Towards Scalable Spectral Embedding and Data Visualization
via Spectral Coarsening

Zhigiang Zhao Ying Zhang Zhuo Feng
Stevens Institute of Technology Stevens Institute of Technology Stevens Institute of Technology
Hoboken, New Jersey Hoboken, New Jersey Hoboken, New Jersey
zzhao76@stevens.edu yzhan232@stevens.edu Zhuo Feng@stevens.edu

ABSTRACT

This paper proposes a scalable multilevel framework for the spectral
embedding of large undirected graphs. The proposed method first
computes much smaller yet sparse graphs while preserving the key
spectral (structural) properties of the original graph, by exploiting
a nearly-linear time spectral graph coarsening approach. Then,
the resultant spectrally-coarsened graphs are leveraged for the
development of much faster algorithms for multilevel spectral graph
embedding (clustering) as well as visualization of large data sets.
We conducted extensive experiments using a variety of large graphs
and datasets and obtained very promising results. For instance, we
are able to coarsen the “coPapersCiteseer" graph with 0.43 million
nodes and 16 million edges into a much smaller graph with only 13K
(32X fewer) nodes and 17K (950X fewer) edges in about 16 seconds;
the spectrally-coarsened graphs allow us to achieve up to 1, 100X
speedup for multilevel spectral graph embedding (clustering) and
up to 60X speedup for t-SNE visualization of large data sets.

CCS CONCEPTS

« Information systems — Clustering; Clustering and clas-
sification; - Human-centered computing — Visualization; «
Mathematics of computing — Graph algorithms.

KEYWORDS

Spectral graph theory; spectral embedding; graph clustering; data
visualization

ACM Reference Format:

Zhiqiang Zhao, Ying Zhang, and Zhuo Feng. 2021. Towards Scalable Spectral
Embedding and Data Visualization via Spectral Coarsening. In Proceedings
of the Fourteenth ACM International Conference on Web Search and Data
Mining (WSDM °21), March 8-12, 2021, Virtual Event, Israel. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3437963.3441767

1 INTRODUCTION

Recent research shows that by leveraging the key spectral prop-
erties of eigenvalues and eigenvectors of graph Laplacians, more
efficient algorithms can be developed for tackling many graph-
related computing tasks [45]. For example, spectral methods can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WSDM °21, March 8-12, 2021, Virtual Event, Israel

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8297-7/21/03...$15.00
https://doi.org/10.1145/3437963.3441767

potentially lead to much faster algorithms for solving sparse ma-
trices [40, 53], numerical optimization [7], data mining [32], graph
analytics [22], machine learning [9], as well as very-large-scale
integration (VLSI) computer-aided design (CAD) [13, 14, 51, 53].
To this end, spectral sparsification of graphs has been extensively
studied in the past decade [3, 24, 41, 42] to allow computing almost-
linear-sized ! subgraphs or sparsifiers that can robustly preserve
the spectrum. The sparsified graphs retain the same set of ver-
tices but much fewer edges, which can be regarded as ultra-sparse
graph proxies and have been leveraged for developing a series of
nearly-linear-time numerical and graph algorithms [7, 15, 40, 41].

Another way of simplifying graphs is to directly reduce the
size of the graphs, which is widely used in many areas, including
graph partitioning [20], machine learning [9] and multigrid solvers
[23, 28]. However, most of the graph coarsening techniques cannot
guarantee the preservation of the spectral properties on the coars-
ened graphs, and much remains to be understood about the effect
of the graph coarsening on the spectrum of a general graph.

In this paper, we introduce a scalable algorithmic framework
spectral coarsening of graphs for dramatically reducing the size (both
nodes and edges) of undirected graphs while preserving the key
spectral (structural) properties of the original graph. The spectrally-
coarsened graphs will immediately lead to the development of much
faster numerical and graph-related algorithms. Based on the graph
coarsening algorithm, multilevel frameworks for scalable spectral
graph embedding and data visualization are proposed. The major
contribution of this work has been summarized as follows:

e To well preserve the key spectral properties of the original
graph in the coarsened graphs, a scalable framework for
spectrum-preserving graph aggregation (coarsening) and
sparsification is proposed for robustly constructing sparsified
coarsened graphs that have much fewer number of nodes.

e Multilevel frameworks are proposed to allow leveraging
spectrally-coarsened graphs for much faster spectral graph
clustering as well as visualization of large data sets.

e We have obtained very promising experiment results for a
variety of graph problems: the spectrally-coarsened graphs
allow us to achieve up to 1,100X speedup for spectral graph
clustering and up to 60X speedup for t-SNE visualization of
large data sets.

2 RELATED WORK

There are two major ways to simplify a graph: graph sparsification
aims to reduce the number of edges, while graph coarsening reduces
the number of graph nodes. Graph sparsification and coarsening

I The number of vertices (nodes) is similar to the number of edges.

https://doi.org/10.1145/3437963.3441767
https://doi.org/10.1145/3437963.3441767

Table 1: Symbols and their denotations in this work

Symbol Denotation Symbol Denotation
G = (V,Eg,wg) Original graph Lg Lap. of G
P = (V,Ep,wp) Spectrally-spar. G Lp Lap. of P
R = (VR,Eg,wR) | Coarsened G w/o spar. Lr Lap. of R
S = (Vr,Es,ws) | Coarsened G w/ spar. Ls Lap. of S
Hg e RIVRIXIV] G-to-R mapping Hg € RIVIXIVel | R-to-G mapping

have been widely used in the applications of graph clustering and
partitioning [10, 20, 36, 50], as well as data (graph) visualization
[16, 21, 49].

Different graph sparsification techniques have been proposed.
Graph spanners [12, 31] were proposed to preserve the pair dis-
tances between nodes. Benczur and Karger [4, 5] then introduced
the cut sparsifier, which can preserve cut values between the origi-
nal graph and the sparsified graph. Later, Spielman and Teng [42]
proposed the spectral sparsifier for preserving the key eigenvalues
and eigenvectors, which is a stronger notation than the cut spar-
sifier. Since then, more spectral related sparsification methods are
proposed, like the spectral preservation of pseudoinverse for the
graph Laplacian by Li [25].

