
Towards Scalable Spectral Embedding and Data Visualization
via Spectral Coarsening

Zhiqiang Zhao
Stevens Institute of Technology

Hoboken, New Jersey
zzhao76@stevens.edu

Ying Zhang
Stevens Institute of Technology

Hoboken, New Jersey
yzhan232@stevens.edu

Zhuo Feng
Stevens Institute of Technology

Hoboken, New Jersey
Zhuo.Feng@stevens.edu

ABSTRACT

This paper proposes a scalable multilevel framework for the spectral

embedding of large undirected graphs. The proposed method first

computes much smaller yet sparse graphs while preserving the key

spectral (structural) properties of the original graph, by exploiting

a nearly-linear time spectral graph coarsening approach. Then,

the resultant spectrally-coarsened graphs are leveraged for the

development of much faster algorithms formultilevel spectral graph

embedding (clustering) as well as visualization of large data sets.

We conducted extensive experiments using a variety of large graphs

and datasets and obtained very promising results. For instance, we

are able to coarsen the łcoPapersCiteseer" graph with 0.43 million

nodes and 16million edges into amuch smaller graphwith only 13𝐾

(32𝑋 fewer) nodes and 17𝐾 (950𝑋 fewer) edges in about 16 seconds;

the spectrally-coarsened graphs allow us to achieve up to 1, 100𝑋

speedup for multilevel spectral graph embedding (clustering) and

up to 60X speedup for t-SNE visualization of large data sets.

CCS CONCEPTS

· Information systems → Clustering; Clustering and clas-

sification; · Human-centered computing → Visualization; ·

Mathematics of computing → Graph algorithms.

KEYWORDS

Spectral graph theory; spectral embedding; graph clustering; data

visualization

ACM Reference Format:

Zhiqiang Zhao, Ying Zhang, and Zhuo Feng. 2021. Towards Scalable Spectral

Embedding and Data Visualization via Spectral Coarsening. In Proceedings

of the Fourteenth ACM International Conference on Web Search and Data

Mining (WSDM ’21), March 8ś12, 2021, Virtual Event, Israel. ACM, New York,

NY, USA, 9 pages. https://doi.org/10.1145/3437963.3441767

1 INTRODUCTION

Recent research shows that by leveraging the key spectral prop-

erties of eigenvalues and eigenvectors of graph Laplacians, more

efficient algorithms can be developed for tackling many graph-

related computing tasks [45]. For example, spectral methods can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WSDM ’21, March 8ś12, 2021, Virtual Event, Israel

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8297-7/21/03. . . $15.00
https://doi.org/10.1145/3437963.3441767

potentially lead to much faster algorithms for solving sparse ma-

trices [40, 53], numerical optimization [7], data mining [32], graph

analytics [22], machine learning [9], as well as very-large-scale

integration (VLSI) computer-aided design (CAD) [13, 14, 51, 53].

To this end, spectral sparsification of graphs has been extensively

studied in the past decade [3, 24, 41, 42] to allow computing almost-

linear-sized 1 subgraphs or sparsifiers that can robustly preserve

the spectrum. The sparsified graphs retain the same set of ver-

tices but much fewer edges, which can be regarded as ultra-sparse

graph proxies and have been leveraged for developing a series of

nearly-linear-time numerical and graph algorithms [7, 15, 40, 41].

Another way of simplifying graphs is to directly reduce the

size of the graphs, which is widely used in many areas, including

graph partitioning [20], machine learning [9] and multigrid solvers

[23, 28]. However, most of the graph coarsening techniques cannot

guarantee the preservation of the spectral properties on the coars-

ened graphs, and much remains to be understood about the effect

of the graph coarsening on the spectrum of a general graph.

In this paper, we introduce a scalable algorithmic framework

spectral coarsening of graphs for dramatically reducing the size (both

nodes and edges) of undirected graphs while preserving the key

spectral (structural) properties of the original graph. The spectrally-

coarsened graphs will immediately lead to the development of much

faster numerical and graph-related algorithms. Based on the graph

coarsening algorithm, multilevel frameworks for scalable spectral

graph embedding and data visualization are proposed. The major

contribution of this work has been summarized as follows:

• To well preserve the key spectral properties of the original

graph in the coarsened graphs, a scalable framework for

spectrum-preserving graph aggregation (coarsening) and

sparsification is proposed for robustly constructing sparsified

coarsened graphs that have much fewer number of nodes.

• Multilevel frameworks are proposed to allow leveraging

spectrally-coarsened graphs for much faster spectral graph

clustering as well as visualization of large data sets.

• We have obtained very promising experiment results for a

variety of graph problems: the spectrally-coarsened graphs

allow us to achieve up to 1,100X speedup for spectral graph

clustering and up to 60X speedup for t-SNE visualization of

large data sets.

2 RELATED WORK

There are two major ways to simplify a graph: graph sparsification

aims to reduce the number of edges, while graph coarsening reduces

the number of graph nodes. Graph sparsification and coarsening

1The number of vertices (nodes) is similar to the number of edges.

https://doi.org/10.1145/3437963.3441767
https://doi.org/10.1145/3437963.3441767

Table 1: Symbols and their denotations in this work

Symbol Denotation Symbol Denotation

𝐺 = (𝑉 , 𝐸𝐺 ,𝑤𝐺) Original graph LG Lap. of 𝐺

𝑃 = (𝑉 , 𝐸𝑃 ,𝑤𝑃) Spectrally-spar. 𝐺 LP Lap. of 𝑃

𝑅 = (𝑉𝑅, 𝐸𝑅,𝑤𝑅) Coarsened 𝐺 w/o spar. LR Lap. of 𝑅

𝑆 = (𝑉𝑅, 𝐸𝑆 ,𝑤𝑆) Coarsened 𝐺 w/ spar. LS Lap. of 𝑆

HR
G
∈ R |𝑉𝑅 |× |𝑉 | G-to-R mapping HG

R
∈ R |𝑉 |× |𝑉𝑅 | R-to-G mapping

have been widely used in the applications of graph clustering and

partitioning [10, 20, 36, 50], as well as data (graph) visualization

[16, 21, 49].

Different graph sparsification techniques have been proposed.

Graph spanners [12, 31] were proposed to preserve the pair dis-

tances between nodes. Benczur and Karger [4, 5] then introduced

the cut sparsifier, which can preserve cut values between the origi-

nal graph and the sparsified graph. Later, Spielman and Teng [42]

proposed the spectral sparsifier for preserving the key eigenvalues

and eigenvectors, which is a stronger notation than the cut spar-

sifier. Since then, more spectral related sparsification methods are

proposed, like the spectral preservation of pseudoinverse for the

graph Laplacian by Li [25].

Compared to the solid theoretical work on the graph sparsifica-

tion, graph coarsening is harder to understand due to the lack of

matured theoretical frameworks. A variety of spectral coarsening

schemes have been proposed, but the majority of the algorithms

are based on heuristics. [11] proposed the Kron reduction of the

graph based on the Schur complement. Purohit et al. [34] introduced

the CoarseNet that is able to coarsen graphs while preserving the

largest eigenvalue of its adjacency matrix, such that the diffusion

characteristics of the original graph can be kept. Loukas and Van-

dergheynst [29] proposed a theoretical framework which proves the

spectral preservation of the original graph after coarsening based

on the concept of the restricted spectral similarity. Recently, Bravo-

Hermsdorff and Gunderson [17] proposed a unified framework of

graph sparsification and coarsening, which aims to preserve the

Laplacian pseudoinverse on the coarsened graph.

