

3 Xinyi Chen,^{1,2,†} Junfeng Chen,^{1,†} Nawal M. Alghoraibi,¹ Danielle A. Henkel,^{1,3} Ruixian
4 Zhang,¹ Uzoma O. Nwabara,^{2,3} Kenneth E. Madsen,¹ Paul J. A. Kenis,^{2,3} Steven C.
5 Zimmerman,¹ and Andrew A. Gewirth^{1,2,*}

⁶ ¹Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ²International
⁷ Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, JP.

³Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. [†]These authors contributed equally to this work: Xinyi Chen, Junfeng Chen. *e-mail:

10 agewirth@illinois.edu

11 **Abstract**

12 Electrochemical conversion of CO₂ into value-added chemicals holds promise to enable the
13 transition to carbon neutrality. Enhancing selectivity toward a specific hydrocarbon product is
14 challenging, however, due to numerous possible reaction pathways of CO₂ electroreduction.
15 Here we present a copper-polyamine hybrid catalyst, developed through co-electroplating, that
16 significantly increases the selectivity for ethylene production. The Faradaic efficiency for
17 ethylene production is 87% ± 3% at -0.47 V versus reversible hydrogen electrode, with a full-
18 cell energetic efficiency reaching 50% ± 2%. Raman measurements indicate that the polyamine
19 entrained on the Cu electrode results in higher surface pH, higher CO content, and more
20 stabilized intermediates relative to entrainment of additives containing little or no amine
21 functionality. More broadly, this work shows that polymer incorporation can alter surface
22 reactivity and lead to enhanced product selectivity at high current densities.

23 **Introduction**

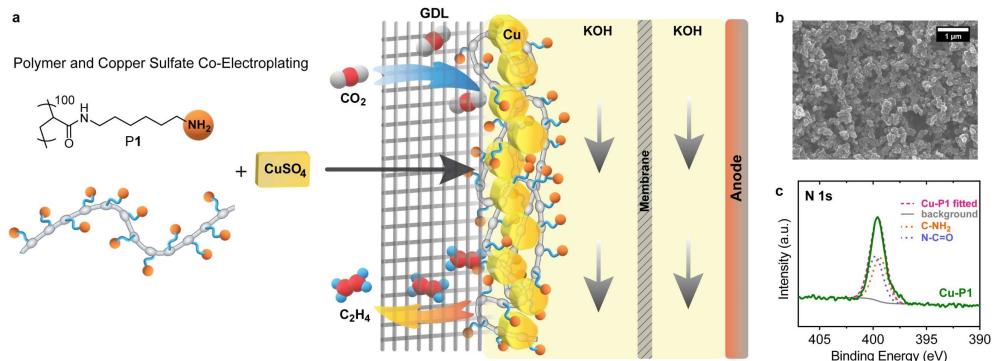
24 Electrochemical CO₂ conversion to fuels offers an alternative pathway to produce carbon
25 chemicals, which are traditionally produced by using carbon-intensive fossil fuels¹. By utilizing
26 the electricity generated from clean renewable energy sources, such as solar, wind, and
27 geothermal energy, the CO₂ reduction reaction (CO₂RR) additionally provides a way to store
28 excess renewable electricity as chemical energy^{2,3}. CO₂ reduction may also be utilized in direct
29 atmospheric remediation schemes⁴.

30 The pioneering work by Hori in the 1990s showed that Cu-based electrodes are the most
31 efficient catalysts to reduce CO₂ to hydrocarbons^{5,6}, an insight that remains valid today.
32 Intensive efforts have been directed toward enhancing CO₂RR selectivity for one specific
33 product^{7,8}. The conversion of CO₂ to C₂ products (ethylene and ethanol) has been reported with
34 enhanced selectivity on the Cu-based electrodes⁹⁻¹⁸. For example, the Faradaic Efficiency (FE)
35 for ethylene production reached 60% on Cu nanocubes^{9,10}. Alloying Cu with other metals also
36 favors the production of ethylene (~60% FE)¹¹⁻¹³ or ethanol (~40% FE)^{14,15}. Additionally, the

37 use of small molecules as additives to decorate the Cu electrodes is found to benefit the CO2RR
38 to C₂ products^{16,17}. The use of a flow-cell design for CO2RR not only enhances the reaction
39 rate, it also enhances the formation of C₂ products on Cu by suppressing the hydrogen evolution
40 reaction (HER)^{19,20}. However, the FE for ethylene production remains $\leq 70\%$ and the full-cell
41 energetic efficiency (EE) for ethylene production remains $\leq 30\%$. Achieving high selectivity
42 for ethylene production (FE $> 80\%$) with low energy input (cell potential < 2.2 V) remains a
43 major challenge in this field.

44 One way to increase CO2RR activity is through incorporation of an additive that could
45 change intermediate stability on the electrode surface¹⁷. Unfortunately, small molecules added
46 to the Cu electrode surface typically desorb and tend to leave in the flow cell²¹. Decoration of
47 the electrode surface with a self-assembled monolayer (SAM) constructed by using a thiol or
48 phosphonate also yields an unstable platform that quickly dissociates in the highly reducing
49 and strong alkaline environment attendant the flow cell²². On the contrary, a polymer can be
50 co-deposited with the Cu and remain entrained on the electrode surface with desired
51 functionality^{23,24}. As a related example, Cu deposits have been constructed in dendrimers
52 featuring amine functionality²⁵. We wondered how the incorporation of a functional polymer
53 with a Cu electrode could affect CO2RR activity.

54 In this paper, we report the development of a Cu-polyamine catalyst for CO2RR – prepared
55 using a co-electroplating scheme – which features exceptionally high FE and EE, particularly
56 in the production of C₂ products. Polymer co-deposition with Cu has been examined for CO2RR
57 previously²⁴, but these catalysts have not yet achieved high current density conversion. In this
58 work, in 1 M KOH, the FE for ethylene production reached 72% (90% FE for C₂ products) at -
59 0.97 V versus reversible hydrogen electrode (RHE; all potentials are with respect to this
60 reference) with a partial ethylene current density of 312 mA/cm². By switching the electrolyte
61 from 1 M KOH to 10 M KOH, the FE for ethylene production increased to 87% at a cathode
62 potential of -0.47 V (93% FE for C₂ products), with the full-cell EE for ethylene production
63 was 50% at a cell potential of 2.02 V. In situ Raman measurements revealed that a higher surface