Compared to the solid theoretical work on the graph sparsifica-
tion, graph coarsening is harder to understand due to the lack of
matured theoretical frameworks. A variety of spectral coarsening
schemes have been proposed, but the majority of the algorithms
are based on heuristics. [11] proposed the Kron reduction of the
graph based on the Schur complement. Purohit et al. [34] introduced
the CoarseNet that is able to coarsen graphs while preserving the
largest eigenvalue of its adjacency matrix, such that the diffusion
characteristics of the original graph can be kept. Loukas and Van-
dergheynst [29] proposed a theoretical framework which proves the
spectral preservation of the original graph after coarsening based
on the concept of the restricted spectral similarity. Recently, Bravo-
Hermsdorff and Gunderson [17] proposed a unified framework of
graph sparsification and coarsening, which aims to preserve the
Laplacian pseudoinverse on the coarsened graph.

3 BACKGROUND: UNDIRECTED GRAPH

Given an undirected graph G = (V, Eg, wg) with V denoting the
set of vertices, Eg denoting the set of undirected edges, and wg
denoting the associated edge weights, we define Dg to be a diagonal
matrix such that Dg (i, i) equals to the (weighted) degree of node i,
while Ag and Lg denote the adjacency and Laplacian matrices of
undirected graph G , respectively:

Awm=&w” i (1)) € B »
0 otherwise .
Graph Laplacians can be constructed by using Lg = Dg — Ag.
Spectral sparsification aims to find a spectrally-similar sub-
graph (sparsifier) P = (V, Ep, wp) that has the same set of vertices
of the original graph G = (V, Eg, wg), but much fewer edges. We
say G and its subgraph P are o—spectrally similar if the following
condition holds for all real vectors xg € RIVI:

T
xG ' Lpx
%6 ~PTG < XGTLGXG < O'XGTLPXG, (2)

where Lg and Lp denote the Laplacian matrices of graph G and
P, respectively. For better understanding, all symbols used in the
paper are shown in Table 1. Define the relative condition number
of Lg and Lp as k(Lg, Lp) = Amax/Amin, Where Apmayx and Ay, are
the largest and smallest nonzero eigenvalues of Lgu = ALpu, and
u is the generalized eigenvector of L. It can be further shown that
k(Lg,Lp) < 2, which indicates that a smaller relative condition
number or o2 corresponds to a higher spectral similarity.

Graph coarsening aims to find a smaller graph R = (Vg, Eg, wr)
to approximate a larger graph G = (V, Eg, wg) through the graph
mapping operator Hg:

Lr = H{LG(HY) ", (3)
where HRG is a coarsening matrix containing only 0 and 1. Also,
coarsening process is a surjective mapping of the node set, where
(H(R,,)p!q = 1 if node ¢ in graph G is aggregated to super-node p
in graph R, and (Hg)p’,q =0 forallnodesp’ € {v € R: v # p}.
Coarsened graph R and graph G satisfy restricted spectral similarity
shown as the following condition [29]:

xg ' Lgxg
O-/

< xp"Lgxp < 0'xg Lgxg, Vxg € UR vxg € UC,

4
where UR = [ul(;),u](lz), ulgk)] and U = [ug),ug>, ug()

include the first k eigenvectors of L and Lg correspondingly.

4 SPECTRAL GRAPH COARSENING

4.1 Overview of our approach

This work introduces a spectral graph coarsening framework that
allows computing much smaller yet spectrally-similar graph S. The
Laplacian matrices of the corresponding graphs have been shown
in Table 1 that also includes the graph mapping matrices. Our
approach for spectral coarsening of undirected graphs includes the
following three steps:

o Step A will determine the fine-to-coarse graph mapping
operator and coarsen the original graph into a much smaller
graph.

e Step B will extract spectrally-similar sparsifiers of the origi-
nal (coarsened) graph and scale up the edge weights in the
sparsified graphs.

o Step C will globally scale up edge weight of the coarsened
graph.

Since the spectral node aggregation metric cannot be directly
applied to relatively dense graphs [6], our approach will first exam-
ine the average node degrees in the original graph: if the original
graph is relatively sparse (|[Eg| < 40|V]), steps A to B will be per-
formed in sequence; otherwise, if the original graph is too dense
(IEg| > 40|V|), step B will be performed first, which is followed by
step A. Finally, the coarsened graph will be scaled up by step C.

4.2 Step A: spectrum-preserving aggregation

In this step, a multilevel spectral graph coarsening process will be
performed until the desired size of the coarsened graph is reached.
The graph mapping operators on each level (HZ,--- ,H™_.) can

m-—1

be created and leveraged for constructing a series of spectrally-
coarsened graphs G1, Gy, - - - , Gy (R), where Gj is the original graph,
and |Vi| = N > |V,| > --- > |V;|. Notice that mapping operator
H;:“ € {0, 1}Vin[XIVil js o coarsening matrix containing only 0 and
1. It has following properties:

e Row (column) index of H;:H corresponds to the node index
in graph Gi+1 (Gi).)

o Itisasurjective mapping of the node set, where (H;”)p,q =1
if node g in graph G; is aggregated to super-node p in graph
Gi+1,and (H;:“)p/,q =0 forallnodes p’ € {v € Viy1 : 0 # p}.

o It is a locality preserving operator, where the subgraph of
G; induced by the non-zero entries of (Hi:“)p,: is connected
for each p € V1.

For example, the coarser graph Laplacian Lg,,, can be computed by

. . . INT
Lg,, = H;HLGiH;H’ ;+1 = (H;H) : (5)

H

Graph coarsening via local spectral embedding. Since Hf“
is a locality-preserving operator, how to construct the H::” is the
key problem. In this work, we leverage an efficient yet effective
local spectral embedding scheme to identify node clusters based on
emerging graph signal processing techniques [39].

frequency components of a random vector

. .
/‘\\‘/ \/ \/ frequency components of the smoothed vector
~. . .
NN NP e
smoothing

AVAVAVAVAVAVER

(combination of all eigenvectors)

low frequency

(combination of the first few eigenvectors)
Figure 1: Smoothing a random vector on a path graph.

As shown in Figure 1, we consider a random vector (graph signal)
x which can be expressed with a linear combination of eigenvec-
tors uj, for i = 1,..., N, of a path-graph Laplacian. Low-pass graph
filters can be adopted to quickly filter out the "high-frequency”
components of the random graph signal or the eigenvectors corre-
sponding to high eigenvalues of the graph Laplacian. To this end,
rather simple smoothing functions, such as the Gauss-Seidel and
Jacobi methods, can be used. By applying the smoothing function
on x, a smoothed vector X can be obtained in linear time, which can
be considered as a linear combination of the first few eigenvectors:

N
x=D i
i=1

More specifically, given a set of k initial random vectors X =
(x(l), .. .,x(k)) that are orthogonal to the all-one vector, we can

filtering
_—

f(ZZﬁiui n<N. 6)
i=1

obtain the smoothed vectors in X by applying a few steps of Gauss-

Seidel iterations for solving the linear system of equations Lox™ =o.

