 60

GHz unlicensed spectrum, which suffers from higher atten-

uation from water particles compared to other frequencies

in the mmWave band. We believe that implementing Hawk-

Eye with commercial grade mmWave radars built at the 77

GHz frequency band, which is allocated specifically for au-

tomotive radar applications, would resolve the performance

degradation observed here.

7. Conclusion

In this paper, we show that HawkEye is a promising ap-

proach for achieving high resolution imaging with mmWave

wireless systems, through the novel design of neural net-

work architectures for processing mmWave data. We eval-

uate HawkEye in low visibility conditions such as heavy

fog and show that it can significantly improve performance

over mmWave radars today. While significant future work

is required before HawkEye becomes a practical system that

can be used on board self-driving cars, we have made huge

advances toward this goal.
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