3 BACKGROUND: UNDIRECTED GRAPH

Given an undirected graph 𝐺 = (𝑉 , 𝐸𝐺 ,𝑤𝐺) with 𝑉 denoting the

set of vertices, 𝐸𝐺 denoting the set of undirected edges, and 𝑤𝐺

denoting the associated edge weights, we defineDG to be a diagonal

matrix such that 𝐷𝐺 (𝑖, 𝑖) equals to the (weighted) degree of node 𝑖 ,

while AG and LG denote the adjacency and Laplacian matrices of

undirected graph 𝐺 , respectively:

AG (𝑖, 𝑗) =

{

𝑤𝐺 (𝑖, 𝑗) if (𝑖, 𝑗) ∈ 𝐸𝐺

0 otherwise .
(1)

Graph Laplacians can be constructed by using LG = DG − AG.

Spectral sparsification aims to find a spectrally-similar sub-

graph (sparsifier) 𝑃 = (𝑉 , 𝐸𝑃 ,𝑤𝑃) that has the same set of vertices

of the original graph 𝐺 = (𝑉 , 𝐸𝐺 ,𝑤𝐺), but much fewer edges. We

say 𝐺 and its subgraph 𝑃 are 𝜎−spectrally similar if the following

condition holds for all real vectors xG ∈ R |𝑉 | :

xG
⊤L𝑃xG

𝜎
≤ xG

⊤L𝐺xG ≤ 𝜎xG
⊤L𝑃xG, (2)

where L𝐺 and L𝑃 denote the Laplacian matrices of graph 𝐺 and

𝑃 , respectively. For better understanding, all symbols used in the

paper are shown in Table 1. Define the relative condition number

of L𝐺 and L𝑃 as 𝜅 (L𝐺 , L𝑃) = 𝜆max/𝜆min, where 𝜆max and 𝜆min are

the largest and smallest nonzero eigenvalues of L𝐺u = 𝜆L𝑃u, and

u is the generalized eigenvector of LG. It can be further shown that

𝜅 (L𝐺 , L𝑃) ≤ 𝜎2, which indicates that a smaller relative condition

number or 𝜎2 corresponds to a higher spectral similarity.

Graph coarsening aims to find a smaller graph𝑅 = (𝑉𝑅, 𝐸𝑅,𝑤𝑅)

to approximate a larger graph 𝐺 = (𝑉 , 𝐸𝐺 ,𝑤𝐺) through the graph

mapping operator HR
G
:

LR = HR
GLG (H

R
G)

⊤, (3)

where HR
G
is a coarsening matrix containing only 0 and 1. Also,

coarsening process is a surjective mapping of the node set, where

(HR
G
)
𝑝,𝑞

= 1 if node 𝑞 in graph 𝐺 is aggregated to super-node 𝑝

in graph 𝑅, and (HR
G
)
𝑝′,𝑞

= 0 for all nodes 𝑝 ′ ∈ {𝑣 ∈ 𝑅 : 𝑣 ≠ 𝑝}.

Coarsened graph R and graph G satisfy restricted spectral similarity

shown as the following condition [29]:

xG
⊤L𝐺xG

𝜎 ′
≤ xR

⊤L𝑅xR ≤ 𝜎 ′xG
⊤L𝐺xG, ∀xR ∈ UR ∀xG ∈ UG,

(4)

where UR
=

[

u
(1)
R

, u
(2)
R

, ..., u
(k)
R

]

and UG
=

[

u
(1)
G

, u
(2)
G

, ..., u
(k)
G

]

include the first 𝑘 eigenvectors of LR and LG correspondingly.

4 SPECTRAL GRAPH COARSENING

4.1 Overview of our approach

This work introduces a spectral graph coarsening framework that

allows computing much smaller yet spectrally-similar graph 𝑆 . The

Laplacian matrices of the corresponding graphs have been shown

in Table 1 that also includes the graph mapping matrices. Our

approach for spectral coarsening of undirected graphs includes the

following three steps:

• Step A will determine the fine-to-coarse graph mapping

operator and coarsen the original graph into a much smaller

graph.

• Step B will extract spectrally-similar sparsifiers of the origi-

nal (coarsened) graph and scale up the edge weights in the

sparsified graphs.

• Step C will globally scale up edge weight of the coarsened

graph.

Since the spectral node aggregation metric cannot be directly

applied to relatively dense graphs [6], our approach will first exam-

ine the average node degrees in the original graph: if the original

graph is relatively sparse (|𝐸𝐺 | < 40|𝑉 |), steps A to B will be per-

formed in sequence; otherwise, if the original graph is too dense

(|𝐸𝐺 | > 40|𝑉 |), step B will be performed first, which is followed by

step A. Finally, the coarsened graph will be scaled up by step C.

4.2 Step A: spectrum-preserving aggregation

In this step, a multilevel spectral graph coarsening process will be

performed until the desired size of the coarsened graph is reached.

The graph mapping operators on each level (H2
1, · · · ,H

𝑚
𝑚−1) can

be created and leveraged for constructing a series of spectrally-

coarsened graphs𝐺1,𝐺2, · · · ,𝐺𝑚 (𝑅), where𝐺1 is the original graph,

and |𝑉1 | = 𝑁 > |𝑉2 | > · · · > |𝑉𝑚 |. Notice that mapping operator

H𝑖+1
𝑖 ∈ {0, 1} |𝑉𝑖+1 |× |𝑉𝑖 | is a coarsening matrix containing only 0 and

1. It has following properties:

• Row (column) index of H𝑖+1
𝑖 corresponds to the node index

in graph 𝐺𝑖+1 (𝐺𝑖).

• It is a surjectivemapping of the node set, where (H𝑖+1
𝑖)𝑝,𝑞 = 1

if node 𝑞 in graph𝐺𝑖 is aggregated to super-node 𝑝 in graph

𝐺𝑖+1, and (H𝑖+1
𝑖)𝑝′,𝑞 = 0 for all nodes 𝑝 ′ ∈ {𝑣 ∈ 𝑉𝑖+1 : 𝑣 ≠ 𝑝}.

• It is a locality preserving operator, where the subgraph of

𝐺𝑖 induced by the non-zero entries of (H𝑖+1
𝑖)𝑝,: is connected

for each 𝑝 ∈ 𝑉𝑖+1.

For example, the coarser graph Laplacian LGi+1
can be computed by

LGi+1
= Hi+1

i LGi
Hi
i+1, Hi

i+1 = (Hi+1
i)T . (5)

Graph coarsening via local spectral embedding. SinceH𝑖+1
𝑖

is a locality-preserving operator, how to construct the H𝑖+1
𝑖 is the

key problem. In this work, we leverage an efficient yet effective

local spectral embedding scheme to identify node clusters based on

emerging graph signal processing techniques [39].

low frequency

high frequency

smoothing

frequency components of a random vector

frequency components of the smoothed vector

(combination of all eigenvectors)

(combination of the first few eigenvectors)

Figure 1: Smoothing a random vector on a path graph.

