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We are grateful to be contributing to this
special issue honoring Phil Anderson, who
has been an inspiring influence and guiding
spirit for each of us since our first forays
into condensed matter physics as graduate
students. Based in Urbana-Champaign, we
also cherish his presence, which continues
to be felt here since his childhood days. In
our offering in this work, we have sought to
reflect the flavors of his explorations on mul-
tiple fronts. Scattering theory is central to
our presentation. Our approach tackles com-
plex phenomena by reducing their study to
that of a simple toy model that captures the
essence of the physics involved. We unify
concepts from quantum condensed matter
with those from other disciplines, in our case,
gravitation. In integrating the physics of
quantum Hall phases, anyons, and black hole

* Corresponding author.

In this work, we present the inverted harmonic oscillator (IHO)
Hamiltonian as a paradigm to understand the quantum mechan-
ics of scattering and time-decay in a diverse set of physical
systems. As one of the generators of area preserving transfor-
mations, the IHO Hamiltonian can be studied as a dilatation
generator, squeeze generator, a Lorentz boost generator, or a
scattering potential. In establishing these different forms, we
demonstrate the physics of the IHO that underlies phenomena as
disparate as the Hawking-Unruh effect and scattering in the low-
est Landau level (LLL) in quantum Hall systems. We derive the
emergence of the IHO Hamiltonian in the LLL in a gauge invariant
way and show its exact parallels with the Rindler Hamiltonian
that describes quantum mechanics near event horizons. This
approach of studying distinct physical systems with symmetries
described by isomorphic Lie algebras through the emergent IHO
Hamiltonian enables us to reinterpret geometric response in
the lowest Landau level in terms of relativistic effects such as
Wigner rotation. Further, the analytic scattering matrix of the
[HO points to the existence of quasinormal modes (QNMs) in the
spectrum, which have quantized time-decay rates. We present
a way to access these QNMs through wave packet scattering,
thus proposing a novel effect in quantum Hall point contact
geometries that parallels those found in black holes.
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thermality, we celebrate emergence in its
diversity.
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1. Introduction

In the past several years, physics from the microscopic quantum scale to astronomical scales has
enjoyed a surge of advances building on foundational work. As one of many instances, several theo-
retical and experimental efforts towards detecting signatures of quasiparticle fractional statistics in
mesoscopic quantum Hall phases have recently yielded tremendous success. Quantum Hall inter-
ferometer and beam-splitter experiments, have at last begun to reveal unequivocal signatures [1,2]
of such anyonic statistics. On the far extreme scale, black holes and their gravitational-wave
signatures that had remained undetected for nearly half a century have finally been observed:
Recent experiments with LIGO have decisively provided empirical evidence of black hole mergers
again through gravitational wave interferometry [3].

Although seemingly disjoint areas of study, recent progress has shown that there are ideas
and techniques common to both condensed matter and black hole physics [4-6]. Today, we are
witnessing a rapid expansion in this cross — fertilization between sub-fields, giving rise to tremen-
dous insights and far-reaching predictions. Investigations in quantum gravity and condensed matter
have married concepts from general relativity, quantum field theory and quantum information.
For instance, attempts to address the problem of understanding quantum effects near an event
horizon have been the seeds of many modern developments such as the SYK model and random
unitary circuits, bringing forth key concepts such as chaos and complexity. Concepts that have
historically emerged in one realm have found their identity as intrinsic structures in otherwise
unrelated systems. This is exemplified in a plethora of concepts that originated in high energy
physics but have since found their identity in quantum condensed matter — the Dirac equation,
monopoles, skyrmions, Majorana fermions, and more. The power of such parallels is evident
in instances found through the ages, such as in the Higgs-Anderson mechanism. Furthermore,
symmetry provides guiding principles in finding commonalities in seemingly disparate systems, be
it conservation laws derived from Noether’s theorem, universality in symmetry broken phases, or
symmetry protected topological phases. Model Hamiltonians oftentimes serve as the embodiment
of symmetry manifestations. Highly complex behavior can at least in part be described in terms of
a very simple model, offering a mine of experimentally verifiable information; the simple harmonic
oscillator (SHO) is the paragon for such models.

In our work, we offer common ground for various threads in the astrophysical and condensed
matter realms by way of a relatively overlooked unifying model — the inverted harmonic oscillator
(IHO). Sister to the SHO, the IHO has remarkable properties in its own right that make their
way across disciplines [6-16]. As with the SHO, the quantum treatment of the IHO is completely
solvable. While the SHO effectively models deviations from a stable equilibrium point, the IHO
acts as an accurate approximation for decay from an unstable equilibrium, and comes with a
whole mathematical machinery for treating scattering and decaying states. The IHO can at once
be perceived as a generator of squeezing common to quantum optics, as a dilatation generator
for scaling behavior, and as a quantum mechanical scattering barrier. The THO is also related to
relativistic Lorentz boosts as we show in this work. Another key feature of the IHO is the presence
of quasinormal modes - temporally decaying modes having quantized decay rates - a unique
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manifestation of quantization. The IHO thus acts as an excellent prototype for describing situations
involving tunneling and decay, as for instance pointed out decades ago for nuclear processes. Here,
we show that this simple but rich model naturally occurs in the two very different settings of
quantum Hall lowest Landau level physics and physics at black hole event horizons. Phenomena
in these settings have an equivalence dictated by the IHO Hilbert space and the time evolution
governed by its Hamiltonian. We draw attention to how, remarkably, processes as different as
Hawking-Unruh radiation from black holes and quasiparticle tunneling in quantum Hall point
contacts stem from the same underlying IHO physics.

As one realm of focus in our work, the quantum Hall system consists of a two-dimensional
electron gas subject to high magnetic fields, typically on the mesoscopic scale in low-temperature
lab settings [17,18]. It is hailed for supporting persistent edge currents and quantized conductance
comprised purely of fundamental constants. Topological aspects of the quantum Hall fluid lie
behind conductance quantization. In the case of fractionally filled states, they give rise to anyonic
quasi-particles having fractional charge which has been measured in point contact geometries.
The THO makes its way into this system in two ways, both relying on the non-commutative
nature of the lowest Landau level. Shear potentials applied on the system as well as saddle
potentials characteristic point contacts and disordered landscapes, can both be treated in terms
of one-dimensional quantum mechanical IHOs.

As the other realm of focus, black holes are one of the most intriguing astrophysical objects.
They are the simplest macroscopic objects in nature in that they are described purely by their
mass, angular momentum, and charge [19]. Their fundamental description, at least classically,
is purely geometrical and yet they exhibit a plethora of features such as singularities, one-way
propagation, and quasinormal modes [20]. In this setting too, the IHO naturally occurs in two
guises. At the classical level, in the simplest case of a Schwarzschild black hole, spherical symmetry
gives rise to a one-dimensional scattering potential along the radial direction beyond the event
horizon [21]. Further, the process of Hawking radiation entails quantum fluctuations across the
event horizon that are intimately tied to [HO-based Rindler time evolution [12]. A black hole is
the key phenomenological entity in nature that forms the ground for interplay between quantum
mechanics and gravity. Here we draw attention to the commonality between tunneling across the
saddle potential in the quantum Hall system and Hawking-Unruh radiation resulting from the
emergence of thermal bath for a uniformly accelerating observer in Minkowski spacetime stem from
Rindler time-evolution associated with the IHO. Quantum Hall point-contact tunneling conductance
and the thermal form of radiation from black holes are therefore identical in formal structure.
Another signature feature of IHO physics are QNMs, which in the context of black holes have also
played a key role in the unequivocal detection of black holes through gravitational waves [22,23].
As we pointed out in recent work [6], detecting quasinormal mode decay through pulsed high-
frequency measurement in point contacts would constitute a new observation in this mesoscopic
realm.

In what follows, we will explore in detail the properties of the IHO and its role as a conceptual
glue between these diverse areas. Given the comprehensive nature of the work, we begin with a
summary of our main results and provide a road map for reading the manuscript. In the subsequent
Section 3, we chart out the instances mentioned above in which the IHO appears in the quantum
Hall system. In Section 4, following a survey of the IHO from different perspectives, we present
its scattering properties, including a discussion of the scattering matrix. We then bring focus to
quasinormal modes in Section 5, and show how these resonances persist in realistic potentials.
We will pay particular attention to observable signatures of QNMs. In Section 6, we lay out the
elegant machinery behind the Rindler Hamiltonian underlying the IHO and its time evolution, and
present the manner in which it gives rise to Hawking-Unruh physics. In Section 7, we move on to
symmetry considerations, showing that the parallels between phenomena can be framed in terms
of the underlying Lie-algebra isomorphisms. We show how an effect of Lorentz kinematics such
as the Wigner rotation could be captured in a quantum Hall setting. In Section 8, we show how
IHO QNMs are related to their black hole counterparts through effective scattering problem in the
wave equation of fields in black hole spacetime. Finally, in Section 9 we present a roadmap to vast
number of topics where the [HO is relevant and discuss various avenues closely tied to our work.
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Before we embark on our exposition, we acknowledge the circumstances under which it came
to shape: this work was brought to completion during the midst of the global Covid-19 pandemic,
which created an exceptional set of challenges for the world at large. At the same time, the physics
community was rocked with the loss of luminaries like Philip Anderson and Margaret Burbidge,
whose pioneering contributions to the fields of condensed matter and astrophysics relate to the
core of this present work. Pockets of light still persisted. On the scientific front most connected to
this work, advances in quantum and astrophysics surged forward, building on foundational work
across decades. It is a marvel that within months of each other, not one but two separate ideas for
detecting anyons in quantum Hall systems were experimentally realized and reported in Refs. [1]
and [2]. On the black hole front, this year, multi-messenger astronomy provided many new insights
while also marking the 50th anniversary of the original prediction of black hole quasinormal modes
by C. V. Vishveshwara. The year’s Nobel recognition combined R. Penrose’s decades-old fundamental
work on the existence of black holes with more recent discovery of a supermassive compact object
at the center of galaxy by the groups of R. Genzel and A. Ghez. These highlights represent but an iota
of the enduring science persevered by thousands of researchers across the globe. Our work serves
as a tribute to these reminders that transformative ideas have the power to transcend challenges
and tragedies.

2. Summary of main results and structure of the paper

This work is partially a presentation of original results, and partially a perspective-review. We
expand and elucidate the key concepts underlying the results presented by us in our short paper [6]
and clarify the distinction between similar looking scenarios.

The line of reasoning we have pursued here is to present the existence of an equivalence
between the bare minimum quantum mechanical structures present in problems that are physically
distinct at the level of phenomenology and experiments. The observables in these different settings
would correspond to very different kind of measurements (as distinct as a thermal distribu-
tion of Hawking radiation and the conductance in quantum Hall). Yet these ‘expectation values’
nevertheless come from the following key mathematical structures of quantum mechanics: (1)
The states/wavefunctions, the associated Hilbert space and its representation, (2) the algebra of
operators acting on them (which correspond to physical quantities), and (3) the evolution with
respect to a Hamiltonian and its symmetry (the group structure). The inquiry pursued here is to ask
if, in two distinct physical settings, there exists an equivalence between the underlying quantum
mechanical structures elucidated above, and if this underlies the ‘analogy’ between appearances at a
phenomenological level. Quantum Hall physics under applied potentials and Hawking-Unruh effect
are the two such phenomena under consideration in this paper. In this section, we shall summarize
the exact points at which we have seen equivalence between these two phenomena and how this
line of reasoning has led to exploration of new kind of experimental probes and novel understanding
of known quantum Hall physics.

The key results we present in this paper are the following:

e We highlight the importance of the inverted Harmonic oscillator Hamiltonian as the key
structure underlying the parallel between Hawking-Unruh effect and quantum Hall point
contact geometry. The ‘Gibbs’ thermal-like factor e=#F and the thermal-like distribution form
1/(exp(—BE) + 1) appear as scattering amplitudes and tunneling probabilities across the I[HO
potential.(Section 4). We put forth different ‘avatars’ of the IHO as a scattering potential,
generator of squeezed states, and as a dilatation generator.

o We show that the emergence of thermal-like factors in the context of event horizons of
black holes and the quantum Hall point contact set-up is rooted in the equivalence between
the wavefunctions of the Rindler modes/Lorentz boost eigenmodes and the IHO eigensys-
tem(Section 6.2). In these mappings, the role of temperature is played by the strength of
the point-contact potential in the quantum Hall setting and by the surface gravity in the
black hole setting. The Lorentz boost generator in fact takes the role of a Hamiltonian for
quantum mechanical states near a spacetime horizon. This Hamiltonian is called the ‘Rindler
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Hamiltonian’ and is a fundamental object in studying entanglement properties of horizons and
in topological phases of condensed matter. We relate the Rindler Hamiltonian to the IHO. Thus,
quantum mechanics in a relativistic setting is made fully accessible in an experimentally viable
set up of quantum Hall system under point-contacts.

e We provide a gauge-invariant derivation for the appearance of the IHO Hamiltonian in the
lowest Landau level limit of a quantum Hall system that is under the influence of a saddle
potential. We include this potential as a member of a class of quadratic potentials (electrostatic
and those generated by strain) which on Landau level projection form the generators of
the Lie-algebra of area-preserving deformations in two dimensions s[(2, R). Stated another
way, they form the Lie algebra of linear canonical transformations sp(2, R) that preserve the
non-commutativity in the lowest Landau level (Section 3).

e We present an important phenomenon rooted in the physics of the IHO Hamiltonian and
hitherto unexplored in the context of quantum Hall systems — time-decaying states with
quantized decay rates called ‘quasi-normal modes’. In general, quasinormal modes (QNM)
are ubiquitous in scattering theory and appear as resonant modes. Here we provide a com-
prehensive description of these modes. We show how such states could be tapped through
wave packet scattering in a quantum Hall setting. As a physical alternative to the unbounded
potential of IHO, we present an analysis of the Péschll-Teller potential and compute quantities
such as survival probability, which could be accessed through experiments (Section 5). These
decaying modes are also known in the context of black hole physics. The quantized decay rates
carry information on black hole parameters and have proved as crucial signatures in recent
detection of gravitational waves from black hole mergers through LIGO.

e Finally, we point to a chain of Lie-algebra isomorphisms sl(2, R) ~ sp(2,R) ~ su(1,1) ~
s0(2, 1), where each of these algebras contains as its member the key structures we have
discussed so far: sl(2,R) ~ sp(2,R) (algebra of area-preserving deformations and linear
canonical transformations) contains IHO acting as a projected Hamiltonian in the lowest
landau level, su(1, 1) contains IHO as a generator of squeezed-coherent states and finally
s0(2, 1) (algebra of Lorentz group) contains Lorentz boost generator. We suggest that these
isomorphisms could underlie the equivalence between eigensystems of Lorentz boosts and
the IHO; and the associated physical phenomena of Hawking-Unruh effect and scattering in
lowest Landau levels.

o This analysis immediately leads us to explore other Lorentz kinematic effects such as Wigner
rotation in the context of quantum Hall systems, by application of electrostatic and strain
potentials.

Though the IHO Hamiltonian appears in both the contexts of Hawking-Unruh effect and quasi-
normal modes of black holes, we would like to clarify the difference in the physics of the two
scenarios. In the context of Black hole QNMs, the potential barrier that appears in the scattering of
fields in a black hole spacetime and which we approximate as an IHO lies outside the event horizon.
The scattering could be in a purely classical scenario, as was done in the original work that proposed
QNMs [22], without invoking any quantum mechanical degrees of freedom. On the other hand, the
Hawking-Unruh effect is a purely quantum mechanical phenomena and the IHO appears in this
context as a counterpart of the Rindler Hamiltonian which acts on the quantum mechanical states
near the horizon. The Hawking-Unruh effect involves purely quantum mechanical effect across the
horizon whereas QNMs in the context of scattering of fields against black holes are due to classical
scattering.

