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The fate of carbon subducted to mantle depths remains uncertain, yet strongly influences
the distribution of terrestrial carbon on geologic timescales. Carbon fluxes into subduction
zones are exceptionally high where downgoing plates contain thick sedimentary fans.
This study uses volcano geochemistry to assess sedimentary carbon recycling in the
high-flux Makran subduction zone, where the Arabian plate subducts northward beneath
Eurasia. Based on strontium isotope geochemistry and “°Ar-3°Ar geochronology, | show
that a portion of the submarine Indus Fan entered the Makran trench, melted, and
ascended as magmas that erupted in southern Afghanistan. The resulting volcano—
composed primarily of carbonate minerals—formed at approximately 3.8 million years
ago. The 8Sr/8Sr of the lavas indicates that their magmatic precursors derived from
marine sediments deposited at 28.9 £+ 1.4 Ma. This implies that sedimentary carbon
subducted to and returned from mantle depths in less than 27 million years, indicating
that magmas can efficiently recycle sedimentary carbon from subducting slabs to the

overlying plate.

The efficiency of carbon recycling in subduction zones has profound implications for
Earth’s climate'. Some fraction of the carbon entering subduction zones is released from
subducted slabs via mechanical removal, metamorphic decarbonation, and melting. The
remainder recycles to lithospheric reservoirs in buoyant diapirs? and melts®* or enters the
convecting mantle®. Subducted carbon that does not return to near-surface reservoirs
may remain isolated from the biosphere for billions of years®’. Globally, the carbon flux
into subduction zones appears to exceed the combined outputs from arc volcanoes and

diffuse venting®®. This may be indirect evidence that deep Earth reservoirs serve as
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carbon sinks on geologic timescales. Yet, the fate of deeply subducted carbon remains

an enigmatic aspect of the global carbon cycle.

The Makran subduction zone, with the highest carbon flux per unit length along trench of
any modern subduction zone?, is uniquely well suited for investigating carbon recycling in
a high-flux setting. The Makran continental margin is dominantly accretionary'® and
includes a Neogene-Quaternary volcanic arc that consists of three volcanic centers in
Iran and Pakistan''. Here | present evidence that a carbonatite volcano in southern
Afghanistan is a hitherto unrecognized eastern limb of the Makran volcanic arc. This
volcano is proof that carbonatitic melts—theoretically generated in subduction zones at
postarc depths (>140 km)®12, but seldom attributed to volcanic arc processes'*—can be
voluminous enough to efficiently recycle subducted sedimentary carbon to the
lithosphere. Isotope geochemistry and geochronology constrain the timing of sedimentary
deposition and eruption, respectively, and imply that subducted carbon can return to

shallow reservoirs on much shorter timescales than previously thought'#-16.

The Makran subduction zone and volcanic arc

As the Eurasian and Arabian plates converge, Arabian oceanic crust enters the Makran
subduction zone at a rate of approximately 30 mm/yr'’. The Arabian Plate carries Indus
Fan sediments—the thickest sequence of sediments (5-7.5 km) entering any subduction
zone—into the Makran trench, causing an unusually shallow grade of subduction and an

exceptionally large accretionary prism'8. The crustal wedge extends ~300 km north from
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the trench, increasing in age from unconsolidated Quaternary sediments through

imbricated Miocene ophiolites and metasediments'©.

As previously defined, the Makran volcanic arc consists of three Miocene-Quaternary
volcanic centers—Bazman, Taftan, and Koh-i-Sultan—along an east-northeast linear
trend oblique to the trench (Fig. 1)''. Lavas erupted at these locations have basaltic to
rhyolitic compositions and fall along calc-alkaline differentiation trends'®. Subduction zone
geometry varies from east to west: subduction in the east is shallower near the coast?°
and steeper at greater depths?' compared to subduction in the west. This asymmetry
might be due to oceanic lithosphere subduction in the east and continental lithosphere

underthrusting in the west?2.