Based on the smoothed vectors in X, each node is embedded into a
k-dimensional space such that nodes p and g are considered spec-
trally similar if their low-dimensional embedding vectors)N(p,; e Rk
(the p-th row of X) and)~(q,; € R (the g-th row of X) are highly
correlated. Consequently, spectrally-similar nodes p and g can be
then aggregated together for node reduction purpose. Here the

node distance is measured by the spectral node affinity dp, 4 for
neighboring nodes p and q [6, 28]:

N
KX
K Xp) Ko Kg)

dpg (7

where (f(p,;,)~(q,;) is the inner product.

4.3 Step B & C: spectral sparsification & scaling

The proposed node aggregation scheme in Section 4.2 will enable us
to reliably construct smaller graphs that have fewer vertices. How-
ever, the aggregated nodes may potentially result in much denser
graphs (with significantly higher node degrees), which may incur
even greater computational and memory cost for graph operations.

To address the challenges from relatively dense graphs, we pro-
pose the following highly effective yet scalable algorithms in step
B: the nearly-linear time spectral graph sparsification and subgraph
scaling schemes for handling dense graphs G. Note that when step
B is applied for a sparse input graph, the same procedures can
be applied to the coarsened graph R (with potentially higher den-
sity) for computing S after the node aggregation scheme or the
fine-to-coarse graph mapping operators are determined.

It has been shown that every graph has a low-stretch spanning
tree (LSST) that can be leveraged as an initial sparsifier with a
bounded total stretch [43]:

k(Lg,Lp) < Tr(LjLg) = stp(G) < (mlognloglogn), (8)

where m = [Eg|, n = |V|, and Tr(L}Lg) is the trace of L}Lg. Such
a result motivates the construction of an ultra-sparse yet spectrally-
similar subgraphs by recovering only a small portion of important
off-tree edges to the spanning tree, which can dramatically reduce
the mismatch between the original graph and the sparsifier [13, 14].
To further improve the quality of the coarsened graph with the
minimum number of edges, an iterative edge weight scaling scheme
[54] using constrained Stochastic Gradient Descent (SGD) with mo-
mentum as well as a global post-scaling process [52] can be applied
for better matching the spectral properties of the original graph,
leading to the improved approximation of the first few Laplacian
eigenvalues and eigenvectors within the coarsened graph.

4.4 Algorithm complexity

The algorithm complexity of step A for the spectrum-preserving
node aggregation procedure is O(|Ep|) for dense graphs and O(|Eg|)
for sparse graphs, while the complexity of step B for spectral graph
sparsification and edge scaling by SGD iterations is O(|Eg|log (|V]))
for dense graphs and O(|Es|log (|Vg|)) for sparse graphs. The com-
plexity of edge post-scaling is O(|Eg|) for step C by leveraging
the latest graph-theoretic Laplacian solvers [28, 53]. Therefore, the
worse-case algorithm complexity of the proposed spectral graph
coarsening method is O (|Eg|log (|V])).

5 MULTILEVEL SPECTRAL GRAPH
EMBEDDING AND VISUALIZATION
In this section, multilevel frameworks that leverage spectrally-

coarsened graphs for scalable spectral graph embedding (clustering)
as well as data visualization of large data sets are introduced.

Multilevel Eigensolver

__________ - Final K Eigenvectors
7
/ Original Y f
Graph [Vector Orthonormalization]
No
*A Finest Level?
Coarsened

Graph

L

1
1
1
1
1
1
1
1
1
1
1
' [Eigenvector Smoothing]
1
1
1
1
1
1
1
1
1
1

4

[Eigenvector Mapping]4—

4
[Eigensolver]

N - ’ 4
~—————— A< Spectrally-coarsened Graph

Figure 2: Multilevel graph Laplacian eigensolver.

Sparsified §B&C

Coarsened Graph

K=0 55 1K1 e
/ e
A Ay
XA r
oW/ INI
‘lléve‘; .' ! h 4%
S\
““«s‘!h ..."
4

Figure 3: Solution refinement for spectral graph embedding
with the first two Laplacian eigenvectors.

5.1 Scalable graph Laplacian eigensolver

We proposed a multilevel Laplacian eigensolver to calculate the first
few nontrivial eigenvectors of the original graph Laplacian, shown
in Figure 2. Instead of directly computing the first k eigenvectors of
the original graph, we will first coarsen the original graph G into a
much smaller graph S such that the eigenvectors of the coarsened
graph can be efficiently calculated. Next, we will map the eigenvec-
tors of the coarsened graph Laplacian onto a finer level using the
graph mapping operators. To further improve the approximation
quality of these eigenvectors, an eigenvector refinement (smooth-
ing) procedure is applied. In this work, we adopt a weighted Jacobi
iteration scheme for filtering out the high-frequency error signals
on graphs [35]. The eigenvector mapping and smoothing proce-
dures are recursively applied until the finest-level graph is reached.
Finally, all eigenvectors computed for the finest-level graph will be
orthonormalized using the Gram-Schmidt process.

id N . o .
J/spectral Graph Coa rsening) Data Visualization

k-nearest Neighbor Original Data Set

1
I
| Graph of Data Points ..
! ¥ ' Data Points Mapping
1 Spectral Graph : .
. o
. Sparsification : . Reduced Data Set
: \ 4 1 ! ¥
I Spectrum-Preserving | | 7 - .
: Node Aggregation I{ (Vlsuallzahon Algonthms)
: \4 l \4
" Spectrally-coarsened Graph ,' Embedded Data Set
~ - 4

Figure 4: Multilevel visualization algorithm.

Figure 3 shows the 2D spectral embedding ? results of a (spar-
sified) 2D mesh graph using the proposed eigenvectors solution
refinement scheme. K-step weighted Jacobi relaxations have been
applied to improve the eigenvector accuracy with K=0, 1, 10, and 50,
respectively. Such results indicate that the approximate eigenvec-
tors obtained from sparsified (coarsened) graphs can be significantly
improved via the proposed solution refinement procedure.