As shown in Figure 1, we consider a random vector (graph signal)

x which can be expressed with a linear combination of eigenvec-

tors ui, for 𝑖 = 1, ..., 𝑁 , of a path-graph Laplacian. Low-pass graph

filters can be adopted to quickly filter out the "high-frequency"

components of the random graph signal or the eigenvectors corre-

sponding to high eigenvalues of the graph Laplacian. To this end,

rather simple smoothing functions, such as the Gauss-Seidel and

Jacobi methods, can be used. By applying the smoothing function

on x, a smoothed vector x̃ can be obtained in linear time, which can

be considered as a linear combination of the first few eigenvectors:

x =

𝑁
∑

𝑖=1

𝛽𝑖ui
filtering
−−−−−−→ x̃ =

𝑛
∑

𝑖=1

𝛽𝑖ui 𝑛 ≤ 𝑁 . (6)

More specifically, given a set of 𝑘 initial random vectors X =

(x(1) , . . . , x(k)) that are orthogonal to the all-one vector, we can

obtain the smoothed vectors in X̃ by applying a few steps of Gauss-

Seidel iterations for solving the linear system of equations LGx
(i)

= 0.

Based on the smoothed vectors in X̃, each node is embedded into a

𝑘-dimensional space such that nodes 𝑝 and 𝑞 are considered spec-

trally similar if their low-dimensional embedding vectors X̃p,: ∈ R
𝑘

(the 𝑝-th row of X̃) and X̃q,: ∈ R
𝑘 (the 𝑞-th row of X̃) are highly

correlated. Consequently, spectrally-similar nodes 𝑝 and 𝑞 can be

then aggregated together for node reduction purpose. Here the

node distance is measured by the spectral node affinity 𝑑𝑝,𝑞 for

neighboring nodes 𝑝 and 𝑞 [6, 28]:

𝑑𝑝,𝑞 =

(X̃p,:, X̃q,:)
2

(X̃p,:, X̃p,:) (X̃q,:, X̃q,:)
(7)

where (X̃p,:, X̃q,:) is the inner product.

4.3 Step B & C: spectral sparsification & scaling

The proposed node aggregation scheme in Section 4.2 will enable us

to reliably construct smaller graphs that have fewer vertices. How-

ever, the aggregated nodes may potentially result in much denser

graphs (with significantly higher node degrees), which may incur

even greater computational and memory cost for graph operations.

To address the challenges from relatively dense graphs, we pro-

pose the following highly effective yet scalable algorithms in step

B: the nearly-linear time spectral graph sparsification and subgraph

scaling schemes for handling dense graphs𝐺 . Note that when step

B is applied for a sparse input graph, the same procedures can

be applied to the coarsened graph 𝑅 (with potentially higher den-

sity) for computing 𝑆 after the node aggregation scheme or the

fine-to-coarse graph mapping operators are determined.

It has been shown that every graph has a low-stretch spanning

tree (LSST) that can be leveraged as an initial sparsifier with a

bounded total stretch [43]:

𝜅 (L𝐺 , L𝑃) ≤ Tr(L+
𝑃
L𝐺) = st𝑃 (𝐺) ≤ (𝑚 log𝑛 log log𝑛), (8)

where𝑚 = |𝐸𝐺 |, 𝑛 = |𝑉 |, and Tr(L+
𝑃
L𝐺) is the trace of L

+
𝑃
L𝐺 . Such

a result motivates the construction of an ultra-sparse yet spectrally-

similar subgraphs by recovering only a small portion of important

off-tree edges to the spanning tree, which can dramatically reduce

the mismatch between the original graph and the sparsifier [13, 14].

To further improve the quality of the coarsened graph with the

minimum number of edges, an iterative edge weight scaling scheme

[54] using constrained Stochastic Gradient Descent (SGD) with mo-

mentum as well as a global post-scaling process [52] can be applied

for better matching the spectral properties of the original graph,

leading to the improved approximation of the first few Laplacian

eigenvalues and eigenvectors within the coarsened graph.

4.4 Algorithm complexity

The algorithm complexity of step A for the spectrum-preserving

node aggregation procedure is𝑂 (|𝐸𝑃 |) for dense graphs and𝑂 (|𝐸𝐺 |)

for sparse graphs, while the complexity of step B for spectral graph

sparsification and edge scaling by SGD iterations is𝑂 (|𝐸𝐺 | log (|𝑉 |))

for dense graphs and𝑂 (|𝐸𝑆 | log (|𝑉𝑅 |)) for sparse graphs. The com-

plexity of edge post-scaling is 𝑂 (|𝐸𝐺 |) for step C by leveraging

the latest graph-theoretic Laplacian solvers [28, 53]. Therefore, the

worse-case algorithm complexity of the proposed spectral graph

coarsening method is 𝑂 (|𝐸𝐺 | log (|𝑉 |)).

5 MULTILEVEL SPECTRAL GRAPH
EMBEDDING AND VISUALIZATION

In this section, multilevel frameworks that leverage spectrally-

coarsened graphs for scalable spectral graph embedding (clustering)

as well as data visualization of large data sets are introduced.

Eigensolver

Eigenvector Mapping

Eigenvector Smoothing

No

Yes

Multilevel Eigensolver

Vector Orthonormalization

Finest Level?

Final K Eigenvectors

Spectrally-coarsened Graph

Original

Graph

Coarsened

Graph

Sparsified

Coarsened Graph

A

B & C

Figure 2: Multilevel graph Laplacian eigensolver.

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

-0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

K=1

K=50
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

K=0

K=10

Figure 3: Solution refinement for spectral graph embedding

with the first two Laplacian eigenvectors.

5.1 Scalable graph Laplacian eigensolver

We proposed a multilevel Laplacian eigensolver to calculate the first

few nontrivial eigenvectors of the original graph Laplacian, shown

in Figure 2. Instead of directly computing the first 𝑘 eigenvectors of

the original graph, we will first coarsen the original graph 𝐺 into a

much smaller graph 𝑆 such that the eigenvectors of the coarsened

graph can be efficiently calculated. Next, we will map the eigenvec-

tors of the coarsened graph Laplacian onto a finer level using the

graph mapping operators. To further improve the approximation

quality of these eigenvectors, an eigenvector refinement (smooth-

ing) procedure is applied. In this work, we adopt a weighted Jacobi

iteration scheme for filtering out the high-frequency error signals

on graphs [35]. The eigenvector mapping and smoothing proce-

dures are recursively applied until the finest-level graph is reached.

Finally, all eigenvectors computed for the finest-level graph will be

orthonormalized using the Gram-Schmidt process.

Spectral Graph Coarsening Data Visualization

Data Points Mapping

Spectrum-Preserving

Node Aggregation

Spectral Graph

Sparsification

𝑘-nearest Neighbor

Graph of Data Points

Spectrally-coarsened Graph

Visualization Algorithms

Original Data Set

Reduced Data Set

Embedded Data Set

Figure 4: Multilevel visualization algorithm.

