Rapid recycling of subducted sedimentary carbon revealed by Afghanistan carbonatite volcano Author: Forrest Horton^{1*} Affiliation: ¹ Woods Hole Oceanographic Institution, 360 Woods Hole Rd, Woods Hole, MA 02543 USA. * Correspondence to: fhorton@whoi.edu.

The fate of carbon subducted to mantle depths remains uncertain, yet strongly influences the distribution of terrestrial carbon on geologic timescales. Carbon fluxes into subduction zones are exceptionally high where downgoing plates contain thick sedimentary fans. This study uses volcano geochemistry to assess sedimentary carbon recycling in the high-flux Makran subduction zone, where the Arabian plate subducts northward beneath Eurasia. Based on strontium isotope geochemistry and ⁴⁰Ar-³⁹Ar geochronology, I show that a portion of the submarine Indus Fan entered the Makran trench, melted, and ascended as magmas that erupted in southern Afghanistan. The resulting volcano—composed primarily of carbonate minerals—formed at approximately 3.8 million years ago. The ⁸⁷Sr/⁸⁶Sr of the lavas indicates that their magmatic precursors derived from marine sediments deposited at 28.9 ± 1.4 Ma. This implies that sedimentary carbon subducted to and returned from mantle depths in less than 27 million years, indicating that magmas can efficiently recycle sedimentary carbon from subducting slabs to the overlying plate.

The efficiency of carbon recycling in subduction zones has profound implications for Earth's climate¹. Some fraction of the carbon entering subduction zones is released from subducted slabs via mechanical removal, metamorphic decarbonation, and melting. The remainder recycles to lithospheric reservoirs in buoyant diapirs² and melts^{3,4} or enters the convecting mantle⁵. Subducted carbon that does not return to near-surface reservoirs may remain isolated from the biosphere for billions of years^{6,7}. Globally, the carbon flux into subduction zones appears to exceed the combined outputs from arc volcanoes and diffuse venting^{6,8}. This may be indirect evidence that deep Earth reservoirs serve as

carbon sinks on geologic timescales. Yet, the fate of deeply subducted carbon remains an enigmatic aspect of the global carbon cycle.

The Makran subduction zone, with the highest carbon flux per unit length along trench of any modern subduction zone⁹, is uniquely well suited for investigating carbon recycling in a high-flux setting. The Makran continental margin is dominantly accretionary¹⁰ and includes a Neogene-Quaternary volcanic arc that consists of three volcanic centers in Iran and Pakistan¹¹. Here I present evidence that a carbonatite volcano in southern Afghanistan is a hitherto unrecognized eastern limb of the Makran volcanic arc. This volcano is proof that carbonatitic melts—theoretically generated in subduction zones at postarc depths (>140 km)^{6,12}, but seldom attributed to volcanic arc processes¹³—can be voluminous enough to efficiently recycle subducted sedimentary carbon to the lithosphere. Isotope geochemistry and geochronology constrain the timing of sedimentary deposition and eruption, respectively, and imply that subducted carbon can return to shallow reservoirs on much shorter timescales than previously thought^{14–16}.

The Makran subduction zone and volcanic arc

As the Eurasian and Arabian plates converge, Arabian oceanic crust enters the Makran subduction zone at a rate of approximately 30 mm/yr¹⁷. The Arabian Plate carries Indus Fan sediments—the thickest sequence of sediments (5–7.5 km) entering any subduction zone—into the Makran trench, causing an unusually shallow grade of subduction and an exceptionally large accretionary prism¹⁸. The crustal wedge extends ~300 km north from

the trench, increasing in age from unconsolidated Quaternary sediments through imbricated Miocene ophiolites and metasediments¹⁰.

As previously defined, the Makran volcanic arc consists of three Miocene-Quaternary volcanic centers—Bazman, Taftan, and Koh-i-Sultan—along an east-northeast linear trend oblique to the trench (Fig. 1)¹¹. Lavas erupted at these locations have basaltic to rhyolitic compositions and fall along calc-alkaline differentiation trends¹⁹. Subduction zone geometry varies from east to west: subduction in the east is shallower near the coast²⁰ and steeper at greater depths²¹ compared to subduction in the west. This asymmetry might be due to oceanic lithosphere subduction in the east and continental lithosphere underthrusting in the west²².

The Khanneshin carbonatites (Extended Data Fig. 1) erupted through Neogene sedimentary rocks (Extended Data Fig. 2) of the Sistan Basin, southern Afghanistan, along intersecting regional faults²³. The core of the 4-km-wide main vent consists of calcite-rich medium- to coarse-grained carbonatite (sövite) ringed by agglomeritic ankerite-barite carbonatite (Extended Data Figs. 3–5)²⁴. Both units contain abundant mica-rich xenoliths of metasomatized wall rock (fenite) and are crosscut by fine-grained carbonatite (alvikite) dikes. A volcano-sedimentary apron extends radially 3–5 km from the main vent and is intruded by many late-stage dikes and volcanic plugs, the youngest of which are phonolitic. Aeromagnetic surveys suggest that as many as eight other minor alkaline igneous centers with unknown ages and compositions may be buried beneath

Holocene sands²³. Unlike most volcano-forming carbonatites²⁵, however, the Khanneshin volcano does not appear to be accessory to silicic volcanism.

Chronologic and geochemical constraints

Some geochemical data exist for the Khanneshin carbonatites^{23,26,27}. This study adds two critical results: ⁴⁰Ar-³⁹Ar geochronology that establishes the timing of Khanneshin volcanism and strontium isotopic constraints for Khanneshin rocks (see Supplementary Information for sample descriptions).

