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1 | INTRODUCTION
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Abstract

Thermal tempering is an industrial process widely used to make soda lime silica
(SLS) glass panels stronger and tougher. During the tempering process, the upper and
bottom sides of the glass may experience different cooling rates, and thus, their prop-
erties could be different. This study characterized changes in surface composition
and subsurface glass network structures as well as indentation and wear resistance
properties of the air- and tin-sides of 6-mm-thick SLS window panels faced toward
the upper and sliding roller sides during thermal tempering. The results showed that
although the chemical and structural differences detected with X-ray photoelectron
spectroscopy and specular reflection infrared spectroscopy are subtle, there are large
differences in nanoindentation behaviors and mechanochemical wear properties of
the SLS glass surface. The findings of this study provide further insights into the
performance difference between the air- and tin-sides of the SLS glass panel treated

with thermal tempering.
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and application process,SLS glass surfaces are physically

Soda lime silica (SLS) glass is a commodity product widely
used in architecture, transportation, and energy industries
due to its high optical transparency and good mechanical
and chemical durability as well as its processibility for mass
production.l'3 Due to the higher mechanical strength of tem-
pered glass compared to the annealed glass, the tempered
SLS glass can meet higher safety requirements for struc-
tural element applications.*” During the manufacturing

contacted with foreign objects and under harsh conditions,
they could be damaged due to indentation or frictional stress
during contacts.*” Such physical damages will not only
lead to optical scattering but also reduce the mechanical
and chemical durability of the glass object.g’9 Thus, under-
standing fundamental mechanical properties and their de-
pendence on manufacturing process is important to prevent
the surface damage of SLS glass under various normal and
tangential stress conditions.
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Mechanical responses of SLS glass under a stress along
the surface normal direction include elastic deformation
(reversible recovery during the removal of applied load),
densification (subsurface structural change due to com-
pression, which can be recovered upon annealing), plastic
or shear flow (leaving permanent change in surface topog-
raphy), and cracking.lo’12 These indentation behaviors can
be further affected by the indenter geometry,13 the load-
ing rate,'* and the glass composition.15 For instance, in-
creasing the sharpness of the indenter tip can cause more
shear deformation or cracking and less densification, and
increasing the loading rate can result in less shear defor-
mation of SLS glass.B’14 The indentation damage of SLS
glass surface can be improved by surface treatments such
as ion-exchange'® and aging or soaking.'’

The wear behavior of SLS glass is sensitive to the humid-
ity of ambient air."® In reciprocating scratch (wear) tests with
smooth counter-surfaces, it was found that the wear of SLS
glass peculiarly decreased at near-saturation RH, while the
wear of fused quartz, borosilicate, and aluminosilicate glasses
increased as RH increased.'””” The increase in wear with RH
could be explained with the classical stress-corrosion theory
in which the adsorbed water molecules are thought to facil-
itate the hydrolysis of Si—O-Si network under mechanical
stress.!! However, this theory cannot explain the enhanced
resistance of SLS against wear at high RH. Further studies
suggested this unusual wear behavior of SLS glass in humid
air could be attributed to the presence of leachable sodium
ions (Na*) and the water activity on the glass surface.”!%*
Since the glass wear in humid air involves chemical reac-
tions of water molecules adsorbed on the glass surface,zs’27
it is usually called “mechanochemical” wear and should be
differentiated from ‘mechanical’ wear (or abrasive scratch)
occurring in dry condition. The wear behavior of SLS glass
can be further affected by the sliding speed28 and the counter-
surface chemistry.25’29

