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Novel regularization scheme for nucleon-nucleon lattice simulations with effective field theory
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We propose a new regularization scheme to study the bound state of two-nucleon systems in lattice effective
field theory. Inspired by a continuum effective field theory calculation, we study an exponential regulator acting
on the leading-order and next-to-leading order interactions, consisting of local contact terms. By fitting the
low-energy coefficients to deuteron binding energy and the asymptotic normalization coefficient on a lattice
simulation, we extract the effective range expansion (ERE) parameters in the 3S1 channel to order p2. We explore
the impact of different powers of the regulator on the extracted ERE parameters for the lattice spacing a =
1.97 fm. Moreover, we investigate how the implementation of the regularization scheme improves the predicted
ERE parameters on the lattice spacing in the range of 1.4 ! a ! 2.6 fm. Our numerical analysis indicates that
for lattice spacing greater than 2 fm, the predicted observables are very close to the experimental data.
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I. INTRODUCTION

Nuclear lattice effective field theory (NLEFT) is a model-
independent and precision controlled approach for the cal-
culation of bound and scattering state properties in nuclear
physics [1]. The novel combination of lattice methods with an
effective field theory approach has been pursued successfully
for few- and many-body systems.

The first attempts for an exact solution of infinite nu-
clear matter using Monte Carlo methods are performed in
Ref. [2], indicating that energy and saturation properties of
symmetric nuclear matter can be reproduced from lattice sim-
ulations. The ab initio techniques combine the Monte Carlo
methods with the low-energy EFT, known as chiral effective
field theory. Based on these approaches, our information for
the scattering of light nuclei, and the ground-state properties
of light-, medium-mass nuclei, as well as neutron matter
has been compromised [3–8]. To improve the efficiency
of large-scale calculations of nucleus-nucleus scattering and
reactions using Monte Carlo calculations, the adiabatic pro-
jection method is developed on lattice [9,10]. The accuracy
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and efficiency of the method are tested on fermion-dimer
scattering calculations in lattice EFT.

The bound state of two nucleons on a lattice, mainly in
the S-wave channel, is formulated in pionless EFT at the
next to leading order (NLO) [11]. The lattice spacing de-
pendence of the renormalization group flows is studied while
the deuteron binding energy and the asymptotic normalization
coefficient (ANC) are being fixed. Lüscher has shown how
one can connect the quantities obtained on a finite volume
to the infinite volume physical observables by connecting the
box size dependence of energy eigenvalues on a lattice to the
effective range parameter and the scattering length [12]. The
exact solution of Lüscher formula for the energy levels of
the two-nucleon system on a lattice with periodic boundary
conditions for the extraction of scattering parameters has been
implemented by Beane et al. in a pionless EFT approach [13].
They have shown that lattice simulations with L " 15 fm will
provide information on the scattering lengths and effective
ranges straightforwardly. Whereas the extraction of data from
lattice simulations with L ! 10 fm requires direct matching
to p cot δ0(p) in the spin-singlet channel and considering the
mixing between the S and D waves remains challenging. The
impact of the topological finite-volume corrections in lattice
calculations of three-nucleon bound state [14], the elastic
scattering of fermion-dimer [15], and also neutron-deuteron
scattering at the very low energies [16] are studied in a pion-
less EFT approach.
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One of the main challenges of lattice calculations is the
necessity to eliminate errors caused by the nonvanishing lat-
tice spacing. One approach to eliminate the lattice artifacts
is including the irrelevant higher-dimensional operators into
the lattice action, which leads to faster convergence to the
continuum limit [17]. Since the lattice spacing serves as a nat-
ural ultraviolet (UV) regulator for the theory, another practical
strategy is the application of a regulator to utilize the smearing
of the contact interactions. Klein et al. have shown that the
application of different regularization schemes leads to the
lattice spacing independence of observables for a wide range
of the lattice spacing in the range 0.5 ! a ! 2.0 fm [18]. This
study is performed at the leading order of pionless and pionful
EFT. The extension of the calculations to the two-, three-,
and four-body sectors to study the lattice spacing dependence
up to next-to-next-to-leading order (N2LO), including two-
and three-nucleon interactions, is performed in Ref. [19]. The
binding energy correlation of triton and helium-4 is studied
for various lattice spacings a = 1.97, 1.64, 1.32 fm, and it is
shown how the convergence towards the Tjon line is reached
for smaller lattice spacing. A systematic study of neutron-
proton scattering, in terms of the computationally efficient
radial Hamiltonian method, is studied on a lattice EFT up to
N2LO [20]. A regularization scheme is applied only to the
LO contact interactions. The lattice spacing dependence of the
scattering observables is explored for lattice spacings ranging
from a = 1.97 fm down to a = 0.98 fm, and it is shown at
a = 0.98 fm, the lattice artifacts appear to be small. In a recent
study by Eliyahu et al., the effect of the finite lattice size on the
binding energies of light nuclei is explored by the construction
of pionless EFT at the LO, where a gaussian regulator is
applied on the contact terms [21].