Figure 3 shows the 2D spectral embedding 2 results of a (spar-

sified) 2D mesh graph using the proposed eigenvectors solution

refinement scheme. K-step weighted Jacobi relaxations have been

applied to improve the eigenvector accuracy with K=0, 1, 10, and 50,

respectively. Such results indicate that the approximate eigenvec-

tors obtained from sparsified (coarsened) graphs can be significantly

improved via the proposed solution refinement procedure.

Algorithm 1 Multilevel Laplacian Eigensolver

Input: L𝐺1 , · · · , L𝐺𝑚 , H1
2, · · · ,H

𝑚−1
𝑚 , 𝑘 ;

1: Initialize: 𝑗 :=𝑚, BG𝜐 := I for ratio cut [48] or BG𝜐 := DG𝜐 for normal-

ized cut [48], where 𝜐 = 1, · · · ,𝑚 ;

2: Compute the first 𝑘 eigenpairs (𝜆𝑚1 , u𝑚1), · · · , (𝜆𝑚
𝑘
, u𝑚

𝑘
) of the eigen-

value problem L𝐺𝑚u𝑚𝑖 = 𝜆𝑚𝑖 B𝐺𝑚u𝑚𝑖 for 𝑖 = 1, · · ·𝑘 ;

3: Form matrix U𝑚 with the first 𝑘 vectors u𝑚1 , · · · , u𝑚
𝑘

as its columns;

4: while 𝑗 > 1 do

5: Map U𝑗 from level 𝑗 to level 𝑗 − 1 by U𝑗−1
= H

𝑗−1
𝑗

U𝑗 ;

6: for 𝑖 = 1 to 𝑘 do

7: y := U𝑗−1 [: , 𝑖], which is the 𝑖-th column of U𝑗−1;

8: Filter vector y by performing a few weighted-Jacobi iterations to

(L𝐺 𝑗−1 − 𝜆𝑚𝑖 B𝐺 𝑗−1)y = 0 ;

9: Update U𝑗−1 [: , 𝑖] with the smoothed vector y ;

10: end for

11: 𝑗 := 𝑗 − 1;

12: end while

13: Perform orthonormalization to columns of U1;

14: Return U = U1.

The detailed algorithm for multilevel Laplacian eigensolver is

shown in Algorithm 1. The inputs of the algorithm include the

Laplacian matrix of each hierarchical level L𝐺𝜐
= D𝐺𝜐

−A𝐺𝜐
, where

𝜐 = 1, · · · ,𝑚; mapping operatorH𝜐−1
𝜐 from level𝜐 to level𝜐−1 ; and

the number of eigenvectors 𝑘 . In the last, spectral graph clustering

can be performed using the eigenvectors computed by Algorithm 1

in the subsequent k-means clustering step.

5.2 Multilevel algorithm for data visualization

Visualization of high-dimensional data is a fundamental problem

in data analysis and has been used in many applications. For ex-

ample, the t-Distributed Stochastic Neighbor Embedding (t-SNE)

2Drawing graphs with the first two nontrivial eigenvectors as the X- and Y-coordinates
for each node [22].

Original Graph Spectrally Reduced Graph

Figure 5: Spectral drawings of the original and coarsened

łfe_ocean" (24𝑋 node reduction and 58𝑋 edge reduction).

[47] and LargeVis [44] have become the most effective visualization

tools due to their capability of performing dimensionality reduction.

However, these algorithms may suffer from very high computa-

tional cost for visualizing large real-world data sets due to the high

computational complexity [30, 47].

Recent research [27] shows that the low-dimensional data points

embedding obtained with t-SNE is closely related to the first few

eigenvectors of the corresponding graph Laplacian that encodes

the manifold of the original high-dimensional data points. This

motivates us to propose a multilevel visualization algorithm based

on our graph coarsening method, as shown in Figure 4. The idea

is that data points closely related to each other on the manifold

will be aggregated into much smaller sets, such that visualizing

the reduced data set using existing tools such as t-SNE will be

much faster and produce similar embedding results. To this end, we

start by constructing a nearest-neighbor (NN) graph, such as the

k-NN graph, for the original high-dimensional data points; then, a

spectrally-coarsened (NN) graph is computed using the proposed

spectral coarsening algorithm. Note that for k-NN graphs, the graph

sparsification and scaling procedure (step B) will be performed

before the spectral node aggregation step (step A). The detailed

algorithm is shown in Algorithm 2.

Algorithm 2Multilevel Data Visualization

Input: Original data set F, number of neighbors 𝑘 ;

1: Generate 𝑘-nearest neighbor (𝑘-NN) graph𝐺 based on the data set 𝐹 ;

2: Generate the spectrally-coarsened graph 𝑆 ;

3: Obtain the corresponding mapping operator H𝑅
𝐺
;

4: Form a reduced data set F𝑅 by F𝑅 = H𝑅
𝐺
F;

5: Embed data points with any existing visualization tools on the reduced

data set F𝑅 ;

6: Return embedded data points for visualization.

6 EXPERIMENTAL RESULTS

In this section, extensive experiments have been conducted to eval-

uate the proposed spectral graph coarsening and spectral clustering

methods with various types of graphs from the DIMACS10 graph

collection[1, 2]. Graphs are from different applications, such as

finite-element analysis problems (łfe_rotor") [8], numerical simu-

lation graphs (łauto"), clustering graphs (łuk") and social network

graphs (łcoAuthorsDBLP" and łcoPapersCiterseer") [8], etc. All

experiments have been conducted on a single CPU core of a com-

puting platform running 64-bit RHEW 6.0 with 2.67GHz 12-core

CPU and 48GB DRAM memory.

Eigenvalue

N
o

rm
a

li
ze

d
 S

m
a

ll
e

st
 E

ig
e

n
v
a

lu
e

Figure 6: The first 10 normalized eigenvalues of the

łfe_rotor" graph under different node reduction ratios.

-10

0

10

20

30

40

50

60

4.4E4

3.6E5

1.3E5

3.3E6
3.8E6

4.0E6

5.3E6

9.2E6

1.2E7

2.0E7
R
u
n
ti
m
e
(S
)

| |(log)

Figure 7: Scalability of the proposed coarsening method.

6.1 Results of spectral graph coarsening

Figure 5 shows the spectral drawings [22] of the łfe_ocean" graph

and its coarsened graph computed by the proposed coarsening al-

gorithm, where the node and edge reduction ratio are 24𝑋 and 58𝑋 ,

respectively. We observe that the spectral drawings of two graphs

are highly similar to each other, which indicates very well preserved

spectral properties (Laplacian eigenvectors) in the coarsened graph.

Figure 6 shows the first few normalized eigenvalues of the orig-

inal and coarsened graph Laplacians, indicating clearly that the

smallest eigenvalues of the original Laplacian and the coarsened

Laplacians match very well even for very large reduction ratios.