The mechanical and mechanochemical properties of glass
are a function of not only the bulk composition but also the
thermal history of the sample. Previously, it was reported that
the tempered SLS solar panel showed a higher hardness com-
pared to the annealed panel, but it exhibited less scratch resis-
tance and more chipping in a single scratch test.** In another
study with reciprocating wear tests, no significant difference
was found between the annealed and tempered SLS float
glass when the wear tests were conducted in dry and low RH
conditions (40% RH), but the mechanochemical wear be-
havior in high RH conditions (90% RH) was somewhat dif-
ferent between air- and tin-sides of annealed and tempered
glass.31 Although some of the advanced tempering furnaces
are based on the air-flotation technique, most custom tem-
pering furnaces still use the sliding roller conveyer mode.*
During the tempering process of SLS float glass, the bottom
side of the float glass is contacted with the roller conveyer,

while the opposite (upper) side does not have any physical
contact.”® The glass surface contacting with the sliding roller
may experience different thermal history, due to different air
flow conditions, compared to the opposite side of float glass.
The performance difference between these two sides of the
tempered SLS glass has not been investigated systematically.

This study shows how the mechanical and mechanochem-
ical properties of the air- and tin-sides of SLS float glass are
altered upon thermal tempering with facing the sliding roller
(down) or upper side during the tempering process. The chem-
ical and structural changes upon tempering were analyzed
with X-ray photoelectron spectroscopy (XPS) and specular
reflection infrared (SR-IR) spectroscopy. The mechanical
properties of the SLS glass surfaces were compared using
nanoindentation and Vickers indentation tests, and the wear
properties of glass were compared with reciprocating ball-
on-flat tribo-tests in dry, intermediate, and near-saturation
RH conditions (0%, 40%, and 90%). The experimental results
observed in this study provide deeper insights needed for
technological quality control during its manufacturing and
application process of SLS glass panels.

2 | EXPERIMENTAL METHODS

SLS float glass panels with a 6-mm thickness were used in
this study. The glass samples were thermally tempered using
an industrial grade tempering facility (Oldcastle Building
Envelope). The tempering process consisted of heating the
panel to a temperature above the glass transition tempera-
ture followed by fast cooling with a high-speed air stream to
room temperature, as illustrated in Figure 1A. To differenti-
ate two sides of the tempered glass, the upper sides without
contacting the conveyer and the bottom sides contacted with
the sliding roller were referred as “T/up” and “T/roller”, re-
spectively, hereafter. In this study, one set of samples was
prepared with the air-side of SLS float glass as the “T/up”
configuration, while the other set was prepared with the
air-side surface in the “T/roller” condition. As a reference
sample, the annealed glass (AN) samples were prepared by
heating the float glass manufactured from the same batch to
the stress-relief point in the same furnace and then slowly
cooling to room temperature (Figure 1A). Figure 1B com-
pares the optical microscopy image of the fractured surface
of each sample. The compressive surface layer appeared to
be slightly thicker in the T/roller side than the T/up side.**
This could mean that the compressive stress casing might be
slightly thicker in the T/roller side, although both sides were
treated in the same tempering process. Prior to the surface
characterization, glass samples were cleaned by rinsing with
deionized water, ethanol, and deionized water again and then
blow drying with nitrogen followed by UV-ozone cleaning to
remove organic contaminants.'’
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FIGURE 1

(A) Sample preparation of annealed glass and tempered glass. (B) Optical microscopy images of the fractured surfaces of annealed

and tempered glass. Note that more than five images are taken at the selected location of a given sample, and those images are stitched to show the

full view across the fractured glass surface. At the location where the stress intensity factor at the propagating crack front drops below the fracture

toughness, the Wallner lines (not clear in optical image) become parallel to the external surface; the compressive stress gradient exists from that

location to the external surface (marked with white double arrows),3 * The averaged value and standard error of mean (SEM) of the thickness of

compressive stress region are obtained from five individual samples. (C) Methods of mechanical and mechanochemical characterization of glass