⁴⁰Ar-³⁹Ar geochronology: Sövite sample RT-10K-09—inferred to be the least geochemically evolved because it has light carbon, oxygen, and thallium isotopic compositions²⁷—was selected to represent the main stage of eruption. Unlike other micabearing Khanneshin samples, the coarse-grained phlogopite in RT-10K-09 is not associated with fenite xenoliths. Step heating experiments on three phlogopite aliquots yielded ⁴⁰Ar/³⁹Ar plateau ages of 3.54, 3.74, and 3.83 Ma that consisted of 63, 45, and 35 percent of the total ³⁹Ar released, respectively (Extended Data Figure 6). Analytical uncertainty for each date is 0.02–0.04 Ma and the full external uncertainty for each analysis is 0.20 Ma. All three ⁴⁰Ar/³⁹Ar ages agree within uncertainty and could represent a single Ar closure age between 3.74 and 3.63 Ma. Alternatively, the oldest date (3.83 Ma) may represent the eruption age of the sövite if the younger dates record partial resetting caused by subsequent eruptive episodes that reheated the sample and caused Ar loss.

Strontium isotopes: Twenty Khanneshin carbonatites have relatively homogenous 87 Sr/ 86 Sr, ranging from 0.707919 ± 7 (RT-11K-06) to 0.708061 ± 8 (KHAN-3) and with a mean of 0.708004 ± 36 (1s, n=20 rocks). This is comparable to previous results for Khanneshin rocks 26 and confirms that there is little Sr isotopic variability across the central vent of the volcano. The brecciated sandstone (represented by sample FH-10K-10) through which the carbonatitic lavas erupted has 87 Sr/ 86 Sr indistinguishable from the carbonatites; this value probably represents the isotopic composition of calcite veins (Extended Data Fig. 2) rather than the sedimentary protolith (see Supplementary Information).

Evidence for rapid carbon recycling

Three lines of evidence indicate that the Khanneshin magmas were products of active subduction. First, the Khanneshin volcano is spatially and temporally associated with the Makran volcanic arc. Earthquake focal mechanisms within the subducting slab (Fig. 1) extend to 157 km depth 17 and the deepest earthquake occurred less than 70 km to the S-SE of the Khanneshin volcano 28. This suggests that the slab passes beneath the volcano ~700 km north of the trench at a depth of ~180 km. The age of the Khanneshin volcano is bracketed by silicic volcanism at Bazman (4.6 to <0.6 Ma), Taftan (6.95 to <0.71 Ma), and Koh-i-Sultan (<2.5 Ma) volcanoes²⁹, which are indisputably part of the Makran volcanic arc. Furthermore, the Khanneshin volcano is only slightly north of the linear trend defined by the other volcanoes (Fig. 1). These observations suggest that that the Khanneshin volcano is the easternmost manifestation of the Makran volcanic arc.

Second, sediments on the downgoing slab beneath the Khanneshin volcano could be fertile sources of carbonatitic melt. In the Makran subduction zone, the slab-mantle interface may not heat to 450 °C until reaching a depth of 75 km³⁰. Heating may accelerate as the slab passes through the lithosphere-asthenosphere boundary, located ~150 km beneath the Khanneshin volcano³¹. When heated above ~700 °C, sediment layers thicker than 1 km are prone to forming buoyant diapirs², which undergo partial melting and efficient decarbonation as they ascend into the mantle wedge³². Sediments can also be convectively transferred from the slab into the mantle wedge³. During burial, subducted Indus Fan material (calcareous ooze and clay-rich terrigenous turbidites³³) would have consolidated and metamorphosed into carbonated pelites. At 950-1050 °C and 3-5 GPa^{3,34}, these lithologies can produce carbonated alkali-rich melt. Such conditions are plausible near the top of the subducting slab and in the mantle wedge. Carbon- and alkalirich melt released from metasediments may separate into immiscible carbonatitic and silicate magmas during ascent. The buried igneous centers near the Khanneshin volcano²³ could represent conjugate silicate magmas. Thus, there are viable mechanisms by which carbonatitic melt might be generated beneath the Khanneshin volcano. Exceptionally high rates of carbonatitic melt generation in the Makran subduction zone could be facilitated by (i) an abnormally high sediment flux, (ii) the abundant carbonate in the sediments (they can contain >50% CaCO₃³³) and (iii) efficient carbon subduction past typical forearc depths⁹.

156

157

158

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

Third, the Khanneshin lavas contain geochemical evidence of crustal recycling. Their trace element patterns are consistent with the immiscible separation of carbonatitic

magma from silicate magma derived from the melting of Indus Fan material (see Supplementary Information and Extended Data Fig. 7). Isotopically, Khanneshin, Bazman, and Taftan volcanic rocks fall along a common ¹⁴³Nd/¹⁴⁴Nd and ⁸⁷Sr/⁸⁶Sr trend (Fig. 2) that diverges from trends attributable to the magmatic fractionation of Rb/Sr and Sm/Nd. Such Sr-Nd decoupling has long been viewed as evidence of sedimentary recycling³⁵. The Makran arc values (including the Khanneshin lavas) fall within the Enriched Mantle 2 array, which is likewise attributed to a recycled sediment component³⁶. Thallium isotope compositions of Khanneshin lavas also attest to ocean crust recycling, despite being strongly influenced by wall rock interactions²⁷. Interestingly, the ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb, and ²⁰⁸Pb/²⁰⁴Pb (18.9, 15.6, and 40.0, respectively) of Khanneshin carbonatites²⁶ are very similar to average Indus River K-feldspars³⁷; Khanneshin lavas may have inherited this signature from continental detritus transported by the Indus River.