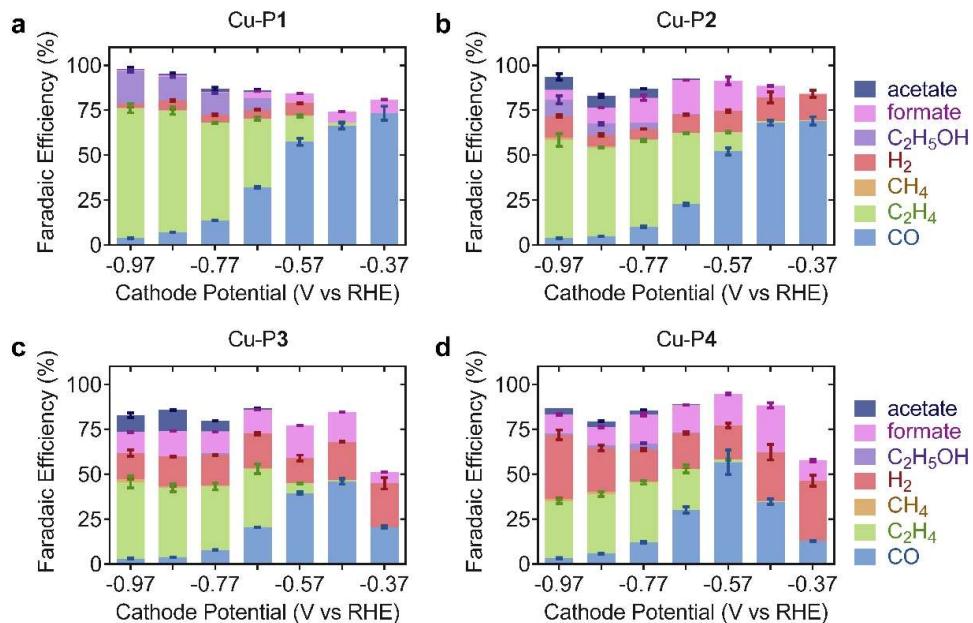

64 pH, higher CO content, and more stabilized intermediates were observed on the Cu-polyamine
65 electrode relative to Cu alone or Cu entrained with no amine polymer additives during CO₂RR.
66 The Raman results portray a catalyst in which stabilization of intermediates and a high surface
67 pH improve the CO₂RR selectivity to ethylene production.

68 **Results**

69 **Synthesis and characterization of electrodes.** To understand how polymer incorporation on
70 the electrode might tune electrocatalysis activity, we prepared a group of polymers (**P_i**, **i** = **1-5**)
71 expected to display different local environments. The poly-*N*-(6-aminohexyl)acrylamide (**P1**)
72 was synthesized by post-functionalizing poly(pentafluorophenyl acrylate)₁₀₀ (PPFPA₁₀₀, degree
73 of polymerization = 100, polydispersity index = 1.05) using *N*-Boc-1,6-hexanediamine,
74 followed by trifluoro acetic acid (TFA) deprotection (Supplementary Note 1). The resulting
75 amino polymer **P1** was purified by dialyzing against water and characterized by using nuclear
76 magnetic resonance (NMR, Supplementary Figs. 1-2). Methylated polymers **P2**, **P3**, and **P4**
77 were prepared by methylating **P1** with different amounts of MeI (Supplementary Note 2). The
78 degree of methylation was determined by using quantitative ¹H NMR (Supplementary Fig. 3).
79 During the methylation process, methyl groups replaced hydrogen atoms on the amines
80 randomly and resulted in a mixture of R-NHMe, R-NMe₂, and R-NMe₃⁺ groups. The product
81 that contains only trimethyl ammonium was defined as the 100% methylated polymer. **P2** was
82 found to have 35% methylation and **P3** exhibited 65% methylation. **P4** was 100% methylated.
83 **P5**, which has a different side chain length relative to **P1**, was prepared following the same
84 procedure used for **P1** synthesis (Supplementary Note 3).

85 Following the synthesis of polymer **P_i**, the copper-polymer (Cu-**P_i**) electrode was prepared
86 by co-electrodeposition. Each electrode was comprised of a carbon fiber paper-based gas
87 diffusion layer (GDL) substrate on which the catalyst was electrodeposited. As shown in Fig.
88 1a, the Cu-**Pi** electrode was prepared in a plating bath containing 3 mM CuSO₄, 12 μ M **Pi**, 0.1
89 M Na₂SO₄, and 0.5 M H₂SO₄. A pure Cu electrode (Cu alone) was prepared in the same plating

90 bath without polymer addition. Supplementary Figs. 5-6 show the wettability of all the samples
 91 on a GDL. The contact angle for the Cu alone electrode was found to be ca. 120° whereas the
 92 contact angle for the Cu-Pi (**i**=1-5) electrode was ca. 145°. Thus, the addition of Pi (**i**=1-5)
 93 makes the electrode more hydrophobic.


Fig. 1 | Preparation of the Cu-polymer catalyst. a, Schematic illustration of P1 and Cu co-electroplating on the GDL. **b**, SEM image of the Cu-P1 electrode. **c**, N 1s XPS spectrum of the Cu-P1 electrode.

94 The Cu-Pi electrode was characterized by using scanning electron microscopy (SEM). Fig.
 95 1b and Supplementary Fig. 7a-c show the SEM images obtained from Cu-Pi electrodes. All of
 96 the Cu-Pi samples exhibit an agglomerated series of particles (identified as Cu by using EDX)
 97 that adopt spherical shapes with diameters between 100-200 nm. Thus, the electrodeposition of
 98 Cu with different Pi does not substantially change the catalyst morphology. Supplementary Fig.
 99 8 shows a cross-sectional SEM obtained from Cu-P1 on a GDL. In addition to the fibrous GDL,
 100 Supplementary Fig. 8 shows a smooth layer (right) associated with the presence of Cu and a
 101 rougher discontinuous layer (left) associated with the backside of the GDL. XRD obtained from
 102 the different electrodes was identical (Supplementary Fig. 9).

103 Fig. 1c shows the N 1s photoemission spectrum of Cu-P1, which exhibits a peak at ca. 400
 104 eV. This XPS component was fit to include both amine and amide groups, with corresponding
 105 peaks at 399.4 eV and 399.7 eV, respectively²⁶. Thus, P1 is retained on the electrode surface.
 106 Supplementary Fig. 10 shows the N 1s XPS spectra from Cu-P2, Cu-P3, and Cu-P4. The XPS
 107 shows the presence of a new peak at 402 eV, which is associated with trimethyl ammonium (R-
 108 NMe₃⁺)²⁷. The intensity of the ammonium peak was found to increase from Cu-P2 to Cu-P4,

109 which is consistent with the increasing degree of methylation. Cu XPS (Supplementary Fig. 11)
110 reveals the presence of Cu₂O and Cu on the electrodes.

111 **Electrochemical CO₂ conversion.** To evaluate the catalytic performance for the CO₂RR, the
112 Cu-Pi electrode was utilized in a flow reactor described previously, where both CO₂ gas and
113 KOH electrolyte were continuously introduced to the cell¹⁹. Fig. 2 shows the FEs for all
114 products obtained during CO₂RR using each Cu-Pi electrode in 1 M KOH.