The Khanneshin carbonatites (Extended Data Fig. 1) erupted through Neogene
sedimentary rocks (Extended Data Fig. 2) of the Sistan Basin, southern Afghanistan,
along intersecting regional faults?3. The core of the 4-km-wide main vent consists of
calcite-rich medium- to coarse-grained carbonatite (sOvite) ringed by agglomeritic
ankerite-barite carbonatite (Extended Data Figs. 3-5)?*. Both units contain abundant
mica-rich xenoliths of metasomatized wall rock (fenite) and are crosscut by fine-grained
carbonatite (alvikite) dikes. A volcano-sedimentary apron extends radially 3—5 km from
the main vent and is intruded by many late-stage dikes and volcanic plugs, the youngest
of which are phonolitic. Aeromagnetic surveys suggest that as many as eight other minor

alkaline igneous centers with unknown ages and compositions may be buried beneath
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Holocene sands?3. Unlike most volcano-forming carbonatites®®, however, the Khanneshin

volcano does not appear to be accessory to silicic volcanism.

Chronologic and geochemical constraints

Some geochemical data exist for the Khanneshin carbonatites?326.27, This study adds two
critical results: “°Ar-3°Ar geochronology that establishes the timing of Khanneshin
volcanism and strontium isotopic constraints for Khanneshin rocks (see Supplementary

Information for sample descriptions).

40Ar-3%Ar geochronology: Sovite sample RT-10K-09—inferred to be the least
geochemically evolved because it has light carbon, oxygen, and thallium isotopic
compositions?’—was selected to represent the main stage of eruption. Unlike other mica-
bearing Khanneshin samples, the coarse-grained phlogopite in RT-10K-09 is not
associated with fenite xenoliths. Step heating experiments on three phlogopite aliquots
yielded “CAr/3°Ar plateau ages of 3.54, 3.74, and 3.83 Ma that consisted of 63, 45, and 35
percent of the total 3°Ar released, respectively (Extended Data Figure 6). Analytical
uncertainty for each date is 0.02-0.04 Ma and the full external uncertainty for each
analysis is 0.20 Ma. All three “°Ar/3°Ar ages agree within uncertainty and could represent
a single Ar closure age between 3.74 and 3.63 Ma. Alternatively, the oldest date (3.83
Ma) may represent the eruption age of the sdévite if the younger dates record partial
resetting caused by subsequent eruptive episodes that reheated the sample and caused

Ar loss.
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Strontium isotopes: Twenty Khanneshin carbonatites have relatively homogenous
873r/8Sr, ranging from 0.707919 + 7 (RT-11K-06) to 0.708061 + 8 (KHAN-3) and with a
mean of 0.708004 + 36 (1s, n=20 rocks). This is comparable to previous results for
Khanneshin rocks?® and confirms that there is little Sr isotopic variability across the central
vent of the volcano. The brecciated sandstone (represented by sample FH-10K-10)
through which the carbonatitic lavas erupted has 8Sr/%8Sr indistinguishable from the
carbonatites; this value probably represents the isotopic composition of calcite veins
(Extended Data Fig. 2) rather than the sedimentary protolith (see Supplementary

Information).

Evidence for rapid carbon recycling

Three lines of evidence indicate that the Khanneshin magmas were products of active
subduction. First, the Khanneshin volcano is spatially and temporally associated with the
Makran volcanic arc. Earthquake focal mechanisms within the subducting slab (Fig. 1)
extend to 157 km depth'” and the deepest earthquake occurred less than 70 km to the S-
SE of the Khanneshin volcano?8. This suggests that the slab passes beneath the volcano
~700 km north of the trench at a depth of ~180 km. The age of the Khanneshin volcano
is bracketed by silicic volcanism at Bazman (4.6 to <0.6 Ma), Taftan (6.95 to <0.71 Ma),
and Koh-i-Sultan (<2.5 Ma) volcanoes®®, which are indisputably part of the Makran
volcanic arc. Furthermore, the Khanneshin volcano is only slightly north of the linear trend
defined by the other volcanoes (Fig. 1). These observations suggest that that the