Elsewhere, carbonatites may contain ancient recycled material from lithospheric reservoirs reactivated by backarc extension, mantle wedge flow, or ascending magmas. That is not a likely source of the recycled sedimentary component in the Khanneshin lavas. The Afghan block, through which Khanneshin magmas erupted, formed by the accretion of one or more Gondwana microcontinents to Asia by the Early Cretaceous³⁸. Southern Afghanistan, as part of the vast Alpine-Himalayan orogen, should have young lithospheric mantle (probably less than 50 Ma³⁹) and is far from cratons that could serve as long-lived geochemical reservoirs. Thus, and for the reasons outlined above—(i) spatiotemporal associations with arc volcanism and the Makran slab, (ii) viable mechanisms for voluminous carbonatitic melt production, and (iii) geochemical evidence

for recycled sedimentary material—Khanneshin carbonatites can be viewed as products of Makran subduction.

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

182

183

Sediments in the Makran subduction zone are the most likely source of Khanneshin magmas. Because Khanneshin lavas have very high Sr concentrations (multiple wt% in most cases), substantial Sr isotopic contamination during magma ascent seems unlikely, even if Paleozoic or older rocks exist beneath the volcano. As noted above, the mantle lithosphere beneath the volcano is young, so remobilization of Sr implanted in the subcontinental lithosphere prior to the initiation of the Makran subduction zone also seems unlikely. Instead, the ⁸⁷Sr/⁸⁶Sr measured in Khanneshin rocks probably reflects the isotopic composition of subducted Indus Fan material. The Indus River initiated during the Eocene shortly after the India-Asia collision began and much of the fan appears to be Paleogene⁴⁰. If the Khanneshin lavas inherited the ⁸⁷Sr/⁸⁶Sr of their sedimentary precursors, the monotonic increase in marine sedimentary carbonate ⁸⁷Sr/⁸⁶Sr since 40 Ma can be used as a chronometer (Fig. 3). Average marine carbonates⁴¹ have ⁸⁷Sr/⁸⁶Sr overlapping with mean Khanneshin carbonatites (0.708004 ± 36) only once since 200 Ma. The ⁸⁷Sr/⁸⁶Sr range in Khanneshin lavas suggests that their source rocks had a mean deposition age of 28.9 ± 1.4 Ma, which coincides with early Indus Fan growth. Assuming that ⁴⁰Ar/³⁹Ar plateau ages (3.83–3.54 Ma) record the main stage of volcanism, 24–27 Myr passed between deposition and eruption. The current length of the slab from the trench to beneath the volcano is ~700 km. However, the trench has migrated 140 km southward since the mid-Miocene⁴², so the slab segment currently beneath the volcano traveled only ~560 km since entering the trench. At the current rate of 32.6 mm/yr¹⁷. subduction to beneath the Khanneshin volcano would take 17 Myr. Thus, sediment

transfer to the trench and the ascent of recycled materials from the slab presumably lasted <10 Myr combined.

Recycled carbon resides in continental carbonatites

There is increasing isotopic evidence that some carbonatitic magmas worldwide contain recycled crustal material. Radiogenic isotope systematics suggest that carbonatites derive from either marine sedimentary carbon recycled through subcontinental lithosphere or deeply subducted carbonated oceanic crust that returns from either the transition zone or from the core-mantle boundary¹⁴. The role of recycling is confirmed by calcium isotopes¹⁶ and boron isotopes¹⁵, but the recycling scenarios invoked by these studies require timescales of 100–1000 Myr. The Khanneshin volcano is evidence that sedimentary carbon recycles to and from typical postarc depths on short timescales (i.e., <100 Myr). Low-volume carbonatitic melts cannot survive metasomatic entrapment⁴³ and rapid devolatilization⁴⁴ during ascent, so the exceptionally high sedimentary carbon flux into the Makran trench may have been necessary to produce carbonatitic magmas voluminous enough to reach the surface. This might explain why carbonatite volcanism occurs in the Makran subduction zone, but not elsewhere on Earth¹³.

Globally, subducting carbon inputs appear to be larger than volcanic arc outputs^{6,8}. This imbalance is especially pronounced for the Makran and Andaman-Burma subduction zones, where the Himalaya-derived Indus and Bengal fans may transport >12 Mt/yr of carbon—roughly 7% of the global subducting carbon flux¹—into the mantle wedge⁹. These subduction zones are associated with only one active volcano that outgasses

significant quantities of CO₂ and SO₂ (Barren Island, India⁴⁵), but there are several volcanic centers that have been active during the Quaternary (including Bazman, Taftan, and Koh-i-Sultan in the Makran arc) that are potential sources of diffuse volcanic CO₂ and for which the modern and historical fluxes are unknown⁴⁶. If Khanneshin volcanic CO₂ emissions were comparable to those of the Oldoinyo Lengai carbonatite volcano in Tanzania⁴⁷, it could have contributed 2.4 Mt/yr. Currently, most volcanic CO₂ emissions in the region may come from the Tengchong volcanic field, China (4.5–7.1 Mt/yr⁴⁸), which is related to the subduction of the Burma slab⁴⁹. Unless there are major CO₂ sources undetected by satellite measurements⁴⁵, the Makran and Andaman-Burma carbon inputs are probably not balanced by volcanic gas emissions, unlike in the Java and Sumatra subduction zones⁵⁰. This suggests that the return of subducted carbon to the atmosphere is inefficient in subduction zones with the highest sedimentary carbon fluxes. In such settings, the carbon inputs must be balanced by carbon mixed into the convecting mantle⁵, the storage of carbon in lithospheric reservoirs⁶, or both. The Khanneshin volcano is evidence that subducted carbon can rapidly return to lithospheric reservoirs. It may be a rare surface expression of long-lived carbon reservoirs that form via carbonatitic magmatism in rear-arc lithosphere.