Algorithm 1 Multilevel Laplacian Eigensolver

Input:Lg,, - - ,Lg,,, H),--- HI' K
1: Initialize: j := m, Bg, := I'for ratio cut [48] or Bg,, := Dg,, for normal-
ized cut [48], wherev=1,---,m;
2: Compute the first k eigenpairs (A", uf"), - - -, (/1]’:’, ui") of the eigen-
value problem Lg,, u;" = A;"Bc;m u;" fori=1,---k;
: Form matrix U™ with the first k vectors uf”, - - -, u;:’ as its columns;
: while j > 1do
Map U/ from level j to level j — 1 by U/~! = Hji_lUj ;
fori=1to k do
y := U/71[:, i], which is the i-th column of U/~;
Filter vector y by performing a few weighted-Jacobi iterations to
(Lg;, = A"Bg; 1)y =0;
9: Update U/71[:, i] with the smoothed vector Vs
10: end for
11: j=j-1;
12: end while
13: Perform orthonormalization to columns of Ul;
14: Return U = U,

PN DR

The detailed algorithm for multilevel Laplacian eigensolver is
shown in Algorithm 1. The inputs of the algorithm include the
Laplacian matrix of each hierarchical level L, = Dg, —Ag, , where
v=1,---,m; mapping operator H;~1 from level v to level v—1; and
the number of eigenvectors k. In the last, spectral graph clustering
can be performed using the eigenvectors computed by Algorithm 1
in the subsequent k-means clustering step.

5.2 Multilevel algorithm for data visualization

Visualization of high-dimensional data is a fundamental problem
in data analysis and has been used in many applications. For ex-
ample, the t-Distributed Stochastic Neighbor Embedding (t-SNE)

?Drawing graphs with the first two nontrivial eigenvectors as the X- and Y-coordinates
for each node [22].

N

Spectrally Reduced Graph

Original Graph

Figure 5: Spectral drawings of the original and coarsened
“fe_ocean" (24X node reduction and 58X edge reduction).

[47] and LargeVis [44] have become the most effective visualization
tools due to their capability of performing dimensionality reduction.
However, these algorithms may suffer from very high computa-
tional cost for visualizing large real-world data sets due to the high
computational complexity [30, 47].

Recent research [27] shows that the low-dimensional data points
embedding obtained with t-SNE is closely related to the first few
eigenvectors of the corresponding graph Laplacian that encodes
the manifold of the original high-dimensional data points. This
motivates us to propose a multilevel visualization algorithm based
on our graph coarsening method, as shown in Figure 4. The idea
is that data points closely related to each other on the manifold
will be aggregated into much smaller sets, such that visualizing
the reduced data set using existing tools such as t-SNE will be
much faster and produce similar embedding results. To this end, we
start by constructing a nearest-neighbor (NN) graph, such as the
k-NN graph, for the original high-dimensional data points; then, a
spectrally-coarsened (NN) graph is computed using the proposed
spectral coarsening algorithm. Note that for k-NN graphs, the graph
sparsification and scaling procedure (step B) will be performed
before the spectral node aggregation step (step A). The detailed
algorithm is shown in Algorithm 2.

Algorithm 2 Multilevel Data Visualization
Input: Original data set F, number of neighbors k ;
: Generate k-nearest neighbor (k-NN) graph G based on the data set F;
: Generate the spectrally-coarsened graph S;
: Obtain the corresponding mapping operator HX ;
: Form a reduced data set Fg by Fr = HgF;
: Embed data points with any existing visualization tools on the reduced
data set Fg ;
6: Return embedded data points for visualization.

s W N =

6 EXPERIMENTAL RESULTS

In this section, extensive experiments have been conducted to eval-
uate the proposed spectral graph coarsening and spectral clustering
methods with various types of graphs from the DIMACS10 graph
collection[1, 2]. Graphs are from different applications, such as
finite-element analysis problems (“fe_rotor") [8], numerical simu-
lation graphs (“auto”), clustering graphs (“uk") and social network
graphs (“coAuthorsDBLP" and “coPapersCiterseer") [8], etc. All
experiments have been conducted on a single CPU core of a com-
puting platform running 64-bit RHEW 6.0 with 2.67GHz 12-core
CPU and 48GB DRAM memory.

()

=

T 08

c

&

i 06 1

o

o

= 04

g ==z Py —_—
== s = .

uE) L ,/'r-'-‘-‘-."-'- - Original Graph

5 021 .* - 5X

S R - 13X

T or -+ 30X

£ 66X

o - 146X

=02 : : s ‘ ‘

1 2 3 4 5 6 7 8 9 10

Eigenvalue

Figure 6: The first 10 normalized eigenvalues of the
“fe_rotor" graph under different node reduction ratios.

60
1.2E7 P
L 40 Pre
g 30 5'3E6// 2.0E7
t 20 7 9266
- //
& 10 3.6E5
L3 4.0E6
3.8E6
0 < 3.3E6
4.4¢4
-10
|Eg|(log|V])

Figure 7: Scalability of the proposed coarsening method.

6.1 Results of spectral graph coarsening

Figure 5 shows the spectral drawings [22] of the “fe_ocean" graph
and its coarsened graph computed by the proposed coarsening al-
gorithm, where the node and edge reduction ratio are 24X and 58X,
respectively. We observe that the spectral drawings of two graphs
are highly similar to each other, which indicates very well preserved
spectral properties (Laplacian eigenvectors) in the coarsened graph.
Figure 6 shows the first few normalized eigenvalues of the orig-
inal and coarsened graph Laplacians, indicating clearly that the
smallest eigenvalues of the original Laplacian and the coarsened
Laplacians match very well even for very large reduction ratios.
Table 2 shows spectral graph coarsening results on different
kinds of graphs using the proposed method, where T, denotes the
graph coarsening time. Compared to other test cases that corre-
spond to sparse graphs, the graph density of “appu™" is much higher
and thus has been processed as a dense graph. We want to further
emphasize that directly applying the prior node aggregation scheme
will not produce acceptable results. For example, the node aggrega-
tion algorithm failed to generate the coarsened graph for “appu™"
due to very high graph density. On the other hand, there will be
no issue for dense graphs if we apply step B for spectral graph
sparsification and scaling before the node aggregation step.
Figure 7 shows the total spectral graph coarsening time with
different problem sizes (|Eg|log(|V|)) for various graphs, where

|Eg| (IV]) denotes the number of edges (nodes) of the original
graphs, respectively. As observed, the total spectral coarsening
runtime increases almost linearly with the problem size, indicating
the highly scalable performance of the proposed method.