surface

XPS analysis was performed using a PHI VersaProbe
system equipped with an Al-Ka x-ray source and a charge
neutralizer (Chanhassen, MN). Low-resolution scans with
a 117-eV pass energy were performed over narrow binding
energy ranges of the O 1s, Na KLL, Sn 3d, Ca 2p, Mg KLL,
K 2p, C 1s, Si 2p, and Al 2p components. A high-resolution
scan of the C Is region was collected with a 29-eV pass en-
ergy. The relative atomic concentrations obtained from XPS
spectra were corrected for adventitious carbon contamination
on the glass surface. The relative atomic concentrations of
bridging oxygen (BO), nonbridging oxygen (NBO), and sila-
nol (OH) groups were calculated using a stoichiometry-based
structural model.*® More details about the XPS experiments
and the calculation of relative atomic concentration can be
found in our previous publications.Sl’36

SR-IR analysis was performed using a Bruker Hyperion
3000 microscope (Bruker Optics GmbH, Ettlingen,
Germany). The spectra were collected with a 15X objective at
a 20° incident angle over a 140 x 140 pm2 area and were ac-
quired by averaging 400 scans at a 4 cm™" step size. A clean
gold film was used as a reference for the IR power correction.

Nanoindentation tests was carried out with a Hysitron TI
950 triboindenter (Minneapolis, MN) with a Berkovich tip

in ambient air with ~44% RH. The maximum indentation
force was varied from 4 to 8 mN with a 0.5-mN increment.
The indentation was done following the standard procedure:
5 s for loading with a linear increase of indentation force to
the maximum preset value, 2 s for holding at the maximum
force, and then 5 s for unloading to zero force. The reduced
(elastic) modulus and nanohardness were calculated from the
force-displacement (P-h) curves using the widely-accepted
Oliver-Pharr model.’” The average and standard deviation
were obtained from 20 measurements for each sample, and
three samples were analyzed to obtain reasonable statistics.
Microscale hardness was were measured using a microin-
denter (Leco MHT Series 200, St. Joseph, MI) with a Vickers
tip at ~40% RH. The Vickers indentation tests were per-
formed at 200 gf for 15-s holding time and 15-s unloading
time, and then the indent was photographed and analyzed.
The average and standard deviation were obtained from more
than 10 measurements for each sample. All the nanoinden-
tation and Vickers indentation tests were performed at room
temperature (22 + 1°C).

The wear test was conducted using a custom-made
environment-controlled ball-on-flat reciprocating tribome-
ter at 0%, 40%, and 90% RH. The details of the instrument,
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wear test, and cleaning procedure can be found in our pre-
vious publications.lg’25 The balls used for tribo-tests were
a ~2.23-mm diameter sphere of sodium borosilicate (ex-
pansion coefficient 3.3 ppm/K, McMaster-Carr Products
Inc.). The applied load was 0.2 N, which corresponded to
a Maximum Hertzian contact pressure of ~380 MPa on the
flat SLS surface (without wear). After the wear test, the wear
track was analyzed with optical profilometry (Nexview 3D,
Middlefield, CT) without cleaning the wear debris on both
SLS glass and ball surfaces. The wear rate was calculated by
dividing the wear volume of the track with the applied load
and sliding distance per cycle.38

3 | RESULTS AND DISCUSSION
3.1 | Compositional and structural changes
of SLS surface upon thermal tempering

Figure 2A.B plots the elemental compositions, determined
by XPS, of the SLS air-side and tin-side, respectively, which
were annealed (AN) and tempered facing upward (T/up)
and downward (T/roller). Small amounts of Sn detected on
the air-side must come from contaminations during sample
handling or annealing in the industrial-grade furnace previ-
ously used for thermal tempering. It is noted that the Na con-
centration is lower for the AN surface than the T/up and T/
roller surfaces. This must be due to more evaporation of so-
dium?*¥ during the slow cooling process of the AN surface,
compared to the fast cooling with the forced air blow during
the tempering process.