246

247

248

249

250

251

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Figure captions

Fig. 1: Map of the Makran subduction zone and volcanic arc.

Earthquake focal mechanisms¹⁷ (yellow symbols with approximate depths in km) in the subducting crust indicate that the slab passes beneath the three western volcanic centers¹¹ (orange). The approximate slab-top depth is contoured by black dashed lines

based on earthquake focal mechanism depths. The Khanneshin volcano is slightly north of the linear trend (light grey dashed line) defined by the calc-alkaline volcanic arc centers. After¹⁰.

Fig. 2: 143Nd/144Nd and 87Sr/86Sr systematics of the Makran arc.

The neodymium and strontium isotope compositions of Makran volcanic arc samples testify to sediment recycling. Khanneshin lavas fall along the same Enriched Mantle 2 trend as Bazman and Taftan samples^{11,29}; this trend cannot be explained by magmatic fractionation of Rb/Sr and Sm/Nd from mid-ocean ridge basalt values (hatched area) and indicates sediment recycling³⁵. The Khanneshin data are from²⁶ and mantle geochemical trends are after³⁶. EM1 = Enriched Mantle 1, EM2 = Enriched Mantle 2, HIMU = high μ , and MORB = mid-ocean ridge basalt.

Fig. 3: Strontium isotopic evidence of rapid sediment recycling.

A, The ⁸⁷Sr/⁸⁶Sr compositions of Khanneshin carbonatites versus average marine sedimentary carbonates⁴¹. The horizontal black line and the bounding light grey area represent the mean and 1 standard deviation (n = 20 rocks), respectively, for the Khanneshin carbonatites. Since 500 Ma, average marine sedimentary carbonates equaled that measured in the Khanneshin carbonatites nine times, but only once since 200 Ma. **B**, Same as A, but from 0 to 40 Ma. Sediments deposited in the Indus Fan at c. 30 Ma would have had ⁸⁷Sr/⁸⁶Sr ratios comparable to those measured in the Khanneshin samples. This implies that sediment recycling through the Makran subduction zone took less than 27 Myr.

Fig. 4: Schematic cross section of the eastern Makran subduction zone.

Khanneshin magmas probably derived from subducted sediments that melted near the top of the subducting slab or in buoyant diapirs that ascended into the mantle wedge. Slab depths and the thermal structure are based on earthquake focal mechanisms¹⁷ and thermal modeling³⁰, respectively. The black dashed line along the top of the subducting Arabian Plate represents the trajectory of subducted Indus Fan material and the time elapsed since entering the trench. Note that only earthquakes with focal mechanisms >50 km deep (white) are plotted in Fig. 1.

Methods (online only)

Strontium isotope measurements

Carbonatite samples were powdered by hand in an agate mortar and pestle. Between 5 mg and 10 mg of each sample was dissolved in a 3:1 mixture of HF and HNO₃. Sr was separated and purified from the samples using Sr-Spec (Eichrom) resin. Sr isotopic measurements were performed on a Thermo-Finnigan Neptune ICP-MS at Woods Hole Oceanographic Institution. Isobaric interferences of ⁸⁷Rb on ⁸⁷Sr and ⁸⁶Kr on ⁸⁶Sr were corrected for by monitoring ⁸²Kr, ⁸³Kr, and ⁸⁵Rb and by applying a mass bias correction using an exponential relationship⁵¹. The internal precision for Sr isotopic measurements was 6–24 ppm. Raw Sr results are normalized using standard SRM987 (⁸⁷Sr/⁸⁶Sr = 0.7102140). Standard NBS987 was reproducible to within 25 ppm. See Extended Data Table 1 for strontium isotopic results.

⁴⁰Ar-³⁹Ar geochronology

At the Oregon State University Argon Geochronology Lab, three phlogopite aliquots were cleaned for 30 min in 200 proof HPLC grade acetone and for 30 minutes in ethyl alcohol. and then were rinsed four times with triple-distilled water and dried at 55 °C for 12 hrs. The samples were irradiated in the Oregon State University TRIGA reactor for six hours, along with Fish Canyon Tuff sanidines⁵² that served as flux monitors. Following the procedures described in⁵³, portions of each phlogopite aliquot (3.882, 9.351, and 4.251 mg for aliquots 1-3, respectively) were loaded in Cu-planchettes and step heated by rastering a 30 W Synrad CO₂ laser beam across each sample under ultrahigh vacuum. Reactive gases were cleaned with AP10 Zr-Al SAES getters at 450 °C and 21 °C before the argon was inlet into an ARGUS VI multicollector mass spectrometer for analysis. Plateau ages (Extended Data Fig. 6)—based on contiguous extraction steps with apparent ⁴⁰Ar-³⁹Ar dates that are indistinguishable at the 95% confidence interval—were calculated using ArArCALC v.2.6.2 software⁵⁴ using the decay constant 5.530 ± 0.097 x 10^{-10} 1/yr (2 σ) from⁵⁵ and corrected by⁵⁶. See Data S1, S2, and S3 for the complete results from the Argon Geochronology Lab.

314

315

316

317

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

Data Availability

The Ar-Ar geochronology and strontium isotope results are publically available via EarthChem (https://doi.org/10.26022/IEDA/111960).