Fig. 2 | Electrochemical CO₂ conversion on the Cu-Pi electrodes. Faradaic efficiencies for all products on **a**, Cu-P1, **b**, Cu-P2, **c**, Cu-P3, and **d**, Cu-P4 in 1 M KOH electrolyte.

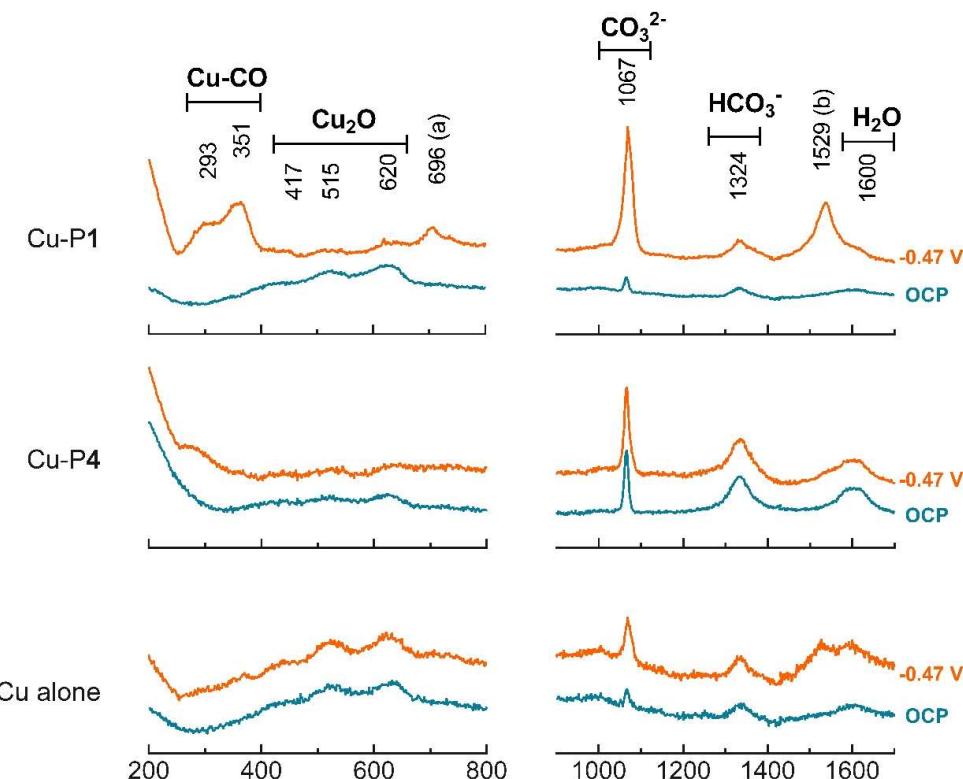
115 For Cu-P1, the production of CO started at -0.27 V and reached a maximum FE of 73% at a
116 cathode potential of -0.37 V. CO was found to be the dominant product at relatively low
117 overpotentials (from -0.37 V to -0.57 V). As the cathode potential was made more negative, the
118 FE for CO production decreased while the FEs for both ethylene and ethanol production
119 increased. This trend is consistent with the assumption that the adsorbed CO is an intermediate
120 for the formation of C₂ products, as has been suggested previously^{28,29}. At -0.97 V, the FE for
121 C₂ product formation on Cu-P1 reached 90% (72% FE for ethylene production + 18% FE for
122 ethanol production) with a total current density of 433 mA/cm² in 1 M KOH. By comparison,

123 the FE for ethylene production from the Cu alone electrode was only 27% at a current density
124 of 207 mA/cm² under the same conditions and at the same potential (Supplementary Figs. 12-
125 13). Thus, the addition of **P1** to the electrode leads to a FE increase of 45% for ethylene
126 production. H₂ evolution was suppressed on Cu-**P1**, with the FE for H₂ evolution lower than 7%
127 throughout the potential range examined, likely due to the higher surface pH for this catalyst
128 relative to the others (*vide infra*). Consequently, the Cu-**P1** electrode exhibits excellent
129 selectivity for the electroreduction of CO₂ to C₂ products. Supplementary Figs. 14-15 show that
130 no CO₂ reduction products were obtained using Ar in place of CO₂. Reduction of ¹³CO₂ yielded
131 only ¹³C labeled ethylene, further ruling out the possibility of polymer degradation to ethylene
132 (Supplementary Fig. 16). Supplementary Fig. 17 shows that **P1** physiosorbed to the Cu
133 electrode exhibits substantially less reduction current relative to Cu-**P1**. Supplementary Fig. 18
134 shows that the mono-amine mimic **2** (Supplementary Note 4) co-deposited with Cu is quickly
135 deactivated during CO₂RR. Finally, Supplementary Fig. 19 shows Cu-**P5** exhibits a decreased
136 FE for ethylene production at more negative cathode potentials.

137 The Cu-**P4** electrode exhibits different CO₂RR activity relative to that from Cu-**P1**. H₂ was
138 found to be one of the main products on the Cu-**P4** electrode. The FE for H₂ production was
139 20-35% at all applied potentials. We note that high FE for H₂ production is typically favored on
140 the carbon-based electrodes³⁰. The production of formate was also favored on Cu-**P4** compared
141 to that on Cu-**P1**. The high FEs for both hydrogen and formate production on Cu-**P4** lead to a
142 low FE for C₂ product formation. At -0.97 V, the FEs for ethylene and ethanol production only
143 reached 32% and 1% on the Cu-**P4** electrode, respectively.

144 For Cu-**P2** and Cu-**P3**, which exhibit reduced degree of methylation relative to Cu-**P4**, the
145 selectivity for electroreduction of CO₂ to ethylene is greater than that in Cu-**P4**. At a cathode
146 potential of -0.97 V, the FE for ethylene production on the Cu-**P2** and Cu-**P3** electrodes was 55%
147 and 43%, respectively. In addition, the H₂ evolution was suppressed on Cu-**P2** and Cu-**P3**
148 compared to that on Cu-**P4** likely due to the lower level of methylation.

149 Supplementary Fig. 13 shows the potential-dependent current density for CO₂ reduction on


150 each Cu-P*i* electrode in 1 M KOH. At less negative potentials (-0.27 V to -0.57 V), the four Cu-
151 *Pi* electrodes exhibited similar current densities for the CO2RR. As the potential became more
152 negative (-0.67 V to -0.97 V), the current density was found to decrease in the order from Cu-
153 P*1* to Cu-P*4*. At -0.97 V, the current density on Cu-P*1*, Cu-P*2*, Cu-P*3*, and Cu-P*4* was 433
154 mA/cm², 348 mA/cm², 305 mA/cm², and 232 mA/cm², respectively.