Khanneshin volcano is the easternmost manifestation of the Makran volcanic arc.
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Second, sediments on the downgoing slab beneath the Khanneshin volcano could be
fertile sources of carbonatitic melt. In the Makran subduction zone, the slab-mantle
interface may not heat to 450 °C until reaching a depth of 75 km3°. Heating may accelerate
as the slab passes through the lithosphere-asthenosphere boundary, located ~150 km
beneath the Khanneshin volcano3'. When heated above ~700 °C, sediment layers thicker
than 1 km are prone to forming buoyant diapirs?, which undergo partial melting and
efficient decarbonation as they ascend into the mantle wedge®?. Sediments can also be
convectively transferred from the slab into the mantle wedge3. During burial, subducted
Indus Fan material (calcareous ooze and clay-rich terrigenous turbidites3®) would have
consolidated and metamorphosed into carbonated pelites. At 950-1050 °C and 3-5
GPa334, these lithologies can produce carbonated alkali-rich melt. Such conditions are
plausible near the top of the subducting slab and in the mantle wedge. Carbon- and alkali-
rich melt released from metasediments may separate into immiscible carbonatitic and
silicate magmas during ascent. The buried igneous centers near the Khanneshin
volcano?® could represent conjugate silicate magmas. Thus, there are viable mechanisms
by which carbonatitic melt might be generated beneath the Khanneshin volcano.
Exceptionally high rates of carbonatitic melt generation in the Makran subduction zone
could be facilitated by (i) an abnormally high sediment flux, (ii) the abundant carbonate in
the sediments (they can contain >50% CaCO333) and (iii) efficient carbon subduction past

typical forearc depths®.

Third, the Khanneshin lavas contain geochemical evidence of crustal recycling. Their

trace element patterns are consistent with the immiscible separation of carbonatitic



159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

Nature Geoscience Manuscript NGS-2020-12-02945

magma from silicate magma derived from the melting of Indus Fan material (see
Supplementary Information and Extended Data Fig. 7). Isotopically, Khanneshin,
Bazman, and Taftan volcanic rocks fall along a common '*3Nd/'#*Nd and 8"Sr/86Sr trend
(Fig. 2) that diverges from trends attributable to the magmatic fractionation of Rb/Sr and
Sm/Nd. Such Sr-Nd decoupling has long been viewed as evidence of sedimentary
recycling®®. The Makran arc values (including the Khanneshin lavas) fall within the
Enriched Mantle 2 array, which is likewise attributed to a recycled sediment component3®.
Thallium isotope compositions of Khanneshin lavas also attest to ocean crust recycling,
despite being strongly influenced by wall rock interactions?’. Interestingly, the 2°6Pb/294Pb,
207Pp/204Ph, and 2%8Pb/2%4Pb (18.9, 15.6, and 40.0, respectively) of Khanneshin
carbonatites?® are very similar to average Indus River K-feldspars®’; Khanneshin lavas

may have inherited this signature from continental detritus transported by the Indus River.

Elsewhere, carbonatites may contain ancient recycled material from lithospheric
reservoirs reactivated by backarc extension, mantle wedge flow, or ascending magmas.
That is not a likely source of the recycled sedimentary component in the Khanneshin
lavas. The Afghan block, through which Khanneshin magmas erupted, formed by the
accretion of one or more Gondwana microcontinents to Asia by the Early Cretaceous38.
Southern Afghanistan, as part of the vast Alpine-Himalayan orogen, should have young
lithospheric mantle (probably less than 50 Ma3®°) and is far from cratons that could serve
as long-lived geochemical reservoirs. Thus, and for the reasons outlined above—(i)
spatiotemporal associations with arc volcanism and the Makran slab, (ii) viable

mechanisms for voluminous carbonatitic melt production, and (iii) geochemical evidence
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for recycled sedimentary material—Khanneshin carbonatites can be viewed as products

of Makran subduction.