318

319

320

References

1. Plank, T. & Manning, C. E. Subducting carbon. *Nature* **574**, 343–352 (2019).

- 2. Behn, M. D., Kelemen, P. B., Hirth, G., Hacker, B. R. & Massonne, H.-J. Diapirs as the source of the sediment signature in arc lavas. *Nat. Geosci.* **4**, 641–646 (2011).
- 32. Thomsen, T. B. & Schmidt, M. W. Melting of carbonated pelites at 2.5–5.0 GPa,
 324 silicate–carbonatite liquid immiscibility, and potassium–carbon metasomatism of the
 325 mantle. *Earth Planet. Sci. Lett.* **267**, 17–31 (2008).
- 4. Mallik, A. & Dasgupta, R. Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas. *J. Petrol.*54, 2267–2300 (2013).
- 5. Hirschmann, M. M. Comparative deep Earth volatile cycles: The case for C recycling from exosphere/mantle fractionation of major (H₂O, C, N) volatiles and from H₂O/Ce, CO₂/Ba, and CO₂/Nb exosphere ratios. *Earth Planet. Sci. Lett.* **502**, 262–273 (2018).
- 6. Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. *Proc. Natl. Acad. Sci.* **112**, E3997–E4006 (2015).
- 7. Dasgupta, R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. *Rev Miner. Geochem* **75**, 183–229 (2013).
- 8. Aiuppa, A., Fischer, T. P., Plank, T. & Bani, P. CO₂ flux emissions from the Earth's most actively degassing volcanoes, 2005–2015. *Sci. Rep.* **9**, 5442 (2019).
- 9. Clift, P. D. A revised budget for Cenozoic sedimentary carbon subduction. *Rev.*Geophys. **55**, 97–125 (2017).
- 10. Burg, J.-P. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. *Earth-Sci. Rev.* **185**, 1210–1231 (2018).

- 11. Pang, K.-N., Chung, S.-L., Zarrinkoub, M. H., Chiu, H.-Y. & Li, X.-H. On the
 magmatic record of the Makran arc, southeastern Iran: Insights from zircon U-Pb
 geochronology and bulk-rock geochemistry. *Geochem. Geophys. Geosystems* 15,
 2151–2169 (2014).
- 12. Hammouda, T. & Keshav, S. Melting in the mantle in the presence of carbon:

 Review of experiments and discussion on the origin of carbonatites. *Chem. Geol.*418, 171–188 (2015).
- 13. Bell, K. & Simonetti, A. Source of parental melts to carbonatites–critical isotopic constraints. *Mineral. Petrol.* **98**, 77–89 (2010).
- 14. Hoernle, K., Tilton, G., Le Bas, M. J., Duggen, S. & Garbe-Schönberg, D.
 Geochemistry of oceanic carbonatites compared with continental carbonatites:
 mantle recycling of oceanic crustal carbonate. *Contrib. Mineral. Petrol.* 142, 520–542 (2002).
- 15. Hulett, S. R., Simonetti, A., Rasbury, E. T. & Hemming, N. G. Recycling of
 subducted crustal components into carbonatite melts revealed by boron isotopes.
 Nat. Geosci. 9, 904 (2016).
- 16. Amsellem, E. *et al.* Calcium isotopic evidence for the mantle sources of carbonatites. *Sci. Adv.* **6**, eaba3269 (2020).
- 17. Penney, C. *et al.* Megathrust and accretionary wedge properties and behaviour in the Makran subduction zone. *Geophys. J. Int.* **209**, 1800–1830 (2017).
- 18. Smith, G., McNeill, L., Henstock, T. J. & Bull, J. The structure and fault activity of the

 Makran accretionary prism. *J. Geophys. Res. Solid Earth* **117**, (2012).

- 19. Pang, K.-N., Teng, F.-Z., Sun, Y., Chung, S.-L. & Zarrinkoub, M. H. Magnesium isotopic systematics of the Makran arc magmas, Iran: Implications for crust-mantle Mg isotopic balance. *Geochim. Cosmochim. Acta* **278**, 110–121 (2020).
- 20. Motaghi, K., Shabanian, E. & Nozad-Khalil, T. Deep structure of the western coast of the Makran subduction zone, SE Iran. *Tectonophysics* **776**, 228314 (2020).
- 21. Simmons, N. A., Myers, S. C. & Johannesson, G. Global-scale P wave tomography optimized for prediction of teleseismic and regional travel times for Middle East events: 2. Tomographic inversion. *J. Geophys. Res. Solid Earth* **116**, (2011).
- 22. Al-Lazki, A. I., Al-Damegh, K. S., El-Hadidy, S. Y., Ghods, A. & Tatar, M. Pn-velocity
 structure beneath Arabia–Eurasia Zagros collision and Makran subduction zones.
 Geol. Soc. Lond. Spec. Publ. 392, 45–60 (2014).
- 23. Tucker, R. D., Belkin, H. E., Schulz, K. J., Peters, S. G. & Buttleman, K. P. Rare
 earth element mineralogy, geochemistry, and preliminary resource assessment of
 the Khanneshin carbonatite complex, Helmand Province, Afghanistan. *US Geol.*Surv. Open-File Rep. 1207, 50 (2011).
- 24. Tucker, R. D. *et al.* A major light rare-earth element (LREE) resource in the
 Khanneshin carbonatite complex, southern Afghanistan. *Econ. Geol.* 107, 197–208
 (2012).
- 25. Woolley, A. R. & Church, A. A. Extrusive carbonatites: a brief review. *Lithos* **85**, 1– 14 (2005).
- 26. Ayuso, R. *et al.* Preliminary radiogenic isotope study on the origin of the Khanneshin carbonatite complex, Helmand Province, Afghanistan. *J. Geochem. Explor.* **133**, 6– 14 (2013).