As mentioned earlier, part of this paper is a presentation of original work and part of it is
review. The topics which we review here are mainly the physics of IHO, the Rindler Hamiltonian,
its relation to Hawking-Unruh effect and its manifestations in entanglement aspects of condensed
matter systems. The intentions behind the review of these topics are multifold. One is to introduce
the aspects of Hawking-Unruh effect to the unfamiliar readers, especially from a condensed matter
background and to highlight their fundamental importance. Second, the IHO is important in its own
right and the discussion of such an simple quantum mechanical model has been absent from most
texts. Apart from introducing the readers to these topics, the review serves to give a broader picture
of the deeper structures spanning different sub-topics of physics.
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3. Inverted harmonic oscillator (IHO) physics in the lowest Landau level

We commence our exposition with a discussion on how the IHO can emerge in the context of
the quantum Hall system. As is well known, the quantum Hall effect — characterized by chiral edge
states and a quantized Hall conductance - can be observed in a two dimensional electron gas when
subjected to a perpendicular magnetic field. At the single-particle level, the applied magnetic field
leads to a discrete spectrum of evenly spaced degenerate Landau levels. Of relevance here, projecting
onto the lowest Landau level (LLL) leads to non-commutativity of guiding center coordinates.

As we shall see, the IHO emerges naturally when this non-commuting nature of the LLL is
combined with the presence of a saddle potential. The saddle potential is in fact ubiquitous in
the quantum Hall setting [24-26]. In the presence of disorder, it mediates quantum tunneling
between equipotential trajectories [27]. In many experimental situations, for instance involving shot
noise and anyon-interferometry [1,2,28-32], the IHO is crucial to the description quantum point
contacts employed for tunneling between edge states through the bulk. The saddle potential is also
associated with area-preserving deformations, which are directly related to the Hall viscosity and
highlight the quantum geometry associated with the system.

In order to study saddle potentials in quantum Hall systems, we begin with the Hamiltonian of
a charged, free particle in a magnetic field in 2D given by

1= -\?
H= %(YV +eA> (1)

In terms of gauge-independent ladder operators

1
b= Ty + i), 2
«/W( x T imy) (2)
[b,b'1=1 m; = —id; + €A (3)
the Hamiltonian takes the form
1
H = hw.(b'b + 5), (4)
with the cyclotron frequency
eB
We = — (5)
m

The guiding center coordinates, describing the centers of the electron cyclotron orbits, can be
written as

1
R = x; + Eéijnj- (6)
In the LLL, the two components of the guiding center operators do not commute, but instead satisfy
[Ri, R = —il3e;, (7)

where we have introduced the magnetic length

h
g = \/; (8)

On the other hand, the guiding center coordinates commute with the kinetic momenta: [R;, 7;] = 0.
The guiding center coordinates can be employed to construct the following ladder operators:

a= —iL(RX —iRy) 9)
262
[a,a'1=1,[a, b1 =[a',b] =0 (10)

Any applied potential can be represented in terms of the a and b ladder operators. In particular, we
turn our attention to the saddle potential.
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3.1. Saddle potential: Gauge invariant derivation

It was shown by Fertig and Halperin [24] that the Hamiltonian for electrons in two dimensions
in the presence of a high magnetic field and a saddle potential splits into two commuting parts.
One part corresponds to a harmonic oscillator and the other to an inverted harmonic oscillator. The
tunneling between the semi-classical orbits is completely determined by the tunneling across the
inverted harmonic potential. Here we provide a gauge invariant derivation of Fertig and Halperin’s
result.

The Hamiltonian for the quantum Hall system in a saddle potential is given by

hZ
H= ( v+A> + A(x* —y2). (11)
2m

In the terms of the ladder operators defined above, the Hamiltonian reads

1%
H = ~2btb 4 103(a® + (a2 + b? + (bT)? — a'b — b'a) (12)

The a and b operators are coupled here and can be decoupled via a rotation of basis that preserves
the underlying commutation rules

a\ _ (€92 cos(0) sin(0) c (13)
b) —\ —sin(@) e *2cos(8)) \c2
The choice of ¢ = 0 and tan(26) = —4M§/(hwc) removes the cross terms of the type C]Tcz, €162
and the Hamiltonian reduces to

how,
H=—cc; +163(c? 4 (cI?)
hw
- 7“(9 —1)clea + A3(c2 + (c))) (14)
Here, 2 = t;;‘;‘;f 7. We can perform a Bogoliubov transformation to diagonalize a part of the
2
Hamiltonian with the choice of tanh(26;) = ﬁ”’f and tanh(26,) = %.
¢\ _ (cosh§; sinh(6;) Vi (15)
¢/ ) = \sinh(6;) cosh(®) ) \
The Hamiltonian reduces to the form H = H; + H,, where
Hy = Ei(y? + lez) + constant, (16)
H, = Ez()/;)/z + 1/2) + constant (17)
2
where E; = Cosh 29 and E; = sm?z%z- We see that H; corresponds to a squeezing operator whereas

H, corresponds to the harmonic oscillator. Making another transformation X = ()/1T - )/(ﬁi),
= +v)/V2and x = (v} +72)/v2.p = (v2 — 7})/(/2i), we obtain

H = E1(P? — X%) 4+ E, /2(p* + x%). (18)

Thus the Hamiltonian for the quantum Hall system in a saddle potential is a sum of an inverted
oscillator and a harmonic oscillator, a result similar to that obtained in [24], but derived here in a
manifestly gauge invariant form. In the limit B — oo, the system is restricted to one of the Harmonic
oscillator levels, equivalent to projecting onto the lowest Landau level. In terms of guiding center
co-ordinates, the Hamiltonian in the lowest Landau level is the inverted harmonic oscillator.

The saddle potential serves well to model the bulk potential energy profile in point contacts
mesoscopic quantum Hall devices, created in pinched geometries that bring edge states close

7



V. Subramanyan, S.S. Hegde, S. Vishveshwara et al. Annals of Physics xxx (XxXx) Xxx

together [24,33]. The conductance in such a point contact geometry is expressed in terms of trans-
mission probability of single particle states (and more generally, quasiparticles) under the influence
of a saddle potential [24]. Here we have shown that this problem is reduced to transmission across
the IHO barrier. The transmission coefficient |t|? can be exactly computed in this set-up [6,24,33],
yielding the well-known formula

1
1 4 e—2me ’
where € ~ E/A. The transmission coefficient is completely determined by the physics of the
inverted harmonic oscillator, and takes a form reminiscent of a thermal (Fermi-Dirac) distribution.
In subsequent sections, we will derive this form using a scattering formalism as well as relate it

to the thermal nature of quantum states near an event horizon. We now examine the algebraic
structure of the class of potentials that yield an IHO when projected to the lowest Landau level.

It]? (19)

3.2. Electrostatic potentials and strain generators in LLL

The saddle potential is prevalent in two quantum Hall contexts: (i) Generators of strain that
preserve flux play a key role attributed to geometric deformations, be it as a tool for deriving the
form of response function or as can be elicited by the application of stress in recent experiments.
(ii) As discussed in the previous subsection, for potential landscapes that are shallow compared
to the Landau level spacing and on large scales compared to the magnetic length, local variations
can generally be captured by quadratic potentials. Here we study both cases with regard to their
algebraic structure and projection to the lowest Landau level.

3.2.1. Strain generators

Geometric deformations in a quantum Hall system amount to uniform area preserving defor-
mations of a two dimensional system in a magnetic field. In order to obtain the associated strain
generators, consider the transformations on (x;, ;) obtained by generators J;: S = e i, A = e
such that Sx;S™! = Ajix;, SmiS™! = Ay !7;. This gives us the algebraic relations:

ilJyj, el = St (20)
ilJij, xk] = —djxi (21)
ilJij» Jul = Sidii — S (22)

The last condition defines the algebra of these generators, which is the sl(2, R) Lie algebra. The
strain generators can be written in terms of the (x;, ;) from the above conditions [34,35]:

Ji= —%{Xi, 7} + ﬁ{xi, i}y + Zieéfikxjxk (23)
The first two terms generate shear in the absence of a magnetic field. This can be seen from the
fact that m; are the generators of ‘kinetic translations’. The last term appears in the presence of a
magnetic field as gauge transformations and also compensates for the non-commutativity of kinetic
momenta.
The rotation generator is given by:

1. 11 -2 02
L/h =~ = —f(—|R| + —B|ﬁ|2> (24)
2 a\ e h?
Two shear generators therefore take the form
1, e 1
Jo= Eo'ij.lij = R{nm 7Ty} + E{Rx» Ry} (25)
B
o = Loy = R~ R+ B (x 2 (26)
1 X X
27070 A 4>
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Therefore, one can see that the guiding center and the kinetic parts of the generators decouple. On
restricting to the lowest Landau level, one is retained with guiding center part only. We will see that
the three generators correspond to harmonic oscillator, inverted harmonic oscillator and dilatation
generator Hamiltonians in the lowest Landau level.

3.2.2. Quadratic potentials

We can perform a similar algebraic analysis of a generic quadratic potential in a quantum Hall
system. By decomposing the tensor x;x;, just as we did for J;;, we can enumerate the three linearly
independent quadratic potentials in two dimensions. These are

Vi=m0E+y%), Vo=noxy), Vi=2r0(—y) (27)

One can restrict to the LLL to study the electron/quasiparticle dynamics in the presence of high
magnetic fields. To this end, consider a Hamiltonian of the form

1 1
H=Hy+Vi= —n?+Vi=ho(b'b+ = |+ Vi (28)
2m 2

We now introduce the lowest Landau level projection operator Pj;; that satisfies the following
relations with Landau level lowering/raising operators and the angular momentum operators:
[b, Puil = —Puib, [a, Pyl = O For a normal ordered function of a, b operators, f(b, b, a, a’) =
> o m&m(a, at)(bT)'b™, the LLL projection is then given by Py f(b, b', a,a’) = goo(a, a') The a
operators are given only in terms of the guiding center co-ordinates: a = —i1/+/2€g(Ry — iRy) and
the b operators are similarly given in terms of the kinetic momenta ;. The projection to LLL leaves
us with expressions only involving Ry, R,. one can see that LLL projections of the potentials V; are
given by

PuViPur = MR: + R)) + 0(1) (29)
A

P VoPu = E(RXRY + RyRy) + O(1) (30)

P V3P = ARy — R2)+ O(1) (31)

Furthermore, we can also project the strain generators to the lowest Landau level to find
PPy = ﬁeﬂ‘{Ri, Ri} + ©(1). From this, we see that
B

Py ViPyy = —4AL3 /APy LPy (32)
PuiVaPuy = 205Py)oPis (33)
PuiVsPuy = —4M03Pu P (34)

Thus, we see that the strain generators and the electrostatic potentials lead to the identical
quadratic Hamiltonians when projected to the LLL. This is due to the fact that both the strain
generators and the bilinears R;R; are generators of the algebra sl(2, R). From the above, it can be seen
that on projection to the LLL, the kinetic terms drop out and the potentials V; act as the Hamiltonians
acting on the LLL states [36].

We are therefore left with three simple quadratic potentials that generate the Hamiltonian
dynamics in the LLL. As one of the sets, the [HO arises naturally in the quantum Hall context. In
what follows, we perform a comprehensive analysis of the IHO and its scattering properties, as well
as parallels between the LLL description and rotations and Lorentz transformations in relativistic
Minkowski descriptions (see Fig. 1).

4. Quantum mechanics of the inverted harmonic oscillator

Having discussed the importance of the inverted Harmonic oscillator (IHO) in the lowest Landau
level context, here we present a detailed review of the quantum mechanics of the THO, highlighting
the features that will be of importance in further sections. We start with a quick survey of works
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Fig. 1. A quantum Hall system comprises of a two dimensional electron gas in the presence of a strong magnetic field.
The states at the edges have a chiral nature and are unidirectional. Point contacts are applied as probes for conductance
measurements and are modeled with a saddle potential V(x,y) = A(x* — y?).

on the THO, present it in different forms and physical manifestations, then study the properties of
eigenmodes, the scattering matrix and finally the decaying states of the model.

Various aspects of the IHO have been studied in differing degrees of depth and in multitudinous
contexts. Yet this simple, exactly solvable model has fallen out of fashion in textbook discus-
sions, even though it could very well serve as an archetypal counterpart of the simple harmonic
oscillator(SHO). The SHO highlights many characteristic features of quantum mechanics such as
the existence of a ground state, eigenvalue quantization and other aspects of bound system in
their simplest form. Similarly, IHO brings forth fundamental aspects of quantum dynamics such
as tunneling, decay and other aspects of an open, scattering system. The ubiquitous nature of the
[HO could also be gleaned from considering it as a ‘saddle-point’ approximation to maxima in
potential landscapes, just the way the SHO appears as a ‘saddle-point’ approximation for potential
minima. Moreover, as we focus on in the following discussion, the IHO manifests many non-trivial
quantum mechanical aspects in terms of its scattering amplitudes, time-evolution, and the existence
of time-decaying resonant states, to name a few.

The quantum mechanics of the IHO and its scattering properties have been studied in various
contexts and in depths since the 1930s up to this day [6,7,9-11,13,37-53]. We shall give a thorough
survey of the various fundamental contexts in which this model appears, ranging from cosmological
inflation, black holes, quantum optics to string theory in Section 9.1.

The presence of IHO physics in the context of Hawking-Unruh effect was already pointed out
in some works in string theory [8,14,54]. More recently, the black hole S-matrix was shown to be
related to that of the [HO [12]. The realization of the IHO in quantum Hall systems and its relation
to the Lorentz boost and the Rindler Hamiltonian was pointed by the authors recently [6]. Since
then there have been several recent works which have highlighted the appearance of IHO in the
context of horizon thermality and chaos [11,13,47-53].

From this brief survey of topics, the importance of the IHO is apparent in its applicability
to diverse physical phenomena, acting as a prototypical model in bringing out key quantum
mechanical aspects. Now we undertake a brief review of the quantum mechanics of the THO
specifically highlighting the aspects relevant for further discussions.

4.1. IHO in different forms: A scattering potential, a dilatation generator and a squeeze generator

In the case of ubiquitous simple harmonic oscillator studies, representing the underlying Hamil-
tonian in different bases goes far in providing insights for different aspects and settings, from
wavefunctions in a trapping potential to operators associated with coherent states. Likewise, the
Hamiltonian operator for the IHO has different representations each related to one another through

10
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a canonical transformation. We present here several useful bases: the position basis (x, p), the ‘light-
cone’ basis (u,, u_) and the operator basis (a, a'). As we now show, analogous to the SHO, these
representations of the states may be interpreted as a scattering potential, a dilation generator or
a squeeze generator, depending on the basis and manifold of choice. These different perspectives
and their common root demonstrate the interconnected nature of seemingly different phenomena
in diverse sub-fields.

The Hamiltonian for an inverted oscillator potential, which forms the basis of scattering, can be
written as

H=—p"— —x (35)

Here p and x are the usual momentum and position operators acting on the Hilbert space. Here,
the curvature of the potential is given by A analogous to the energy scale w in the SHO. In the
context of IHO, it also sets the time scale associated with the scattering process against the barrier.

In the position basis, the Hamiltonian results in the following Schrédinger equation for the
energy eigenvalue E:

:ﬂ X

This equation describes scattering off a parabolic potential barrier, in contrast to a trapping potential
in the SHO. It is known to have a solution described by the Weber equation which can be expressed
in terms of special functions [55]. Being a scattering problem, the natural interpretation of these
solutions is as scattering modes, characterized by a scattering matrix (S-matrix), as shown in
Section 4.4.

A more convenient basis entails the ‘light-cone basis’. A canonical transformation from the
position basis to the ‘light-cone’ basis u* given by:

2
Hyr(x) ! (—hziz - m2A2x2>1ﬂ(X) = Ey(x) (36)

ui_pj:mkx
2ma

The canonical commutation relation is preserved under the transformation: [u*, u~] = ih. In this
basis the Hamiltonian takes the form

(37)

ha
H = 7(u+u* +uuh) (38)
1
= +izh (uiaui + 5) (39)

The associated basis states |u*) in this basis correspond to the incoming (outgoing) states towards
(away from) the barrier. We recognize this Hamiltonian as the generator of dilatations of the light-
cone coordinates. The eigenfunctions of the dilatation generator are given by power functions of
the form (u*)". Eq. (38) generates a scale transformation on the functions it acts on [56]. Eq. (38)
is also known as the ‘Berry-Keating’ Hamiltonian studied in relation to quantum chaos [9,45]. We
will be extensively using ‘light-cone’ basis throughout in the following sections. We will also make
a direct comparison of the eigenstates of IHO in this basis to the quantum mechanical modes near
an event horizon (Rindler modes) in Section 6.