155 Overall, there is a strong correlation between the degree of methylation on each Cu-P*i*
156 electrode and their CO2RR activity. The FE for ethylene production increases with higher
157 hydrogen contents in the polymers: Cu-P*4* < Cu-P*3* < Cu-P*2* < Cu-P*1* whereas the FE for H₂
158 evolution increases with higher degree of methylation: Cu-P*1* < Cu-P*2* < Cu-P*3* < Cu-P*4*. Thus,
159 the pendant amino groups in P*1* are likely the key factor promoting ethylene formation during
160 CO₂ reduction while methyl groups favor H₂ evolution. One possibility for the better
161 performance on Cu-P*1* is that the presence of H atoms in the amino groups at or near the
162 electrode surface could act to change the reactivity (i.e., facilitate H transfer or interact with the
163 CO2RR intermediates) or even surface pH. In addition, amines are known to react and bind
164 CO₂ molecules^{31,32}. Thus, amino groups in P*1* may help the electrode with CO₂ capture, leading
165 to a higher local concentration of CO₂ or carbonate molecules on the electrode surface.

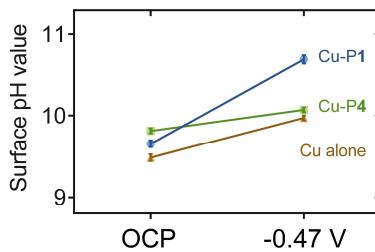
166 **In situ electrochemical Raman spectroscopy measurements.** To further understand how
167 amino groups in P*1* promotes the CO2RR, in situ Surface-Enhanced Raman Spectroscopy
168 (SERS) was performed during CO2RR in a cell described previously¹³. Fig. 3 shows the SERS
169 spectra obtained from Cu-P*1*, Cu-P*4*, and Cu alone during the CO2RR. At open circuit potential
170 (OCP), all three electrodes exhibit 3 peaks at 417 cm⁻¹, 515 cm⁻¹, and 620 cm⁻¹ in the lower
171 energy region. These three peaks are associated with the presence of Cu₂O^{33,34}. In the higher
172 energy region, the electrodes additionally exhibit two peaks at 1067 cm⁻¹ and 1324 cm⁻¹ at OCP,
173 which correspond to carbonate and bicarbonate, respectively³⁵. The water band at 1600 cm⁻¹
174 was also observed on all three electrodes at OCP.

175 At a cathode potential of -0.47 V, the spectrum collected from Cu-P*1* exhibits several new
176 peaks. In particular, there are new peaks at 293 cm⁻¹ and 351 cm⁻¹. These two peaks are

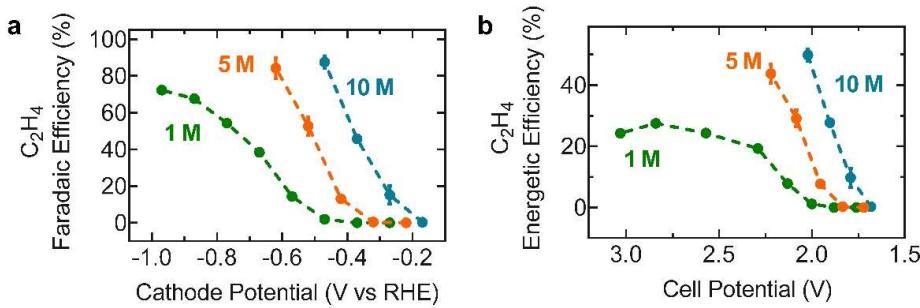
177 associated with the frustrated ρ (Cu-C-O) rotational mode and the ν (Cu-CO) stretching mode,
 178 respectively^{36,37}. By comparison, the SERS spectra obtained from Cu-P4 and Cu alone shows
 179 little evidence for the Cu-CO binding in the same energy region. Thus, the Cu-P1 electrode
 180 exhibits higher CO content on the electrode surface during the CO2RR relative to the Cu-P4
 181 and Cu alone electrodes. This increased CO concentration may facilitate C-C coupling and
 182 ethylene production. Supplementary Table 1 shows the ratio of CO to Cu₂O – previously used
 183 as a marker for increased ethylene production¹³ – is substantially enhanced for the Cu-P1
 184 catalyst.

Fig. 3 | In situ electrochemical Raman spectroscopy measurements during CO2RR. SERS spectra obtained from Cu-P1, Cu-P4, and Cu alone at OCP (blue) and a cathode potential of -0.47 V (orange).

185 In addition to peaks related to Cu-CO binding, the Cu-P1 electrode also exhibits two other
 186 new peaks at 696 cm⁻¹ (peak a) and 1529 cm⁻¹ (peak b) at -0.47 V. The assignments for these
 187 two peaks are under debate. In a recent study, peaks a and b were assigned to the adsorbed


188 carboxylate anion $^*\text{CO}_2^-$ by DFT calculations and ^{13}C isotopic shift experiments³⁸. Operando
189 Fourier transform infrared spectroscopy (FTIR) measurements also revealed peaks related to
190 CO₂RR intermediates³⁹. In particular, a peak at 1559 cm⁻¹ was assigned to the asymmetric
191 stretching bond of $^*\text{CO}_2^-$. The higher intensity of peak b on the Cu-P1 electrode relative to the
192 Cu alone electrode shows that intermediates are stabilized on Cu-P1. The stabilization of
193 intermediates on Cu-P1 might be the origin of the enhanced CO₂RR activity. Peaks a and b
194 could not be observed on the Cu-P4 electrode, consistent with the somewhat poorer CO₂RR
195 activity on Cu-P4.

196 The relative ratio of carbonate to bicarbonate peaks in the SERS spectra provides a measure
197 of the surface pH⁴⁰. Fig. 3 and Supplementary Fig. 20 show that the peak area ratio of
198 carbonate/bicarbonate on the three electrodes is different, indicating a different surface pH at
199 each electrode during the CO₂RR. Supplementary Fig. 21 shows the calibration curve for the
200 surface pH calculation from the carbonate and bicarbonate peaks and the calculated surface pH
201 values on each electrode are listed in Supplementary Table 2. Fig. 4 shows the surface pH
202 change on different electrodes at OCP and -0.47 V. At OCP, the Cu alone electrode exhibits a
203 surface pH of 9.5. This pH value is lower than that expected for 1 M KOH alone, because CO₂
204 reacts quickly with OH⁻ to form bicarbonate. The bicarbonate reacts further to form carbonate.
205 Thus, the reaction between CO₂ and OH⁻ near the electrode surface leads to a lower surface pH
206 relative to that of the bulk electrolyte. The Cu-P1 electrode exhibits a surface pH value of 9.7
207 at OCP which is higher than that found for the Cu alone electrode. The origin of this increase
208 likely relates to the presence of amino groups at the electrode surface. A protonated organic
209 amino group typically exhibits a pK_a between 10-11, comparable with the pK_a for bicarbonate
210 (pK_a = 10.3). Therefore, an acid-base equilibrium exists on the Cu-P1 electrode surface as
211 follows:


213 The presence of amine shifts the equation to the right resulting in increased amounts of CO₃²⁻
214 and consequently higher surface pH values. Cu-P4 also exhibits a relatively high surface pH of

215 9.8. In this case the pH increase relative to the Cu alone electrode likely relates to OH⁻ ion
216 attraction to the polycationic structure (R-NMe₃)^{41,42}.