In this paper, we propose a regularization scheme, inspired
by continuum EFT calculations, to study the two-nucleon
systems on a lattice and extract the effective range expan-
sion (ERE) parameters for a wide range of lattice spacing.
In Sec. II, we briefly review the formalism of two-nucleon
bound state on a lattice, projected in the 3S1 channel, using
pionless EFT up to NLO. By introducing the Lagrangian and
Hamiltonian of the two-nucleon system on a lattice, the ex-
plicit form of the Lippmann-Schwinger equation is presented
by considering the contact interactions between nucleons. In
Sec. III, the procedure of extraction of physical ERE param-
eters from finite volume energy eigenvalues is discussed. Our
numerical results for the lattice energy eigenvalues obtained
for different lattice spacing parameters and different numbers
of lattice nodes are presented in Sec. IV. Moreover, a new
regularization scheme is introduced, and the impact of the
regularization scheme on the ERE parameters is studied in
detail. A conclusion is provided in Sec. V. All the energy
eigenvalues obtained for different lattice spacing parameters
are provided in the Appendix.

II. TWO-NUCLEON IN 3S1 CHANNEL IN PIONLESS
LATTICE EFT UP TO NLO

At very low energies where the nucleon momentum is
much smaller than the pion mass, i.e., Q ! mπ , few-nucleon
systems are not sensitive to the details of the nucleon-nucleon

interactions. So, an EFT is constructed by low energy degrees
of freedom and the Lagrangian is formulated as all contact
interactions between nucleons that are allowed by symmetry.
In this section, we consider the NLO Lagrangian of pionless
EFT. The nucleon-nucleon interactions are defined by an in-
finite number of local operators with an increasing number
of derivatives acting on the nucleon fields. The isospin SU(2)
symmetric and nonrelativistic Lagrangian in the continuum is
given by

L = N†
[

i∂t + ∇2

2M

]
N − C0(NT PkN )†(NT PkN )

+C2[(NT PkN )†(NT Pk←→∇ 2N ) + H.c.], (1)

where N denotes the nonrelativistic nucleon field, M is nu-
cleon mass, the low-energy constants (LECs) C0 and C2

are the zero-range interaction strengths, and
←→∇ 2 = ←−∇ ←−∇ −

2
←−∇ −→∇ + −→∇ −→∇ . Pk = 1√

8
σ2σ

kτ2, with the vector indices k =
1, 2, 3, is the projection operator for 3S1 channel, where σ2
and τ2 are the Pauli matrices acting on the spin and isospin
spaces, respectively. The Hamiltonian corresponding to the
Lagrangian of Eq. (1) is given by

H =
∫

d3x
[

N†
(−∇2

2M

)
N + C0(NT PkN )†(NT PkN )

−C2((NT PkN )†(NT Pk←→∇ 2N ) + H.c.)
]
. (2)

To study the bound state of two-nucleon systems on a lattice,
we utilize a cubic box of side length L with periodic boundary
conditions. The lattice spacing between lattice nodes is a, so
that L = Nsa, where Ns is the number of nodes in each spatial
direction. As it is shown in Ref. [11], in order to transform the
Hamiltonian of Eq. (2) from the continuum to a dimensionless
Hamiltonian on a lattice, one needs to apply the following
substitutions:

N (x) → Nna−3/2, x → na,

∫
d3x → a3

∑

n

,

H → HLa−1, M → MLa−1,

C0 → CL
0 a2, C2 → CL

2 a4, (3)

where n = (n1, n2, n3) is a three-dimensional vector with in-
teger components and CL

0 , CL
2 , and ML are dimensionless

parameters, corresponding to parameters C0, C2, and M in
continuum. The lattice Hamiltonian HL can be obtained in
terms of dimensionless quantities as

HL =
∑

n

[ −1
2ML

N†
n∇2

LNn + CL
0

(
NT

n PkNn)†(NT
n PkNn

)

−CL
2

{(
NT

n PkNn
)†(

NT
n Pk←→∇ 2

LNn
)
+ H.c.

}]
, (4)

where ∇2
L and

←→∇ 2
L represent the discretization of the dimen-

sionless Laplacian. By considering the nucleon operator Nn in
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TABLE I. Hopping coefficients ωi for different levels of im-
provement up to O(a4) in the free nucleon lattice action [6].