Sediments in the Makran subduction zone are the most likely source of Khanneshin
magmas. Because Khanneshin lavas have very high Sr concentrations (multiple wt% in
most cases), substantial Sr isotopic contamination during magma ascent seems unlikely,
even if Paleozoic or older rocks exist beneath the volcano. As noted above, the mantle
lithosphere beneath the volcano is young, so remobilization of Sr implanted in the
subcontinental lithosphere prior to the initiation of the Makran subduction zone also
seems unlikely. Instead, the 8Sr/3Sr measured in Khanneshin rocks probably reflects
the isotopic composition of subducted Indus Fan material. The Indus River initiated during
the Eocene shortly after the India-Asia collision began and much of the fan appears to be
Paleogene*®. If the Khanneshin lavas inherited the 8’Sr/®Sr of their sedimentary
precursors, the monotonic increase in marine sedimentary carbonate 8Sr/®8Sr since 40
Ma can be used as a chronometer (Fig. 3). Average marine carbonates*' have 87Sr/®6Sr
overlapping with mean Khanneshin carbonatites (0.708004 £ 36) only once since 200 Ma.
The 87Sr/Sr range in Khanneshin lavas suggests that their source rocks had a mean
deposition age of 28.9 + 1.4 Ma, which coincides with early Indus Fan growth. Assuming
that 4CAr/3°Ar plateau ages (3.83-3.54 Ma) record the main stage of volcanism, 24-27
Myr passed between deposition and eruption. The current length of the slab from the
trench to beneath the volcano is ~700 km. However, the trench has migrated 140 km
southward since the mid-Miocene*?, so the slab segment currently beneath the volcano
traveled only ~560 km since entering the trench. At the current rate of 32.6 mm/yr'7,

subduction to beneath the Khanneshin volcano would take 17 Myr. Thus, sediment

8



206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

Nature Geoscience Manuscript NGS-2020-12-02945

transfer to the trench and the ascent of recycled materials from the slab presumably lasted

<10 Myr combined.

Recycled carbon resides in continental carbonatites

There is increasing isotopic evidence that some carbonatitic magmas worldwide contain
recycled crustal material. Radiogenic isotope systematics suggest that carbonatites
derive from either marine sedimentary carbon recycled through subcontinental
lithosphere or deeply subducted carbonated oceanic crust that returns from either the
transition zone or from the core-mantle boundary'. The role of recycling is confirmed by
calcium isotopes'® and boron isotopes™®, but the recycling scenarios invoked by these
studies require timescales of 100—-1000 Myr. The Khanneshin volcano is evidence that
sedimentary carbon recycles to and from typical postarc depths on short timescales (i.e.,
<100 Myr). Low-volume carbonatitic melts cannot survive metasomatic entrapment*3 and
rapid devolatilization** during ascent, so the exceptionally high sedimentary carbon flux
into the Makran trench may have been necessary to produce carbonatitic magmas
voluminous enough to reach the surface. This might explain why carbonatite volcanism

occurs in the Makran subduction zone, but not elsewhere on Earth'3.

Globally, subducting carbon inputs appear to be larger than volcanic arc outputs®2. This
imbalance is especially pronounced for the Makran and Andaman-Burma subduction
zones, where the Himalaya-derived Indus and Bengal fans may transport >12 Mt/yr of
carbon—roughly 7% of the global subducting carbon flux'—into the mantle wedge®.

These subduction zones are associated with only one active volcano that outgasses
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significant quantities of CO2 and SO2 (Barren lIsland, India*®), but there are several
volcanic centers that have been active during the Quaternary (including Bazman, Taftan,
and Koh-i-Sultan in the Makran arc) that are potential sources of diffuse volcanic CO2 and
for which the modern and historical fluxes are unknown“8. If Khanneshin volcanic CO:
emissions were comparable to those of the Oldoinyo Lengai carbonatite volcano in
Tanzania*’, it could have contributed 2.4 Mt/yr. Currently, most volcanic CO2 emissions
in the region may come from the Tengchong volcanic field, China (4.5-7.1 Mt/yr*8), which
is related to the subduction of the Burma slab*?. Unless there are major CO2 sources
undetected by satellite measurements*®, the Makran and Andaman-Burma carbon inputs
are probably not balanced by volcanic gas emissions, unlike in the Java and Sumatra
subduction zones®°. This suggests that the return of subducted carbon to the atmosphere
is inefficient in subduction zones with the highest sedimentary carbon fluxes. In such
settings, the carbon inputs must be balanced by carbon mixed into the convecting
mantle®, the storage of carbon in lithospheric reservoirs®, or both. The Khanneshin
volcano is evidence that subducted carbon can rapidly return to lithospheric reservoirs. It
may be a rare surface expression of long-lived carbon reservoirs that form via carbonatitic

magmatism in rear-arc lithosphere.

Figure captions

Fig. 1: Map of the Makran subduction zone and volcanic arc.