The IHO may also be viewed as a generator of squeezing, which becomes manifest upon
considering its phase space dynamics. The squeeze operator is formally written in terms of the

creation and annihilation operators a, a’. These operators are defined as a = ,/%(qu + i%),
at = /3 (u" —i%-) and obey [a, a’] = 1, [a, a] = 0. The IHO Hamiltonian is then given by
H=i(d") - d) (40)

The ‘vacuum’ state is defined as a|0) = 0. In the context of the SHO, the vacuum state is the
zero-point energy eigenstate of the Hamiltonian, which under the action of the creation operator

11
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gives rise to higher quantized energy eigenstates. Since we are dealing with a scattering problem
with an unbounded potential, there is no such state. Rather, when the vacuum state is evolved
in time via the IHO Hamiltonian, it becomes a “squeezed state” [57,58]. To obtain some intuition
for this, consider the action of a squeezing operator on a SHO coherent state, which satisfies
minimum uncertainty and has equal spread in (renormalized) position and momentum. The action
of the squeeze operator results in a state having reduced spread in one phase space direction, and
elongated spread in the perpendicular direction, such that the product of the widths in position and
momentum (the area in the phase space) remains constant.

Formally, the most general squeeze operator S(z) = exp(%(z(a“)2 — z*a?)) is parametrized by a
complex number z = re’, and transforms the ladder operators as

b = STaS = (coshr)a + (¢ sinhr)a’ (41)

bt = STa’s = (coshr)al + (e~ sinhr)a. (42)
The squeeze operator mixes the creation and annihilation operators and leads to a Bogoliubov
transformation that still preserves the canonical commutation relations [b, b'] = 1, [b, b] =

but changes the ‘particle number’ content of the vacuum state. That is, the action of the squeeze
operator on the vacuum becomes

5 a2
l2) = e%<2“2—l o >|0> (43)
V(2 !
. Z —e'® tanhr 2(":') |2n) (44)
VCOS r =0

It may be verified that the average occupation number (n) = (a'a) of the squeezed vacuum is
no longer zero, and instead takes the value (n) = sinh® r. This may be expressed as
(z|n|z) = (z|a'alz) = (0]bTb|0) = S — (45)
[tanhr| =2 —
As we will see in Section 6, this relation manifests as Hawking radiation or the Unruh effect in the
context of spacetime horizons.

Finally, we note that the squeezing and dilation generators are intimately related to the algebra
of Lorentz transformations. Consider the phase space, of say, a photon or a one dimensional
quantum harmonic oscillator. The geometry of this space is defined by the commutation relation
[x, p] = ih. The phase space is thus left invariant under symmetry transformations generated by the
symplectic Lie algebra sp(2, R). One of the symplectic transformations is given by

x — xcosh B + psinh B (46)
p — xsinh 8 + pcosh §. (47)

We note that this transformation is identical to a Bogoliubov transformation between quantum
mechanical operators as well as to a “Lorentz boost” on a spacetime manifold. This is an effect of
the local isomorphism between the symplectic group and the indefinite orthogonal group in 2+1
dimensions. That is, sp(2, R) ~ so(2, 1). This isomorphism is crucial in connecting the IHO to aspects
of black hole thermality [59] in later sections. In “light-cone” coordinates x; ~ x & p, the same
transform is given by x. — x.e™?. We may identify the generator for this dilation transform as

ey = Py, (48)
where
—iKy ~ X4X_ +x_Xx ~ p* — X2 (49)

These “boost” generators in phase space execute hyperbolic trajectories, and take the same form
as the Hamiltonian for a one dimensional inverted harmonic oscillator. Note that the other two
generators of this algebra are another boost K, ~ xp + px and a rotation K3 ~ x> 4+ p?. Henceforth,
the two boost generators will be equivalently referred to as [IHO Hamiltonians.

Having seen the different avatars of the IHO, we proceed to examine the properties of the
Hamiltonian.

12
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4.2. Properties of the evolution operator

Here, we review certain basic features of the IHO Hamiltonian, such as time-evolution, self-
adjointness and quantum mechanical PCT (Parity, Charge conjugation, Time reversal) symmetries,
highlighting the uniqueness of the IHO in this regard.

Time evolution operator — The IHO has the characteristic feature that time-evolution of an
appropriate wavepacket distribution leads to temporal decay characterized by quantized decay
rates. First considering evolution within the regular Hilbert space, we employ the ‘light-cone’ basis:

H = irMud, + %) (where we have suppressed the + label of the previous subsection and set
h = m = 1 for convenience of notation). We define the operator:
U = o~ iHt — pht/2ghtudy (50)

This operator acts on functions v belonging to the Hilbert space as a dilatation operator, leading to
an isometry on the Hilbert space [39,60]:

Uyr(u) = e* 2y (e*tu). (51)

The non-unitary appearance of this transformation is not a concern as the stronger requirement
of self-adjointness is satisfied as shown below. Thus, the IHO generates a dynamical scaling action
on the wavefunctions, termed as ‘modularity’ [61]. This behavior is identical to the dilatation of
the time-coordinate near an event horizon of a black hole and the resulting red-shift of quantum
mechanical modes [61].

The self-adjointness of the Hamiltonian is a necessary condition for the unitary evolution in
quantum mechanics. Typically, in finite dimensional cases, self-adjointness is equivalent to the
Hermitian (H' = H) or symmetric property of operators. One needs to be careful in infinite
dimensional cases and for unbounded operators such as the I[HO Hamiltonian. The momentum
operator in the position representation is the simplest example where one is not guaranteed of
the self-adjoint property as a consequence of the Hermitian property. Here we will prove the self-
adjoint property of the IHO with respect to the Hilbert space of square-integrable functions L?. From
Eq. (51), one can show that for ¥, ¢ € L%

UV IUS) = / " WU @US) = / " due'yermet)

_ / VWY = (W), (52)

where in the last line we have made the substitution y = e‘u. This ensures unitarity of U, and
the self-adjointness of H follow from Stone’s theorem (which states a correspondence between
self-adjoint operators on Hilbert space and one parameter family of unitaries [39]).

PCT operations — The IHO has noteworthy time-reversal properties for a simple quantum
mechanical Hamiltonian. As shown by Wigner, the T operator can be realized either as a unitary
or an anti-unitary operator. The IHO is an unbounded operator and with a unitary T, satisfies the
relation [39]

TH+HT =0 (53)
Therefore,
Hl|yg) = ElYe), HT[ye) = —ET|vE) (54)

To see this consider |[y(t)) = U(t)|¥), where U(t) is the time-evolution operator. The evolution
of the time-reversed state is given by: T(U(t)|y¥)) = U(—t)T|¥)). In the case of bounded
Hamiltonians, one chooses T to be anti-unitary to exclude negative energy eigenvalues. But this
is not the case for the IHO and we can choose a unitary time-reversal operation. As a consequence,
one obtains two families of states in the energy spectrum Hy,. = £Ev., where the .. are related
to by the T operator. That is, Ty = ¥ _g. That is, IHO has both negative and positive energy
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spectra. The time reversal operation also acts as Fourier transformation for this system, namely,
Ty (a) = Fly (o )where

Fly)(a) = e“Py(p (55)

=l
We will see the explicit action of time-reversal operation on states in incoming and outgoing basis
in the next subsection.

Further, defining the parity operator as: PxP~! = —x and PpP~! = —p, one can see that the [HO
Hamiltonian is P-symmetric:

PHP~!' =H. (56)

Now let us consider the complex conjugation operator C defined as: Cyy = . The IHO
Hamiltonian is both CT and PCT invariant [39]:

[H,CT]=[H,PCT] =0 (57)

4.3. Eigenmodes: In- and out-going states

The PCT properties of the IHO allow for some noteworthy properties in the spectrum of
the Hamiltonian. As the Hamiltonian is unbounded, the spectrum of real energy eigenvalues is
continuous and ranges from —oo to oco. The parity invariance leads to a doubly degenerate spectrum.
This is associated with the states on the two sides of the barrier.

The u™ basis describe the ingoing states and u~ the outgoing states and these two bases are
related by [8,12]:

1 -
™) = —=e"" (58)
V2
The time-reversal operation relates the outgoing and incoming states. This can be seen choosing
a =u", B =u" inEq. (55) and from Eq. (58).
The time-dependent Schrodinger equation, in either basis, is of the form

0y (u™, 1) = ey = FiMu™de + 1/2)P=(u™, 1). (59)

In the following, we will use the scaled energy E = €/ and set h = m = 1 for convenience of
notation.

As shown in Fig. 2, there are two sets of energy eigenstates corresponding to regions I and II.
The state |E, ) corresponds to the states in the two regions respectively. These are written in the
in-going and out-going bases. In terms of in-going bases we have,

(UIE, +)in = —=@h)F20W™) (60)
2
1 )
(U IE, =)in = —=(—u")* 2o (—uh) (61)
mn 271
where @(u™) is the Theta-step function. In terms of outgoing bases, we have
1 )
(U™ |E, +)our = m(u—)—'f—”z@(u—) (62)
1 )
(U™ |E, =)ou = E(—u*r’“”z@(—u*) (63)

These equations correspond to the ‘steady-state’ scattering states. In the position basis, we can write
these as

xe(X) = (X|E, +) = /du+(xlu+>(u+|5, +) (64)

— N (L —iE)D 65
= Noe"§ (o — IE)D 3 (1) (65)
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v Shear

- o H. o

Fig. 2. The top figure shows the semiclassical trajectories for the IHO in phase space/non-commutative plane of the LLL.
u* indicate the ‘light-cone’ basis obtained through a canonical transformation from the (X, P) basis. The states in the u™
basis are purely incoming and outgoing states. The dotted curves are the hyperbolic trajectories of constant energy. The
bottom figure shows the 3 different area preserving transformations applied to the quantum Hall system in the lowest
Landau level. The shear transformation manifests as the IHO on projection to the LLL and the single particle states in the
quantum Hall system follow the above semi-classical trajectories.

where D, (x) are parabolic cylinder functions [62]. Normally, to solve for the scattering matrix
of a barrier potential, one would assume incident plane waves at infinity, where the barrier
potential has no support and hence, only the kinetic energy term remains in the Hamiltonian.
But the IHO has support throughout the real line, and hence, one cannot consider plane waves
as asymptotic solutions of the scattering states. Instead, the ‘plane-wave-like’ asymptotic states go
as e [7,39,40].

Thus, any wavepacket that has to be constructed to scatter off the IHO must be expressed in
terms of these asymptotics, as we shall do in Section 4.5. Other than scattering states, the IHO also
allows for resonant states that have complex eigenvalues. The nature of all these states may be
gleaned from the scattering matrix, which we now compute.

4.4, S-matrix for the IHO: Mellin transform

Now that we have the eigensolutions, we calculate the scattering matrix for the IHO. In
standard quantum mechanical scattering problems, one considers plane waves to scatter against a
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barrier [8,38]. These plane waves are eigenmodes of the momentum operator. The spatial bounded
nature of a typical scattering potential allows one to consider plane wave states at infinity. Any other
state is expanded in the basis of plane waves resulting in a Fourier transform. When dealing with
the previously described dilatation operator form of the intrinsically unbounded IHO, the Mellin
transform, which is a multiplicative version of Fourier transform, becomes important [63-67]. The
Mellin Transform is defined as

= /Oof(u)ui"l/zdu, (66)
0

From Egs. (61), (62) and (66), it can be seen that the Mellin transform is an expansion in the
basis of eigenfunctions of the IHO in light-cone coordinates. Now we shall make use of this in the
derivation of the S-matrix for the IHO.

A state going towards the IHO barrier can be expanded in terms of the eigen-solutions in the
in-going basis as

Yin(u™ dE[(utYETV2IE, 4)in 4 (—utYETV2|E, =)y (67)

=l

The mode expansion for the outgoing state is given by

Vour(t™) = dE[(u™) V2 1E, +)our + (=" ) ET2IE, =) ] (68)

1.

The S-matrix relates the out and in states on the two sides of the barrier as follows

E.Hour\ _ g (I +)in (69)
|E, _)out |E’ _>in

The above-defined in and out states are then related by [8,12]

7 - 51(11— o dut —m*u
Your(U™) = [S](u7) = \/2— \[’m( ) (70)
For simplifying the above we shall make use of the Mellin transforms
/ dute iutu~ |u+|—fE—1/2 _ ein/4eEn/2|u7|iE—1/21-v(1 —iE) (71)
o 2
o0 . ; . ; 1
/ dirte 0 |y V2 g2y m B2 p Ly (72)
2
—00

The S-matrix is then given by

R 1 1 . e—in/lle—ﬂE/Z ein/4enE/2
5= El’ 2 iE i /4pnE/2  pin/4gnE/2 (74)
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The probabilities for tunneling and reflection across the IHO barrier can then be gleaned from
the above expression:

6*27'[6/)»

1+ e—2me/r’ 1+ e—2me/

Here, we have re-introduced ¢ which is the eigenvalue of the IHO Hamiltonian in Eq. (59) to stress
that the ‘effective temperature’ in the thermal factor is associated with the strength of the IHO
potential. Note that the expression for the transmission probability T here matches the well-known
formula for the conductance through a point contact invoked in Section 3.1 for the quantum Hall
system. We shall later interpret these probabilities in the context of black hole thermality and
further analyses of the quantum Hall context.

T=|Spf= R=1Si* = (75)

4.5. Scattering states in the position basis: Parabolic cylinder functions

As we saw in a previous subsection, the Schrodinger equation in the position basis for the IHO
has the form of the Weber equation. The solutions are known to be expressed in terms of parabolic
cylinder functions [68]. We can instead obtain them easily from the solutions in u* basis as

xe(x) = (X|E, +) = /du+(xlu+>(u+|57 +) (76)

The canonical transformation from (x, p) to (u™, u~) operators has a corresponding representation
given by [8,39,40]
2

X
(Xlu+) = exp[i(i —2utx+ut?) (77)
Therefore, there transformation now reads
o x2 2 iE—1/2
(X|E, +) = / du+exp[i(? —2utx+ut)ut (78)
0
The integral representation of the parabolic cylinder function is given by
=2 00 2
e 4 w1 —t
Dig_1(X) = ———— dt|t|"E2exp(—— — xt 79
)= g [ et 0 79)
Using this, the solution in the position basis is obtained as
E_ 1 .
xe(x) = (X|E, +) = Noe”ﬂ"(i —iE)Dy_1(x) (80)

One can see the uniqueness of IHO as a scattering problem from the asymptotic behavior of the
states in the position basis. In a textbook quantum mechanical scattering problem, rather than
studying the eigenstates of the Hamiltonian, one starts with a potential with finite support in a
given region of space and considers scattering the ‘states of choice’ off the potential barrier. Usually
the ‘states of choice’ are the plane waves states et which are also the eigenstates of the kinetic
energy operator P?/2m in the Hamiltonian. The boundedness of the potential allows one to do this.
The ‘boundary conditions’ infinitely far away from the potential barrier (not strictly in the sense of a
boundary value problem of a Schrédinger differential equation) are the incoming and reflected plane
wave states on one side of the barrier and transmitted states on the other side. The transmission
and reflection coefficients are then computed by matching the amplitudes at the barrier. In contrast,
the case of the IHO is unique in the sense that it is an unbounded potential and the potential has its
effect even farther away from the peak. The ‘eigenvalue’ problem thus also provides the scattering
situation. This is seen by studying the behavior of the states in the position basis far away from the
peak of the [HO barrier.
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The asymptotic form of the scattering energy eigenfunctions is given by [7,39,40]:

XE(X - —OO) ~i 3(1 +e—ZHE)l/Ze—i(%+EIOg\X|+¢/2+7‘[/4)

x|

2 2
—ilZe nEez( 7 HElog|x|+¢/2+m /4) (8])
x|
Xe(x — +00) ~ iei(%+slog\x|+¢/z+n/4)
\ 1x]
Here
. 1 e—Zr[E 1/2 1
g0t — rep 0T E TV 1y (82)
2 2

From the above one can see that the ‘plane-wave-like’ states in this situation behaves as et By
taking the ratio of the coefficients of reflected/transmitted parts to the incident part the reflection
and the transmission coefficients can be obtained. Wave packets are constructed by combining these
asymptotic forms of the solutions.

4.6. Analytic S matrix: Gamma function

Other than the scattering states, the IHO also has associated with it resonant/quasinormal modes.
The presence of resonant modes is seen by studying the complex pole structure associated with the
S matrix. As clearly seen in Eq. (74), the S matrix is a function of the normalized energy E, which
is a continuous variable with support throughout the real number line. To find the complex poles,
however, we first analytically extend the scattering matrix to obtain the analytic S matrix. It is poles
of this matrix that reveal the presence of resonant modes of the scattering potential.