Unimproved O(a2) improved O(a4) improved

ω 1 5/4 49/36
ω1 1 4/3 3/2
ω2 0 1/12 3/20
ω3 0 0 1/90

momentum space as

Nn = 1

N3/2
s

∑

pL

eipL ·napL , (5)

the lattice Hamiltonian of Eq. (4) leads to

HL =
∑

pL

PL

2ML
a†

pL
apL + 1

N3
s

∑

pL,p′
L

(
CL

0 + 4CL
2 (PL + P ′

L )
)

×
(
a†

pL
Pka†

−pL

)(
ap′

L
Pka−p′

L

)
. (6)

The momentum argument PL obtained from the free nucleon
lattice action, improvement up to O(a4), defined as [6]

PL ≡ 2
3∑

i=1

(ω − ω1 cos(pi ) + ω2 cos(2pi ) − ω3 cos(3pi )),

(7)

where the components of the lattice momentum pL ≡
(p1, p2, p3) under the periodic boundary condition takes the
values

pi = 2π

Ns
p̂i, −Ns

2
< p̂i !

Ns

2
, i = 1, 2, 3. (8)

As it is shown in Ref. [6], the hopping coefficients ωi in
the improved free nucleon action eliminate lattice artifacts
in the Taylor expansion of single-nucleon dispersion relation
around pL = 0 up to the indicated order. The coefficients ωi
for different level of improvement up to O(a4), are listed
in Table I. It should be noticed that the O(a2n)-improved
lattice action corresponds to a lattice derivative which contains
2n + 2 nearest neighbors, or a total of 2n + 3 lattice sites.
It means unimproved, O(a2)-improved, and O(a4)-improved
actions are corresponding to three-, five-, and seven-point

formula, respectively. By considering the lattice Hamiltonian
of Eq. (6), the lattice form of Lippmann-Schwinger equation
for two-nucleon bound state can be obtained as [11]

ψ (pL ) = 1

EL − PL

ML

1
N3

s

∑

p′
L

(
CL

0 + 4CL
2 (PL + P ′

L )
)
ψ (p′

L ),

(9)

where EL = Ea is the dimensionless two-nucleon binding en-
ergy and ψ (pL ) is the discretized two-nucleon wave function.

III. EXTRACTION OF EFFECTIVE RANGE EXPANSION
PARAMETERS IN LATTICE

By solving the discretized form of the Lippmann-
Schwinger equation of Eq. (9), one can obtain the two-nucleon
energy eigenvalues on the lattice. In the following, we briefly
show how the Lüscher formula can be used to extract the
ERE parameters in 3S1 channel by having the deuteron bind-
ing energy spectrum on the lattice. Lüscher has shown how
one can connect the physical quantities in a finite volume
to the real physics by connecting the box size dependence
of the energy eigenvalues in a finite volume to the infinite
volume scattering matrix. As it is shown in Ref. [13], the
low-momentum behavior of the S-wave phase shift δ0, for two
nucleons with a relative momentum p, can be described by the
following ERE:

p cot δ0(p) = − 1
a(3S1 )

+ 1
2

r (3S1 ) p2 + . . .

= 1
πL

S(η), (10)

where a(3S1 ) and r (3S1 ) refer to the scattering length and the
effective range, respectively. S(η) is the three-dimensional
zeta function with the dimensionless argument η = ( Lp

2π
)
2
. For

|η| < 1, S(η) can be expanded in powers of η as

S(η) = −1
η

+ S0 + S1η + S2η
2 + S3η

3 + . . . , (11)

where the first few coefficients Si are given as

S0 = −8.913631, S1 = 16.532288,

S2 = 8.401924, S3 = 6.945808,

TABLE II. The LECs CL
0 and CL

2 obtained at LO and NLO for different levels of improvement in the lattice momentum PL , defined in
Eq. (7), to reproduce deuteron binding energy Ed = −2.224575 MeV and ANC = 0.249424 fm−0.5 for the lattice parameter a = 1.97 fm and
Ns = 20.

Improvement Level CL
0 CL

2 × 10−2 E2 (MeV) ANC (fm−0.5)

LO
Unimproved −0.49656112 0 −2.224575 0.186319
O(a2) improved −0.5792460 0 −2.224574 0.200483
O(a4) improved −0.60920561 0 −2.224575 0.204060

NLO
Unimproved −1.49576 +3.711484 −2.224574 0.249423
O(a2) improved −1.56064 +3.173400 −2.224575 0.249425
O(a4) improved −1.57907 +3.0453214 −2.224575 0.249425
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S4 = 6.426119, S5 = 6.202149,

S6 = 6.098184, S7 = 6.048263. (12)

By considering the connection between the two-nucleon en-
ergy levels E2 = EL/a = p2

M and the argument η, i.e., EL =
ηa
M ( 2π

L )2, one can obtain a set of η for a set of energy eigenval-
ues EL obtained for a given lattice parameter a and different
values of Ns or the box side length L. By using Eq. (11),
the function 1

πL S(η) can be obtained for different values of
η dictated by energy eigenvalues EL. Finally by using a linear
fitting to Eq. (10), one can extract the ERE parameters a(3S1 )

and r (3S1 ).