Fig. 4 | Calculated surface pH on different electrodes.

217 At a cathode potential of -0.47 V, the surface pH values of all three electrodes are found to
218 increase compared to those at OCP. The Cu-P1 electrode exhibits the highest surface pH value
219 of 10.7, whereas the Cu-P4 and Cu alone electrodes both exhibit pH values around 10.0-10.1
220 at this potential. Supplementary Fig. 22 reports SERS spectra obtained from Cu-P5 in 1 M KOH.
221 An increase in surface pH of 0.4 unit from 9.3 to 9.7 was found on Cu-P5. These pH values are
222 substantially higher than those used in prior work²⁴ with polymer-modified Cu electrodes. The
223 origin of the increased pH for the Cu-P1 electrode likely relates to the presence of protonated
224 amines on the electrode surface. Indeed, a previous report suggests that R-NH₃⁺ donates a
225 proton to a carbamate intermediate, making R-NH₂ during the CO₂RR in a capture and reaction
226 cycle³¹. The increased amount of R-NH₂ and decreased amount of R-NH₃⁺ shift Equation (1)
227 further to the right, leading to increased [CO₃²⁻] and thus an increased pH. In addition, the
228 proton functionality of P1 could be serving as a surface proton relay, allowing for a faster
229 deprotonation rate of HCO₃⁻ on Cu-P1 compared to Cu-P4. The higher surface pH on the Cu-
230 P1 electrode might be the origin of the enhanced CO₂ reduction activity relative to other
231 electrodes^{10,43-46}.

Fig. 5 | Electrochemical characterization of the Cu-P1 catalyst in different concentrations of KOH electrolyte. a, Faradaic efficiency for C_2H_4 production as a function of cathode potential. **b**, Energetic efficiency for C_2H_4 production as a function of cell potential.

232 **Investigating CO₂RR activity in alkaline media.** The use of an alkaline electrolyte is
 233 believed to favor the production of ethylene, by lowering the energy barrier of CO_2 activation,
 234 facilitating C-C coupling, and suppressing H_2 evolution^{10,43-46}. To investigate the beneficial role
 235 of pH, the CO₂RR was performed using a series of more concentrated KOH electrolytes. The
 236 FE_s for ethylene production on Cu-P1 in 1 M, 5 M or 10 M KOH are plotted in Fig. 5a as a
 237 function of cathode potential. The figure shows the FE for ethylene production increases with
 238 higher concentrations of KOH. In 1 M KOH, the onset of ethylene production occurred at a
 239 cathode potential of -0.47 V and the FE for ethylene production on Cu-P1 reached a maximum
 240 value of 72% at -0.97 V.

241 In 10 M KOH, ethylene production initiated at -0.17 V, which is the same potential where
 242 CO production started on this electrode (Supplementary Figs. 23-24). Additionally, the onset
 243 potential for ethylene production is shifted positively by 300 mV relative to that in 1 M KOH.
 244 The FE for ethylene production reaches 87% at a cathode potential of -0.47 V in 10 M KOH.
 245 To our knowledge, this value is the highest reported (Supplementary Table 3). The
 246 electroreduction of CO_2 to ethylene in 5 M KOH electrolyte was also found to have a higher
 247 FE and smaller overpotential compared to that in 1 M KOH. Ethylene evolution commenced at
 248 -0.32 V in 5 M KOH and the FE reached 84% at -0.62 V. Overall, the selectivity for ethylene
 249 production is strongly correlated to [KOH]^{10,43}. The better catalytic performance in 10 M KOH

250 is believed to result from the lower activation barriers for C-C coupling from activated CO on
251 the Cu electrode surface⁴⁰⁻⁴³. We note that the use of highly concentrated alkaline electrolytes
252 might result in an overestimation of the FEs for gas products due to CO₂ consumption in the
253 electrolyte⁴⁷. In this work, the FE difference (ca. 12-15%) among the different electrolytes is
254 larger than the putative overestimation error, indicating selectivity enhancement by switching
255 to more concentrated alkaline electrolyte actually occurs. Additionally, the positive shift of the
256 onset potential for CO₂-to-ethylene conversion in more concentrated KOH electrolyte reveals
257 better CO₂RR activity. In the future, a two-step reduction with an initial CO₂-to-CO conversion
258 and a following CO-to-ethylene conversion will be helpful to prevent CO₂ consumption by the
259 electrolyte.

260 The use of a more concentrated electrolyte also reduces the overpotential at the anode
261 (Supplementary Table 4). This reduction in overpotential leads to a higher energy efficiency.
262 The EE of ethylene production on Cu-P1 is plotted against cell potential in Fig. 5b. The figure
263 clearly shows that the EE for ethylene production increases with higher electrolyte
264 concentration: 1 M KOH < 5 M KOH < 10 M KOH. The full-cell EE achieved 50% at a cell
265 potential of 2.02 V in 10 M KOH with the half-cell EE reaching 72%. (Half-cell EE was
266 calculated by assuming the overpotential of oxygen evolution reaction is zero.) This EE at both
267 the full-cell and half-cell level is, to our knowledge, higher than any results reported previously
268 (Supplementary Table 3). We note the use of high concentration electrolytes may raise cost and
269 pose durability issues; issues that may be diminished by using a membrane electrode assembly
270 in place of the flow cell used here⁴⁸⁻⁵⁰.

271 In situ Raman was performed on Cu-P1 in 10 M KOH at a potential of -0.47 V where
272 maximum ethylene production occurs. Supplementary Fig. 25 shows the Raman spectra
273 obtained in 10 M KOH and Supplementary Fig. 26 reports the corresponding pH values. In this
274 case, as well, an increase in pH relative to bare Cu is observed from 10.2 at OCP to 11.1 at -
275 0.47 V. The higher surface pH value in 10 M KOH than that in 1 M KOH may be one of the
276 reasons for the better catalytic performance.

277 The persistence of **P1** at the negative potentials attendant CO2RR was measured by using
278 postmortem N XPS. Supplementary Fig. 27 shows the N 1s XPS spectrum collected from Cu-
279 **P1** following 3 h of use for the CO2RR. The normalized intensity of the N 1s XPS peak (with
280 respect to C 1s) before and after CO2RR was 38% and 34%, respectively, indicating that **P1**
281 was retained during the electroreduction process. Supplementary Figs. 28-29 show that the
282 SEM and XRD of the different electrodes after CO2RR was similar to that obtained prior to
283 CO2RR. Similarly, GC analysis obtained using Ar in place of CO₂ shows no evidence for N-
284 containing products (Supplementary Fig. 14). Thus, **P1** was relatively unchanged during the
285 CO2RR.