6.2 Spectrum approximation

We also compared the performance of our proposed method with
the following state-of-the-art graph coarsening methods: (1) Local
variation based graph coarsening method [29]. Based on the concept
of restricted spectral approximation, two possible graph contraction
methods were proposed: edge-based contraction and neighborhood-
based contraction. (2) Heavy edge matching based graph coarsening
method, which is widely used for graph partitioning [19] and more
recently in graph embedding [26]. (3) Kron reduction method [38].
The benefit of this method is that it can preserve the important
spectral properties; however, the densities of coarsened graphs will
be dramatically increased.

To measure the performance of different spectral coarsening
methods, the mean relative eigenvalue errors between original
graphs and coarsened graphs are reported in Table 3, where five
methods are tested, including local variation with edge and neigh-
borhood contraction, heavy edge contraction, Kron reduction, as
well as our proposed coarsening method; r represents the node
coarsening ratio, which can be calculated by 1 — |Vs|/|V]; |[V| and
|Vs| are the number of node for the original graph and the coars-
ened graph, respectively. Given the first k eigenvalues w and @ of
the original graph and the coarsened graph, the mean relative error
can be calculated by % Z{;l lw%lw’l [29]. Four different graphs in-
cluding airfoil (|V| = 4,000, |[Eg| = 11, 490) [33], yeast (|V| = 1, 458,
|Eg| = 1,948) [18], bunny (|V| = 2,503, |[Eg| = 65,490) [46] and
Minnesota (|V| = 2,642, |Eg| = 3,304) are tested in the experiment.
We can observe that the spectrum can be better preserved on the
coarsened graphs using our proposed graph coarsening algorithm
compared to other methods. Table 4 shows the number of the edges
for the coarsened graphs when using the different coarsening meth-
ods. We can observe that our method can achieve better graph
sparsity when comparing to other methods.

6.3 Results of spectral embedding (clustering)

We evaluated the performance of the proposed spectral graph clus-
tering algorithm on a variety of graphs from the DIMACS10 graph
collection. We choose to partition all the graphs into 30 clusters.
The built-in eigs and kmeans MATLAB functions are used for solv-
ing the eigenvalue problem and node clustering tasks, respectively.
The normalized cut [37] is used to measure the quality of clusters,
where a smaller value of normalized cut represents better clustering
quality. Three methods have been tested, including spectral clus-
tering with original graphs (no reduction), spectral clustering with
spectrally-coarsened graphs generated by the proposed spectral
coarsening technique, as well as the spectral clustering with coars-
ened graphs generated by METIS [19] with default settings. Note
that we choose to coarsen the graphs with similar node reduction
ratios when applying two coarsening frameworks, even though
the spectrally-coarsened graphs have much fewer edges. Once the
coarsened graphs are generated by two frameworks, the multilevel
eigensolver will be leveraged for further spectral clustering.

0.4 i T T

=@ = Spectral graph reduction (39)9;(

0.35r ==%= METIS graph reduction - 1
s %1 Bl |
° *., o*
@ 0.25r tea, K 1
N e, (22X),0°
5 Ly
e 02 k3 B
S
=018 795X) |

,l63%) (157X (390X) L %X |

005 Il Il Il Il Il Il
0 5 10 15 20 25 30 35

Node reduction ratio

Figure 8: Clustering qualities (normalized cut) under differ-
ent reduction ratios for the “coPapersCiteseer" graph [8],
where (-) shows the edge reduction ratio.

Detailed experimental results are shown in Table 2. The perfor-
mance of clustering is evaluated based on the normalized cut and
its execution time. In the table, 0 is the normalized cut; Teigs are
the execution time for solving the eigenvalue problems given the
original graphs or coarsened graphs; T are the total execution time
for spectral graph clustering including solving eigenvalue problems
and clustering with k-means; “NA" denotes the failure of solving
eigenvalue problems due to the limited memory resources. From the
table, we can observe that spectrally-coarsened graphs can achieve
consistently better clustering quality than the coarsened graphs
do generated by METIS, indicating that our method can achieve
better spectrum preservation with much fewer edges. Meanwhile,
the superior sparsity of the spectrally-coarsened graphs enables
better efficiency. The overall quality of generated clusters using
the original graphs and the spectrally-coarsened graphs is similar
to each other, but the cost when using the coarsened graphs is
much lower than using the original graphs, especially for large
graphs. For example, we achieve over 1, 100X runtime speedup on
the “smallworld" graph clustering. For larger graphs, such as the
“coPapersCiteseer" graphs, spectral clustering without coarsening
will fail due to the extremely high computation (memory) cost.

From the table, we can also conclude that most of the runtime
is due to the eigensolver if the original graph is used, while the
k-means and smoothing time will be dominant when using the
spectrally-coarsened graph. However, the smoothing procedure is
inherently highly parallel, making it possible to further improve
the efficiency of the proposed spectral clustering and to develop
high-quality parallel spectral clustering algorithms.

We evaluated the performance of the proposed spectral cluster-
ing method with different coarsening ratios, as shown in Figure 8
and Figure 9. In Figure 8, the normalized cut is presented with dif-
ferent size of coarsened graphs generated by the proposed method
and METIS. The edge reduction ratios are also included in the figure.
Figure 9 shows the runtime of the proposed method with the corre-
sponding coarsened graphs. We observe that the proposed method
can constantly produce better coarsened graphs with superior spar-
sity than METIS, which eventually leads to the better clustering
results. Also, as shown in Figure 9, higher reduction ratios result
in lower cost for graph coarsening as well as spectral clustering,
while still maintaining high clustering quality. This indicates a very

Table 2: Spectral graph coarsening and clustering results with the best results highlighted in red and blue colors.