IV. NUMERICAL RESULTS

A. LECs and different levels of improvement in the lattice
momentum argument PL

In this section, we study the effect of different levels of
improvement, up to O(a4), in the lattice momentum defined
in Eq. (7) to solve the lattice form of Lippmann-Schwinger
Eq. (9). To this aim, we solve the discretized Lippmann-
Schwinger equation for the lattice spacing a = 1.97 fm with
the number of nodes Ns = 20. The equation can be solved
with both direct and Lanczos methods. Our numerical analysis
shows that the runtime of the calculations with the direct ap-
proach increases exponentially with the number of nodes Ns.
For instance, a direct diagonalization of the kernel of Eq. (9)
for Ns = 20 takes about 90 minutes, while an iterative solution
with the Lanczos technique (see Appendix C2 of Ref. [22])
takes about 1 s, both performed on a single-node CPU desk-
top. While we are convinced that both methods yield the same
results for lattice deuteron binding energy and wave function,
we perform all the calculations with the Lanczos technique
to save runtime. Equation (9) is an eigenvalue equation in the
form of λ ψ = K(EL )ψ with the eigenvalue λ = 1. Since the
kernel of the equation K(EL ) is energy dependent, the solution
of the eigenvalue Eq. (9) can be started by an initial guess for
the energy EL and the search in the binding energy is stopped
when |1 − λ| ! 10−6.

The LEC CL
0 at LO is fitted to deuteron binding energy

Ed = −2.224575 MeV, while at NLO, both LECs CL
0 and CL

2
are determined simultaneously by fitting to deuteron binding
energy as well as the asymptotic normalization coefficient
ANC = 0.249424 fm−0.5. The value of ANC is extracted
from the expression for the S-wave asymptotic normalization
coefficient ANC = 1√

4π

√
2k0

1−r(3S1 )k0

1 [23], with k0 =
√

M|Ed |
and the experimental value of r (3S1 ) = 1.759(5) fm. Similar
to the procedure performed in Ref. [11], the ANC parameter
can been extracted by fitting the numerical lattice deuteron
wave function ψ (pL ) to the analytical wave function ψ (pL ) =
A + B

ML |EL |+PL
, with ANC = B

4π
. To extract the physical values

of LECs CL
0 and CL

2 , Eq. (9) is solved for a wide range of
coefficients CL

0 and CL
2 . In Table II, we have listed the obtained

1The factor 1√
4π

comes from the normalization of the spherical
harmonics.

0 1 2 3 4
PL

0.5
0.85

0.9

0.95

1

1.05

1.1

f(P
L)

n = 1
n = 2
n = 3

FIG. 1. The functional form of the regulator f (PL ), defined in
Eq. (14), for n = 1 (the blue circles), n = 2 (the red diamonds), and
n = 3 (the green triangles) with the regulator parameter b = 0.01.

LECs at LO and NLO for different levels of improvement.
As we can see at LO, the improvements up to O(a2) and
O(a4) lead to about 17% and 23% increasing in the absolute
value of CL

0 , respectively. While at NLO, the improvements up
to O(a2) and O(a4) lead to about 4% (14%) and 6% (18%)
increasing (decreasing) in the absolute value of CL

0 (CL
2 ), re-

spectively. In order to minimize the lattice artifacts in our
numerical study, for the rest of the paper we use O(a4) im-
provement in the lattice momentum PL.

B. A new regularization scheme in lattice

In this section, we introduce a new regularization scheme
and study its impact on the ERE parameters a(3S1 ) and r (3S1 )

obtained from the lattice energy eigenvalues EL for different
values of lattice spacing. Inspired by continuum EFT calcula-
tions [24], we consider the exponential regulators in the lattice
nucleon-nucleon interactions V L

NN (PL,P ′
L ) as

V L
NN (PL,P ′

L ) → V L
NN (PL,P ′

L ) f (PL ) f (P ′
L ), (13)

where the regulators are defined as

f (PL ) = 1
f0

exp
(
−bPn/2

L /n
)
; f0 = 1

N3
s

∑

pL

exp
(
−bPn/2

L /n
)
.