Earthquake focal mechanisms'” (yellow symbols with approximate depths in km) in the
subducting crust indicate that the slab passes beneath the three western volcanic

centers' (orange). The approximate slab-top depth is contoured by black dashed lines

10
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based on earthquake focal mechanism depths. The Khanneshin volcano is slightly north
of the linear trend (light grey dashed line) defined by the calc-alkaline volcanic arc centers.

After0,

Fig. 2: '*3Nd/'*Nd and 3"Sr/®¢Sr systematics of the Makran arc.

The neodymium and strontium isotope compositions of Makran volcanic arc samples
testify to sediment recycling. Khanneshin lavas fall along the same Enriched Mantle 2
trend as Bazman and Taftan samples’"2%; this trend cannot be explained by magmatic
fractionation of Rb/Sr and Sm/Nd from mid-ocean ridge basalt values (hatched area) and
indicates sediment recycling®. The Khanneshin data are from?® and mantle geochemical
trends are after3®. EM1 = Enriched Mantle 1, EM2 = Enriched Mantle 2, HIMU = high p,

and MORB = mid-ocean ridge basalt.

Fig. 3: Strontium isotopic evidence of rapid sediment recycling.

A, The ®Sr/83r compositions of Khanneshin carbonatites versus average marine
sedimentary carbonates*'. The horizontal black line and the bounding light grey area
represent the mean and 1 standard deviation (n = 20 rocks), respectively, for the
Khanneshin carbonatites. Since 500 Ma, average marine sedimentary carbonates
equaled that measured in the Khanneshin carbonatites nine times, but only once since
200 Ma. B, Same as A, but from 0 to 40 Ma. Sediments deposited in the Indus Fan at c.
30 Ma would have had 8Sr/86Sr ratios comparable to those measured in the Khanneshin
samples. This implies that sediment recycling through the Makran subduction zone took

less than 27 Myr.
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Fig. 4: Schematic cross section of the eastern Makran subduction zone.

Khanneshin magmas probably derived from subducted sediments that melted near the
top of the subducting slab or in buoyant diapirs that ascended into the mantle wedge.
Slab depths and the thermal structure are based on earthquake focal mechanisms'” and
thermal modeling®, respectively. The black dashed line along the top of the subducting
Arabian Plate represents the trajectory of subducted Indus Fan material and the time
elapsed since entering the trench. Note that only earthquakes with focal mechanisms >50

km deep (white) are plotted in Fig. 1.

Methods (online only)

Strontium isotope measurements

Carbonatite samples were powdered by hand in an agate mortar and pestle. Between 5
mg and 10 mg of each sample was dissolved in a 3:1 mixture of HF and HNOs. Sr was
separated and purified from the samples using Sr-Spec (Eichrom) resin. Sr isotopic
measurements were performed on a Thermo-Finnigan Neptune ICP-MS at Woods Hole
Oceanographic Institution. Isobaric interferences of 8’Rb on 8’Sr and 8Kr on 8Sr were
corrected for by monitoring 82Kr, 8Kr, and 8Rb and by applying a mass bias correction
using an exponential relationship®'. The internal precision for Sr isotopic measurements
was 6-24 ppm. Raw Sr results are normalized using standard SRM987 (87Sr/86Sr =
0.7102140). Standard NBS987 was reproducible to within 25 ppm. See Extended Data

Table 1 for strontium isotopic results.
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40Ar-3%Ar geochronology

At the Oregon State University Argon Geochronology Lab, three phlogopite aliquots were
cleaned for 30 min in 200 proof HPLC grade acetone and for 30 minutes in ethyl alcohol,
and then were rinsed four times with triple-distilled water and dried at 55 °C for 12 hrs.
The samples were irradiated in the Oregon State University TRIGA reactor for six hours,
along with Fish Canyon Tuff sanidines®? that served as flux monitors. Following the
procedures described in%3, portions of each phlogopite aliquot (3.882, 9.351, and 4.251
mg for aliquots 1-3, respectively) were loaded in Cu-planchettes and step heated by
rastering a 30 W Synrad CO: laser beam across each sample under ultrahigh vacuum.
Reactive gases were cleaned with AP10 Zr-Al SAES getters at 450 °C and 21 °C before
the argon was inlet into an ARGUS VI multicollector mass spectrometer for analysis.
Plateau ages (Extended Data Fig. 6)—based on contiguous extraction steps with
apparent “°Ar-3°Ar dates that are indistinguishable at the 95% confidence interval—were
calculated using ArArCALC v.2.6.2 software® using the decay constant 5.530 + 0.097 x
10-1% 1/yr (20) from®® and corrected by®®. See Data S1, S2, and S3 for the complete results

from the Argon Geochronology Lab.