Table 2 shows spectral graph coarsening results on different

kinds of graphs using the proposed method, where 𝑇𝑟 denotes the

graph coarsening time. Compared to other test cases that corre-

spond to sparse graphs, the graph density of ł𝑎𝑝𝑝𝑢∗" is much higher

and thus has been processed as a dense graph. We want to further

emphasize that directly applying the prior node aggregation scheme

will not produce acceptable results. For example, the node aggrega-

tion algorithm failed to generate the coarsened graph for ł𝑎𝑝𝑝𝑢∗"

due to very high graph density. On the other hand, there will be

no issue for dense graphs if we apply step B for spectral graph

sparsification and scaling before the node aggregation step.

Figure 7 shows the total spectral graph coarsening time with

different problem sizes (|𝐸𝐺 | log(|𝑉 |)) for various graphs, where

|𝐸𝐺 | (|𝑉 |) denotes the number of edges (nodes) of the original

graphs, respectively. As observed, the total spectral coarsening

runtime increases almost linearly with the problem size, indicating

the highly scalable performance of the proposed method.

6.2 Spectrum approximation

We also compared the performance of our proposed method with

the following state-of-the-art graph coarsening methods: (1) Local

variation based graph coarseningmethod [29]. Based on the concept

of restricted spectral approximation, two possible graph contraction

methods were proposed: edge-based contraction and neighborhood-

based contraction. (2)Heavy edgematching based graph coarsening

method, which is widely used for graph partitioning [19] and more

recently in graph embedding [26]. (3) Kron reduction method [38].

The benefit of this method is that it can preserve the important

spectral properties; however, the densities of coarsened graphs will

be dramatically increased.

To measure the performance of different spectral coarsening

methods, the mean relative eigenvalue errors between original

graphs and coarsened graphs are reported in Table 3, where five

methods are tested, including local variation with edge and neigh-

borhood contraction, heavy edge contraction, Kron reduction, as

well as our proposed coarsening method; 𝑟 represents the node

coarsening ratio, which can be calculated by 1 − |𝑉𝑆 |/|𝑉 |; |𝑉 | and

|𝑉𝑆 | are the number of node for the original graph and the coars-

ened graph, respectively. Given the first 𝑘 eigenvalues 𝜔 and 𝜔̃ of

the original graph and the coarsened graph, the mean relative error

can be calculated by 1
𝑘

∑𝑘
𝑖=1

|𝜔𝑖−𝜔̃𝑖 |
𝜔𝑖

[29]. Four different graphs in-

cluding airfoil (|𝑉 | = 4, 000, |𝐸𝐺 | = 11, 490) [33], yeast (|𝑉 | = 1, 458,

|𝐸𝐺 | = 1, 948) [18], bunny (|𝑉 | = 2, 503, |𝐸𝐺 | = 65, 490) [46] and

Minnesota (|𝑉 | = 2, 642, |𝐸𝐺 | = 3, 304) are tested in the experiment.

We can observe that the spectrum can be better preserved on the

coarsened graphs using our proposed graph coarsening algorithm

compared to other methods. Table 4 shows the number of the edges

for the coarsened graphs when using the different coarsening meth-

ods. We can observe that our method can achieve better graph

sparsity when comparing to other methods.

6.3 Results of spectral embedding (clustering)

We evaluated the performance of the proposed spectral graph clus-

tering algorithm on a variety of graphs from the DIMACS10 graph

collection. We choose to partition all the graphs into 30 clusters.

The built-in eigs and kmeansMATLAB functions are used for solv-

ing the eigenvalue problem and node clustering tasks, respectively.

The normalized cut [37] is used to measure the quality of clusters,

where a smaller value of normalized cut represents better clustering

quality. Three methods have been tested, including spectral clus-

tering with original graphs (no reduction), spectral clustering with

spectrally-coarsened graphs generated by the proposed spectral

coarsening technique, as well as the spectral clustering with coars-

ened graphs generated by METIS [19] with default settings. Note

that we choose to coarsen the graphs with similar node reduction

ratios when applying two coarsening frameworks, even though

the spectrally-coarsened graphs have much fewer edges. Once the

coarsened graphs are generated by two frameworks, the multilevel

eigensolver will be leveraged for further spectral clustering.

0 5 10 15 20 25 30 35

Node reduction ratio

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
o
rm

a
liz

e
d
 c

u
t

(53X) (157X) (390X)
(795X)

(5X)
(11X)

(22X)

(39X)Spectral graph reduction

METIS graph reduction

Figure 8: Clustering qualities (normalized cut) under differ-

ent reduction ratios for the łcoPapersCiteseer" graph [8],

where (·) shows the edge reduction ratio.

Detailed experimental results are shown in Table 2. The perfor-

mance of clustering is evaluated based on the normalized cut and

its execution time. In the table, 𝜃 is the normalized cut; 𝑇𝑒𝑖𝑔𝑠 are

the execution time for solving the eigenvalue problems given the

original graphs or coarsened graphs; 𝑇 are the total execution time

for spectral graph clustering including solving eigenvalue problems

and clustering with k-means; ł𝑁𝐴" denotes the failure of solving

eigenvalue problems due to the limited memory resources. From the

table, we can observe that spectrally-coarsened graphs can achieve

consistently better clustering quality than the coarsened graphs

do generated by METIS, indicating that our method can achieve

better spectrum preservation with much fewer edges. Meanwhile,

the superior sparsity of the spectrally-coarsened graphs enables

better efficiency. The overall quality of generated clusters using

the original graphs and the spectrally-coarsened graphs is similar

to each other, but the cost when using the coarsened graphs is

much lower than using the original graphs, especially for large

graphs. For example, we achieve over 1, 100𝑋 runtime speedup on

the łsmallworld" graph clustering. For larger graphs, such as the

łcoPapersCiteseer" graphs, spectral clustering without coarsening

will fail due to the extremely high computation (memory) cost.

From the table, we can also conclude that most of the runtime

is due to the eigensolver if the original graph is used, while the

k-means and smoothing time will be dominant when using the

spectrally-coarsened graph. However, the smoothing procedure is

inherently highly parallel, making it possible to further improve

the efficiency of the proposed spectral clustering and to develop

high-quality parallel spectral clustering algorithms.

We evaluated the performance of the proposed spectral cluster-

ing method with different coarsening ratios, as shown in Figure 8

and Figure 9. In Figure 8, the normalized cut is presented with dif-

ferent size of coarsened graphs generated by the proposed method

andMETIS. The edge reduction ratios are also included in the figure.

Figure 9 shows the runtime of the proposed method with the corre-

sponding coarsened graphs. We observe that the proposed method

can constantly produce better coarsened graphs with superior spar-

sity than METIS, which eventually leads to the better clustering

results. Also, as shown in Figure 9, higher reduction ratios result

in lower cost for graph coarsening as well as spectral clustering,

while still maintaining high clustering quality. This indicates a very

Table 2: Spectral graph coarsening and clustering results with the best results highlighted in red and blue colors.