(14)
It should be noticed that the Pn/2

L is calculated from the lattice
momentum argument PL, defined in Eq. (7). The regulator
parameter b is dependent on the lattice spacing parameter a
and is defined as ba3 = A. A typical value of the regular-
ization parameter in our calculations for the lattice spacing
a = 1.97 fm is b = 0.01, which leads to the constant parame-
ter A = 7.645373 × 10−2 fm3. In Fig. 1, we have shown the
regulator f (PL ) as a function of the lattice momentum P0.5

L
for three exponential powers n = 1, 2, 3 with the regulator
parameter b = 0.01. The lattice momentum argument PL is
obtained for Ns = 20. To study the effect of the regulators on
the prediction of the ERE parameters a(3S1 ) and r (3S1 ), we solve
Eq. (9) with different regulator powers for the lattice spacing
a = 1.97 fm and Ns = 20. For each power of the regulator,
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TABLE III. Deuteron binding energy, ANC, and the ERE parameters a(3S1 ) and r (3S1 ) calculated for the lattice spacing parameter a =
1.97 fm. n, b indicates the parameters of the regulator, defined in Eq. (14). The numbers in parentheses are the uncertainties in the last digits.

Order n, b CL
0 CL

2 × 10−2 E2 (MeV) ANC (fm−0.5) a(3S1 ) (fm) r (3S1 ) (fm)

LO 1, 0 −0.60920561 0 −2.224575 0.204060 4.577(7) 0.496(8)
LO 1, 0.01 −0.6017484 0 −2.224573 0.199551 4.652(7) 0.621(7)
LO 2, 0.01 −0.5929415 0 −2.224576 0.195223 4.624(7) 0.580(8)
LO 3, 0.01 −0.569575 0 −2.224575 0.184159 4.64(1) 0.60(1)

NLO 1, 0 −1.57907 +3.0453214 −2.224575 0.249425 5.35(3) 1.65(2)
NLO 1, 0.01 −1.59677 +3.2940765 −2.224575 0.249424 5.43(5) 1.74(4)
NLO 2, 0.01 −1.587607 +3.4237993 −2.224574 0.249423 5.41(4) 1.73(3)
NLO 3, 0.01 −1.574284 +3.945544 −2.224575 0.249427 5.42(3) 1.76(2)

Experiment − − − −2.224575 0.249424 5.424(4) 1.759(5)

we refit the LECs in such a way that CL
0 and CL

2 reproduce the
deuteron binding energy and the ANC. Then by having the
LECs, we resolve Eq. (9) to calculate the energy eigenvalues
EL for smaller values of Ns, in the domain 4 ! Ns ! 20.
Finally, by applying the Lüscher formula, as discussed in
Sec. III, we extract the ERE parameters from the energy
eigenvalues. We implement the same steps at the LO, where
the only LEC parameter CL

0 reproduces the deuteron binding
energy, and we have no control over the ANC. In Table III, we
have presented our numerical results for the prediction of the
ERE parameters a(3S1 ) and r (3S1 ), with different powers of the
regulator. At the NLO, deuteron binding energy and ANC are
both used as inputs to extract the LECs CL

0 and CL
2 , while at the

LO, the only input to extract CL
0 is deuteron binding energy. As

we can see, applying the regulator leads to a correction in the
ERE parameters, and it seems the power n = 1 leads to more
corrections than n = 2 and n = 3.

In Fig. 2, we have shown the effective range function, in
the 3S1 neutron-proton channel, calculated for lattice spacing
a = 1.97 fm as a function of the square of relative momen-
tum. The results are shown at the LO and NLO. As we
have discussed earlier, by using a linear fit to our data and
matching to Eq. (10), one can extract the infinite volume ERE
parameters from the finite volume energy eigenvalues. The
impact of different power of regulators (for n = 1, 2, 3) on

our data for the effective range function is shown. As we can
see, all regulators, independent of their power, are increasing
the slope and decreasing the absolute value of the vertical
intercept of the effective range function, indicating an increase
in the scattering length and effective range parameter. In the
following, we discuss the impact of the regulator function
on the ERE parameters extracted from different lattice spac-
ing. In the first step, we have calculated the lattice energy
eigenvalues with and without the regularized interactions for
different lattice spacing values. To this aim, we have consid-
ered a regulator with a power one. Starting with Ns = 20,
we extract the LECs CL

0 and CL
2 for different lattice spac-

ing parameters a = 1.4, 1.7, 1.97, 2.3, 2.6 fm, by fitting to the
physical deuteron binding energy and ANC. This procedure
leads to negative CL