Original Graph (G) Spectrally-coarsened Graph (S) Coarsened Graph (M) by METIS
Graph Vi [IEl | 6 | T T | TR 7 0 | T T | JL[E] 1 0 | T T
¢ gs [Vs| | [Es] i 19 [Val | [Em] r cigs
fe_rotor 1.0E5 | 6.6E5 | 1.51 20.2s 22.8s 71X | 180X | 1.3s 1.50 | 0.2s 2.9s 51X | 43X 1.6s 1.67 0.2s 9.4s
auto 4.5E5 | 3.3E6 | 1.10 | 479.7s | 495.8s | 30X | 167X | 14.8s | 1.08 0.6s | 29.0s | 27X | 24X | 7.5s 1.60 3.5s 53.4s
uk 4.8E3 | 6.8E3 | 1.01 0.2s 0.6s 40X | 51X 0.2s 1.03 0.1s 0.6s 34X | 24X | 0.1s 1.20 0.1s 0.3s
vsp_barth5 3.2E4 | 1.0E5 | 3.12 14.4s 16.6s 57X | 122X | 0.5s 2.72 0.2s 2.7s 44X 9X 0.3s 2.94 0.3s 2.4s
smallworld 1.0E5 | 5.0E5 | 6.92 | 1.6E4s | 1.6E4s | 22X 5X 32.2s | 6.93 9.2s | 11.4s | 28X 4X 1.6s | 12.58 | 12.3s 20.3s
coAuthorsDBLP | 3.0E5 | 9.8E5 | 0.92 | 245.3s | 250.8s | 11X | 26X | 30.7s | 0.49 | 15.7s | 26.5s | 10X 4X 3.0s 1.26 | 255.3s | 275.0s
coAuthorsCite | 2.2E5 | 8.1E5 | 0.49 77.0s 81.3s 11X | 33X 8.2s 0.41 5.4s | 13.3s | 10X 7X 2.1s 1.01 81.1s 90.4s
citationCite 2.6E5 | 1.1E6 | 0.48 | 2.0E3s | 2.1E3s | 13X | 27X | 32.3s | 0.52 | 3.5s | 24.8s | 11X 2X 5.2s | 0.86 | 288.1s | 314.0s
coPapersDBLP | 5.4E5 | 1.5E7 | NA NA NA 13X | 210X | 52.8s | 0.14 | 17.4s | 61.6s | 15X 13X | 27.8s | 0.78 | 775.2s | 919.5s
coPapersCite 4.3E5 | 1.6E7 | NA NA NA 32X | 950X | 16.4s | 0.11 0.9s | 51.6s | 29X 39X | 26.0 0.37 72.7s | 210.6s
appu” 1.4E4 | 9.2E5 | 21.70 | 250.0s | 250.1s 5X | 117X | 25.5s | 22.40 | 0.5s 7.5s 4X 1.2X | 3.0s | 27.69 | 15.9s 24.5s
Table 3: Mean relative errors for the first 10 and 40 eigenvalues.
k=10 k=40
Graph r - -
loc. (edge) | loc. (neig.) | heav. edge | Kron | ours | loc. (edge) | loc. (neig.) | heav. edge | Kron | ours
airfoil 70% 1.05 0.93 4.74 1.99 | 0.46 0.88 0.84 2.27 2.08 | 0.48
yeast 70% 3.50 0.41 3.39 1.87 | 0.31 2.18 0.45 2.50 1.95 | 0.32
bunny 70% 0.08 0.32 0.13 1.81 | 0.16 0.10 0.30 0.13 1.19 | 0.33
minnesota | 70% 4.58 1.87 9.30 1.95 | 0.34 2.11 1.61 4.16 2.09 | 0.32
150 — T 0.5
’VT g | | i —9,
° reduction —0
c " -0 T 0.4]
o] * eigs = L
© 100 Q- T z 503
8 s, £ g 03
~ \'s%, = No.2s
(] N £ ©
E 50F b 2 | o
'-E- R 5 =015
3 ~ o~ 0.1
= - e e
0 L L L T I 0.05
0 5 10 15 20 25 30 0 - :
o 5 10 15 20 25 30 0 5 10 15 20 25 30

Node reduction ratio
Figure 9: Runtime for spectral clustering

under different reduction ratios for the
“coPapersCiteseer" [8].

Table 4: The number of edge comparison.

Graph loc. (edge) | loc. (neig.) | heav.edge | Kron ours
airfoil 3,126 3,246 3,322 589,487 | 1,049
yeast 713 779 603 60,806 390
bunny 8,897 11,059 8,838 280,875 | 981
minnesota 1,264 1,259 603 3,675 732

promising performance in efficiency and reliability achieved by the
proposed algorithm.

We also evaluated the performance of the spectral clustering
algorithm using the original graph and the spectrally-coarsened
graph under different numbers of clusters. As shown in Figure 10
and Figure 11, the coarsened graph has 11X fewer nodes and 26X
fewer edges compare to the original graph. And T and Tg are the
total clustering time when using the original graph and the coars-
ened graph. With the increasing number of partitions, we observed

Number of partitions

Figure 10: Runtime for graph clustering
with different number of clusters for the
“coAuthorsCiteseer" [8].

Number of partitions

Figure 11: Normalized cut for graph clus-
tering with different number of clusters
for the “coAuthorsCiteseer" [8].

that the spectral clustering method using the spectrally-coarsened
graph is much faster with consistently higher partitioning qualities.

6.4 Results of scalable data visualization

We first demonstrate the connection between the t-SNE embedding
solution and the first few unnormalized Laplacian eigenvectors
of the k-NN graph formed with the original data set. We increase
the number of Laplacian eigenvectors for representing the embed-
ding vectors x € R"” and y € R” that store the locations of n data

points in 2D space obtained by running t-SNE, and compute the

; x _ |[UUTx|| y _ |luUTyll
correlation factors pj,,, = I and p;.,, = T

U € R™ is the matrix with the first r Laplacian eigenvectors (of
the original k-NN graph) as its column vectors. If p¥, , or ptysn It
close to 1, it indicates a strong correlation (significant overlap) be-
tween the eigenspace and the t-SNE embedding vectors. Figure 12
shows strong correlations between the low-dimensional embedding

, where

o
©

o
o
.

Correlation (ptsne)
o
>

——Xysps
02k ——Yuses
——Xyunist
0 | ‘ ——Yunist
0 5 10 15 20 25

Number of eigenvectors

Figure 12: Correlations between 2D embedding vectors com-
puted by t-SNE and the subspace formed by the first few
eigenvectors.

USPS data set
t-SNE: 84s t-SNE: 15s (6X speedup)

4

co~ombwn o

St u‘,-#.
No reduction 5X reduction

Figure 13: t-SNE visualization with original USPS data set
and the reduced data set.

vectors and the first few (e.g. r = 20) eigenvectors of the Laplacian
matrices corresponding to the k-NN graphs constructed using the
USPS and MNIST data sets 3, where Xyysps and Xpn7sT represent
P¥nes Yusps and Yy nsT represent ptysne. It is also interesting to
observe that the t-SNE embedding vectors are more closely related
to the 10-th eigenvector, since the inclusion of such an eigenvec-
tor leads to significantly improved correlation factors py,, and
ptysn ¢ This is actually very reasonable considering the ground-truth
number of clusters for the USPS and MNIST data sets is 10.