The analytic S-matrix has played a fundamental role in the history of quantum mechanics and
quantum field theory [69,70] in its role in capturing the essential aspects of a given scattering
problem. One cannot extract all the crucial properties of a system, especially in scattering theory,
from the real energy eigenstates alone. The poles and zeros in the complex energy plane also
manifest as distinct physical phenomena in scattering. One such aspect is the time-decay in the
wave-packet scattering in quantum mechanics. In general the analytic properties of the S-matrix
underlies these key features. From the above derivations, one can see that the IHO S-matrix and
the energy eigenstates (x|E, +) are characterized by Gamma functions F(% — iE). The analytic
properties of the Gamma function in the complex energy plane play a key role in determining the
IHO phenomena, particularly in determining the existence of temporal decay of wave packets having
quantized decay rates.

The Gamma function I"(z) has simple poles at z = —n, where n = 0, 1, 2.... Therefore the poles
of the IHO scattering problem lie at the imaginary values:
~ 1
£ = —i(n + 5) (83)

These are the resonant poles can also be interpreted as complex energy eigenvalues of the IHO
Hamiltonian [39,40]. In the context of black hole physics, these states which decay in time are
known as quasinormal modes and are related ringdown phenomena. In Section 5, we show that
these same modes arise as decaying states when wavepackets are scattered across an IHO in a
quantum Hall system.

5. IHO resonances, quasinormal modes and wave packet scattering

So far we have discussed about various interesting features in the stationary scattering problem
of the THO. Now we turn our attention towards a detailed analysis of the resonant quasinormal
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modes of the IHO. In what follows, we present the ladder operator based method to reveal the
existence of quantized decay modes, showing that these correspond to purely outgoing/incoming
states from infinity. Then we demonstrate that these could be tapped through wave packet
scattering off the IHO and also from Poschl-Teller potential, a realistic counterpart of IHO. Finally
we comment on the physical observable that could be accessed through experiments.

5.1. Resonant/quasinormal time-decaying states: quantized decay rates

In the simple harmonic oscillator, existence of a ground state and quantization of the energy
levels is a fundamental manifestation of quantum mechanics. Very much in the same essence, in
the IHO existence of time-decay states and the quantization of their decay rates are non-trivial
manifestation of quantum mechanics. These ‘quasinormal modes’ occur in various contexts from
particle decay to modes of perturbations of black holes. To understand these modes let us turn to the
wavefunctions and the temporal behavior of the resonant modes of IHO. To suggestively compare
and contrast with operator methods employed in the simple harmonic oscillator, we introduce
ladder operators in the ‘light-cone basis’ (setting A = 1) [44]

x+ 1 d
pr = XEP) ( :sz> (84)
V2 V2
These operators obey the commutation relations [b*, b~] = —i, [b*, b*] = 0. The Hamiltonian
takes the form H = —{b*,b™}/2 = (b"b~ + b~b*)/2. This leads to a relation between ladder
operators and the Hamiltonian, similar to that in the Harmonic oscillator:
[H, b*] = FibT (85)

Equipped with these relations, one can construct the resonant states of the IHO. Let us assume that
there are a set of states satisfying the condition:

d
b:F + = - lx * =0 86
Wy ( dx + )wo (86)
The solutions of this equation are given by
wo Bi +ix? /2 (87)

These solutions belong to the ‘Rigged Hilbert space’ [39,40,44], which contains additional struc-
ture compared to the regular Hilbert space that allows for states that are not L? normalizable, but
instead are defined in the sense of distributions (like position and momentum eigenstates). Now,
one can verify that

i

Therefore, these states can be interpreted as the complex energy eigenstates with eigenvalues
Fi/2. One can construct a series of states starting from this state and employing the ladder
operators: (b*)" wo The nth states obey the relation:

Hw® = EXw® E, = —i(n + E) (89)

Reintroducing the strength of the IHO potential A

&y = —im(n + %) (90)

The above clearly shows the existence of a time-decaying state with largest decay rate Eq. (88)
and a ladder of ‘excitations’ with quantized decay rates, very much in parallel to ground state and
quantized energy levels of the SHO. We can see that the scale of the ‘decay-rate quanta’ is set by
the strength of the IHO potential A. Phenomenologically, the decay rate is an important physical
quantity that manifests as life-times in particle decays and quasinormal modes of black hole that
carry information about black hole parameters.
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5.2. Outgoing/incoming states: Time-decay and probability current flux

One can obtain the wave-functions of the hierarchy of decaying states using the ladder operators
in order to study the physical aspects of these states

d
[t i

o ) (91)
_ gt el o2 e:}:ixzi ot
°\ /2 dxn ’
we obtain
wE(x) = BEe* 2 (x) (92)

where HE(x) = (:F)"ﬁ’"‘ztﬁc—"nei""z. We refer the reader to Ref. [42] for more details about the
functions H, and the normalization factors B,, which require careful analysis. But as can be seen
above, the analysis proceeds in a spirit identical to that determining the ground states and other
excited states of the simple harmonic oscillator. The stark contrast between the regular stationary
states and the resonant states stems from real energy eigenvalues associated with the former. The
time-dependent wavefunctions for these resonant states are given by

V(L x) = AT BTN E Pk (), (93)

(Here A, is the normalization factor arising form the time-dependent factor [42].) The immediate
observation is that these states decay or grow in time. The associated probability densities are given
by [42]
2042
P (8, %) = |ATI 1By e T HE (0OH; (%) (94)

and the currents are given by

. 2 2
JE(t, x) = £|AE|°|BE |7 (xHF (x)HE (x)

oo (95)
+2nIm[H; (x)H(n_U(x)])
As with ordinary states, these states satisfy the continuity equation:
4 0 .
— t,x —j(t,x) =0 96
arPn € )+3X1n( ) (96)
Finally the asymptotic behavior of the currents in Eq. (95) is given by
jni(f, X) ~ ie¢(2n+l)tX2n+1_ (97)

We see from this form that the probability density decays in time but current conservation
ensures that this decay manifests as a finite current that goes out to infinity(thus the finite value
of the wavefunction at infinity)

Therefore, the resonant modes correspond to purely incoming states or purely outgoing states
in one direction(left or right). They thus require having finite amplitude at infinity. Such states do
not belong to the regular Hilbert space. One needs to enlarge the Hilbert space to so called ‘Rigged
Hilbert space’ [39,44]. Even in the simplest problem of scattering against a barrier, such as a square
potential, one uses plane waves that are not normalizable and thus do not strictly belong to the
regular Hilbert space. As we have already remarked, these states are part of the stationary scattering
states of the problem. But in the discussion of resonant states, the rigged Hilbert space furnishes
states necessary for a dynamical scattering scenario where the amplitude decays in time and has
finite amplitude far away from the barrier. The purely outgoing behavior is intricately related to the
time decay of the wavefunctions and probabilities. Even in a model as simple as the IHO, one can
see that in a scattering problem, enlarging the set of allowed boundary conditions can lead to time
decay behavior. Such behavior is captured in the resonant pole structure of the problem and can be
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attributed to the complex energy eigenvalues. From the above expression, one can also see that the
‘decay rates’ of the wavefunctions are quantized as (n + 1/2), much like the bound state energies
of the simple harmonic oscillator. One can trace the ‘zero-point’ factor of 1/2 in the SHO derivation
(as well as in THO) from quantum fluctuations associated with the commutation relation [X, P] = i.
This quantization and existence of a bound on the decay rate is a fundamental manifestation of
quantum mechanical scattering in the IHO.

5.3. IHO resonances and wave-packet scattering

We have shown that the IHO is the effective Hamiltonian for a saddle potential in the LLL. Hence,
the resonant spectrum of the IHO must also manifest in the quantum Hall system and any other
system that hosts the IHO. Here, we pinpoint the effects of such resonances and how they become
manifest in wave-packet scattering.

To first briefly recapitulate the details of the previous sections, it is important to draw attention
to the analytic structure of the scattering matrix of the IHO. On analytically extending the matrix to
the complex energy plane, we see that the Gamma function gives the S matrix an infinite number
of poles in the lower half plane. That is, the Gamma function I"(x) has poles at x = —n,n € It.
Therefore, the S-matrix has poles at E;, = —i(n + %). These poles are the source of resonant states
in the scattered wavepacket.

Equivalently, one might define resonant states as those which carry a complex energy corre-
sponding to the poles of the S matrix. That is, a resonant state v, satisfies

HIHown = Enl//n (98)

leading to a discrete complex spectrum to the IHO. The presence of complex energy eigenstates is
no cause for alarm, and does not violate the hermiticity of the Hamiltonian. Instead, we have states
that decay in time, but grow with distance, such that they have a finite amplitude at the boundary
of the system. Thus, resonant states describe scattering experiments with a well defined outgoing
current at the boundary of the system. For this reason, they are useful in describing particle decay
processes [71]. They may be observed by scattering a wavepacket against the I[HO. We demonstrate
this analytically by picking a Gaussian wavepacket.

To capture the effect of resonances which are specific poles of the scattering matrix, we need to
consider an incident wavepacket composed of scattering states of different eigen-energies following
the notation in Ref. [7], we have

i - 2 )
U= / dEf(E)e_'(T+E log \x\+¢/2+rr/4)e—lEt. (99)
LV
- )
The envelope function f(E) is peaked near Eq and is normalized as 27 f dE|f(E)| = 1. The incident
wave can thus be rewritten as

v, = i le—iEot—i(Po x
VI (100)

f dE[f(E )e (¢ —#0)/2)p={E—Eo)t-+loglx)

Here @, = Eq log |X| + X% + ¢o/2 + 7 /4 and fi(E) = f(E)e~¢~%0)/2_ We choose the wave-packet
to be a Gaussian in energy centered around Ey:

+00 .
f dEfi(E)efl(EfEO)t

(o]
+o00 _En|2
= dE(— L e a8 pie—tox (101)
oo (2n3/2)1/2A
_ 1/2 ,—t2A2)2
=(=35)
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Therefore, the incident wavepacket may be written as

1/2
W — jeiEot=i%0 /|1| A1/4E—A2(r+log\x|)2/2. (102)
X|

The reflected wave-packet can be written down from terms in the scattering matrix. This is then
given by

lI/R — —1E0t+1¢0 /dEf —lE —Eq)(t—log |x])
V (103)

0?2 e~ 7Epi(¢—do)

E - Mz - -
fr( ) m (]+e—2ﬂ5)1/2

The integrand 7, can be rewritten by making the substitution

1+672ﬂE)1/2 1
O U kL 104
)7 (5 —iE), (104)

to obtain a form that makes its pole structure more apparent. Thus, we have

£ = / dEf, e~ (E-Eo)t-loglx)

_(E=Eg? _ n(E-Eg) . (105)
e 242 2 I'(3 —iE)

VA I - ik)

Now, using standard methods of scattering theory, we can extend the above integral into
complex plane. We see from above that the Gamma function within the integral has a pole in the
lower half energy plane. To access the lower half plane, we consider the times ¢t > log |x|. The poles
of the Gamma function I'(x) are at x = —n; n = 0, 1, 2. Therefore, the poles of I'(1/2 — iE) are
given by

e =¢

e {(E—Ep)(t—log xI)

1
E, = —i(n+ 5). (106)
The corresponding residue of the integral for the reflection amplitude is then given by
o—(—iln+5)—Eo)? /(242)
2732 A

__1)te—i(—i(n+3)—Eq)(t—log|x])
e—n(—i(fH—%)—Eo)/Z( 1) 270 . (107)

r(3 —iEo)n!

Extracting the dominant temporal and spatial aspects of the reflected form from the expression
above, we have the form(considering the contribution of one pole and reintroducing the scale of
the IHO potential 1)

Res[F; E = —i(n+ 1/2)] =

W, ~ o t/2hplog VIRl (108)

This indicates that the reflected wave decays exponentially in time and has finite amplitude at
large x. The decay rate is determined by A. While we have shown here that the manifestation of
resonances arising from the pole structure of the scattering matrix, resonances can also be studied
as states with complex eigen-energies [39,40]. As an important application, traits of these decaying
solutions are characteristic of the quasinormal modes occurring in the context of black holes [22].
We shall give a detailed description of black hole QNMs in a later section (see Fig. 3).
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Poschli-Teller
Inverted Harmonic

Fig. 3. Poschl-Teller is the bounded variant of a scattering potential peak, which tapers off at large distances. The IHO
is an approximation to Pdoschl-Teller potential close to the peak.

5.4. Poschl-Teller potential

One issue with the IHO in realistic situations, such as the quantum Hall point contact is that
is an unbounded potential and hence, is not physical. Instead, one may choose a bounded variant
of a peaked scattering potential, and still see the occurrence of resonant poles. To this effect, we
choose the hyperbolic family of Péschl-Teller (PT) potentials. These potentials are exactly solvable
in 1D, and thus, their scattering properties may be exactly derived. Here, we demonstrate the
appearance of resonant states in bounded scattering potentials [72] for the class of PT potentials
whose Hamiltonian is given by

2 2 2 2
H:—h—dl—h—ww (109)
2m dx2  2m cosh?® ax

Without loss of generality, we can set « = 1. To obtain barrier potentials, the parameter A has
to take values A = % +il, I > 0. The eigenstates of the Hamiltonian take the form [72]

1+ tanhx

¥ (x) = AR(X)*5F; (A, 1= A; ik + 1; > )
1+ tanhx (110)
+ B2*R(x)"™2,F; (A — ik, 1 — A — ik; 1 — ik; f)
where R(x) = Hfggm and A and B are constants. The functions of the form ,F;(a, b; c; x) are

hypergeometric functions as defined in Ref. [68]. This scattering potential also has a resonant pole
structure that can be gleaned from the scattering matrix. The components of the scattering matrix
can be found as usual by writing down the asymptotic forms of the eigenfunctions. The asymptotic
forms of the hypergeometric function have been extensively studied [73], and as expected for a
bounded potential, the asymptotic form of the eigenfunction is proportional to plane waves. Thus,
one can obtain expressions for the transmission and reflection coefficients for A = % + il

5 sinh? 7k
T=|t]= 5 — (111)
cosh” w1 + sinh” wk
h? xl
R=|r* = o (112)

cosh? 7l + sinh? 7k

The resonances, defined as poles of T and/or R in the complex k plane, belong to two sets of
points in the complex k plane, given by

kﬂn):l—i(n—i—%) (113)
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1
ky(n) = —1—in+ 5) (114)
Here, the kq(n) series of poles correspond to decaying modes while k, corresponds to growing
modes.

Asymptotically, the PT potential goes to zero for large |x|, and thus, far away from the origin,
we may approximate any wavepacket as a superposition of plane waves. Thus, we can take ¢;(x) ~
[ dks(k)et**eiEt, We can write a density function p ~ ¢:(x)T¢(x) for the transmitted wavepacket
as

p(x,t) = / dkT (k)e~2¥m(k) g2tm(E) | (115)

We can perform this integral by picking an appropriate contour on the complex-k plane. While
more complicated than the choice involving the lower half plane of the complex E plane in the case
of the IHO, the contour integral can still be evaluated analytically [70]. One thus obtains the form

cothwl
o(x, t) = Z 5 e(2n+1)xe—h2tl(2n+l)/2m (116)
n=0

In general, it can be shown that a bounded barrier potential, or a barrier potential with a finite
region of support, has QNMs that take the form v ~ e/®/v=0 where I" is the decay rate, and
v is an effective velocity that may be determined from the semi-classical equations of motion of
the wavepacket [71]. Therefore, the reflected and transmitted wavepackets will have a decaying
component. We see that the PT potential follows this pattern as well.

As with the IHO, we can define ladder operators that act as raising and lowering operators for

the resonant modes of the PT potentials. That is, we define K, and K;“H such that

n
Kfn @in = Pin-1 Kj?rn+1 Y ¥in = Pin+1 (117)

where ¢; , corresponds to a resonant mode (or residue corresponding to a resonant pole) at k;(n), j €
1, 2 for each series of poles. These operators are given by

K., =— cosh xdy + ikj(n) sinh x (118)
K., = coshxdy + ikj(n) sinh x

These operators also span the sp(2, R) algebra along with the operator Kﬁn which acts diagonally
on ¢j, [72].

5.5. Physical observables

Time evolution of a quantum mechanical system that shows decaying behavior has been studied
in many contexts, such as nuclear radioactivity, dynamical systems, quantum chaos and tunneling
of coherent states. Often, it is necessary to make measurements of the time decaying state that
clarify the nature of the decay itself — say, to differentiate between exponential and power law
decays. To this end, we adopt the Fock-Krylov method [74] of specifying survival probabilities and
elucidate the nature of resonant decay in our system.