0 and positive CL
2 for all considered lat-

tice spacing parameters. Then by having the physical LECs,
we have obtained a spectrum of the energy eigenvalues by
lowering the number of nodes to Ns = 4. Finally, by using
Lüscher formula in Eq. (10), we extract the ERE parame-
ters. In Fig. 3, our numerical results for deuteron binding
energies obtained from the solution of Eq. (9), are shown
as a function of the number of lattice nodes Ns, with and
without using the regularized interactions. All the calculated
energy eigenvalues used in Fig. 3 are given in the Appendix.
The obtained effective range functions with different lattice

0 1000 2000 3000 4000 5000

-p2 (MeV2)
-50
-49
-48
-47
-46
-45
-44
-43
-42

p 
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t δ
0(p

) (
M
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) (n = 1, b = 0.0)

(n = 1, b = 0.01)
(n = 2, b = 0.01)
(n = 3, b = 0.01)

0 100 200-43.5

-43

-42.5

-42

LO

0 1000 2000 3000 4000 5000
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-50

-45
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-35

p 
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0(p
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(n = 2, b = 0.01)
(n = 3, b = 0.01)

0 100 200-38

-37

-36

NLO

FIG. 2. The LO (left panel) and NLO (right panel) EFT results for the effective range function p cot δ0(p) in the 3S1 neutron-proton
channel for the lattice spacing a = 1.97 fm, with and without regulators. The solid red line (circles) indicates the results obtained by bare
contact interactions with no regulator. The blue (squares), green (diamonds), and orange (triangles) dashed lines are corresponding to the
results obtained with regularized interactions with a regulator power n = 1, 2, and 3, respectively.
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FIG. 3. The NLO EFT results for deuteron binding energy as a function of the number of lattice nodes Ns for different lattice spacing
parameters a. In the left panel, the results are obtained with bare contact interactions with no regulator, and in the right panel, a regulator with
power n = 1 and the parameter b = 0.01 is applied.

spacing a = 1.4, 1.7, 1.97, 2.3, 2.6 fm are shown in Fig. 4.
Our numerical results for extracted ERE parameters, with and
without applying the regularization scheme, are presented in
Table IV. It should be noticed that the LECs CL

0 and CL
2 are

fitted to the experimental values of deuteron binding energy
and ANC with Ns = 20. As we can see, the regularization
scheme for lattice spacing greater than 2 fm, brings the scat-
tering length parameters a(3S1 ) very close to the experimental
value. Similarly, the regularization scheme increases the ef-
fective ranges r (3S1 ) to values closer to the corresponding
experimental value. So, we are confident that the introduced
regularization scheme improves the extracted ERE parameters
for different lattice spacing at NLO pionless EFT. It should
be mentioned that we have not manipulated the regularization
parameter b to reach the same ERE parameters for different
lattice spacing. As it is shown earlier, the regulator parameter
b is dependent on the lattice spacing a as b = A/a3, while
the value of A is considered to be constant for all lattice
spacing. While the regularization scheme for smaller lattice
spacing does not match the ERE parameters precisely to the
corresponding experimental data, it brings them closer to the
experimental data.

In Table V, we have compared our ERE parameters ex-
tracted for lattice spacing a = 1.97 fm, by different powers of
the regulator, with the results of other studies.

V. CONCLUSION

In this paper, we have studied the impact of a new reg-
ularization scheme on the extraction of the ERE parameters
of 3S1 channel for different lattice spacing in a pionless ef-
fective field theory up to NLO. We first use the deuteron
binding energy and the ANC to fix the LECs of the contact
interactions by solving the lattice form of the Lippmann-
Schwinger equation with Lanczos technique. Then we employ
Lüscher’s finite-volume relation to extract the S-wave ERE
parameters r (3S1 ) and a(3S1 ) from the lattice energy eigenval-
ues corresponding to the different lattice size. The lattice
spacing dependence of the ERE parameters is studied in the
range 1.4 ! a ! 2.6 fm. To eliminate the lattice artifacts, an
O(a4)-improved lattice action is considered. The impact of
different powers of the exponential regulator is studied for the
lattice spacing a = 1.97 fm, and it is shown that they have
an almost similar influence on the extracted ERE parame-
ters. The introduced regulator is applied to different lattice
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FIG. 4. The NLO EFT results for the effective range function p cot δ0(p) in the 3S1 neutron-proton channel for different values of lattice
spacing parameter a. In the left panel, the results are obtained with bare contact interactions with no regulator, and in the right panel, a regulator
with power n = 1 and the parameter b = 0.01 is applied.
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TABLE IV. Deuteron binding energy, ANC and the ERE parameters a(3S1 ) and r (3S1 ) calculated for different lattice spacing parameter a
with and without implementing the regularization scheme, suggested in Eqs. (13) and (14). The numbers in parentheses are the uncertainties
in the last digits.