286 Supplementary Fig. 30 shows the results of a test of Cu-**P1** stability in 1 M KOH at a cathode
287 potential of -0.77 V. After 3 h use, the FE for ethylene production starts to decrease while the
288 FE for H₂ evolution begins to increase. This behavior is similar to that seen when using Cu
289 alone in a GDL and likely relates to corrosion in this configuration^{10,43}. Prior work shows the
290 GDL loses hydrophobicity during electrocatalysis, which leads to performance loss^{51,52}. Using
291 a PTFE-based electrode instead of one based on carbon might improve stability⁴³.
292 Improving the stability of Cu-based electrodes on a GDL or other substrates is presently a focus
293 of research worldwide.

294 Conclusion

295 In this work, we decorated Cu electrodes with a stable amine-containing additive exhibiting
296 different degrees of methylation. The Cu-**P1** electrode, which presents amino groups, exhibits
297 the best CO2RR activity towards ethylene production at high current density and selectivity.
298 The origin of this behavior is the higher CO content and higher surface pH on Cu-**P1** relative
299 to the other electrodes. The higher surface pH is a consequence of the presence of the amine.
300 The presence of **P1** may also help to stabilize intermediates during the CO2RR.

301 Overall, this work presents a strategy to enhance electrochemical CO₂-to-ethylene
302 conversion through the introduction of a polymer that is entrained on the electrode surface.

303 These findings provide a method by which designer CO₂RR catalysts for high rate conversion
304 may be constructed.

305 **Methods**

306 **Catalysts preparation.** All Cu samples are comprised of a carbon fiber paper-based gas diffusion layer
307 (GDL) substrate (Sigracet 35 BC, Ion Power Inc.) on which a catalyst was electrodeposited. The plating
308 baths for Cu-Pi (**i =1-4**) and Cu alone were made from 3 mM CuSO₄, 0.1 M Na₂SO₄, and 0.5 M H₂SO₄,
309 with or without the addition of 12 μ M Pi. All chemicals were obtained from Sigma-Aldrich.
310 Galvanostatic electrodeposition on the GDL at a constant current density of -4 mA/cm² was performed
311 until a final deposition charge of 2 C/cm² was reached to generate samples with identical loading. The
312 back side of GDL substrate was fixed to a micro glass slide with a double-sided tape, giving one-sided
313 deposition of Cu. Pt wire was used as the counter electrode. A “leakless” Ag/AgCl (eDAQ) electrode
314 was used as the reference electrode. Before electrodeposition, the GDL was pretreated by sputtering 10
315 nm of Cu using an AJA Orion-8 Magnetron Sputtering System. The thickness of the Cu deposit was ca.
316 2 μ m as determined by profilometry. Electroactive surface areas for the different electrodes were similar
317 (Supplementary Table 5).

318 **Materials Characterization.** Scanning electron microscopy (SEM) images were obtained utilizing a
319 JEOL 7000F Analytical SEM. X-ray photoelectron spectroscopy (XPS) was performed with a Physical
320 Electronic PHI 5400 instrument. X-Ray diffraction (XRD) patterns were obtained by using a Bruker D8
321 Advance X-ray Diffractometer. Contact angle measurements were conducted using a Ramé-Hart contact
322 angle goniometer (Model 250). Gas chromatography–mass spectrometry (GC-MS) spectra were obtained
323 by using a Waters GCT Premier EI. NMR spectroscopy was recorded using a Carver Bruker 500 NMR
324 spectrometer in the NMR Laboratory, School of Chemical Science, University of Illinois. NMR spectra
325 were processed by using MestReNova (v12.0.3). The chemical shift (δ) is listed in ppm and the coupling
326 constants (J) are in Hz.

327 **CO₂ Electroreduction in a Flow Reactor.** Electroreduction experiments and product analysis were
328 conducted in a flow reactor setup described previously^{19,53}. A syringe pump (PHD 2000, Harvard
329 Apparatus) was used to pump electrolyte at a constant flow rate of 0.2 or 0.5 mL min⁻¹ over the cathode

330 GDL. A mass flow controller (Smart Trak 2, Sierra Instruments) was used to flow CO₂ gas (S.J. Smith
331 Welding Supply) at a flow rate of 7 standard cubic centimeters per minute (SCCM) behind the cathode
332 GDL. The CO₂ electroreduction activity for all catalysts was measured by holding a constant cathode
333 potential with respect to a Ag/AgCl electrode (3 mol kg⁻¹ KCl, RE-5B, BASi) using an Autolab PGSTAT-
334 30, EcoChemie potentiostat. All cathode potentials were converted to the reversible hydrogen electrode
335 (RHE) by using the Nernst equation: E (vs. RHE) = E (vs. Ag/AgCl) + 0.209 V + 0.0591 V × pH. A GDL
336 with an IrO₂ loading of 1 mg/cm² was used as the counter electrode⁵³. Anode potentials were recorded
337 by a multimeter (AMPROBE 15XP-B) with respect to a Ag/AgCl electrode.

338 Three minutes after the potential was applied, the gaseous product stream was sampled automatically
339 and diverted for analysis in a gas chromatograph (Thermo Finnigan Trace GC) equipped with both a
340 thermal conductivity detector (TCD) and a flame ionization detector (FID). The exit electrolyte
341 containing liquid products was collected and analyzed in a Carver B500 NMR spectrometer using a ¹H
342 NMR technique described previously¹⁹. Dimethyl sulfoxide (DMSO) was used as an internal standard.

343 **In situ electrochemical Raman measurements.** In situ Raman measurements were carried out by
344 utilizing a spectro-electrochemical flow cell described previously¹³. A 2.0 mm thick polyether ether
345 ketone (PEEK) spacer with a 0.5 × 2 cm hole was placed between a quartz window and the cathode GDL.
346 A syringe pump (PHD 2000, Harvard Apparatus) was used to pump 1 M KOH at a constant flow rate of
347 1.0 mL min⁻¹ over the GDL through the PEEK spacer. CO₂ gas was introduced to the back of the GDL
348 in a stainless-steel chamber at a flow rate of 7 SCCM controlled by a mass flow controller (Smart Trak
349 2, Sierra Instruments). For each in situ Raman measurement, the Raman spectrum was accumulated by
350 180 single acquisitions, with an exposure time of 1 second each. Working electrodes were formed from
351 Cu-Pt or Cu alone electrodeposited on a GDL. Cathode potentials were applied in the potentiostatic mode
352 with respect to a Ag/AgCl reference electrode (3 mol kg⁻¹ KCl, RE-5B, BASi) and reported with respect
353 to RHE. To be consistent with the electrolysis measurements, Raman spectra were obtained 3 minutes
354 after the potential was initially applied. Pt wire was used as the counter electrode.