- 27. Horton, F., Nielsen, S., Shu, Y., Gagnon, A. & Blusztajn, J. Thallium isotopes reveal brine activity during carbonatite magmatism. *Geochem. Geophys. Geosystems* **22**, e2020GC009472 (2021).
- 28. Maggi, A., Jackson, J. A., Priestley, K. & Baker, C. A re-assessment of focal depth distributions in southern Iran, the Tien Shan and northern India: Do earthquakes really occur in the continental mantle? *Geophys. J. Int.* **143**, 629–661 (2000).
- 29. Saadat, S. & Stern, C. R. Petrochemistry and genesis of olivine basalts from small monogenetic parasitic cones of Bazman stratovolcano, Makran arc, southeastern Iran. *Lithos* **125**, 607–619 (2011).
- 30. Smith, G. L., McNeill, L. C., Wang, K., He, J. & Henstock, T. J. Thermal structure and megathrust seismogenic potential of the Makran subduction zone. *Geophys. Res. Lett.* **40**, 1528–1533 (2013).
- 31. Robert, A. M., Fernàndez, M., Jiménez-Munt, I. & Vergés, J. Lithospheric structure in Central Eurasia derived from elevation, geoid anomaly and thermal analysis. *Geol. Soc. Lond. Spec. Publ.* **427**, 271–293 (2017).
- 32. Gonzalez, C. M., Gorczyk, W. & Gerya, T. V. Decarbonation of subducting slabs:

 Insight from petrological–thermomechanical modeling. *Gondwana Res.* **36**, 314–332

 (2016).
- 33. Jarrard, R. D. & Lyle, M. 29. High-resolution geochemical variations at sites 723,
 728, and 731: A comparision of X-ray fluorescence and geochemical logs. *Proc.* Ocean Drill. Program Sci. Results 117, (1991).

- 34. Tsuno, K. & Dasgupta, R. The effect of carbonates on near-solidus melting of pelite at 3 GPa: Relative efficiency of H2O and CO2 subduction. *Earth Planet. Sci. Lett.*
- **319**, 185–196 (2012).
- 35. White, W. M. & Hofmann, A. W. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. *Nature* **296**, 821–825 (1982).
- 36. White, W. M. Isotopes, DUPAL, LLSVPs, and anekantavada. *Chem. Geol.* **419**, 10–415 28 (2015).
- 37. Clift, P. D. *et al.* Nd and Pb isotope variability in the Indus River System: implications for sediment provenance and crustal heterogeneity in the Western Himalaya. *Earth Planet. Sci. Lett.* **200**, 91–106 (2002).
- 38. Whitney, J. W. Geology, Water and Wind in the Lower Helmand Basin, Southern

 Afghanistan: US Geological Survey Scientific Investigations Report 2006-5182. *US*Geol. Surv. Va. (2006).
- 39. Artemieva, I. M. Global 1°×1° thermal model TC1 for the continental lithosphere:

 Implications for lithosphere secular evolution. *Tectonophysics* **416**, 245–277 (2006).
- 424 40. Clift, P. D. *et al.* Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram. *GSA Bull.* **113**, 1039–1051 (2001).
- 41. McArthur, J. M., Howarth, R. J. & Shields, G. A. Strontium isotope stratigraphy. in *The geologic time scale* 127–144 (Elsevier, 2012).
- 42. Platt, J. P., Leggett, J. K., Young, J., Raza, H. & Alam, S. Large-scale sediment underplating in the Makran accretionary prism, southwest Pakistan. *Geology* **13**, 507–511 (1985).

- 43. Sleep, N. H. Stagnant lid convection and carbonate metasomatism of the deep continental lithosphere. *Geochem. Geophys. Geosystems* **10**, (2009).
- 44. Wyllie, P. J. & Huang, W.-L. Peridotite, kimberlite, and carbonatite explained in the system CaO-MgO-SiO2-CO2. *Geology* **3**, 621–624 (1975).
- 435 45. Carn, S. A., Fioletov, V. E., McLinden, C. A., Li, C. & Krotkov, N. A. A decade of global volcanic SO 2 emissions measured from space. *Sci. Rep.* **7**, 44095 (2017).
- 46. Werner, C. *et al.* Carbon Dioxide Emissions from Subaerial Volcanic Regions: Two
 Decades in Review. in *Deep Carbon: Past to Present* (eds. Orcutt, B. N., Daniel, I. &
 Dasgupta, R.) 188–236 (Cambridge University Press, 2019).
- 47. Brantley, S. L. & Koepenick, K. W. Measured carbon dioxide emissions from
 Oldoinyo Lengai and the skewed distribution of passive volcanic fluxes. *Geology* **23**,
 933–936 (1995).
- 48. Zhang, M. *et al.* Magma-derived CO2 emissions in the Tengchong volcanic field, SE

 Tibet: implications for deep carbon cycle at intra-continent subduction zone. *J. Asian Earth Sci.* **127**, 76–90 (2016).
- 49. Huang, J. & Zhao, D. High-resolution mantle tomography of China and surrounding regions. *J. Geophys. Res. Solid Earth* **111**, (2006).
- 50. House, B. M., Bebout, G. E. & Hilton, D. R. Carbon cycling at the Sunda margin, Indonesia: A regional study with global implications. *Geology* **47**, 483–486 (2019).
- 51. Jackson, M. G. & Hart, S. R. Strontium isotopes in melt inclusions from Samoan
 basalts: Implications for heterogeneity in the Samoan plume. *Earth Planet. Sci. Lett.*245, 260–277 (2006).