a (fm) CL
0 CL

2 × 10−2 E2 (MeV) ANC (fm−0.5) a(3S1 ) (fm) r (3S1 ) (fm)

No Regulator
1.4 −2.142950 +4.7378272 −2.224575 0.249422 5.08(1) 1.288(7)
1.7 −1.816890 +3.7820497 −2.224575 0.249424 5.23(3) 1.49(2)
1.97 −1.579070 +3.0453214 −2.224575 0.249425 5.35(3) 1.65(2)
2.3 −1.233188 +1.9176492 −2.224575 0.249423 5.32(5) 1.68(4)
2.6 −0.978510 +1.2371360 −2.224576 0.249426 5.35(5) 1.70(5)

With Regulator (n = 1, b = A/a3;A = 0.07645373 fm3)
1.4 −2.064 +5.1448251 −2.224577 0.246912 5.22(4) 1.47(2)
1.7 −1.79465 +3.9924816 −2.224575 0.249424 5.33(6) 1.60(4)
1.97 −1.59677 +3.2940765 −2.224575 0.249424 5.43(5) 1.74(4)
2.3 −1.323997 +2.3189424 −2.224575 0.249425 5.43(3) 1.81(3)
2.6 −1.02118 +1.3854333 −2.224574 0.249427 5.42(5) 1.79(4)

Experiment − − −2.224575 0.249424 5.424(4) 1.759(5)

TABLE V. Comparison of our ERE parameters in the 3S1 channel, obtained with and without the application of
the regularization scheme, with the results of other groups. The parameters (n, b) indicate the regulator parameters,
introduced in Eq. (14). The numbers in parentheses are the uncertainties in the last digits.

Method a a(3S1 ) (fm) r (3S1 ) (fm)

Present (n, b)
LO (1, 0) 1.97 fm 4.577(7) 0.496(8)
LO (1, 0.01) 1.97 fm 4.652(7) 0.621(7)
LO (2, 0.01) 1.97 fm 4.624(7) 0.580(8)
LO (3, 0.01) 1.97 fm 4.64(1) 0.60(1)
NLO (1, 0) 1.97 fm 5.35(3) 1.65(2)
NLO (1, 0.01) 1.97 fm 5.43(5) 1.74(4)
NLO (2, 0.01) 1.97 fm 5.41(4) 1.73(3)
NLO (3, 0.01) 1.97 fm 5.42(3) 1.76(2)

Borasoy et al. (LO Pionless EFT) [4] 1.97 fm 4.522(1) 0.30(2)
1.97 fm 4.664(1) 0.53(2)

Rokash et al. (LO Pionless EFT) [16] 2 fm 4.50 0.33

Klein et al. (LO Pionless EFT) [18] 1.97 fm 5.611(1) 2.029(1)
Klein et al. (LO pionfull EFT) [18] 1.97 fm 5.470(1) 1.818(1)

Alarcón et al. (LO pionfull EFT) [20] 1.97 fm 5.46(1) 1.686(1)
Alarcón et al. (NLO pionfull EFT) [20] 1.97 fm 5.31(2) 1.79(3)
Alarcón et al. (N2LO pionfull EFT) [20] 1.97 fm 5.35(2) 1.82(3)

Experiment 5.424(4) 1.759(5)

spacing, leading to an improvement on the extraction of the
ERE parameters, and brings them close to the experimental
data for a " 2 fm.

ACKNOWLEDGMENTS

We thank Koji Harada for sharing their results, which
allowed us to validate our codes for the solution of the
Lippmann-Schwinger equation for two-nucleon-bound states
on a lattice. The work of M.R.H. was supported by the

National Science Foundation under Grant No. NSF-PHY-
2000029 with Central State University.

APPENDIX: TWO-NUCLEON ENERGY EIGENVALUES

In Tables VII–XI, we provide our numerical results for
the solution of the Lippmann-Schwinger equation, given in
Eq. (9), with the LECs given in Table VI, for different values
of lattice spacing parameter a and different number of lattice
nodes Ns.
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TABLE VI. The LECs CL
0 and CL

2 fitted to deuteron binding energy and ANC for different lattice spacing
parameter a with and without implementing the regularization scheme, introduced in Eqs. (13) and (14). n
indicates the power of the exponential regulator.

a (fm) CL
0 CL

2 × 10−2

No Regulator

1.4 −2.142950 +4.7378272
1.7 −1.816890 +3.7820497
1.97 −1.579070 +3.0453214
2.3 −1.233188 +1.9176492
2.6 −0.978510 +1.2371360

With Regulator (n = 1)

1.4 −2.064 +5.1448251
1.7 −1.79465 +3.9924816
1.97 −1.59677 +3.2940765
2.3 −1.323997 +2.3189424
2.6 −1.02118 +1.3854333

With Regulator (n = 2)

1.97 −1.587607 +3.4237993
With Regulator (n = 3)

1.97 −1.574284 +3.945544

TABLE VII. Deuteron binding energy calculated for different values of Ns with the lattice spacing
a = 1.4 fm. The parameters (n, b) indicate the regulator parameters, introduced in Eq. (14).