Consider a quantum mechanical system with an applied potential V(x) that goes to zero for
|x| > R. We are interested in the nature of states ¥(x) that are solutions to the Schrodinger
equation for |x| < R, and then decay out to the space beyond R. The survival amplitude, and survival
probability, are defined as

R

A(t) = (Y (0)ly (1)) =/ dxyr*(x, 0)¢(x, 1) (119)
R

S(t) = JA()1? (120)
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The survival probability at t > 0 is a measure of the probability of finding the particle in its initial
state at time. A very similar quantity called the non-escape probability can also be defined as

R

P(t) = (Y (O)ly (1)) :/ dxyr*(x, Oy (x, t). (121)
R

This quantity is a measure of the probability that the state, at time t, remains within the region
|x| < R. In the case of exponential decay, the time dependent component of these probabilities
would go as a combination of ~ e~'if, A logarithmic plot of these probabilities is a measure of the
dominant decay rate I3, and hence, the poles of the scattering matrix corresponding to the barrier
potential.

The Fock-Krylov approach adapts these definitions to wavepackets (therefore not eigenstates)
that may be scattering or tunneling through the applied potential, since in a continuous spectrum,
the post-tunneling state is not an eigenstate of the Hamiltonian. Consider an initial wavepacket of
the form

1 (0)) = / dE a(E)[E). (122)
Therefore, we have
A(t):/dE |a(E)|2e . (123)

Due to the presence of resonant poles with nonzero imaginary part, we deduce that A(t) ~ e~/nt
after appropriate contour integration, where I, are the imaginary parts of the resonant poles at
E =E,.

For resonant decay in the case of the IHO, there is no boundary at |x| = R from which the
decay process is observed. But realistically, if the IHO is applied to the system by means of, say, a
quantum point contact, then this QPC itself does not have infinite support. So one may reasonably
assume some large R beyond which the IHO is not applied. Alternatively, from the form of the
resonant modes, we see that the decay process at any given point x is only observable after a time
t(x) = log|x|. This time can serve as the starting point for observation of the decay at any given
distance. That is, we modify the definition of survival amplitude to

[o ]
Alt) = f dxyr*(x, t' (X)) (x, t'(x) + t). (124)
—00

For IHO resonances, the integrand goes as ~ x~! and a principle value can be obtained when the
integral is curtailed to a large R. For a single dominant pole, as shown in Eq. (108), the survival
amplitude as well as the survival probability are just a decaying exponential function in time, and
their logarithmic plot would be a straight line as seen in Fig. 4. The presence of higher order poles
would lead to curves of with a different value of effective decay rate at every instant of time. The
decay rate may be experimentally determined through time-of-flight measurements in electron
optics setups, particularly like those described in Ref. [75]. Electrons are released via a single-
electron pump as wavepackets centered at a given energy. These wavepackets travel along the edge
of a depleted quantum Hall setup and approach a QPC. Detectors on the reflected (or equivalently,
transmitted) region at a specified distance can detect the scattered wavepacket, we can calculate
overlap quantities of the general form

(w0 (1)) =/dE|a(E)|2r(E)e_iEt (125)

which can show the presence of resonances.

We have reviewed the physics of inverted Harmonic oscillator and shown its realization in a
quantum Hall system under the influence of an external potential. Now we shall turn to review the
basics of Hawking-Unruh effect. We highlight the Rindler Hamiltonian as the fundamental object
underlying quantum mechanics near an event horizon of a black hole and show that the physics of
[HO directly parallels the key aspects of it.
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Log(A)

Fig. 4. Logarithmic plot of the survival amplitude as defined in Eq. (124). For a single pole, the plot is linear as seen in
this figure, with the slope giving the decay rate of the reflected wavefunction. In the presence of higher order poles, the
plot would no longer be linear, and the slope indicates instantaneous decay rate.

6. Rindler Hamiltonian, Hawking-Unruh effect and IHO physics

Here, we build up to connecting the IHO concepts discussed in previous sections. We first
conceptually introduce black holes, horizons, and light cones. We then more formally elaborate on
these concepts for the unfamiliar reader as well as to delineate our approach in drawing parallels
in the quantum Hall setting. Specifically, we present the notion of a Rindler observer as one in
an accelerating frame and show that time translations in the Rindler frame correspond to Lorentz
boosts in flat spacetime (i.e., boost is the generator of time translation/a Hamiltonian). This setup
has a direct manifestation in the time evolution of the quantum mechanical states in the Rindler
spacetime. The dynamics generated by the Rindler Hamiltonian, in this outlook, is at the essence
of the Hawking-Unruh effect. We show that the dynamics of IHO parallels that of the Rindler
Hamiltonian. The scattering amplitudes of the IHO exactly match the Bogoliubov coefficients that
appear in the time evolution operator for the Rindler Hamiltonian. This parallel directly leads to
the effective thermal form of the tunneling probability in a saddle potential. When applied to
the quantum Hall problem, we will see that this lets us explain the thermal form of the tunnel
conductance through a point contact, as well as the relationship between Hall viscosity and Wigner
rotations. We remark here that the thermal parallel is purely formal; tunneling still corresponds
to a zero temperature quantum process in which the strength of the scattering potential appears
a temperature-like factor, as shown in Eq. (75). In elaborating on these concepts more technically
below, we make use of the term ‘Hawking-Unruh effect’ to refer to the thermal nature of quantum
mechanical states with respect to Rindler time-evolution.

6.1. Rindler wedge, Rindler Hamiltonian and Lorentz boost

To define Rindler space and the Rindler Hamiltonian, first consider 1+ 1-dimensional Minkowski
(flat) spacetime (t, x) described by the metric ds?> = dt? — dx?. There is a light-cone that determines
the causal structure of the spacetime. Events at x = 0 can have causal connection with time-like
(also known as light-like) separated events i.e. events with ds*> > 0; such events lie within or on
the light-cone. Other regions in x > 0 and x < 0, the wedges ‘under’ the light-cone, are said
to be ‘space-like’. Events in these wedges cannot have signals propagating beyond the light-cone
and hence events in the space-like wedges cannot affect events in the light-like wedges. Note that
Lorentz boosts cannot move an observer outside of a space-like or light-like wedge.

The spacetime of interest, the ‘Rindler spacetime’ is given by the metric:

ds? = e*((dr)? — (d&1)?). (126)
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Fig. 5. Spacetime diagram for Minkowski spacetime and the right Rindler wedge. The light-cone structure in the
Minkowski spacetime bifurcates the spacetime into spacelike and time like regions. A family of observers with constant
acceleration are indicated by hyperbolic trajectories. These observers are confined to the spacelike region shaded in blue.
This region is known as the ‘right Rindler wedge’, which can be described in terms of co-ordinates (z, £). The constant
time slices are shown by slanted lines. The translation corresponds to hyperbolic rotation in the Minkowski space.

The co-ordinates have the range: —o0 < t < 00, —00 < & < 4o00. This metric can be obtained
from the Minkwoski metric through the following co-ordinate transformation-
et et

t = — sinhkt x = — coshkr (127)
K K

As shown in Fig. 5, the co-ordinates (7, &) cover only the wedge x > |t| in Minkowski spacetime.
This is called the ‘right Rindler wedge’. The ‘left Rindler wedge’, which covers the region x < |t|
in the Minkowski spacetime can be obtained by changing the signs on the right hand sides of the
above transformation. This is equivalent to doing a time reversal transformation, followed by a
spatial reflection.

The lines of constant t value correspond to constant proper time slices and are lines of constant
slope in the (t, x) plane, as shown in Fig. 5. The curves of £ = constant are hyperbolae x*> — t> =
e%<¢ /i as shown in Fig. 5. These correspond to trajectories of uniformly accelerating observers. We
shall call these observers as ‘Rindler observers’. Another useful form of expressing the Rindler metric
is in terms of the co-ordinates (p, T): p = €%, T = t(setting k = 1):

ds? = p?dt® — dp? (128)

This representation gives an angular interpretation for the time-like co-ordinate t.

As can be seen, the hyperbolic trajectories of the Rindler observers asymptote to the light cones
at infinities and in fact do not cross them. Therefore, the light-cones act as horizons for Rindler
observers in both the wedges. In fact, the right and left Rindler wedges are causally disconnected
as events in one cannot causally affect the events in the other wedge. In this sense the light-cone
naturally partitions the Minkwoski spacetime into two causally separated parts. Each wedge can be
considered as a spacetime in its own right and is often called a ‘Rindler universe’.

Now let us consider a crucial fact about time evolution and dynamics within a Rindler wedge:
The time translation 7 — t + $ in the right Rindler wedge is a Lorentz boost having rapidity S
with respect to the Minkowski spacetime.

One of the simplest ways to see this in the Rindler spacetime is to go to so-called ‘light-cone
co-ordinates’ u = t — x,v = t + x. The Lorentz boost along x-direction can be expressed as a
hyperbolic rotation: t — t cosh 8 + xsinh 8, x — t sinh 8 4 x cosh 8, where g is called the rapidity
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parameter and is related to the velocity ‘v’ of the boost through tanh 8 = v/c. If we switch to
light-cone co-ordinates, the boost looks much simpler: u — uef, v — ve .
Now relating the light-cone co-ordinates to the Rindler co-ordinates, we obtain

u=e""; v=¢"", (129)

One can immediately see from the above that a time translation t — t + 8 is a boost in the
light-cone co-ordinates.

We have particularly highlighted this fact about the time-translation in the Rindler wedge as it
determines the Hamiltonian that acts on the quantum mechanical modes and is important in the
understanding of the Hawking-Unruh effect.

6.2. The Hawking-Unruh effect and structural parallel to IHO

We are now equipped to draw the parallel between quantum mechanics near an event horizon
that leads to Hawking-Unruh effect and the physics of the IHO. The parallel we demonstrate in
this work is that of the identical structure shared by the quantum mechanical modes in the Rindler
wedges and the scattering states of the IHO. We also comment on the underlying isomorphisms in
the algebras of the symmetries in the two platforms.

The simplest derivation of the Hawking-Unruh effect for a non-interacting scalar field proceeds
as follows [76,77]. Hawking radiation [78] is the phenomenon of emergence of thermal radiation
from the black hole event Horizon as observed by a far away observer and is a manifestation of the
fluctuations of the quantum fields near the event horizon. The Unruh effect [79] is the emergence
of a thermal bath for a uniformly accelerating observer in a Minkowski spacetime. In this work
we use the collective term ‘Hawking-Unruh’ effect for the above two phenomena. The Hawking-
Unruh effect is the phenomenon where the vacuum state for a quantum field theory in Minkowski
spacetime restricted to the right Rindler wedge is a thermal state with respect to Rindler time
evolution.

Consider the scalar field ¢ in the Minkowski spacetime. We are interested in comparing the
‘particle’ content of the field in the Minkowski and Rindler spacetimes. “Particles” are defined
as positive frequency modes of a given field. But the positive frequency is defined with rest to
the proper time of the observer. As we saw, the time co-ordinate in the Minkowski (t) and the
accelerating frame (t) are related in a non-trivial way. The Rindler time translation is a Lorentz
boost. As a result, comparing the positive frequency modes results in a Bogoliubov transformation
operators associated with the hyperbolic transformation of the boosts. Thus the notion of particle
changes when we switch frames and leads to the Hawking-Unruh effect [80].

The equation of motion for the scalar field is given by the wave equation

1 0

— m/—ga =0 130
N (g g H¢> (130)
The metric for the Minkowski and Rindler spacetimes is conformally equivalent through Eq. (127).
So the solutions to the equations of motion are plane waves in each space. That is, the solutions in
the Minkowski space are given by

g =

b o et — giolt—x)
¢ x e:kiwv — e:kiw(t+x) (131)
while the solutions in the Rindler space are given by
b oc e — HATE) o QFIRT _ GFIATHE) (132)

Rewriting the Rindler modes in Eq. (132) using the light-cone coordinates in Eq. (129), we see that
they take the form |u|** or |v|**?. More specifically, the Rindler modes in the right wedge x > |t|
take the form

O(—u)(—u)?,  O()v)™? (133)
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and their complex conjugates. In the left wedge x < |t|, they are
eww™,  e(-v)(—v)? (134)

and their complex conjugates. In comparing the modes in Eqs. (133) and (134) with Egs. (60)-(63),
we see that the Rindler modes are in fact incoming/outgoing eigenstates of the IHO.

There is a crucial difference in the factor of 1/2 in the exponent of the Rindler/[HO modes:
i2 =iE — % This factor of half provides the correct measure of integration for the normalization
of the IHO eigen modes. The same factor of half also shows up as a difference in a crucial sign in
the final thermal distribution we obtain in the two cases.

Connecting back to our discussion of Lorentz boost being the Hamiltonian (generator of time
translation) in the Rindler wedge, the Rindler modes obtained here are in fact eigenmodes of the
boost generator. The boost generator in the Minkowski spacetime is of the form [61,81]:

—i(X— +t—), (135)

which is a hyperbolic rotation mixing space and time. The eigenmodes are |—t & x|~ This reduces
to the Rindler modes in the light-cone co-ordinates. We obtained the Rindler modes as solutions to
the wave equation, which is a relativistic d’Almbertian (i.e. p> — E* ~ 37 — 8). The boost generator

commutes with the d’Alembertian (because of the Poincare algebra) and thus the two operators
share the same eigen modes [81]. Thus by realizing the IHO in a physical setup like the quantum Hall
system, we are directly accessing the boost eigensystem, which lies at the heart of Hawking-Unruh
thermality.

Let us proceed further to quantize the scalar field by writing its mode expansions in terms of
plane waves in both spacetimes in the following way —

o0
R d o .
é = f \/%[e"’”“aw + e"al ]+ (left moving) (136)
0 [
A %[e’iﬂﬁﬁg + €?h1 ] + (left moving) (137)
0 T

where the operator d, acts on the Minkowski vacuum |0y) and BQ acts on the Rindler vacuum
|Og). The modes in the right and the left wedge are themselves not complete enough to do the
mode expansion of ¢ but taken together, they can be used to quantize the field ¢ with creation and
annihilation operators b, b:fz [77].

The two operators are related by Bogoliubov transformations [76,77].

o0
be = / dolog,l, — Bowd))] (138)
0
The Bogoliubov coefficients, by definition, are required to satisfy
o0
/ do(eg oy, — Ba.wBor ) = 8(82 — ') (139)
0
Plugging Eq. (138) into Eq. (137), we immediately find that
ie—iwu — - d—Q/(ag/ e—i.Q’ﬁ _ ﬁ*/ eifz/ﬂ) (140)
Vo 0o £ “ @

Multiplying both sides by e¥'? and integrating over ii, we see that the integral is a Mellin transform

(See Eq. (66)), which yields the coefficients «,, and Bo.,
1 2 .z 2
Q0w Bow = —— —einexp<—1n9>r(—i9/K) (141)
2k VN o K K

Up to numerical factors, we see that the Bogoliubov coefficients in Eq. (141) are identical to the
terms in the scattering matrix in Eq. (74), after making the all important conversions of i % to iE — %:

R 1 1 . e—irr/4e—rrE/2 ein/4errE/2
5= Er 2 iE ol /4pTE[2  pin/4gnE/2 (142)
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That is, the coefficients relating the incoming and outgoing states scattering off an IHO are the
same as the Bogoliubov coefficients relating Rindler modes to Minkowski modes. The meaning of
these coefficients is further seen in explicitly writing down the average density of the number of
particles in the Minkowski vacuum as seen by the Rindler observer in the following way —

_ {Ng)

no — \No)
« v

1 PO 1
V<0M|b}2bg|om =7 / do|Bue | (143)

1
1—exp(—2782/x)

when we make the aforementioned identification 2/« = E+i/2. Thus, for an accelerating observer,
the Minkowski vacuum looks like a thermal distribution of particles with temperature given in
terms of the acceleration

T=X (144

T2 )

We see that the form of the thermal distribution is the same as the transmission coefficient across
the THO obtained in Eq. (75), except for the difference of sign in the denominator. The thermal
distribution for the Hawking-Unruh effect for fermions is also shown to be with a positive sign [82].
Here we have considered the scalar field for simplicity. We trace back the sign difference in the
scattering context to the factor of 1/2 in the IHO eigenmodes, that we highlighted before. (To be
specific the thermal factor comes from the square of the Gamma function, which has different values
for |I'(i82)]> Smh{ ; and |I°(i$2 + 1/2)? « o)
Since the Mmkowskl vacuum appears therma(l, we can write down a thermal density matrix
associated with this vacuum. We have already established that the Rindler modes are identical to
[HO eigenstates. Therefore, we employ the notation of incoming and outgoing basis of the IHO as
defined in Section 4.4. Operators related by a Bogoliubov transform will have vacua related by a
squeezing transformation as shown below [83]:

|0, in) =

+o0 R R dE
Nexp [l/ e—En(bgut.+bgut, bout —bout +)2 i| |0 out)

o0

(145)

In the above we have introduced the IAJZ"”’i operator acting on the vacuum corresponding to
the incoming basis |0, in) (outgoing basis |0, out) representing the positive or negative sides of the
incoming (outgoing) axis as seen in Fig. 2. A thermal density matrix can be obtained by tracing out
states on the —side of the IHO barrier:

p = Zie " E, +) ® (Ei, +]. (146)

To summarize, we show that the emergence of thermal factors in the context of event horizons
of black holes and the quantum Hall point contact set-up is rooted deeply in the structural parallel
between the wavefunctions of the Rindler modes/boost eigen-modes and the IHO eigensystem.
Thus, the eigensystem of quantum mechanical modes in a relativistic setting is fully accessible in
the quantum Hall system under point-contacts. This is one of the central results of our work.