- 52. Kuiper, K. F. *et al.* Synchronizing rock clocks of Earth history. *Science* **320**, 500–504 (2008).
- 53. Cahoon, E. B., Streck, M. J., Koppers, A. A. & Miggins, D. P. Reshuffling the

 Columbia River Basalt chronology—Picture Gorge Basalt, the earliest-and longesterupting formation. *Geology* **48**, 348–352 (2020).
- 54. Koppers, A. A. ArArCALC—software for 40Ar/39Ar age calculations. *Comput. Geosci.* 28, 605–619 (2002).
- 55. Steiger, R. H. & Jäger, E. Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. *Earth Planet. Sci. Lett.* **36**, 359–362 (1977).
- 56. Min, K., Mundil, R., Renne, P. R. & Ludwig, K. R. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga 465 rhyolite. *Geochim. Cosmochim. Acta* **64**, 73–98 (2000).
- 57. Horton, F., Nielsen, S., Shu, Y., Gagnon, A. & Blusztajn, J. Thallium isotopes reveal
 immiscible brine activity during carbonatite magmatism. *Geochem. Geophys. Geosystems* (in revision).
- 58. Alkhazov, V. Y., Atakishiyev, Z. M. & Azimi, N. A. Geology and mineral resources of the early Quaternary Khanneshin carbonatite volcano (southern Afghanistan). *Int. Geol. Rev.* **20**, 281–285 (1978).
- 59. Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. *Chem. Geol.* **145**, 325–394 (1998).
- 474 60. McDonough, W. F. & Sun, S. S. The composition of the Earth. *Chem. Geol.* **120**,
 475 223–253 (1995).

Acknowledgments

Robert Seal at the U.S. Geological Survey granted access to the samples, which were collected by U.S. Geological Survey and U.S. Department of Defense Task Force for Business and Stability Operations personnel led by Robert Tucker and Emily King. The Afghanistan Geological Survey provided access to Soviet reports about the Khanneshin volcano that were essential for the fieldwork. The Afghanistan Ministry of Mines and Petroleum granted permission for sample collection. Combined Forces Special Operations Command - Afghanistan provided logistics and security support. At the time of sample collection, F.H. was an employee of TFBSO. Jerzy Blusztajn and Daniel Miggins carried out the strontium isotope analyses and Ar-Ar geochronology, respectively. Comments by Sabin Zahirovic, Elsa Amsellem, and Kwan-Nang Pang, as well as discussions with Sune Nielsen and Glenn Gaetani, improved this paper. This project was supported by the Woods Hole Oceanographic Institution Independent Research & Development Program and a National Science Foundation grant (EAR #1911699) awarded to F.H.

Author information

Affiliations

Woods Hole Oceanographic Institution, Woods Hole, MA, USA

Contributions

The author participated in the planning, fieldwork, and sample collection at the Khanneshin volcano in 2010. Sample prefixes "FH-" and "KHAN-" correspond to samples

499	collected by the author. F.H. is fully responsible for the conceptualization, methodology,
500	data interpretation, writing, and visualization of this research.
501	Corresponding author
502	All correspondence should be directed to the author (fhorton@whoi.edu).
503	
504	Ethics declaration
505	Competing interests
506	The author declares no competing interests.
507	
508	Extended Data
509	Extended Data Fig. 1 Geologic map of the Khanneshin volcano showing sample
510	locations.
511	The core of the central vent consists mostly of sövite with abundant fenite xenoliths.
512	Outer portions of the central vent are composed mostly of ankerite-barite carbonatite,
513	inferred to be younger than the sövite because they host sövite xenoliths. Samples
514	(white circles) were collected from two drainages that exit the massif to the northeast.
515	This figure is modified from ⁵⁷ and based on ⁵⁸ and ²³ .
516	
517	Extended Data Figure 2 Mineralogy and petrology of sandstone sample FH-10KH-
518	10.
519	A, Sawed surface image. The sedimentary clasts are dominantly K-feldspar. Bedding is
520	defined by alternating sandstone and siltstone layers, of which the latter appear darker
521	because they have more interstitial Fe-oxide. The rock is brecciated and crosscut by

calcium carbonate veins. **B**, Closer inspection of a carbonate vein reveals anastomosing networks of smaller veins extending into the sandstone. Beneath the large vein is a porous metasomatized region where cavities are partially filled by carbonate minerals, including minor amounts of REE-carbonates. **C**, Thin section photomicrograph. Along calcium carbonate vein margins are secondary Fe-Mn-oxides (black).

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

522

523

524

525

526

Extended Data Fig. 3 Mineralogy and petrology of representative sövite samples.

A, KHAN-1, hand sample image. Medium- to coarse-grained calcite carbonatite contains fine-grained biotite. Three small fenite xenoliths are visible in the upper left. **B**, KHAN-1, PPL. Small fenite xenoliths, like the one imaged here, are composed of biotite. They share sharp and diffuse boundaries with the surrounding calcite matrix. C, KHAN-2, sawed surface image. Larger fenite xenoliths are highly brecciated and crosscut by calcite veins. **D**, KHAN-2, XPL. Large twinned calcite crystal with Fe-oxide and biotite inclusions. Contact twinning separates the upper and lower portions of the crystal, both of which have subtle lamellae twins. E, KHAN-2, sawed surface image. Large fenite xenoliths have brecciated textures and are crosscut by multiple generations of veins. The white veins are calcite and the green vein, bound by dashed lines, is mostly apatite. F, KHAN-2, XPL. Apatite also forms clusters with biotite in the calcite matrix of sövite samples. G, KHAN-2, XPL. Large brecciated fenite xenoliths have biotite-rich zones adjacent to calcite veins and fine-grained interiors composed of biotite and K-feldspar. H, RT-10K-09, hand sample image. This sövite contains large (>1 cm) phlogopite books intergrown with coarse calcium carbonate. I, RT-10K-09, XPL. Calcite twin lamellae are visible in this sample. Mineral abbreviations: ap = apatite, bio = biotite, cc = calcium carbonate, kfs =

K-feldspar. Hand sample and sawed surface images were taken on a stereomicroscope.