Ns NLO (n = 1, b = 0) NLO (n = 1, b = 2.786215 × 10−2)

20 −2.224575 −2.224577
18 −2.236165 −2.237620
16 −2.261734 −2.265850
14 −2.318403 −2.327441
12 −2.443624 −2.461672
10 −2.717962 −2.752608
9 −2.960845 −3.008798
8 −3.325327 −3.392493
7 −3.885172 −3.981742
6 −4.781351 −4.926780
5 −6.316952 −6.553276
4 −9.250943 −9.680334

TABLE VIII. The same as Table VII, but for a = 1.7 fm.

Ns NLO (n = 1, b = 0) NLO (n = 1, b = 1.556152 × 10−2)

20 −2.224575 −2.224577
18 −2.227704 −2.228103
16 −2.235686 −2.236853
14 −2.256377 −2.259115
12 −2.310365 −2.316613
10 −2.452207 −2.465131
9 −2.592639 −2.611437
8 −2.818116 −2.845511
7 −3.183195 −3.223659
6 −3.789626 −3.851409
5 −4.852515 −4.953149
4 −6.904684 −7.086130
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TABLE IX. The same as Table VII, but for a = 1.97 fm.

LO NLO

Ns No Reg. n = 1 n = 2 n = 3 No Reg. n = 1 n = 2 n = 3

20 −2.224575 −2.224573 −2.224576 −2.224575 −2.224575 −2.224575 −2.224574 −2.224575
18 −2.225251 −2.225346 −2.225263 −2.225265 −2.225550 −2.225704 −2.225583 −2.225610
16 −2.227186 −2.227485 −2.227247 −2.227244 −2.228361 −2.228816 −2.228490 −2.228589
14 −2.232922 −2.233633 −2.233106 −2.233127 −2.236632 −2.237740 −2.237041 −2.237354
12 −2.250310 −2.251998 −2.250869 −2.251025 −2.261507 −2.264124 −2.262728 −2.263680
10 −2.304263 −2.308227 −2.305968 −2.306441 −2.337196 −2.343432 −2.340805 −2.343569
9 −2.365196 −2.371330 −2.368068 −2.368943 −2.420902 −2.430523 −2.426944 −2.431602
8 −2.472692 −2.482165 −2.477541 −2.479011 −2.565747 −2.580570 −2.575767 −2.583490
7 −2.661788 −2.676394 −2.669839 −2.672291 −2.815834 −2.838765 −2.832374 −2.845091
6 −2.995661 −3.018378 −3.009063 −3.013079 −3.252139 −3.288325 −3.279835 −3.301075
5 −3.598996 −3.635343 −3.621888 −3.628761 −4.041911 −4.102015 −4.091016 −4.129732
4 −4.755451 −4.817499 −4.797340 −4.811362 −5.592160 −5.701678 −5.683439 −5.743210

TABLE X. The same as Table VII, but for a = 2.3 fm.

Ns NLO (n = 1, b = 0) NLO (n = 1, b = 6.283696 × 10−3)

20 −2.224575 −2.224575
18 −2.224804 −2.224863
16 −2.225572 −2.225748
14 −2.228180 −2.228647
12 −2.237352 −2.238583
10 −2.270483 −2.273990
9 −2.312144 −2.318053
8 −2.391733 −2.401826
7 −2.542779 −2.559982
6 −2.828306 −2.857706
5 −3.375589 −3.427266
4 −4.483011 −4.581039

TABLE XI. The same as Table VII, but for a = 2.6 fm.

Ns NLO (n = 1, b = 0) NLO (n = 1, b = 4.3498936 × 10−3)

20 −2.224576 −2.224574
18 −2.224638 −2.224659
16 −2.224869 −2.224938
14 −2.225771 −2.225941
12 −2.229746 −2.229861
10 −2.244550 −2.245892
9 −2.265714 −2.268085
8 −2.309831 −2.314116
7 −2.401551 −2.409350
6 −2.590731 −2.604906
5 −2.979936 −3.005941
4 −3.802672 −3.852706
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