For completeness, we present an effective metric in the quantum Hall system following Ref. [83],
and relate it to the discussion of Rindler spacetime in the previous section. The effective velocity
of the electron in the quantum Hall system under the application of the potential V(x,y) = Axy is
given vy, = ﬁ aV /dx = (re/B)y. We see that a particle with a positive y-coordinate asymptotically
moves along the positive y axis, and similarly for particles with a negative y-coordinate. No particle
crosses over the origin. That point of no-return can be interpreted as the event horizon. An event
horizon is a null-surface in spacetime where locally the light cones are always pointing inward,
therefore allowing only one-way transport. The existence of an event-horizon in a spacetime implies
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a very specific structure of the spacetime metric. (See Appendix for detailed discussion on structure
of metric of spacetime with event horizons and the Rindler approximation.) The effective spacetime
metric with an ‘event horizon’ in the quantum Hall problem was then given by M. Stone [83]

1
ds? = —dt? + > dy’ (147)
Ueff(Y)
Using the vey = —ky with k = A/eB, we can write the metric in Euclidean time 7 = it as
ds?* = 2%(y)(dy? + k?y*dr?) (148)

where 2(y) = 1/(x?y?) is a conformal factor. This is equivalent to the Rindler metric we had studied
in the previous section. This map is “suggestive” of the Rindler metric in this non-Lorentzian context
as pointed out in [83], but it must be noted that the conformal factor blows up at the point of interest
y=0.

The derivation of Hawking-Unruh effect presented above is one of many distinct ways of
understanding this phenomenon [84-90] and is the simplest one. The modern day understanding of
the Hawking-Unruh effect and black hole thermality is in terms of entanglement [85]. The key fact
in that understanding is that the entanglement Hamiltonian is related to the Rindler Hamiltonian
and thus to the boost generator/IHO. In the next section, we discuss the relation of IHO to the boost
generator through Lie-algebra isomorphisms.

6.3. Massless Dirac equation on Rindler wedge and relation to IHO

The Rindler Hamiltonian is not an esoteric object from the view point of condensed matter
physics. It is not restricted to description of quantum modes near an event horizon in spacetimes.
The Rindler Hamiltonian has appeared in condensed matter setting in contexts as important as
bulk-boundary correspondence and entanglement spectrum of topological phases [91,92]. While
a detailed discussion of those topics are beyond the scope of this paper, in this subsection we
show that the IHO, the key object of our work IHO is related to the zero-energy Dirac equation
in the Rindler wedge in the zero mass limit. This specific Dirac equation is use to computed the
entanglement spectrum and edge states of a quantum Hall system [91,92].

The Dirac equation for zero-energy is given in 1+1 dimensions is by

(# +im)w =0, (149)

where § = y#9,, and m is the mass. The Dirac spinor is given by ¥ = (y_, ¥, ). The Dirac matrices
in 2 dimensions are given by y° = ¢*, y! = —ic”. Now, we want to express this in Rindler co-
ordinates (p, t). Let us recall that in terms of the ‘light-cone’ basis (v,u) = (t + x,t — x), the
transformation to Rindler wedge is given by u = pe’, v = pe~*. Writing the left/right chiral modes
Y4 as Y. = eT7 x4, one obtains the following equation for the chiral fields for zero mass [93]:

1
ii<,03,0 + 5))(1 = 0y X+ (150)

the Dirac equation for massless chiral fermions in the Rindler wedge reduces to the dilatation
operator, which in turn can be canonically transformed into an IHO Hamiltonian.

The relation between the Dirac equation in the Rindler space and the dilatation operator has
been recently studied in its relation to the Berry-Keating Hamiltonian and the zeros of the Riemann
zeta function [9]. It was also studied in the context of realization of the Rindler Hamiltonian and
the Unruh effect in cold atomic lattice systems [94]

In this section, we have demonstrated a parallel in the structure of quantum mechanical modes
near an event horizon and the eigensystem of IHO, which manifests in the same thermal form
emerging in both cases. The Hawking-Unruh effect is closely associated with scattering across a
[HO barrier. We saw that the relation between IHO and the Lorentz boost plays crucial role in this
discussion. In the next section we show that symmetry considerations suggest a deeper relation
between the boost and [HO.
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7. Symmetry considerations
7.1. Symmetry parallels through isomorphisms

The identity in the structure of the eigensystems of the Lorentz boost and the IHO realized
in the quantum Hall setting bridges two very disparate physical settings. We point out that the
parallel between the two structures can be put in a broader context of symmetry parallels between
these different platforms. By this we mean an equivalence between the two sets of objects — (i)
A class of potentials applied on a quantum Hall system. (ii) The group of Lorentz transformations
acting on a spacetime. Each of these platforms has an invariant structure and there are symmetry
transformations that preserve this invariant. We point out that there is an isomorphism between
the Lie-Algebras of the generators of the symmetry transformation in each case. The Lie-algebra
isomorphisms are only suggestive of an equivalence between the generators and their action on
a Hilbert space of states as a Hamiltonian. But an exact equivalence requires a much rigorous
mathematical proof, which is beyond the scope of this paper. Lie-algebra based methods have been
used in various contexts in physics [95-100].

We start with the quantum Hall setting by recalling the forms of the LLL potentials identifying
P = Ry/fs, X = R,/€p and renaming V1, V,, V3 as Ko, Ky, K3 respectively. Then, from Eq. (31) we
have the Hamiltonians in the LLL generated by applied potentials to be of the form

Ko = (P2 +X?), K;=(PX+XP), K,=(P*—=X? (151)

In this basis of LLL wavefunctions, these can be written as differential operators

1<—1 82+x2 1<—"xa+1
07 4\ ax2 T \Pax T2 )

1<—] o X?
27 4\ ax2

These are exactly the generators of the Lie-algebra s(2, R) (in a given representation) [34]. The
group SL(2, R) consists of 2 dimensional matrices of unit determinant. One could think of these
as area preserving deformations in two dimensions and there are three generators of such a
deformation. To get some intuition, one could think of a square as shown in Fig. 2: it can be rotated
within its plane and the area does not change — this is done by the rotation generator Ky. One
can stretch it sideways increasing the length and decreasing the width preserving the area or one
could deform it to a parallelogram. These two are the shear transformations. The non-trivial part is
that the order of successive transformations does not commute, but the non-commuting part will
always be related to one of the generators. This is expressed as the sl(2, R) ‘Lie-algebra’:

(152)

[K1, K3] = —iKo, [Ko, Ki] = iK2,  [Ky, Kol = Ky (153)

These generators are now the Hamiltonians acting on the LLL states. One can also think of them as
the generators of canonical transformations that preserve the commutation relation [Ry, R,] = —iﬁé.

Now moving to the context of a (241)-dimensional Minkowski spacetime, there are generators
of transformations of the spacetime (t, X) such that the metric ds®> = dt?> — dx? is preserved. These
generators form the Lie algebra so(2, 1) corresponding to the Lorentz group SO(2, 1). There are three
generators corresponding to one rotation and two boosts. The Lorentz group plays a fundamental
role in quantum field theory in generating representation of one-particle states of fields [101]. These
are the Lie-algebras corresponding to the distinct physical settings we are considering in this work.

The exact mathematical relation between the two Lie algebras is a Lie algebra isomorphism [97].

sl(2,R) ~ s0(2, 1) (154)

obtained by identifying the Lorentz generators (Ko, K1, K;) with the shear generators (L,Jq,]Jy)
of Egs. (24)-(26). One can map from one setting to the other such that the algebraic relation
in Eq. (153) is always preserved. In this sense, the shear generators or the saddle-electrostatic
potentials are equivalent to the boosts and the rotation generators in LLL to rotation generators
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Table 1
Table highlighting the parallels between the symmetry structures and platforms in the Hawking-Unruh effect and the
lowest Landau level.

Hawking-Unruh Lowest Landau level
Platform Space-time (x, t) Non-commutative plane [Ry, R)] = —iZf; in LLL
Invariant structure Space-time metric ds®> = dt? — dx? Commutation relation [R;, Rj] = —if3e;
Symmetry transformations  Metric preserving Lorentz Area preserving potentials s[(2, R):
transformations so(2, 1): boost shears/saddle (K, K>) and rotation/harmonic
(K1, K3) and rotations Ky Ko
Rindler Hamiltonian Boost Inverted harmonic oscillator

Algebra of transformations [K7, Ky] = —iKp , [Ko, K1] = iK> , [K2, Ko] = iKq
s0(2,1) ~ sl(2, R)

in spacetime in terms of the transformations they generate in the respective platforms. One must
be cautioned that this parallel at least at the level of Lie algebra isomorphism should not be taken
too literally. We are not interested in treating the quantum Hall system as an effective spacetime
as done in the field of analog gravity [102]. We are particularly interested in the action of the
generators on the quantum mechanical states. In the quantum Hall system, these generators are
the Hamiltonians in the LLL and generate the time evolution of states. A summary of the parallels
in the structures between the two setting is given in Table 1.
From the above isomorphism, one immediately sees that the two shear generators

1 1
K, = Z(P2 -X?) K= i (XP + PX), (155)

are equivalent to the two boosts. These are just the Hamiltonians for the IHO in the position and
the light-cone basis. Thus we have shown the equivalence between Lorentz boost and the IHO at
the levels of wavefunctions, dynamics and operators. This provides a deeper analogy between the
Rindler Hamiltonian dynamics and quantum mechanical barrier scattering. While the quantum Hall
effect is the platform we consider in this work for the realization of the [HO, there are many other
viable settings such as quantum optics and Josephson junctions.

The use of Lie-algebra isomorphisms to relate two different physical scenarios has been done in
a few earlier works. We have shown the equivalence between boost and IHO using Lie-algebras in
241 dimensions. The identification of the boost generator with the IHO is valid in 3+1-dimensions
as well as shown recently [12]. A similar Lie algebra isomorphism can also be used to realize Lorentz
kinematics in quantum optics as well [97], as discussed in Section 4.1.

The discussion in terms of these symmetry parallels was geared towards understanding appear-
ance of Hawking-Unruh thermality in quantum Hall effect. But this analysis gives us much more.
Now, we turn to other benefits of the structure laid out in our pursuit of a holistic understanding of
the Hawking-Unruh effect in the LLL setting. Now along these lines, we explore the phenomenon
of Wigner rotation, which is a manifestation of the non-commutation of boosts as given by the
Lie-algebra.

7.2. Wigner rotation

It has long been shown that two non-collinear Lorentz boosts give rise to a net boost in a given
direction followed by a rotation. Mathematically, this statement is given as —

(6, 2)5(0, ) = S(«, §)R(#) (156)

Here, S(«, B) indicates a Lorentz boost at an angle o with respect to the x-axis, with boost
parameter 8 and R(¢) is a rotation by angle ¢. The angle ¢ is called the Thomas-Wigner angle.
It is related to the parameters of the non-collinear boosts in the following way —

é sin 6 tanh % tanh 1

tan — = T
2 1+ cos6 tanh 3 tanh 7

(157)
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Similarly, it can also be determined that

cosh & = coshn cosh A + sinh 7 sinh A cos 6 (158)

sin 6 cos §(sinh A + tanh n)(cosh A — 1)
tana = — (159)
sinh A cos & + tanh (1 + cos? f(cosh A — 1))

The Wigner rotation may also be cast in the language of squeezing transformations. The local
isomorphism between the Lie algebras sp(2, R), sl(2, R), su(1, 1) and so(2, 1) has led to an inter-
changeable understanding of Lorentz boosts, and squeezing transformations. In terms of photonic
or equivalently, harmonic oscillator states, Lorentz boosts correspond to area-preserving transfor-
mations in Wigner phase space, and hence, squeezing of the states. Quantum optics literature is
replete with studies of squeezed states and their utility in interference experiments. By virtue of
the Lie algebra isomorphism, these ideas may be extended to quantum Hall systems. For instance,
in Refs. [25,26] it was shown that the dynamics of anyons in quantum Hall point contact systems
could be described by squeezed states.

Therefore, while the physics of squeezing in Wigner phase space and boosting in spacetime might
be different, Eq. (156) is fully applicable to both. Exploring Lorentz kinematics through quantum
optics has actively been pursued through a variety of possible suggestions for experiments in
quantum optics [97-100,103,104].

In essence, in these experiments one consecutively boosts a coherent state twice, and compares
its resultant parameters with those of a coherent state that has been rotated appropriately and
squeezed. If the “same” state results from the two experiments, then the result serves as a confirma-
tion of our expectations from Lorentz group kinematics. The central idea in these experiments boils
down to the ability to accurately tune the parameters pertaining to squeezing of optical coherent
states, or measuring the parameters of such squeezed states. From (157), one might determine the
Wigner angle. We propose that the application of the IHO onto the LLL, by means of strain operations
or QPCs offers yet another domain for experiments on the measurement of Wigner rotation.
Squeezed states are obtained in the LLL on time evolution by the IHO, and engineering Fabry-
Perot or Mach-Zehnder type electron interferometry setups in the LLL [25,26,105] can determine
the parameters associated with the squeezed state.

8. Wave equation in black hole spacetime, IHO and QNMs

In this last section, we study the physical manifestation of quasinormal modes in black hole
physics. Quasinormal modes play an important role in black hole physics as their manifestly
characteristic “excitations”. Black holes are characterized only by their mass, charge and angular
momentum. Due to their defining property of black holes as one-way membranes and the matter-
energy trajectories are always directed towards the singularity. Thus, classically no information
about the black hole properties is available for observers outside the horizon. But it was discovered
in the pioneering work [22] of C.V. Vishveshwara that through gravitational wave scattering one
could obtain the parameters of a black hole from the decay rates and ringdown frequencies of
quasi-normal modes. Since then QNMs have been object of intense study for multitude of physical
considerations ranging from gravitational waves to holography [23,106-109].. QNMs have been one
of the key measurements in the recent gravitational wave detections through LIGO [3].

Here we describe the basic set-up for studying QNMs of black holes and its relation to the IHO
resonances. We show that the IHO appears in a related scattering problem of an equation motion of
a field in black hole spacetime under WKB approximation. We also clarify the distinction between
the IHO appearing in this setting and that of Hawking-Unruh effect that we have already studied.

Wave equations appear as equations of motion for fields that correspond to matter or energy on
a background metric of a black hole. These could arise from perturbations of a scalar or higher spin
fields on a background metric. One could also obtain the equation of motion for the perturbation of
the metric in the Einstein equations, in which case the solutions correspond to gravitational waves.
In each of these cases, under further simplifications the wave equations reduce to a ‘Schrodinger
equation’ for scattering against a potential. The top of the scattering potential can be approximated
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as an IHO. The resonances thus obtained from the IHO are approximations to QNMs of the black
hole spacetimes. As mentioned in Section 2, we again stress here that IHO appearing in this context
is from a classical scattering scenario and we are not quantizing the fields under consideration.