Data Availability

The Ar-Ar geochronology and strontium isotope results are publically available via

EarthChem (https://doi.org/10.26022/IEDA/111960).
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Extended Data

Extended Data Fig. 1 Geologic map of the Khanneshin volcano showing sample
locations.

The core of the central vent consists mostly of sévite with abundant fenite xenoliths.
Outer portions of the central vent are composed mostly of ankerite-barite carbonatite,
inferred to be younger than the sévite because they host sévite xenoliths. Samples
(white circles) were collected from two drainages that exit the massif to the northeast.

This figure is modified from%” and based on®%8 and?3.

Extended Data Figure 2 Mineralogy and petrology of sandstone sample FH-10KH-
10.

A, Sawed surface image. The sedimentary clasts are dominantly K-feldspar. Bedding is
defined by alternating sandstone and siltstone layers, of which the latter appear darker

because they have more interstitial Fe-oxide. The rock is brecciated and crosscut by
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calcium carbonate veins. B, Closer inspection of a carbonate vein reveals anastomosing
networks of smaller veins extending into the sandstone. Beneath the large vein is a
porous metasomatized region where cavities are partially filled by carbonate minerals,
including minor amounts of REE-carbonates. C, Thin section photomicrograph. Along

calcium carbonate vein margins are secondary Fe-Mn-oxides (black).

Extended Data Fig. 3 Mineralogy and petrology of representative sovite samples.

A, KHAN-1, hand sample image. Medium- to coarse-grained calcite carbonatite contains
fine-grained biotite. Three small fenite xenoliths are visible in the upper left. B, KHAN-1,
PPL. Small fenite xenoliths, like the one imaged here, are composed of biotite. They share
sharp and diffuse boundaries with the surrounding calcite matrix. C, KHAN-2, sawed
surface image. Larger fenite xenoliths are highly brecciated and crosscut by calcite veins.
D, KHAN-2, XPL. Large twinned calcite crystal with Fe-oxide and biotite inclusions.
Contact twinning separates the upper and lower portions of the crystal, both of which have
subtle lamellae twins. E, KHAN-2, sawed surface image. Large fenite xenoliths have
brecciated textures and are crosscut by multiple generations of veins. The white veins
are calcite and the green vein, bound by dashed lines, is mostly apatite. F, KHAN-2, XPL.
Apatite also forms clusters with biotite in the calcite matrix of sévite samples. G, KHAN-
2, XPL. Large brecciated fenite xenoliths have biotite-rich zones adjacent to calcite veins
and fine-grained interiors composed of biotite and K-feldspar. H, RT-10K-09, hand
sample image. This sOvite contains large (>1 cm) phlogopite books intergrown with
coarse calcium carbonate. I, RT-10K-09, XPL. Calcite twin lamellae are visible in this

sample. Mineral abbreviations: ap = apatite, bio = biotite, cc = calcium carbonate, kfs =
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K-feldspar. Hand sample and sawed surface images were taken on a stereomicroscope.
Thin section images were taken on a polarizing microscope under plain polarized light

(PPL) or cross polarized light (XPL).

Extended Data Fig. 4 Mineralogy and petrology of representative ankerite-barite
carbonatite samples.

A, FH-10K-08, sawed surface image. Lath-shaped intergrowths of barium, calcium
carbonate, and ankerite form the matrix of this carbonatite. Fe-Mn oxides are present
and REE-carbonates line the walls of cavities. B, FH-10K-08, PPL. The complex
textures of the barium-calcium carbonate intergrowths—perhaps pseudomorphs after
witherite—can be observed. Tetraferriphlogopite also exists in this sample as a minor
phase. C, RT-10K-03, sawed surface image. Ankerite-barite carbonatites also contain
fenite xenoliths, as shown here. REE carbonates appear yellow. D, RT-10K-03, PPL.
Ankerite-barite carbonatites exhibit varied textures. Here, barite (outlined with a dashed
line) and ankerite are surrounded by a finer-grained matrix of calcium carbonate. E, RT-
10K-11, sawed surface image. Intergrowths of ankerite and Fe-oxides often form
clusters. F, RT-10K-11, PPL. Tabular barite crystals occur in intimate association with
ankerite and Fe-oxide. G, RT-10K-07, sawed surface image. Some samples are
relatively homogeneous on the cm scale. Here, ankerite (grey) surrounds intergrowths
of barite (white) and calcium carbonate (also white). Yellow regions contain REE
minerals hosted in cavities. H, RT-10K-07, PPL. Tetraferriphlogopite is sometime
rimmed by REE-carbonate minerals and tends to be associated with barite-calcium