Graph
Original Graph (𝐺) Spectrally-coarsened Graph (𝑆) Coarsened Graph (𝑀) by METIS

|𝑉 | |𝐸𝐺 | 𝜃 𝑇𝑒𝑖𝑔𝑠 𝑇
|𝑉 |
|𝑉𝑆 |

|𝐸𝐺 |
|𝐸𝑆 |

𝑇𝑟 𝜃 𝑇𝑒𝑖𝑔𝑠 𝑇
|𝑉 |
|𝑉𝑀 |

|𝐸𝐺 |
|𝐸𝑀 |

𝑇𝑟 𝜃 𝑇𝑒𝑖𝑔𝑠 𝑇

fe_rotor 1.0𝐸5 6.6𝐸5 1.51 20.2𝑠 22.8𝑠 71𝑋 180𝑋 1.3𝑠 1.50 0.2𝑠 2.9s 51𝑋 43𝑋 1.6𝑠 1.67 0.2𝑠 9.4𝑠

auto 4.5𝐸5 3.3𝐸6 1.10 479.7𝑠 495.8𝑠 30𝑋 167𝑋 14.8𝑠 1.08 0.6𝑠 29.0s 27𝑋 24𝑋 7.5𝑠 1.60 3.5𝑠 53.4𝑠

uk 4.8𝐸3 6.8𝐸3 1.01 0.2𝑠 0.6𝑠 40𝑋 51𝑋 0.2𝑠 1.03 0.1𝑠 0.6𝑠 34𝑋 24𝑋 0.1𝑠 1.20 0.1𝑠 0.3s

vsp_barth5 3.2𝐸4 1.0𝐸5 3.12 14.4𝑠 16.6𝑠 57𝑋 122𝑋 0.5𝑠 2.72 0.2𝑠 2.7𝑠 44𝑋 9𝑋 0.3𝑠 2.94 0.3𝑠 2.4s

smallworld 1.0𝐸5 5.0𝐸5 6.92 1.6𝐸4𝑠 1.6𝐸4𝑠 22𝑋 5𝑋 32.2𝑠 6.93 9.2𝑠 11.4s 28𝑋 4𝑋 1.6𝑠 12.58 12.3𝑠 20.3𝑠

coAuthorsDBLP 3.0𝐸5 9.8𝐸5 0.92 245.3𝑠 250.8𝑠 11𝑋 26𝑋 30.7𝑠 0.49 15.7𝑠 26.5s 10𝑋 4𝑋 3.0𝑠 1.26 255.3𝑠 275.0𝑠

coAuthorsCite 2.2𝐸5 8.1𝐸5 0.49 77.0𝑠 81.3𝑠 11𝑋 33𝑋 8.2𝑠 0.41 5.4𝑠 13.3s 10𝑋 7𝑋 2.1𝑠 1.01 81.1𝑠 90.4𝑠

citationCite 2.6𝐸5 1.1𝐸6 0.48 2.0𝐸3𝑠 2.1𝐸3𝑠 13𝑋 27𝑋 32.3𝑠 0.52 3.5𝑠 24.8s 11𝑋 2𝑋 5.2𝑠 0.86 288.1𝑠 314.0𝑠

coPapersDBLP 5.4𝐸5 1.5𝐸7 𝑁𝐴 𝑁𝐴 𝑁𝐴 13𝑋 210𝑋 52.8𝑠 0.14 17.4𝑠 61.6s 15𝑋 13𝑋 27.8𝑠 0.78 775.2𝑠 919.5𝑠

coPapersCite 4.3𝐸5 1.6𝐸7 𝑁𝐴 𝑁𝐴 𝑁𝐴 32𝑋 950𝑋 16.4𝑠 0.11 0.9𝑠 51.6s 29𝑋 39𝑋 26.0 0.37 72.7𝑠 210.6𝑠

appu∗ 1.4𝐸4 9.2𝐸5 21.70 250.0𝑠 250.1𝑠 5𝑋 117𝑋 25.5𝑠 22.40 0.5𝑠 7.5s 4𝑋 1.2𝑋 3.0𝑠 27.69 15.9𝑠 24.5𝑠

Table 3: Mean relative errors for the first 10 and 40 eigenvalues.

Graph 𝑟
k=10 k=40

loc. (edge) loc. (neig.) heav. edge Kron ours loc. (edge) loc. (neig.) heav. edge Kron ours

airfoil 70% 1.05 0.93 4.74 1.99 0.46 0.88 0.84 2.27 2.08 0.48

yeast 70% 3.50 0.41 3.39 1.87 0.31 2.18 0.45 2.50 1.95 0.32

bunny 70% 0.08 0.32 0.13 1.81 0.16 0.10 0.30 0.13 1.19 0.33

minnesota 70% 4.58 1.87 9.30 1.95 0.34 2.11 1.61 4.16 2.09 0.32

0 5 10 15 20 25 30

Node reduction ratio

0

50

100

150

r
u

n
ti

m
e
 (

s
e
c
o

n
d

s
)

T
reduction

T
eigs

T

Figure 9: Runtime for spectral clustering

under different reduction ratios for the

łcoPapersCiteseer" [8].

Figure 10: Runtime for graph clustering

with different number of clusters for the

łcoAuthorsCiteseer" [8].

Figure 11: Normalized cut for graph clus-

tering with different number of clusters

for the łcoAuthorsCiteseer" [8].

Table 4: The number of edge comparison.

Graph loc. (edge) loc. (neig.) heav.edge Kron ours

airfoil 3,126 3,246 3,322 589,487 1,049

yeast 713 779 603 60,806 390

bunny 8,897 11,059 8,838 280,875 981

minnesota 1,264 1,259 603 3,675 732

promising performance in efficiency and reliability achieved by the

proposed algorithm.

We also evaluated the performance of the spectral clustering

algorithm using the original graph and the spectrally-coarsened

graph under different numbers of clusters. As shown in Figure 10

and Figure 11, the coarsened graph has 11× fewer nodes and 26×

fewer edges compare to the original graph. And 𝑇𝐺 and 𝑇𝑆 are the

total clustering time when using the original graph and the coars-

ened graph. With the increasing number of partitions, we observed

that the spectral clustering method using the spectrally-coarsened

graph is much faster with consistently higher partitioning qualities.

6.4 Results of scalable data visualization

We first demonstrate the connection between the t-SNE embedding

solution and the first few unnormalized Laplacian eigenvectors

of the k-NN graph formed with the original data set. We increase

the number of Laplacian eigenvectors for representing the embed-

ding vectors x ∈ R𝑛 and y ∈ R𝑛 that store the locations of 𝑛 data

points in 2D space obtained by running t-SNE, and compute the

correlation factors 𝑝𝑥𝑡𝑠𝑛𝑒 =
| |UU⊤x | |2
| |x | |2

and 𝑝
𝑦
𝑡𝑠𝑛𝑒 =

| |UU⊤y | |2
| |y | |2

, where

U ∈ R𝑛×𝑟 is the matrix with the first 𝑟 Laplacian eigenvectors (of

the original k-NN graph) as its column vectors. If 𝑝𝑥𝑡𝑠𝑛𝑒 or 𝑝
𝑦
𝑡𝑠𝑛𝑒 is

close to 1, it indicates a strong correlation (significant overlap) be-

tween the eigenspace and the t-SNE embedding vectors. Figure 12

shows strong correlations between the low-dimensional embedding

0 5 10 15 20 25

Number of eigenvectors

0

0.2

0.4

0.6

0.8

C
o

rr
e

la
ti

o
n

 (
p

ts
n

e
)

X
USPS

Y
USPS

X
MNIST

Y
MNIST

Figure 12: Correlations between 2D embedding vectors com-

puted by t-SNE and the subspace formed by the first few

eigenvectors.