355 **Data availability**

356 The data that support the results and other findings of this study are available from the corresponding
357 authors upon reasonable request.

References

359 1 Nitopi, S. *et al.* Progress and Perspectives of Electrochemical CO₂ Reduction on Copper in
360 Aqueous Electrolyte. *Chem. Rev.* **119**, 7610–7672 (2019).

361 2 Verma, S., Lu, S. & Kenis, P. J. A. Co-electrolysis of CO₂ and glycerol as a pathway to carbon
362 chemicals with improved technoeconomics due to low electricity consumption. *Nat. Energy* **4**, 466-474
363 (2019).

364 3 Montoya, J. H. *et al.* Materials for solar fuels and chemicals. *Nat. Mater.* **16**, 70-81 (2016).

365 4 Hepburn, C. *et al.* The technological and economic prospects for CO₂ utilization and removal.
366 *Nature* **575**, 87-97 (2019).

367 5 Hori, Y., Kikuchi, K., Murata, A. & Suzuki, S. Production of Methane and Ethylene in
368 Electrochemical Reduction of Carbon Dioxide at Copper Electrode in Aqueous Hydrogencarbonate
369 Solution. *Chem. Lett.* **15**, 897-898 (1986).

370 6 Hori, Y., Wakebe, H., Tsukamoto, T. & Koga, O. Electrocatalytic Process of CO Selectivity in
371 Electrochemical Reduction of CO₂ at Metal Electrodes in Aqueous Media. *Electrochim. Acta* **39**, 1833-
372 1839 (1994).

373 7 Luc, W. *et al.* SO₂-Induced Selectivity Change in CO₂ Electroreduction. *J. Am. Chem. Soc.* **141**,
374 9902-9909 (2019).

375 8 Zhang, H. *et al.* Computational and experimental demonstrations of one-pot tandem catalysis
376 for electrochemical carbon dioxide reduction to methane. *Nat. Commun.* **10**, 3340 (2019).

377 9 Yin, Z. *et al.* Cu₃N Nanocubes for Selective Electrochemical Reduction of CO₂ to Ethylene.
378 *Nano Lett.* **19**, 8658-8663 (2019).

379 10 Wang, Y. *et al.* Copper Nanocubes for CO₂ Reduction in Gas Diffusion Electrodes. *Nano Lett*
380 **19**, 8461-8468 (2019).

381 11 Hoang, T. T. H. *et al.* Nanoporous Copper-Silver Alloys by Additive-Controlled
382 Electrodeposition for the Selective Electroreduction of CO₂ to Ethylene and Ethanol. *J. Am. Chem. Soc.*
383 **140**, 5791-5797 (2018).

384 12 Ma, S. *et al.* Electroreduction of Carbon Dioxide to Hydrocarbons Using Bimetallic Cu-Pd
385 Catalysts with Different Mixing Patterns. *J. Am. Chem. Soc.* **139**, 47-50 (2017).

386 13 Chen, X. *et al.* Controlling Speciation during CO₂ Reduction on Cu-Alloy Electrodes. *ACS
387 Catal.* **10**, 672-682 (2019).

388 14 Li, Y. C. *et al.* Binding Site Diversity Promotes CO₂ Electroreduction to Ethanol. *J. Am. Chem.
389 Soc.* **141**, 8584-8591 (2019).

390 15 Morales-Guio, C. G. *et al.* Improved CO₂ reduction activity towards C₂₊ alcohols on a tandem
391 gold on copper electrocatalyst. *Nat. Catal.* **1**, 764-771 (2018).

392 16 Hoang, T. T. H. *et al.* Nanoporous Copper Films by Additive-Controlled Electrodeposition: CO₂
393 Reduction Catalysis. *ACS Catal.* **7**, 3313-3321 (2017).

394 17 Li, F. *et al.* Molecular tuning of CO₂-to-ethylene conversion. *Nature* **577**, 509-513 (2020).

395 18 Wang, Y. *et al.* Catalyst synthesis under CO₂ electroreduction favours faceting and promotes
396 renewable fuels electrosynthesis. *Nat. Catal.* **3**, 98-106 (2019).

397 19 Ma, S. *et al.* One-Step Electrosynthesis of Ethylene and Ethanol from CO₂ in an Alkaline
398 Electrolyzer. *J. Power Sources* **301**, 219-228 (2016).

399 20 Weekes, D. M. *et al.* Electrolytic CO₂ Reduction in a Flow Cell. *Acc. Chem. Res.* **51**, 910-918
400 (2018).

401 21 Schmitt, K. G. & Gewirth, A. A. In Situ Surface-Enhanced Raman Spectroscopy of the
402 Electrochemical Reduction of Carbon Dioxide on Silver with 3,5-Diamino-1,2,4-Triazole. *J. Phys. Chem.
403 C* **118**, 17567-17576 (2014).

404 22 Widrig, C. A., Chung, C. & Porter, M. D. The electrochemical desorption of n-alkanethiol
405 monolayers from polycrystalline Au and Ag electrodes. *J. Electroanal. Chem.* **310**, 335-359 (1991).

406 23 Tsakova, V. *et al.* Electrochemical incorporation of copper in polyaniline layers. *Electrochimica
407 Acta* **46**, 4213-4222 (2001).

408 24 Ahn, S. *et al.* Poly-Amide Modified Copper Foam Electrodes for Enhanced Electrochemical
409 Reduction of Carbon Dioxide. *ACS Catal.* **8**, 4132-4142 (2018).

410 25 Mingqi, Z., Li, S. & M., C. R. Preparation of Cu Nanoclusters within Dendrimer Templates. *J.
411 Am. Chem. Soc.* **120**, 4877-4878 (1998).

412 26 Mohtasebi, A. *et al.* Interfacial Charge Transfer between Phenyl-Capped Aniline Tetramer Films
413 and Iron Oxide Surfaces. *J. Phys. Chem. C* **120**, 29248-29263 (2016).

414 27 Sylvestre, J.-P. *et al.* Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in
415 Aqueous Media. *J. Phys. Chem. B* **108**, 16864-16869 (2004).

416 28 Schouten, K. J. P. *et al.* A New Mechanism for the Selectivity to C₁ and C₂ Species in the
417 Electrochemical Reduction of Carbon Dioxide on Copper Electrodes. *Chem. Sci.* **2**, 1902-1909 (2011).

418 29 Kortlever, R. *et al.* Catalysts and Reaction Pathways for the Electrochemical Reduction of
419 Carbon Dioxide. *J. Phys. Chem. Lett.* **6**, 4073-4082 (2015).

420 30 Jiang, H. *et al.* Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional
421 metal-free electrocatalysts for the ORR, OER and HER. *Energy Environ. Sci.* **12**, 322-333 (2019).

422 31 Khurram, A. *et al.* Promoting Amine-Activated Electrochemical CO₂ Conversion with Alkali
423 Salts. *J. Phys. Chem. C* **123**, 18222-18231 (2019).