carbonate intergrowths. I, RT-10K-03, XPL. Solitary fluorite crystals (isotropic) exist in
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some ankerite-barite carbonatites and are rimmed by calcium carbonate. Mineral
abbreviations: ank = ankerite, ba = barite cc = calcium carbonate, fl = fluorite, tfp =

tetraferriphlogopite, REE = rare earth element carbonate minerals.

Extended Data Fig. 5 Mineralogy and petrology of REE-rich ankerite barite
carbonatites.

A, RT-11K-4A0, sawed surface image. Aggregates of yellow REE-carbonates in a matrix
of ankerite, barite, and calcite. Clusters of REE-carbonate and strontianite form lighter
yellow clusters. B, RT- 11K-4A0, XPL. Contact between REE-carbonate aggregates and
ankerite-barite-calcite matrix. C, RT-11K-5B3B, sawed surface image. Ankerite (dark
brown patches) plus calcite (grey) zones alternate with barite, strontianite, and REE-
carbonate aggregates. D, RT-11K-5B3B, XPL. Spherulitic acicular strontianite occurs in
association with ankerite, calcium carbonate, and barite. E, RT-11K-2B, XPL. In some
cases, subhedral domains of barite and ankerite are rimmed by zones of ankerite,
strontianite plus REE-carbonates, and apatite. F, RT-11K-5B6C, XPL. Mn oxides occur
as veins and clusters. Here, tabular Mn-oxide in a vein contains interstitial calcium
carbonate, which grades into intergrowths of strontianite and REE-carbonate minerals.
Mineral abbreviations: ank = ankerite, ba = barite, cc = calcium carbonate, REE = rare

earth element carbonate minerals, str = strontianite.

Extended Data Fig. 6 “°Ar/*°Ar plateau diagrams.

A-C, Step heating analyses of RT-10K-09 phlogopite aliquots 1-3, respectively.
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Extended Data Fig. 7 Trace element model.

A, The trace element concentrations in the Khanneshin carbonatite samples vary by
roughly 1-2 orders of magnitude for each element (grey shaded region). In general, sdvite
samples are less enriched than ankerite-barite carbonatites. Colored lines represent
mean compositions for Khanneshin sdvites and ankerite-barite carbonatites with (“REE”)
and without (“A-B C”) abundant REE minerals. B, The modeled composition of
carbonatitic melt derived from subducted Makran sedimentary material—assumed to
equal average Indus Fan sediments®®—and Khanneshin carbonatite samples (grey
shaded region) have similar trace element patterns. The model assumes that 30% melting
of subducted sediments produced a carbonated silicate magma that separated into
immiscible carbonatitic and silicate magmas during ascent. See Supplementary

Information text for details. All values are normalized to primitive mantle®°.

Extended Data Table 1 Strontium isotope results.

87Sr/8Sr results for 20 Khanneshin carbonatite samples and one sandstone.

Extended Data Table 2 Trace element abundances.

Trace element abundances (ug/g) in the Khanneshin samples?327.

Supplementary Information

Supplementary Information Text

Sample descriptions and trace element model.
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Data S1
The complete °Ar/3°Ar geochronology report received from Oregon State University

Argon Geochronology Lab for RT-10K-09 phlogopite aliquot 1.

Data S2
The complete °Ar/3°Ar geochronology report received from Oregon State University

Argon Geochronology Lab for RT-10K-09 phlogopite aliquot 2.

Data S3

The complete “°Ar/3°Ar geochronology report received from Oregon State University

Argon Geochronology Lab for RT-10K-09 phlogopite aliquot 3.
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