0
1
2
3
4
5
6
7
8
9

15 (6X speedup)

5X

Figure 13: t-SNE visualization with original USPS data set

and the reduced data set.

vectors and the first few (e.g. 𝑟 = 20) eigenvectors of the Laplacian

matrices corresponding to the k-NN graphs constructed using the

USPS and MNIST data sets 3, where 𝑋𝑈𝑆𝑃𝑆 and 𝑋𝑀𝑁𝐼𝑆𝑇 represent

𝑝𝑥𝑡𝑠𝑛𝑒 ; 𝑌𝑈𝑆𝑃𝑆 and 𝑌𝑀𝑁𝐼𝑆𝑇 represent 𝑝
𝑦
𝑡𝑠𝑛𝑒 . It is also interesting to

observe that the t-SNE embedding vectors are more closely related

to the 10-th eigenvector, since the inclusion of such an eigenvec-

tor leads to significantly improved correlation factors 𝑝𝑥𝑡𝑠𝑛𝑒 and

𝑝
𝑦
𝑡𝑠𝑛𝑒 . This is actually very reasonable considering the ground-truth

number of clusters for the USPS and MNIST data sets is 10.

We demonstrate the t-SNE visualization results on the original

and reduced USPS and MNIST data sets obtained by leveraging

spectrally-coarsened NN graphs in Figure 13 and Figure 14. Our

results show very clear cluster boundaries after spectral graph

coarsening, which retain the ones obtained from the original data

sets, indicating very high-quality embedding results as well as

significantly improved runtime performance.

To better show the scalability of this framework, we choose to

apply it to a larger YouTube social network 4 with more than one

million data and 5,000 categories (communities). Every node is la-

beled with the communities it belongs to, if it is one of the most

3USPS includes 9, 298 images of USPS hand written digits with 256 attributes;MNIST
is a data set from Yann LeCun’s website http://yann.lecun.com/exdb/mnist/, which
includes 70, 000 images of hand written digits with each of them represented by 784
attributes.
4Available at https://snap.stanford.edu/data/com-Youtube.html.

t-SNE: : 1902s t-SNE: : 228s (8X speedups)

4X reductionNo reduction

MNIST data set

9X reduction 22X reduction

t-SNE: 86s (22X speedups) t-SNE: 28s (68X speedups)

Figure 14: t-SNE visualization with original MNIST data set

and data sets under different reduction ratios.

Table 5: Visualization time for two data sets

Data set Reduction ratio 𝑇𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑇𝑡𝑠𝑛𝑒 𝑇𝐿𝑎𝑟𝑔𝑒𝑉𝑖𝑠

MNIST (1X) ś 1,902s 838s

MNIST (10X) 58s 86s 535s

Youtube (1X) ś 59,222s 6,460s

Youtube (108X) 413s 109s 546s

popular 5,000 communities, or with a special category named oth-

ers. We apply both t-SNE and LargeVis [44] data visualization tools

with default settings for the experiments. Table 5 shows the runtime

for visualizing the MNIST and YouTube data sets, where𝑇𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ,

𝑇𝑡𝑠𝑛𝑒 and 𝑇𝐿𝑎𝑟𝑔𝑒𝑉𝑖𝑠 represent graph reduction time, t-SNE visual-

ization time, and LargeVis visualization time. We need to mention

that all the k-NN graphs are constructed by the LargeVis tool. The

data reduction ratio is also shown in the table. We can see that the

framework can aggressively accelerate the data visualization for

both t-SNE and LargeVis tool with satisfying accuracy preserved

on the reduced data sets.

7 CONCLUSION

We propose a scalable algorithmic framework for spectral coars-

ening of large undirected graphs, which allows computing much

smaller graphs while preserving the key spectrum of the original

graph. We show that the resultant spectrally-coarsened graphs can

robustly preserve the first few nontrivial eigenvalues and eigen-

vectors of the original graph Laplacian. In addition, the spectral

graph coarsening method has been leveraged to develop much

faster algorithms for multilevel spectral graph clustering as well

as visualization of large data sets. We conducted extensive experi-

ments using a variety of large graphs and data sets and obtained

very promising results. For instance, we are able to coarsen the łco-

PapersCiteseer" graph with 0.43 million nodes and 16 million edges

to a much smaller graph with only 13𝐾 (32X fewer) nodes and 17𝐾

(950X fewer) edges in about 16 seconds; the spectrally-coarsened

graphs also allow us to achieve up to 1, 100𝑋 speedup for spectral

graph clustering and up to 60𝑋 speedup for t-SNE visualization of

large data sets.

8 ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation

under Grants CCF-2041519 (CAREER), CCF-2021309 (SHF), and

CCF-2011412 (SHF).

REFERENCES
[1] D. A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and D. Wagner.

Benchmarking for graph clustering and partitioning. In Encyclopedia of Social
Network Analysis and Mining, pages 73ś82. Springer, 2014.

[2] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner. Graph partitioning and
graph clustering. In 10th DIMACS Implementation Challenge Workshop, 2012.

[3] J. Batson, D. Spielman, and N. Srivastava. Twice-Ramanujan Sparsifiers. SIAM
Journal on Computing, 41(6):1704ś1721, 2012.

[4] A. A. Benczúr and D. R. Karger. Approximating st minimum cuts in õ (n 2)
time. In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 47ś55. ACM, 1996.

[5] A. A. Benczúr and D. R. Karger. Randomized approximation schemes for cuts and
flows in capacitated graphs. SIAM Journal on Computing, 44(2):290ś319, 2015.

[6] J. Chen and I. Safro. Algebraic distance on graphs. SIAM Journal on Scientific
Computing, 33(6):3468ś3490, 2011.

[7] P. Christiano, J. Kelner, A. Madry, D. Spielman, and S. Teng. Electrical flows,
laplacian systems, and faster approximation of maximum flow in undirected
graphs. In Proc. ACM STOC, pages 273ś282, 2011.

[8] T. Davis and Y. Hu. The university of florida sparse matrix collection. ACM Trans.
on Math. Soft. (TOMS), 38(1):1, 2011.

[9] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information
Processing Systems, pages 3844ś3852, 2016.

[10] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors a
multilevel approach. IEEE transactions on pattern analysis andmachine intelligence,
29(11):1944ś1957, 2007.

[11] F. Dorfler and F. Bullo. Kron reduction of graphs with applications to electrical
networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1):150ś
163, 2012.

[12] M. Elkin and D. Peleg. Approximating k-spanner problems for k> 2. Theoretical
Computer Science, 337(1-3):249ś277, 2005.

[13] Z. Feng. Spectral graph sparsification in nearly-linear time leveraging efficient
spectral perturbation analysis. In Design Automation Conference (DAC), 2016
53nd ACM/EDAC/IEEE, pages 1ś6. IEEE, 2016.