Thin section images were taken on a polarizing microscope under plain polarized light (PPL) or cross polarized light (XPL).

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

545

546

547

Extended Data Fig. 4 Mineralogy and petrology of representative ankerite-barite carbonatite samples.

A, FH-10K-08, sawed surface image. Lath-shaped intergrowths of barium, calcium carbonate, and ankerite form the matrix of this carbonatite. Fe-Mn oxides are present and REE-carbonates line the walls of cavities. **B**, FH-10K-08, PPL. The complex textures of the barium-calcium carbonate intergrowths—perhaps pseudomorphs after witherite—can be observed. Tetraferriphlogopite also exists in this sample as a minor phase. **C**, RT-10K-03, sawed surface image. Ankerite-barite carbonatites also contain fenite xenoliths, as shown here. REE carbonates appear yellow. **D**, RT-10K-03, PPL. Ankerite-barite carbonatites exhibit varied textures. Here, barite (outlined with a dashed line) and ankerite are surrounded by a finer-grained matrix of calcium carbonate. E, RT-10K-11, sawed surface image. Intergrowths of ankerite and Fe-oxides often form clusters. F, RT-10K-11, PPL. Tabular barite crystals occur in intimate association with ankerite and Fe-oxide. G, RT-10K-07, sawed surface image. Some samples are relatively homogeneous on the cm scale. Here, ankerite (grey) surrounds intergrowths of barite (white) and calcium carbonate (also white). Yellow regions contain REE minerals hosted in cavities. H, RT-10K-07, PPL. Tetraferriphlogopite is sometime rimmed by REE-carbonate minerals and tends to be associated with barite-calcium carbonate intergrowths. I, RT-10K-03, XPL. Solitary fluorite crystals (isotropic) exist in

some ankerite-barite carbonatites and are rimmed by calcium carbonate. Mineral abbreviations: ank = ankerite, ba = barite cc = calcium carbonate, fl = fluorite, tfp = tetraferriphlogopite, REE = rare earth element carbonate minerals.

Extended Data Fig. 5 Mineralogy and petrology of REE-rich ankerite barite carbonatites.

A, RT-11K-4A0, sawed surface image. Aggregates of yellow REE-carbonates in a matrix of ankerite, barite, and calcite. Clusters of REE-carbonate and strontianite form lighter yellow clusters. **B**, RT- 11K-4A0, XPL. Contact between REE-carbonate aggregates and ankerite-barite-calcite matrix. **C**, RT-11K-5B3B, sawed surface image. Ankerite (dark brown patches) plus calcite (grey) zones alternate with barite, strontianite, and REE-carbonate aggregates. **D**, RT-11K-5B3B, XPL. Spherulitic acicular strontianite occurs in association with ankerite, calcium carbonate, and barite. **E**, RT-11K-2B, XPL. In some cases, subhedral domains of barite and ankerite are rimmed by zones of ankerite, strontianite plus REE-carbonates, and apatite. **F**, RT-11K-5B6C, XPL. Mn oxides occur as veins and clusters. Here, tabular Mn-oxide in a vein contains interstitial calcium carbonate, which grades into intergrowths of strontianite and REE-carbonate minerals. Mineral abbreviations: ank = ankerite, ba = barite, cc = calcium carbonate, REE = rare earth element carbonate minerals, str = strontianite.

Extended Data Fig. 6 ⁴⁰Ar/³⁹Ar plateau diagrams.

A-C, Step heating analyses of RT-10K-09 phlogopite aliquots 1–3, respectively.

Extended Data Fig. 7 Trace element model.

A, The trace element concentrations in the Khanneshin carbonatite samples vary by roughly 1–2 orders of magnitude for each element (grey shaded region). In general, sövite samples are less enriched than ankerite-barite carbonatites. Colored lines represent mean compositions for Khanneshin sövites and ankerite-barite carbonatites with ("REE") and without ("A-B C") abundant REE minerals. **B**, The modeled composition of carbonatitic melt derived from subducted Makran sedimentary material—assumed to equal average Indus Fan sediments⁵⁹—and Khanneshin carbonatite samples (grey shaded region) have similar trace element patterns. The model assumes that 30% melting of subducted sediments produced a carbonated silicate magma that separated into immiscible carbonatitic and silicate magmas during ascent. See Supplementary Information text for details. All values are normalized to primitive mantle⁶⁰.

Extended Data Table 1 Strontium isotope results.

⁸⁷Sr/⁸⁶Sr results for 20 Khanneshin carbonatite samples and one sandstone.

Extended Data Table 2 Trace element abundances.

Trace element abundances (µg/g) in the Khanneshin samples^{23,27}.

Supplementary Information

Supplementary Information Text

Sample descriptions and trace element model.

614	Data S1
615	The complete ⁴⁰ Ar/ ³⁹ Ar geochronology report received from Oregon State University
616	Argon Geochronology Lab for RT-10K-09 phlogopite aliquot 1.
617	
618	Data S2
619	The complete ⁴⁰ Ar/ ³⁹ Ar geochronology report received from Oregon State University
620	Argon Geochronology Lab for RT-10K-09 phlogopite aliquot 2.
621	
622	Data S3
623	The complete ⁴⁰ Ar/ ³⁹ Ar geochronology report received from Oregon State University
624	Argon Geochronology Lab for RT-10K-09 phlogopite aliquot 3.