As the simplest instance, let us consider the equation of motion for a massless scalar field ¢ in
curved spacetime. This takes the Laplacian form [23]

1 0
- leriem)

where gV is the metric of the spacetime and g is the determinant of the metric. For a Maxwell
field (spin-1 gauge field), Maxwell’s equation in the absence of a source reads

1 0
— Phg?V /—gF,;, | =0 161
NS (g g gk, ) (161)
One can obtain similar equations of for higher-rank fields, such as perturbations of the metric itself.
In stationary and rotationally invariant spacetimes, we can always decompose the field into a

“radial part” and an “angular” part. The angular part is given in terms of spherical Harmonics, Y.
For example, for a scalar field:

Pt T,0,¢)=e Ym0, o)W (r)/r (162)

Here r is the radial co-ordinate for example in the Schwarzschild spacetime. For the spherically
symmetric Schwarzschild metric in the vicinity of a black hole, this substitution reduces the wave
equation reduces to the following form in terms of an effective potential V

ad
ar2
Here r, is called the ‘tortoise co-ordinates’ defined as r, = r + 2GM log |55; — 11, and M is the

mass of the black hole. This equation resembles a quantum mechanical problem of scattering off a
potential barrier V. The effective potential V(r, w) for a Schwarzschild spacetime is given by

)
Vi) — (] ~ @)(l(zﬂ) L 2M(1 = 5)

O¢

Y+ V(r, o) = oy (163)

3 e ) (164)
For scalar field the spin s = 0, for Maxwell gauge fields s = 1 and for gravitational perturbation of
axial type s = 2 [19,21].

Let us perform a semiclassical analysis of our wavefunctions near the peak of the effective
potential [21]. Suppose we consider an incident wave that does not have enough energy to
pass through the potential. Letting r; and r, denote turning points of the potential V, the WKB
wavefunction outside the turning points is given by [21]

Wi(r) ~ V’l/“exp(:l:ifri[v(r’)]1/2dr’>, (165)

where i = 1, 2. Within the region between the turning points, the potential can be approximated
by a parabola.
Thus, we can expand around the peak of the potential at r = ry to get

V(r) = Vo + 1/2V5 (r)(r — ro)* + O((r — 10)°). (166)
Then the scattering equation becomes
d*y 1, 1
—— XY = ), 167
XU =W (167)
where x = (2V)/4e™/4(r — 1o), v + 1/2 = —iVp/(2V{)V/2. This is the Weber equation, which can

also be seen above to take the form of Schrodinger’s equation in the quantum mechanical problem
of scattering against an IHO potential. The effective potential is parametrized only by the mass of
the black hole. In the approximation that gives rise to IHO potential, the curvature of the effective
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potential is also a function of the mass of the black hole. This derivation shows an equivalence
between the classical scattering in a gravitational spacetime and a quantum mechanical scattering
problem.

The general solution of the Weber equation/IHO Schrodinger equation is given by

¥ = ADy(x) + BD_,_1(ix). (168)

The asymptotic forms at large x — oo are given by [21]

v v - elexg)
Y ~ Be~ 3T (4k)~ U (x — xg) VeI

eiiv% .y ) A\[’(x—xo)z (169)
A+ By2mr ———1e"4(4k)3 (x — xp)'e V2
+ [A+ BV F(v—i—l)] (4k)4( 0)
Here k = 1/2Q6/ and I'(v) is the Gamma function. To obtain purely outgoing wave, set the

coefficient of the incoming wave to zero. This involves finding v such that I'(—v) = oo. This leads
to a condition that v can take only integer values

Q/+/2Q) =i(n+1/2) n=0,1,2.. (170)

Therefore, by demanding asymptotically purely outgoing or incoming states, one obtains purely
imaginary ‘eigenvalues’ of the effective Schrodinger equation. These are the famous ‘quasi-normal
modes’ of black holes [22]. Thus, the WKB approximation for scattering against the effective
potential of the black hole spacetime leads to an IHO problem and the resonances correspond to
the quasi-normal modes.

The effective potentials for fields on black hole spacetimes have additional features such as local
minima, asymptotic behavior that are beyond the WKB approximation. Upto sixth order corrections
are computed over the WKB approximation [107]. The WKB approximation of black hole QNMs
with THO resonances is suitable only for low n and large angular momentum channels. The main
crucial fact that the IHO approximation captures is that the quantized decay rates of QNMs are
functions of the curvature of the potential maximum which is dependent on the black hole mass.
One could also approximate black hole QNMs with the resonances of Péschl-Teller potential and
Eckart potential [110-112].

9. Outlook

We have seen how the inverted harmonic oscillator serves as a central unifying model, tying
together diverse physical systems such as point contacts in the quantum Hall effect, scattering
from black holes, the Hawking-Unruh effect, and Lorentz transformations. Below we provide
a thorough survey of the manifestation of IHO in diverse areas of physics from string theory
to chaos. This provides a road map for further exchange of ideas between different fields and
possibly exploring them in the quantum Hall platform. Then we address another important topic,
namely entanglement, and discuss how it relates to the topic of Hawking-Unruh effect and certain
fundamental aspects of thermality and entanglement.

9.1. Roadmap to topics and works associated with the IHO

Let us now summarize - for the benefit of the reader - some of the diverse contexts in which
the THO has appeared. The IHO has been studied for its scattering properties in the texts of
Kemble [37] and Landau and Lifshitz [38]. Its interesting semiclassical aspects were studied by Ford
and Wheeler [113], with subsequent applications to nuclear decay and emissions [113]. A thorough
study of scattering amplitudes, wave packet dynamics, delay times, and the role of dissipation was
done in the thesis of G. Barton [7], which arguably remains to this day the most comprehensive
analysis of the IHO. More modern and mathematical analyses of the IHO can be found in works
of Chruscinski [39,40], Yuce [41], Shimbori and Kobayashi [42-44]. Another important context is
that of a parametrically driven SHO (where the frequency is varied periodically in time). The IHO
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appears in this setting in a particular limit [70,114]. The IHO has appeared in various physical
contexts, such as thermal activation [115] and cosmological inflation [116]. Its role in instability,
dissipation, and decoherence of open systems have been studied using von Neumann entropy,
Loschmidt echoes and Wigner function analysis [117-119]. The IHO has been known in the quantum
optics community as the “Glauber oscillator”, and has been experimentally realized [15]. It also
plays a role in generating squeezed states of light, which have been extensively investigated both
theoretically and experimentally in the quantum optics literature [57,103,120-122]. IHO appaears
in the fast cooling of atomic clouds with shortcuts to adiabaticity (STA) techniques [123]. There
are some intriguing paradoxical features in construction of Wigner function to describe quantum
mechanical tunneling across an IHO in phase space [124,125]. The IHO also appears in the context
of particle production in Schwinger effect[126]. The IHO has been studied in the context of string
theory as well as the ¢ = 1 matrix model [8,14,54,127-130]. The IHO is related to the ‘Berry-Keating
Hamiltonian’, which has been proposed to count the zeros of the Riemann zeta-function and has
signatures of quantum chaos [9,10,45,46]. More recently, the IHO has caught attention again in
the context of chaos and Lyapunov bound [16,131]. This is closely related to the appearance of
chaos in black hole dynamics [13,53,132]. The quasinormal modes of black holes are known to
be captured by the resonances of the IHO [21,110,111]. A much deeper connection between the
Rindler Hamiltonian capturing near-horizon quantum mechanical behavior and the IHO has also
been shown using projective light-cone construction methods [12].

Moving from fundamental quantum mechanical aspects to many-body, condensed matter set-
tings, the IHO has also made appearance since the early days of electron theory of metals. The IHO
appeared there in the context of magnetic breakdown of metals due to intra-band semi-classical
tunneling of trajectories in electron bands in magnetic field [133]. A more recent work on modern
semiclassical theory of magnetic breakdown makes central use of IHO scattering physics [134]. Of
direct relevance to the current work, the IHO has appeared in the quantum Hall systems under the
application of a saddle potential as has been seen in early work of Fertig and Halperin [24], detailed
above.

The realization of the IHO in quantum Hall systems and its relation to the Lorentz boost and
the Rindler Hamiltonian were pointed out by the authors recently [6]. Since then there have been
several recent works which have highlighted the appearance of IHO in the context of horizon
thermality, chaos and complexity [11,13,47-53].

This concludes a brief survey of the quantum mechanics of the IHO covering many intriguing
aspects. Below, we discuss the entanglement aspect of Hawking-Unruh effect and show how the
Rindler Hamiltonian appears as the entanglement Hamiltonian.

9.2. Half-space entanglement and thermal density matrix of the Rindler wedge

Now, let us consider the entanglement properties of some degrees of freedom defined in
Minkwoski spacetime (say some field ¢ defined over a time-slice t = 0). As we have explained in
the previous sections, the Rindler observers and their corresponding spacetime are restricted by the
light-cone structure. The right Rindler wedge is causally disconnected from the left Rindler wedge
and provides a natural partition of the Minkowski spacetime. Let us consider a state characterized
by the density matrix p. The system is partitioned into two sub-regions: x > 0 denoted by A and
x < 0 denoted by A. The ‘causal development’ of region A is the right Rindler wedge as shown
in Fig. 5. We want to calculate the reduced density matrix p4 corresponding to the region A, by
tracing/integrating out the degrees of freedom in regions A:

pa = Trzp (171)

The entanglement Hamiltonian or the ‘modular Hamiltonian’ is defined as the logarithm of the
reduced density matrix

H = —log(pa). (172)

The spectrum of this Hamiltonian is called the entanglement spectrum and is one of the powerful
tools in characterizing the entanglement properties of the system and it encodes information on all
the Renyi entropies.
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Usually the entanglement Hamiltonian is a highly non-local object and does not allow for a neat
analytical expression. Among few instances where it does take a local form, the case of the Rindler
wedge is one. For the partition of the Minkwoski space into the Rindler wedges, the Entanglement
Hamiltonian of the reduced density matrix for the right Rindler wedge is given by

6727'[HR

T Tr(e-27Hk)’

where Hy is the Rindler Hamiltonian [85]. The above expression is exactly the form of a thermal
density matrix with temperature T = 1/27x. The crucial point here is that the Rindler Hamiltonian
is given by the boost generator restricted to the right wedge.

We give a bird’s eye view into the derivation of the above equation. A full derivation with all the
subtleties can be found in Refs. [61] and [85]. Consider a configuration of scalar field ¢ in Minkwoski
spacetime. The vacuum wave functional starting in some arbitrary state |x) and evolves to the state
|¢), can then be written as a Feynman path integral over different field configurations

, B(t=0)=¢
Wolp] = lim (ple”™|x) = / Dge*/" (174)

$(r——00)=x

PA (173)

Here S is the Euclidean action corresponding to the Hamiltonian H. The initial state is given on a
t = 0 hypersurface on the whole range of —oo < x < oo. Consider a cut that separates Minkowski
spacetime into two regions belonging to the left and right Rindler wedges. The field configurations
in those regions is indicated by (|¢r), x > 0), (J¢r)x < 0).

The time-like co-ordinate in the right Rindler wedge t can be used as an angular co-ordinate
with periodicity 27 as explained in the previous section. The time evolution in Minkowski time
t = —oo to t = 0 is therefore mapped to evolution along the angular co-ordinate from t = 7 — 0.
One can make use of this mapping between the two to slice the path-integral in two different ways.
That is, the lower half plane of the path integral is covered in two different ways for the Minkowski
and Rindler time co-ordinates. On one hand one can slice the path integral into integration over
field configurations at constant time slices. At each time slice the range of —oco < x < oo is covered
in the Minkowski spacetime. On the other hand, for ¢ = 0, the range of co > x > 0 is covered in
the Rindler co-ordinates. Then the path integral becomes

$(r=0)=¢g

wolg1 = [ Dge S/ (175)
d(t—>m/K)=¢L

Due to the partition from the Rindler wedge the state (¢| is now a tensor product of (¢;| ® (¢r|.

The rotation in the angular Rindler time is generated by the Rindler Hamiltonian Hg. Therefore, the

path integral takes the form

Wolr, ¢rl = (drle™ ™™ |¢r) (176)

The final state ¢, is written as J|¢;), where J is the PCT (parity, charge conjugation and time-reversal)
conjugation operator which comes along with the Lorentz symmetry
Now integrating over the degrees of freedom on the left one obtains the

p = Tr;|0)(0] = e~ "Mk (177)

The above discussion shows that the quantum mechanical degrees of freedom on the right and left
Rindler wedges are entangled and restricting to one of the wedge ‘integrates’ over the other to
give a thermal density matrix. We see that the entanglement Hamiltonian from the above reduced
density matrix is actually the Rindler Hamiltonian.

This is an important and subtle point to be appreciated — What was considered an entanglement
Hamiltonian for a hypothetical entanglement cut of the spacetime has a manifestation as a physical
Hamiltonian that generates dynamics in a physical sub-region of the spacetime that is the Rindler
wedge. The reduced density matrix for that entanglement cut is now a physical thermal density
matrix. The form of the this Hamiltonian is exactly known. The Lorentz boost restricted to the
right Rindler wedge is the Rindler Hamiltonian. The detailed derivation of the Hawking-Unruh
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effect was restricted to non-interacting field, nevertheless showed the important role played by
the boost generator. The path-integral derivation is much more general in assumptions about
the quantum field considered and shows a much deeper connection between entanglement and
Hawking-Unruh thermality making manifest the identity between entanglement Hamiltonian and
Rindler Hamiltonian. The parallel we have shown between the boost eigensystem and that of IHO
thus opens up the possibility to probe entanglement aspects of the phenomenon in future.

Before ending this section we note that the entanglement Hamiltonian is in general a highly
non-local quantity and seldom can be written in terms of local operators. The fact that it is possible
in the context of Rindler wedge is consequence of a fundamental theorem called the Bisognano-
Wichmann theorem, the statement of which can be summarized that the vacuum is a thermal
state (as defined by Kubo-Martin-Schwinger condition) with respect to the generator of Lorentz
boosts [88]. The machinery underlying this theorem has played a key role in the field of quantum
gravity in defining constraints on energy content in a given region of spacetime [85,135-137].
Even more importantly, the underlying machinery lies at the foundation of quantum statistical
mechanics [138,139] in deriving Gibbs ensemble starting from operator algebras of quantum
mechanics. While we are not directly engaging with these foundational topics in this work, we
mention them for the interest of a curious reader interested in broader foundations of physics.

To relate the above discussion back to IHO in quantum Hall systems, we saw that the IHO is
closely related to the Lorentz boost generator. We also saw that there is a Lie-algebra isomorphism
between the generator of Lorentz group so(2, 1) and area preserving deformations/quantum Hall
potentials sl(2, R). It would be interesting to make this relation more precise by capturing all
the structures such as the Hilbert space and its representation, the action of the generators of
Lie-algebra on the Hilbert space and the path-integral in the context of sl(2,R) and relate to
quantum-Hall observables. This would entanglement studies in quantum point contact systems
into a different perspective, given that point contacts have already been studied in the light of full
counting statistics and entanglement.

9.3. Conclusion and future directions

As mentioned previously, this work is equal parts new results and review. We showed in a
gauge-invariant way how a variety of physically relevant quadratic potentials could lead to IHO
dynamics in the lowest Landau level. After reviewing the physics of the IHO and the formalism of
time-dependent scattering, we showed how time-resolved scattering measurements of electrons in
a quantum Hall system can reveal the signatures of quantized time-decay of QNMs. Even though the
[HO is a rather idealized model for a quantum point contact, we showed that the qualitative features
of these results are universal, by studying the more realistic P6schl-Teller potential. We showed
how the IHO appears in the context of black hole physics in the guise of the Rindler Hamiltonian,
where the same transformation of states that led to the S-matrix in quantum Hall scattering here
describes the spectrum of Hawking-Unruh radiation in an accelerated vacuum. Finally, we closed
the loop by showing the explicit algebraic mapping connected these diverse concepts.