[14] Z. Feng. Similarity-aware spectral sparsification by edge filtering. In Design
Automation Conference (DAC), 2018 55nd ACM/EDAC/IEEE. IEEE, 2018.

[15] W. Fung, R. Hariharan, N. Harvey, and D. Panigrahi. A general framework for
graph sparsification. In Proc. ACM STOC, pages 71ś80, 2011.

[16] D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs. In
International symposium on graph drawing, pages 183ś196. Springer, 2000.

[17] G. B. Hermsdorff and L. Gunderson. A unifying framework for spectrum-
preserving graph sparsification and coarsening. InAdvances in Neural Information
Processing Systems, pages 7736ś7747, 2019.

[18] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai. Lethality and centrality
in protein networks. Nature, 411(6833):41, 2001.

[19] G. Karypis and V. Kumar. Metisśunstructured graph partitioning and sparse
matrix ordering system, version 2.0. 1995.

[20] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359ś392,
1998.

[21] S. Kaski and J. Peltonen. Dimensionality reduction for data visualization [appli-
cations corner]. IEEE signal processing magazine, 28(2):100ś104, 2011.

[22] Y. Koren. On spectral graph drawing. In International Computing and Combina-
torics Conference, pages 496ś508. Springer, 2003.

[23] I. Koutis, G. Miller, and R. Peng. Approaching Optimality for Solving SDD Linear
Systems. In Proc. IEEE FOCS, pages 235ś244, 2010.

[24] Y. T. Lee and H. Sun. An SDP-based Algorithm for Linear-sized Spectral Sparsifi-
cation. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, pages 678ś687, New York, NY, USA, 2017. ACM.

[25] H. Li and A. Schild. Spectral subspace sparsification. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS), pages 385ś396. IEEE,
2018.

[26] J. Liang, S. Gurukar, and S. Parthasarathy. Mile: A multi-level framework for
scalable graph embedding. arXiv preprint arXiv:1802.09612, 2018.

[27] G. C. Linderman and S. Steinerberger. Clustering with t-sne, provably. SIAM
Journal on Mathematics of Data Science, 1(2):313ś332, 2019.

[28] O. Livne and A. Brandt. Lean algebraic multigrid (LAMG): Fast graph Laplacian
linear solver. SIAM Journal on Scientific Computing, 34(4):B499śB522, 2012.

[29] A. Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine
Learning Research, 20(116):1ś42, 2019.

[30] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579ś2605, 2008.

[31] D. Peleg and A. A. Schäffer. Graph spanners. Journal of graph theory, 13(1):99ś116,
1989.

[32] R. Peng, H. Sun, and L. Zanetti. Partitioning well-clustered graphs: Spectral
clustering works. In Proceedings of The 28th Conference on Learning Theory
(COLT), pages 1423ś1455, 2015.

[33] R. Preis and R. Diekmann. Party-a software library for graph partitioning. Ad-
vances in Computational Mechanics with Parallel and Distributed Processing, pages
63ś71, 1997.

[34] M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. Subrahmanian. Fast influence-
based coarsening for large networks. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and datamining, pages 1296ś1305,
2014.

[35] Y. Saad. Iterative methods for sparse linear systems, volume 82. siam, 2003.
[36] V. Satuluri, S. Parthasarathy, and Y. Ruan. Local graph sparsification for scalable

clustering. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, pages 721ś732, 2011.

[37] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on pattern analysis and machine intelligence, 22(8):888ś905, 2000.

[38] D. I. Shuman, M. J. Faraji, and P. Vandergheynst. A multiscale pyramid transform
for graph signals. IEEE Transactions on Signal Processing, 64(8):2119ś2134, 2015.

[39] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The
emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains. IEEE Signal Processing Maga-
zine, 30(3):83ś98, 2013.

[40] D. Spielman and S. Teng. Nearly linear time algorithms for preconditioning and
solving symmetric, diagonally dominant linear systems. SIAM Journal on Matrix
Analysis and Applications, 35(3):835ś885, 2014.

[41] D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances.
SIAM Journal on Computing, 40(6):1913ś1926, 2011.

[42] D. A. Spielman and S.-H. Teng. Spectral sparsification of graphs. SIAM Journal
on Computing, 40(4):981ś1025, 2011.

[43] D. A. Spielman and J. Woo. A note on preconditioning by low-stretch spanning
trees. arXiv preprint arXiv:0903.2816, 2009.

[44] J. Tang, J. Liu, M. Zhang, and Q.Mei. Visualizing large-scale and high-dimensional
data. In Proceedings of the 25th international conference on world wide web, pages
287ś297. International World Wide Web Conferences Steering Committee, 2016.

[45] S.-H. Teng. Scalable algorithms for data and network analysis. Foundations and
Trends® in Theoretical Computer Science, 12(1ś2):1ś274, 2016.

[46] G. Turk and M. Levoy. Zippered polygon meshes from range images. In Proceed-
ings of the 21st annual conference on Computer graphics and interactive techniques,
pages 311ś318. ACM, 1994.

[47] L. Van Der Maaten. Accelerating t-sne using tree-based algorithms. The Journal
of Machine Learning Research, 15(1):3221ś3245, 2014.

[48] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395ś416, 2007.

[49] C. Walshaw. A multilevel algorithm for force-directed graph drawing. In Inter-
national Symposium on Graph Drawing, pages 171ś182. Springer, 2000.

[50] L. Wang, Y. Xiao, B. Shao, and H. Wang. How to partition a billion-node graph.
In 2014 IEEE 30th International Conference on Data Engineering, pages 568ś579.
IEEE, 2014.

[51] Z. Zhao and Z. Feng. A spectral graph sparsification approach to scalable vector-
less power grid integrity verification. In Proceedings of the 54th Annual Design
Automation Conference 2017, page 68. ACM, 2017.

[52] Z. Zhao and Z. Feng. Effective-resistance preserving spectral reduction of graphs.
In Proceedings of the 56th Annual Design Automation Conference 2019, page 109.
ACM, 2019.

[53] Z. Zhao, Y. Wang, and Z. Feng. SAMG: Sparsified graph theoretic algebraic
multigrid for solving large symmetric diagonally dominant (SDD) matrices. In
Proceedings of ACM/IEEE International Conference on Computer-Aided Design,
pages 601ś606, 2017.

[54] Z. Zhao, Y. Wang, and Z. Feng. Nearly-linear time spectral graph reduction for
scalable graph partitioning and data visualization. arXiv preprint arXiv:1812.08942,
2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Background: undirected graph
	4 Spectral Graph coarsening
	4.1 Overview of our approach
	4.2 Step A: spectrum-preserving aggregation
	4.3 Step B & C: spectral sparsification & scaling
	4.4 Algorithm complexity

	5 Multilevel spectral graph embedding and visualization
	5.1 Scalable graph Laplacian eigensolver
	5.2 Multilevel algorithm for data visualization

	6 Experimental results
	6.1 Results of spectral graph coarsening
	6.2 Spectrum approximation
	6.3 Results of spectral embedding (clustering)
	6.4 Results of scalable data visualization

	7 Conclusion
	8 Acknowledgments
	References