We demonstrate the t-SNE visualization results on the original
and reduced USPS and MNIST data sets obtained by leveraging
spectrally-coarsened NN graphs in Figure 13 and Figure 14. Our
results show very clear cluster boundaries after spectral graph
coarsening, which retain the ones obtained from the original data
sets, indicating very high-quality embedding results as well as
significantly improved runtime performance.

To better show the scalability of this framework, we choose to
apply it to a larger YouTube social network ¢ with more than one
million data and 5,000 categories (communities). Every node is la-
beled with the communities it belongs to, if it is one of the most

3USPS includes 9, 298 images of USPS hand written digits with 256 attributes; MNIST
is a data set from Yann LeCun’s website http://yann.lecun.com/exdb/mnist/, which
includes 70, 000 images of hand written digits with each of them represented by 784
attributes.

4 Available at https://snap.stanford.edu/data/com-Youtube html.

MNIST data set
t-SNE: : 1902s

t-SNE: : 228s (8X speedups)

RN U A WN =S

No reduction 4X reduction

t-SNE: 86s (22X speedups)

-a.bs: J%?#i'— %ﬁ%

t-SNE: 28s (68X speedups)

CRNOMAWN 2O

9X reduction 22X reduction

Figure 14: t-SNE visualization with original MNIST data set
and data sets under different reduction ratios.

Table 5: Visualization time for two data sets

Data set | Reduction ratio | Tregucrion | Ttsne |TLargevis

MNIST (1X) - 1,002s | 838s
MNIST (10X) 583 365 5353
Youtube (1X) - 59,222s| 6,460s

Youtube (108X) 413s 109s 546s

popular 5,000 communities, or with a special category named oth-
ers. We apply both t-SNE and LargeVis [44] data visualization tools
with default settings for the experiments. Table 5 shows the runtime
for visualizing the MNIST and YouTube data sets, where T,..q,ction,
Tisne and Tpargevis represent graph reduction time, t-SNE visual-
ization time, and LargeVis visualization time. We need to mention
that all the k-NN graphs are constructed by the LargeVis tool. The
data reduction ratio is also shown in the table. We can see that the
framework can aggressively accelerate the data visualization for
both t-SNE and LargeVis tool with satisfying accuracy preserved
on the reduced data sets.

7 CONCLUSION

We propose a scalable algorithmic framework for spectral coars-
ening of large undirected graphs, which allows computing much
smaller graphs while preserving the key spectrum of the original
graph. We show that the resultant spectrally-coarsened graphs can
robustly preserve the first few nontrivial eigenvalues and eigen-
vectors of the original graph Laplacian. In addition, the spectral
graph coarsening method has been leveraged to develop much
faster algorithms for multilevel spectral graph clustering as well
as visualization of large data sets. We conducted extensive experi-
ments using a variety of large graphs and data sets and obtained

very promising results. For instance, we are able to coarsen the “co-
PapersCiteseer" graph with 0.43 million nodes and 16 million edges
to a much smaller graph with only 13K (32X fewer) nodes and 17K
(950X fewer) edges in about 16 seconds; the spectrally-coarsened
graphs also allow us to achieve up to 1, 100X speedup for spectral
graph clustering and up to 60X speedup for t-SNE visualization of
large data sets.

8

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation
under Grants CCF-2041519 (CAREER), CCF-2021309 (SHF), and
CCF-2011412 (SHF).

REFERENCES

(1]

(2]
(3]
(4]

(5]

D. A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and D. Wagner.
Benchmarking for graph clustering and partitioning. In Encyclopedia of Social
Network Analysis and Mining, pages 73-82. Springer, 2014.

D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner. Graph partitioning and
graph clustering. In 10th DIMACS Implementation Challenge Workshop, 2012.

J. Batson, D. Spielman, and N. Srivastava. Twice-Ramanujan Sparsifiers. SIAM
Journal on Computing, 41(6):1704-1721, 2012.

A. A. Benczur and D. R. Karger. Approximating st minimum cuts in & (n 2)
time. In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 47-55. ACM, 1996.

A. A. Benczir and D. R. Karger. Randomized approximation schemes for cuts and
flows in capacitated graphs. SIAM Journal on Computing, 44(2):290-319, 2015.

[6] J. Chen and L Safro. Algebraic distance on graphs. SIAM Journal on Scientific

(71

(8]
(]

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]
[19]

[20]

[21]

[22

[23]

[24]

Computing, 33(6):3468-3490, 2011.

P. Christiano, J. Kelner, A. Madry, D. Spielman, and S. Teng. Electrical flows,
laplacian systems, and faster approximation of maximum flow in undirected
graphs. In Proc. ACM STOC, pages 273-282, 2011.

T. Davis and Y. Hu. The university of florida sparse matrix collection. ACM Trans.
on Math. Soft. (TOMS), 38(1):1, 2011.

M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information
Processing Systems, pages 38443852, 2016.

L S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors a
multilevel approach. IEEE transactions on pattern analysis and machine intelligence,
29(11):1944-1957, 2007.

F. Dorfler and F. Bullo. Kron reduction of graphs with applications to electrical
networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1):150—
163, 2012.

M. Elkin and D. Peleg. Approximating k-spanner problems for k> 2. Theoretical
Computer Science, 337(1-3):249-277, 2005.

Z.Feng. Spectral graph sparsification in nearly-linear time leveraging efficient
spectral perturbation analysis. In Design Automation Conference (DAC), 2016
53nd ACM/EDAC/IEEE, pages 1-6. IEEE, 2016.

Z. Feng. Similarity-aware spectral sparsification by edge filtering. In Design
Automation Conference (DAC), 2018 55nd ACM/EDAC/IEEE. IEEE, 2018.

W. Fung, R. Hariharan, N. Harvey, and D. Panigrahi. A general framework for
graph sparsification. In Proc. ACM STOC, pages 71-80, 2011.

D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs. In
International symposium on graph drawing, pages 183-196. Springer, 2000.