424 32 Kortunov, P. V., Siskin, M., Paccagnini, M. & Thomann, H. CO₂ Reaction Mechanisms with
425 Hindered Alkanolamines: Control and Promotion of Reaction Pathways. *Energy & Fuels* (2016).

426 33 Deng, Y. *et al.* In Situ Raman Spectroscopy of Copper and Copper Oxide Surfaces during
427 Electrochemical Oxygen Evolution Reaction: Identification of Cu^{III} Oxides as Catalytically Active
428 Species. *ACS Catal.* **6**, 2473-2481 (2016).

429 34 Jiang, S., Klingan, K., Pasquini, C. & Dau, H. New Aspects of Operando Raman Spectroscopy
430 Applied to Electrochemical CO₂ Reduction on Cu Foams. *J. Chem. Phys.* **150**, 041718 (2019).

431 35 Frantz, J. D. Raman spectra of potassium carbonate and bicarbonate aqueous fluids at elevated
432 temperatures and pressures: comparison with theoretical simulations. *Chem. Geol.* **152**, 211–225 (1998).

433 36 Akemann, W. & Otto, A. The effect of atomic scale surface disorder on bonding and activation
434 of adsorbates: vibrational properties of CO and CO₂ on copper. *Surf. Sci.* **287**, 104-109 (1993).

435 37 Gunathunge, C. M. *et al.* Spectroscopic Observation of Reversible Surface Reconstruction of
436 Copper Electrodes under CO₂ Reduction. *J. Phys. Chem. C* **121**, 12337-12344 (2017).

437 38 Chernyshova, I. V., Somasundaran, P. & Ponnurangam, S. On the origin of the elusive first
438 intermediate of CO₂ electroreduction. *Proc. Natl. Acad. Sci.* **115**, E9261-E9270 (2018).

439 39 Firet, N. J. & Smith, W. A. Probing the Reaction Mechanism of CO₂ Electroreduction over Ag
440 Films via Operando Infrared Spectroscopy. *ACS Catal.* **7**, 606-612 (2016).

441 40 Davis, A. R. & Oliver, B. G. A Vibrational-Spectroscopic Study of the Species Present in the
442 CO₂-H₂O System. *J. Solution Chem.* **1**, 329-339 (1972).

442 41 Klitzing, R. & Moehwald, H. Proton Concentration Profile in Ultrathin Polyelectrolyte Films.
Langmuir **11**, 3554-3559 (1995).

443 42 Zhang, Y., Tsitkov, S. & Hess, H. Proximity does not contribute to activity enhancement in the
444 glucose oxidase-horseradish peroxidase cascade. *Nat Commun* **7**, 13982 (2016).

445 43 Dinh, C.-T. *et al.* CO₂ electroreduction to ethylene via hydroxide-mediated copper catalysis at
446 an abrupt interface. *Science* **360**, 783–787 (2018).

447 44 Varela, A. S., Kroschel, M., Reier, T. & Strasser, P. Controlling the selectivity of CO₂
448 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local
449 pH. *Catal. Today* **260**, 8-13 (2016).

450 45 Schouten, K. J. P., Pérez Gallent, E. & Koper, M. T. M. The influence of pH on the reduction of
451 CO and CO₂ to hydrocarbons on copper electrodes. *J. Electroanal. Chem.* **716**, 53-57 (2014).

452 46 Raciti, D., Mao, M., Park, J. H. & Wang, C. Local pH Effect in the CO₂ Reduction Reaction on
453 High-Surface-Area Copper Electrocatalysts. *J. Electrochem. Soc.* **165**, F799-F804 (2018).

454 47 Ma, M. *et al.* Insights into the carbon balance for CO₂ electroreduction on Cu using gas diffusion
455 electrode reactor designs. *Energy Environ. Sci.* **13**, 977-985 (2020).

456 48 Xia, C. *et al.* Continuous production of pure liquid fuel solutions via electrocatalytic CO₂
457 reduction using solid-electrolyte devices. *Nat. Energy* **4**, 776-785 (2019).

458 49 Lee, J. *et al.* Electrochemical CO₂ reduction using alkaline membrane electrode assembly on
459 various metal electrodes. *J. CO₂ Util.* **31**, 244-250 (2019).

460 50 Gabardo, C. M. *et al.* Continuous Carbon Dioxide Electroreduction to Concentrated Multi-
461 carbon Products Using a Membrane Electrode Assembly. *Joule* **3**, 2777-2791 (2019).

462 51 Tomas, M. *et al.* Modification of gas diffusion layers properties to improve water management.
Mater. Renew. Sustain. Energy **6** (2017).

463 52 Yu, S. *et al.* Study on hydrophobicity loss of the gas diffusion layer in PEMFCs by
464 electrochemical oxidation. *RSC Adv.* **4**, 3852-3856 (2014).

465 53 Verma, S. *et al.* The Effect of Electrolyte Composition on the Electroreduction of CO₂ to CO on
466 Ag based Gas Diffusion Electrodes. *Phys. Chem. Chem. Phys.* **18**, 7075-7084 (2016).

470 **Acknowledgements**

471 The authors gratefully acknowledge the support of the International Institute for Carbon Neutral Energy

472 Research (WPI-I2CNER), sponsored by the Japanese Ministry of Education, Culture, Sports, Science
473 and Technology. D.A.H., U.O.N., and P.J.A.K. gratefully acknowledge Shell's New Energy Research
474 and Technology (NERT) program for providing funding. J.C. and S.C.Z. acknowledge support of the
475 National Science Foundation (NSF CHE-1709718). We thank Mass Spectrometry Lab (especially Dr.
476 Furong Sun and Dr. Xiuli Mao) for performing GC/MS measurements. We thank Dr. Richard T. Haasch
477 for performing XPS and the SCS machine shop for their help in designing the in situ flow cell for the
478 SERS measurements. We also thank SCS NMR lab for their help in NMR measurements.

479 **Author contributions**

480 X.C. and N.M.A. prepared the Cu-Pi electrodes and performed the electrochemistry experiments. J.C.
481 synthesized the polymers and performed NMR experiments. X.C. conducted the SEM and XRD
482 experiments. X.C. and D.A.H. carried out the Raman measurements. R.Z. analyzed the XPS data. U.O.N.
483 prepared the anode electrodes. K.E.M. did the contact angle measurements. A.A.G., S.C.Z., and P.J.A.K.
484 conceived the project and supervised the research work. X.C., J.C., and A.A.G. wrote the manuscript
485 with input from the other authors.

486 **Competing interests**

487 The authors declare no competing financial interests.

488 **Additional information**

489 Supplementary information is available for this paper at <https://doi.org/>
490 Reprints and permissions information is available at www.nature.com/reprints.
491 Correspondence and requests for materials should be addressed to A.A.G.
492 Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps
493 and institutional affiliations.