(o)
o
(09}
o

The measured elemental compositions were used to cal-
culate the areal density of BO, NBO, and OH groups per nm?
averaged over the top ~10 nm from the surface following the
model published previously,”>>® which are shown in Figure
2C,D. This model considers the connectivity and charge neu-
trality of the network.>>*® The BO areal density appears to
be slightly lower for the T/up surface of the air-side and the
T/roller surface of the tin-side. The NBO concentration is
highest for the T/up surface for both air- and tin-sides. In the
air-side, the differences in NBO areal density among the AN,
T/up, and T/roller surfaces are almost oppositely mirrored in
the OH areal density; thus, the sum of NBO and OH is rel-
atively constant. In the tin-side, the T/roller surface shows a
significantly higher OH density than the AN and T/up sur-
faces. The source for this higher OH areal density for the T/
roller surface of the tin-side could not be identified in this
study.

Figure 3 compares the SR-IR spectra of the Si—O stretch
mode of the SLS glass. the broad band centered around 1050-
1060 cm ™' is assigned to the Si—O-Si (BO) stretch mode and
the shoulder around 935 cm™! is assigned to the Si—O stretch
mode of NBO and Si—OH.***! Note that in this spectral
range, the effective probe depth of SR-IR is ~2 pm for sil-
icate glasses,42 which is much thinner than the compressive
stress casing produced by thermal tempering (typically ~20%
of the sample thi(:kness).31 In the air-side, the thermal tem-
pering does not appear to cause a large change in the network
structure probed with SR-IR (Figure 3A). In the tin-side, the
T/roller surface has noticeably larger shoulder at ~935 cm™!
(Figure 3B). Although the effective probe depth is different
and so it is difficult to make quantitative comparison, this
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might be relevant to the higher OH areal density determined
in XPS analysis for this surface compared to the AN and T/
up surfaces (Figure 2D).

3.2 | Changes in nanomechanical property of
SLS surface upon thermal tempering

The mechanical properties of SLS surfaces at nanoscale
were probed with nanoindentation. Figure 4 displays the

force-displacement (P-h) curves recorded during the load-
ing, holding, and unloading cycles with various pre-set in-
dentation forces. The most prominent effect noted in the P-h
curves is that the maximum penetration depth (#,,,,) during
the loading is drastically increased after thermal tempering
which produces compressive stress in the surface region.31
This might be viewed counterintuitive because the surface
with a compressive stress could be thought to have more
resistance to indentation by a foreign object. But, the &, ,,

versus the maximum load (P,,,) plot in Figure 5 clearly
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indicates that the T/roller surface becomes more susceptible
to the penetration at a given indentation load than the T/up
surface, which is also more susceptible than the AN surface.
Overall, the air-side becomes more penetrable than the tin-
side after thermal tempering although the difference between
these two is negligible for the annealed surfaces (Figure 5).

Although the tempered surfaces allow deeper penetration
of the indenter during the loading process, they also have re-
markably lager elastic recovery (quantified as 1—h/h,,, in
Figure 5) during unloading, compared to the annealed sur-
face. In other words, the plastic deformation is significantly
reduced for the tempered surfaces, compared to the annealed
surface, although h,,, at a given P, is increased. This
implies that the tempered surfaces can accommodate more
strain energy through elastic processes than the annealed sur-
face (see Figure S1). This must be associated with the tough-
ening mechanism of the tempered glass with the compressive
stress gradient in the surface region.31

The P-h curves shown in Figure 4 can be processed with
the standard Oliver-Pharr model that is widely used to cal-
culate the elastic modulus and hardness of materials.*> For
the tempered glass, the exact Poisson's ratio of the surface
region with compressive stress is unknown*>’; thus, we use
the reduced modulus, rather than elastic modulus here. Also,
note that the Oliver-Pharr model is based on the projected
area (A,) calculated from a contact depth (%,) which is es-
timated from A, Pp.. and stiffness (S) of the P-h curve
(as marked in the top panel of Figure 4A as an example) as-
suming that the material is homogeneous and has no stress
and its response is fully elastic; thus, it does not work well
for the material with an internal stress gradient.““‘6 Then,
the reduced modulus and hardness calculated from the P-h
curves of the tempered surfaces must be taken as apparent
values predicted from the Oliver-Pharr model assuming no
internal stress, instead of true values which can be obtained
only when the real contact area is known. The processed data
are plotted in Figure 6.