G. B. Hermsdorff and L. Gunderson. A unifying framework for spectrum-
preserving graph sparsification and coarsening. In Advances in Neural Information
Processing Systems, pages 7736-7747, 2019.

H. Jeong, S. P. Mason, A.-L. Barabasi, and Z. N. Oltvai. Lethality and centrality
in protein networks. Nature, 411(6833):41, 2001.

G. Karypis and V. Kumar. Metis—unstructured graph partitioning and sparse
matrix ordering system, version 2.0. 1995.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359-392,
1998.

S. Kaski and J. Peltonen. Dimensionality reduction for data visualization [appli-
cations corner]. IEEE signal processing magazine, 28(2):100-104, 2011.

Y. Koren. On spectral graph drawing. In International Computing and Combina-
torics Conference, pages 496-508. Springer, 2003.

L. Koutis, G. Miller, and R. Peng. Approaching Optimality for Solving SDD Linear
Systems. In Proc. IEEE FOCS, pages 235-244, 2010.

Y. T. Lee and H. Sun. An SDP-based Algorithm for Linear-sized Spectral Sparsifi-
cation. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, pages 678-687, New York, NY, USA, 2017. ACM.

[25]

[26]
[27]
(28]
[29]
[30]
(31]

(32]

(33]

[54]

H. Li and A. Schild. Spectral subspace sparsification. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS), pages 385-396. IEEE,
2018.

J. Liang, S. Gurukar, and S. Parthasarathy. Mile: A multi-level framework for
scalable graph embedding. arXiv preprint arXiv:1802.09612, 2018.

G. C. Linderman and S. Steinerberger. Clustering with t-sne, provably. SIAM
Journal on Mathematics of Data Science, 1(2):313-332, 2019.

O. Livne and A. Brandt. Lean algebraic multigrid (LAMG): Fast graph Laplacian
linear solver. SIAM Journal on Scientific Computing, 34(4):B499-B522, 2012.

A. Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine
Learning Research, 20(116):1-42, 2019.

L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579-2605, 2008.

D. Peleg and A. A. Schiffer. Graph spanners. Journal of graph theory, 13(1):99-116,
1989.

R. Peng, H. Sun, and L. Zanetti. Partitioning well-clustered graphs: Spectral
clustering works. In Proceedings of The 28th Conference on Learning Theory
(COLT), pages 1423-1455, 2015.

R. Preis and R. Diekmann. Party-a software library for graph partitioning. Ad-
vances in Computational Mechanics with Parallel and Distributed Processing, pages
63-71, 1997.

M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. Subrahmanian. Fast influence-
based coarsening for large networks. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 12961305,
2014.

Y. Saad. Iterative methods for sparse linear systems, volume 82. siam, 2003.

V. Satuluri, S. Parthasarathy, and Y. Ruan. Local graph sparsification for scalable
clustering. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, pages 721-732, 2011.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on pattern analysis and machine intelligence, 22(8):888-905, 2000.

D. I Shuman, M. J. Faraji, and P. Vandergheynst. A multiscale pyramid transform
for graph signals. IEEE Transactions on Signal Processing, 64(8):2119-2134, 2015.
D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The
emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains. IEEE Signal Processing Maga-
zine, 30(3):83-98, 2013.

D. Spielman and S. Teng. Nearly linear time algorithms for preconditioning and
solving symmetric, diagonally dominant linear systems. SIAM Journal on Matrix
Analysis and Applications, 35(3):835-885, 2014.

D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances.
SIAM Journal on Computing, 40(6):1913-1926, 2011.

D. A. Spielman and S.-H. Teng. Spectral sparsification of graphs. SIAM Journal
on Computing, 40(4):981-1025, 2011.

D. A. Spielman and J. Woo. A note on preconditioning by low-stretch spanning
trees. arXiv preprint arXiv:0903.2816, 2009.

J. Tang, J. Liu, M. Zhang, and Q. Mei. Visualizing large-scale and high-dimensional
data. In Proceedings of the 25th international conference on world wide web, pages
287-297. International World Wide Web Conferences Steering Committee, 2016.
S.-H. Teng. Scalable algorithms for data and network analysis. Foundations and
Trends® in Theoretical Computer Science, 12(1-2):1-274, 2016.

G. Turk and M. Levoy. Zippered polygon meshes from range images. In Proceed-
ings of the 21st annual conference on Computer graphics and interactive techniques,
pages 311-318. ACM, 19%4.

L. Van Der Maaten. Accelerating t-sne using tree-based algorithms. The Journal
of Machine Learning Research, 15(1):3221-3245, 2014.

U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395-416, 2007.

C. Walshaw. A multilevel algorithm for force-directed graph drawing. In Inter-
national Symposium on Graph Drawing, pages 171-182. Springer, 2000.

L. Wang, Y. Xiao, B. Shao, and H. Wang. How to partition a billion-node graph.
In 2014 IEEE 30th International Conference on Data Engineering, pages 568—579.
IEEE, 2014.

Z. Zhao and Z. Feng. A spectral graph sparsification approach to scalable vector-
less power grid integrity verification. In Proceedings of the 54th Annual Design
Automation Conference 2017, page 68. ACM, 2017.

Z. Zhao and Z. Feng. Effective-resistance preserving spectral reduction of graphs.
In Proceedings of the 56th Annual Design Automation Conference 2019, page 109.
ACM, 2019.

Z. Zhao, Y. Wang, and Z. Feng. SAMG: Sparsified graph theoretic algebraic
multigrid for solving large symmetric diagonally dominant (SDD) matrices. In
Proceedings of ACM/IEEE International Conference on Computer-Aided Design,
pages 601-606, 2017.

Z. Zhao, Y. Wang, and Z. Feng. Nearly-linear time spectral graph reduction for
scalable graph partitioning and data visualization. arXiv preprint arXiv:1812.08942,
2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Background: undirected graph
	4 Spectral Graph coarsening
	4.1 Overview of our approach
	4.2 Step A: spectrum-preserving aggregation
	4.3 Step B & C: spectral sparsification & scaling
	4.4 Algorithm complexity

	5 Multilevel spectral graph embedding and visualization
	5.1 Scalable graph Laplacian eigensolver
	5.2 Multilevel algorithm for data visualization

	6 Experimental results
	6.1 Results of spectral graph coarsening
	6.2 Spectrum approximation
	6.3 Results of spectral embedding (clustering)
	6.4 Results of scalable data visualization

	7 Conclusion
	8 Acknowledgments
	References