Going forward, our results can be extended in several directions. First, our results on time-
dependent scattering in quantum point contacts can be applied to a diverse array of experimentally-
relevant mesoscopic devices. Preliminary analysis on graphene-based quantum Hall devices [6]
shows that the quasinormal mode frequencies for point contact potentials may be measurable in
experiment in the near future. Additionally, the algebraic parallels between the IHO and Lorentz
boosts open the door towards simulation of (special-)relativistic effects in quantum Hall systems. As
we have shown, a quasiparticle in the lowest Landau level passing through a point contact potential
undergoes a distortion that is algebraically equivalent to a Lorentz boost. By arranging different con-
figurations of point contact potentials, phenomena such as the non-commutation of Lorentz boosts
(Wigner rotation) can be probed experimentally. As the phase due to a Wigner rotation is intimately
related to the Hall viscosity [34,35,140], this offers a route towards an indirect measurement of the
nondissipative viscosity. From a more theoretical standpoint, it would be interesting to generalize
our work to correlated states of matter such as the fractional quantum Hall (FQH) effect. We expect
that (anyonic) quasihole states in FQH systems will transform under more exotic representations of
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the IHO Lie algebra, which could be probed in point contact and interferometer setups. This would
build off recent work studying squeezing of anyonic quasiholes [26]. Finally, our framework could
be applied to the study of entanglement in condensed matter systems in a more general fashion to
draw more concrete parallels to questions in black hole thermalization. To conclude, by placing the
inverted harmonic oscillator as the central concept, we have offered common ground for linking a
web of conceptual connections between quantum condensed matter physics and relativity.
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Appendix A. Rindler spacetime and Rindler approximation for black hole spacetimes

The Rindler wedge
A.1. Minkowski spacetime and boosts

The Minkowski spacetime is described by its metric expressed below in co-ordinates (t, X)
ds? = dt* — dx* = n,,dx"dx’, (178)

where t is the time-like co-ordinate and the x' are space-like co-ordinates. We shall set the
velocity of light ¢ = 1. Here we will restrict the discussion to 241 dimensional spacetime for the
convenience of later purposes, though all the following derivations are done in 3+1-dimensions.

The spacetime manifold has a ‘light-cone’ structure defined by ds?> = 0 as shown in Fig. 5. The
light-cone underlies the causal structure of the spacetime in that it sorts the regions into time-like,
space-like and light-like connected regions. In this sense, it is a ‘horizon’ for observers at every point
in spacetime. This aspect becomes important later.

The metric and thus the light-cone are preserved by a set of transformations involving trans-
lations, rotations, Lorentz transformations (from here on referred to as Boosts). This forms the
Poincare group. The rotations and boosts form a subgroup called the Lorentz group. We will be
particularly interested in the Lie algebra of the generators of this group. This algebra is represented
as s0(2, 1). This group comprises of a generator of rotation and two generators of boosts differing
in direction by 7 /4.

To recall, the boosts involve transformations of both space and time co-ordinates equivalent
to moving to a reference frame moving with a velocity parameter B: X' = y(x — Bt), t' =
y(t — Bx), where y = 1/,/1 — B2. The inherent underlying hyperbolic nature of the Lorentz group
is transparent when boosts are expressed in terms of hyperbolic transformations involving the
‘rapidity’ parameter § = tanh™! 8: ¥’ = xcosh6 — t sinh 0, t' = t cosh# — xsinh 0. Let us note here
that in going to Euclidean spacetime (x, 7), T = it, the boost is a rotation in (x, t) with imaginary
rapidity angle i6.

Finally, let us also define the ‘light-cone’ co-ordinates: u = t — x, v = t + x. This makes boosts
take a particularly simple form. On a boost with rapidity 6, the light-cone co-ordinates transform
as (u, v) — (ue’, ve™?).
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A.2. Uniformly accelerated observers

We will be particularly interested in the restricted region of the spacetime which is the space-like
regions subtended by the light-cones, which is called the Rindler wedges. Often, one is interested
only in the left Rindler wedge. This is motivated by the physical situation of uniformly accelerating
observers whose trajectories are restricted to these wedges. In the context of black holes, the
observers outside the event horizon are also restricted to the region (conformally) equivalent to
the wedge region.

We want to calculate the trajectory (x(t), t(t)) of the uniformly accelerating observers with
acceleration a. The relativistic velocity parametrized by proper time t along the observer’s trajectory
is ut(r) = % = (y, yv), where y is the Lorentz factor 1/+/1 — v? and ¥ is the usual velocity.
Using the condition n,,u”*u" = 1 and the acceleration defined as a*(r) = *(r) is orthogonal to
the velocity n,,a*u” = 0. This leads to a covariant condition for constant acceleration [141]

nwa‘a’ = —a. (179)

From this one obtains the equation %(v /~/1 —v2) = a. From this the trajectory of a uniformly
accelerating observer is given by a branch of the hyperbola x> — t? = a™2.

Now, to get the trajectories (x(t), t(tr)), remember that the proper time t is related to the
Minkowski time t by: t = fot dt’\/1 — v(t’)2. From this the trajectories are obtained:

1 1
t(r) = —sinh(ar) x(t) = — cosh(ar) (180)
a a
A.3. Rindler spacetime — the wedges

Rindler Spacetime and Rindler horizon: The trajectories derived for a uniformly accelerating
observer by themselves form geodesics of a spacetime called the ‘Rindler spacetime’. Rather than
considering trajectories of observers in Minkowski spacetime, we can study the Rindler spacetime
and its causal structure. They are solutions of the Einstein’s equations. This spacetime plays a very
important prototype for understanding the black hole thermal physics.

The trajectories equation (180) with positive acceleration is restricted to the ‘right wedge’ of the
Minkowski spacetime: x > 0 and |t| < x. The light-cone t — x = 0 acts as a ‘horizon’ for these set
of observers: The observers in that part of the spacetime cannot access any information on t > x.
Similarly, the accelerating observers with negative a are restricted to the ‘left wedge’ and have a
horizon. We are primarily interested in such horizons in spacetimes, which when considered along
with quantum mechanics give interesting results. An observer at rest in the Minkowski spacetime
(T(t), X(t) = (t,x)) can receive information from the region t > x and do not perceive such a
Horizon. Therefore, this notion of horizon is an observer dependent concept with a dependence on
the family of causal curves we consider.

A broad class of spacetimes including curved spacetimes of gravity, with a metric that is
‘conformally’ equivalent to the Minkowski metric are relevant for studying the horizon physics.
Such a metric has the form:

ds* = 2(5°, §1)((dg°) — (dg")), (181)

where the Conformal factor £2(£°, &) is a non-zero function. The trajectories of the light rays
form the ‘light-cone’. If one has a family of curves such as Eq. (180) then t — x acts as a horizon.
For a co-moving observer with proper time t, (§°(t), £'(t)) = (tr,0) on such a trajectory. The
change of co-ordinates from the Minkowski spacetime to a conformally equivalent spacetime is
then determined from that condition to be —

kel K&l

£%) = & sinh(xg®) &'(r) = S cosh(x£®) (182)

Here the acceleration of the observers is replaced by the parameter « of the Rindler spacetime and
we shall stick to this use. The metric now reads:

ds® = e ((dg%) — (dg' ). (183)
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These co-ordinates have a range: —oco < &% <= 00, —00 < &' < +oo. This covers only the
quarter of the Minkowski spacetime i.e. the ‘right Rindler wedge’. The family of £° = constant, £ =
constant curves are shown in Fig. 5. The family of accelerated observers also cannot perceive
distances larger than «~ 1 in the direction opposite to the acceleration [76]. An observer at a space-
like co-ordinate £! = 0, £° = 0 (an observer with acceleration « in Minkowski basically) measures
an infinite range of co-ordinates —oo < £! < 0, measure the distance:

0
1
d :/ exprélde! = — (184)
o K
This is restating that an accelerating observer cannot measure the entire Minkowski spacetime and
. . . . = 1 .
is bound by the horizon. One can change to a different space co-ordinate (1 — k&) = e<¢" to write
the metric as

ds’ = (1+«k&")(dg"Y —d(g'y? (185)
Finally, making a transformation (1 + «&!) = v/2«x€ and v = £° we get,
5 5 de?
ds? = (2ucl)dr? — — (186)
2kl

This form of the metric is quite important especially for focusing on the physics near a horizon. The
horizon in this case is located at ¢ = 0. The advantage of this metric is that it can be extended to
negative values of £ to cover all four quadrants of the spacetime [61].

As will be shown below the Rindler metric is extremely important for the following reasons:

e Other curved spacetimes with horizons can be approximated to the Rindler spacetime of the
above form near their horizon.

e This set of co-ordinates is also useful in making an ‘extension’ to cover the full Minkowski
spacetime. This is technically known as the ‘Maximal extension’ and is used in extending the
Schwarzschild co-ordinate that covers spacetime outside the black hole to Kruskal-Szekeres
co-ordinate that covers the entire spacetime except the singularity.

e A non-trivial transformation between how the clocks tick (time translation) in the Rindler
space and the completed space is the key feature in giving rise to thermality near horizons
and black holes.

A.4. Black holes

The simplest definition of a black hole is that it is a one-way membrane [142]. Causal trajectories
of matter and energy can only traverse through them in one-direction. A black hole is a ‘null-surface’
or loosely speaking a trapped ‘light-wave’ in that locally the normals to the surface are light-like.
Thus, they are ‘horizons’ beyond which information cannot be accessed by observer lying outside
the black holes. Black hole spacetimes such as Schwarzschild, Kerr, and Reissner-Nordstrom are also
exact solutions to Einsteins equations. Another simplest instance where one can see this horizon
behavior is in the context of a Minkowski spacetime, which is flat and endowed with a light-cone
structure. This light-cone acts as a horizon for accelerating observers. In fact, the spacetime near the
black hole horizons can be approximated in terms of ‘Rindler spacetime’ [143], which is associated
with the description of spacetime for accelerating observers in Minkowski spacetime.

A.5. Rindler approximation to black hole horizons

Now we shall show that a general curved static spacetime with a horizon can be approximated
near its Horizon can be to Rindler spacetime. This discussion will closely follow the elegant line of
reasoning similar to Sec.2 of [144]. We saw that the Schwarzschild metric is of the form:

2
ds? = f(r)dt® — j% +r2de?, fr)= (1 - ¥> (187)
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The horizon in this case was located at r = 2M. One can in fact consider metrics of the above form
with an arbitrary function f(r), that has a simple zero at r = ry, which is the event horizon. The
near the horizon, the metric can be written as (focusing only on the time-like and space-like part
of the metric):
ds? ~ f'(ryy)(r — ry)dt? dr’ (188)
~ H —IH IRV
frru)(r — 1)
Introducing « = f'(ry)/2 and £ = (r — ry), the metric reads as
de?
ds? ~ 2cedt? — — (189)
2kl
This is exactly the form of the Rindler metric we derived in the previous sections. This derivation is
made rigorous for a general spacetime in the following. This illustration that any black hole horizon
spacetime approximates to Rindler spacetime near the horizon is extremely important especially
for the Hawking-Unruh effect as the aspects of Rindler spacetime directly feed into its derivation.
Consider a spacetime ds? = g.wdx*dx'with the following conditions:

1. Static in that given co-ordinate representation of the metric go, = 0, ga(t, X) = Zan(X)

2. goo(x) = N?(x) that vanishes on a 2-hypersurface #. The hypersurface is defined by the
equation N2 = 0.

3. 9,N is finite and non-zero on H

4. All other metric components remain finite and regular on H

The metric is then written as:
ds? = N2(x")dt? — yap(x*)dx%dx” (190)

Now, a family of observers can be constructed similar to the accelerating observers in Minkowski
spacetime. These observers are characterized by X = constant, four-velocity u, = N(Sg and four
acceleration a* = u"d,u* = (0, —a). The spatial components of this are given by a, = (9,N)/N.
The unit normal to the hypersurface N = constant is n, = 9,,N(g""9,N3,N)"/? = a4(apa’)~/2. The
normal component of the four-acceleration is related to the surface gravity «.

We can go to a co-ordinate where N is treated as one of the spatial co-ordinates and other
spatial co-ordinates x* are along the transverse directions to the N=constant surface. Such a co-
ordinate change is valid at least locally. The components of the acceleration along N are given by
aV = a*9,N = Na?. The metric components in this set of co-ordinates are

g™ =y®y,No,N = N*a®>, g™ = No* (191)

The metric line element now reads:

ds* = N%dt? — dn® d? (192)
(Na)? -
where dX? is the line element on the transverse surface.

The unit vector normal to the constant N surface as we calculated is given by n, and the
component of the acceleration along this vector becomes the surface gravity of the horizon « at
the N=0 surface i.e. in the limit N — 0, Na — k. Therefore, in the limit of going towards the
horizon N — 0, the metric reads:

dN?
ds* = N°dt*> — —- — d2? (193)
K
Finally to switch to Rindler-like metric the transformation is d¢ = dN/a, £ ~ N?/(2«):
de?
ds? = 2icldt* — — +de? 194
s « 2kl iy (194)

We have shown that a general static spacetime with a horizon can be approximated to the Rindler
spacetime in the limit of going towards horizon. This could be extended to stationary spacetime
like the Kerr too but with much more complicated analysis.
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Appendix B. Rindler Hamiltonian in condensed matter

In the following we give an overview of the occurrence of Rindler Hamiltonian in the discussion
of bulk-boundary correspondence of topological phases. The discussion in this section is more in the
spirit of survey of previous works and is at a qualitative level. Our intention is motivate the idea that
the Rindler Hamiltonian is not an exotic object restricted to the context of Hawking-Unruh effect
but has wider relevance in condensed matter setting. The following two sections can be skipped
without losing the flow of key ideas in the paper.

The bulk-edge correspondence is one of the fundamental concepts in our understanding of
topological phases. A specific way of characterizing this correspondence using the ground state
entanglement spectrum was initiated by Li and Haldane [145] and hinted at in Ref. [146]. There
have been numerous works proving it using various methods [91,147-149]. The key idea is that
the entanglement spectrum contains within it key properties of the topological phase. The “low-
lying” part of the spectrum, for example, directly corresponds to the properties of the edge states at
the boundary of a topological phase. Here we shall focus on the approach taken in works Swingle
and Senthil [91] and Hughes et al. [92], where they have made use of the Rindler Hamiltonian
to calculate the entanglement spectrum and corresponding edge states. The key focus is on the
correspondence between 'virtual edge states’ at an entanglement cut in the bulk and the physical
edge states at the boundary of the system. These ‘virtual edge states’ correspond to the gapless
part of the entanglement spectrum. Both these works consider Lorentz invariant theories, though
arguments are given for validity of the results even in the presence of Lorentz symmetry violations.
Consider a time slice of a system on x-y plane. Suppose the system is characterized by some
quantum hall phase present in the region x < 0. Then the boundary of the system at x = 0
has a chiral edge mode. Imagine an entanglement cut through the system given by y = 0. The
entanglement cut divides the system into right and left Rindler wedges. In order to calculate the
entanglement properties of the quantum Hall state one considers a Chern-Simons theory in the
bulk as the low-energy effective description and integrate out the left half of the system to obtain
the reduce density matrix. One could also consider a simpler case of Dirac fermions on the right
Rindler wedge in order to compute the entanglement spectrum [91]. The Dirac equation can be
solved with a domain wall profile for the mass term in the x-direction. On solving the equation
one finds a zero-mode at the edge of the quantum hall phase which describes a chiral mode. On
the other hand the Dirac equation can be solved in the bulk but imposing a “brick-wall” boundary
condition near the entanglement cut to obtain the ‘virtual’ edge mode at the cut [92]. What this
demonstrates is that there is ‘virtual’ edge state in the entanglement spectrum of the Dirac fermion
on a Rindler wedge, signaling its relation to the physical edge mode at the boundary of the system.

A deeper understanding of this was obtained by computing the gravitational anomalies of the
bulk and the edge theories when coupled to a gravitational background [92,150]. The Chiral edge
mode is described by a 14-1 dimensional conformal field theory (CFT). It is known that such a CFT
exhibits a gravitational anomaly when coupled to a background metric. Now suppose one partitions
the system as described above but deforms the half-space in the Rindler wedge through a local
boost. The expectation is that the entanglement entropy computed using that partition is preserved
as the domain of dependence is preserved under such a boost. But coupling to the back ground
metric leads to an anomalous change in the entanglement entropy of the edge theory. It was shown
that this anomaly is in fact canceled from another gravitational anomaly arising from the ‘virtual’
edge mode at the entanglement cut and this happens through an anomaly inflow mechanism. A
crucial relation to our current work comes in the way such a ‘boosting’ of the chiral edge theory is
realized in a Chern insulator for example. It is realized through changing the velocity of the chiral
mode at the edge theory, which also amounts to changing one of the parameters in the Chern
insulator Hamiltonian. Applying potential to the quantum hall system essentially modifies the ‘drift
velocity’ of the edge state and this fact was used to create an analogue of Hawking radiation in a
quantum Hall system [83].
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