For the annealed glass, the reduced modulus and hard-
ness calculated from the P-h curves (Figure 4) have neg-
ligible dependence on penetration depth (Figure 6) and
agree well with the literature values for both air- and
tin-sides of the SLS glass.47’48 In contrast, the apparent

(A) (8)

reduced modulus and apparent hardness of the tempered
glass surface are significantly lower than those of the an-
nealed glass. One may speculate that the pile-up around
the nanoindentation may increase the contact area and
thus reduce the calculated modulus and hardness. But
when plastic deformation is small (i.e., h/hy,, < 0.7), the
Oliver-Pharr calculation is not significantly affected by the
pile-up.49 In Figure 6, the extent of reduction in the appar-
ent value from the corresponding AN value is larger for
the T/roller surface than the T/up surface. This must be
due to the difference in thermal history of these two sur-
faces during the thermal tempering process. The penetra-
tion depth dependence of the calculated apparent modulus
and hardness values must be due to an artifact caused by
ignoring the internal stress gradient of the tempered glass
in the Oliver-Pharr model.

In Figure 4, it is noted that although £, is significantly
larger for the tempered glass compared to the annealed glass
at a given load, A; does not increase much. In a nanoscratch
test with a conospherical tip at a ramp load up to 2.5 mN, the
residual depth of the nanoscratch is found to be almost iden-
tical for the annealed and tempered glass surfaces (Figure
S2). Thus, the real hardness (= P,,,, + residual imprint area)
would have not been changed significantly.

3.3 | Changes in microhardness of SLS
surface upon thermal tempering

In order to measure the hardness without the error of the
standard Oliver-Pharr method, we have measured the hard-
ness (Hy) using the Vickers indentation method in which
Hy is calculated by dividing the applied load with the real
residual imprint area. Figure 7 shows the Hy, values meas-
ured for the annealed and tempered SLS glass surfaces. For
the air-side, the difference among the AN, T/up, and T/roller
surfaces is statistically insignificant (p > 0.05, n = 11). For
the tin-side, the difference of the T/roller surface from the
AN and T/up surfaces appears to be statistically significant
(p = 0.01, n = 11); however, the actual difference in magni-
tude is quite small. Thus, it can be concluded that the temper-
ing process does not significantly alter the actual hardness of
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the glass surface (Figure 7), although it greatly influences the
mechanical responses of the glass surface to the nano-scale

indentation (Figures 4 and 5).

3.4 |

In practical applications, SLS glass panels are subjected to not
just normal indentation with an extremely high load but also
tangential shear at a light load which is far below the hard-
ness or yield strength of the glass. The friction during the tan-
gential shear can generate mechanical wear (abrasion) in dry
condition and mechanochemical (also called tribochemical)
wear in humid air.'*%’ Thus, such wear processes can affect
the SLS glass panel performance. The wear rates of air-side
and tin-side of the annealed and tempered glass were meas-
ured at a nominal Hertzian contact pressure of ~380 MPa in
dry (0% RH) and humid (40% and 90% RH) conditions and
are plotted in Figure 8 A,B. In dry condition, the T/up surface
of the air-side exhibits a high wear rate (Figure 8A). This

Changes in wear behavior of SLS
surface upon thermal tempering

wear (abrasion) rate is greatly affected by the adhesion of
wear debris to the counter surface (Figure S3), because it will

significantly increase the effective contact pressure at local
asperities. Note that it is practically impossible to control the
wear debris adhesion during mechanical abrasion and chip-

with random shapes.4
In humid conditions, water adsorbs on the glass surface™

26,27

anochemical reactions™"’;
significantly compared to the dry condition.'”? The wear

ping processes because debris are produced stochastically

and those adsorbed water molecules are involved mech-

thus, the wear rate decreases

rates of both annealed and tempered glass surfaces in humid
air (Figure 8C,D) are less than 5% of those in dry condi-
tion (Figure 8A,B). The counter ball surface is also much
smoother after the wear test in humid air (Figure S3). The
mechanochemical wear products of the SLS surface adhere
to the ball surface in 40% RH, while they are pushed out of
the wear track in 90% RH. Thus, it is difficult to compare
the effective contact pressure in the wear track in these two
different RH conditions although the applied load to the ball
is the same (0.2 N).



HE ET AL.

American Ceramic Society

an Journal

FIGURE 8 Wear rate of (A) air-side

and (B) tin-side of annealed and tempered
glass surfaces when tested in dry air. The
wear rate of (C) air-side and (D) tin-side of
annealed and tempered glass when tested
in humid air (40% RH and 90% RH). The
error bar is the standard deviation of N = 8
measurements
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For the tempered air-side surface, the wear depth (Figure
S4A) and volume (Figure 8C) drastically increase upon in-
creasing RH from 40% to 90% RH, while the wear depth and
volume at 40% and 90% RH are comparable for the annealed
glass. The standard deviation (SD) of the wear depth and vol-
ume at 90% RH are larger for the T/roller surface compared to
the AN surface, which is consistent with the previous study.31
The SD of the T/up surface appears to be smaller than that of
the T/roller surface, which could be putatively attributed to
the fact that the T/up surface is not physically touched during
the tempering process, while the T/roller surface makes fre-
quent contacts with the conveyer belt.

For the tin-side, the annealed surface shows a slight de-
crease in wear depth (Figure S4B) and volume (Figure 8D)
upon increasing RH from 40% to 90%; in contrast, the tempered
surfaces show no change or a slight increase as RH increases
from 40% to 90%. Both T/up and T/down surfaces exhibit sig-
nificantly larger SD at 90% RH, compared to the AN surface.
Although the main cause for such large increase in SD could
not be identified in this study, it is still possible to speculate pos-
sible reasons. The presence of a small amount of tin can alter
the physical properties of SLS glass.51 Due to a fast cooling via
forced air blow, the tempered glass surface may have a higher
fictive temperature and thus a larger free volume than the an-
nealed surface.”” It is also possible that the distribution of the
bond parameters of the glass network might be broader in the
tempered glass surface due to insufficient time for relaxation
during fast cooling, causing local variations in the stress state.
These may be responsible, at least partially, for the larger SD of
mechanochemical wear depth and volume in high humid condi-
tions. These subtle differences in local structures may not affect
the mechanical scratch in dry condition because the stochastic

T/up T/roller

nature of abrasion is already severe; but they may be manifested
as an increase in SD during the mechanochemical process in
high humidity condition because such reactions are very sensi-
tive to local strains in chemical bonds.***3>% Similar observa-
tions were reported for ion-exchanged aluminosilicate glasszL57
and metals and alloys as well 860

4 | CONCLUSION

The effects of thermal tempering on chemical and mechani-
cal properties of the air- and tin-sides of a SLS float glass
were differentiated depending on whether the surface was
facing the sliding roller (down) side or the air (upper) side
during the tempering process. Before and after tempering, the
differences in surface composition measured with XPS, and
network structure probed with SR-IR, and micro-hardness
evaluated with Vickers indentation were subtle, but there
were clearly discernable differences in nanomechanical in-
dentation behaviors and mechanochemical wear behaviors.
Those differences are believed to be caused by differences in
internal stress gradient due to differences in thermal (cooling
rate) and physical contact histories of the roller and air sides
during the tempering process as well the chemical composi-
tion (absence or presence of tin) in the glass surface.
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