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Abstract

The range of a trigonometric polynomial with complex coefficients can be interpreted as the image of the
unit circle under a Laurent polynomial. We show that this range is contained in a real algebraic subset of
the complex plane. Although the containment may be proper, the difference between the two sets is finite,
except for polynomials with a certain symmetry.
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1. Introduction

In 1976, Quine [6, Theorem 1] proved that the image of the unit circle T under an
algebraic polynomial p of degree n is contained in a real algebraic set, that is, a set
V = {(x,y) € R?: g(x,y) = 0}, where ¢ is a polynomial of degree 2n. In general, p(T)
is a proper subset of V, but we will show that V \ p(T) is finite and that V = p(T)
whenever V is connected.

Consider a trigonometric polynomial P(z) = });__, are™, t € R, with complex
coeflicients ay. It is natural to require a_,,a, # 0. The range of P is precisely the image
of the unit circle T under the Laurent polynomial p(z) = };__,, axZ*. This motivates
our investigation of p(T) for Laurent polynomials. Our main result, Theorem 2.1,
asserts that p(T) is contained in the zero set V of a polynomial of degree 2 max(m, n).
This matches Quine’s theorem in the case when p is an algebraic polynomial, that is,
m = 0. The difference V' \ p(T) is finite when m # n, but may be infinite when m = n.

In Section 4, we investigate the exceptional case when V \ p(T) is infinite and we
relate it to the properties of the zero set of a certain harmonic rational function. The
structure of zero sets of such functions is a topic of current interest with applications
to gravitational lensing [1, 2].
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252 L. V. Kovalev and X. Yang [2]

Finally, in Section 5, we use the algebraic nature of the polynomial images of T to
estimate the number of intersections of two such images, that is, the number of shared
values of two trigonometric polynomials.

2. Algebraic nature of polynomial images of circles

A real algebraic subset of R? is a set of the form {(x,y) € R?: g(x,y) = 0}, where
q € R[x,y] is a polynomial in x,y. Consider a Laurent polynomial
n
p(2) = Z i forallzeC\ {0}, @2.1)
k=—m
where m > 0, n > 1 and a_,,a, # 0. This includes the case of algebraic polynomials
(m = 0) because the condition ag # 0 can be ensured by adding a constant to p, which
does not affect the algebraic nature of p(T). Since we are interested in the image of the
unit circle, which is invariant under the substitution of z~! for z, it suffices to consider
the case m < n.

THEOREM 2.1. Let p be the Laurent polynomial (2.1) with m < n.

(@) The image of T under p is contained in the zero set V of some polynomial
h € R[x,y] of degree 2n.

(b) Ifhis expressed as a polynomial he € C[w, w] via the substitution w = x + iy, the
degree of hc in each of the variables w and w separately is m + n.

(¢) Ifm < n, then the set V \ p(T) is finite.

(d) Inthe case m = n the set V \ p(T) is finite if and only if V is bounded.

The proof of Theorem 2.1 involves two polynomials

g =7"(p(x) —w) and g*(z)=7""g(1/2) = " (p(1/2) — w) (2.2)

which are the subject of the following lemma.

Lemma 2.2. The resultant he = res(g, g*) of the polynomials (2.2) is a polynomial in
Clw, w] of degree 2n. Moreover, hc has degree m + n in each of the variables w and w
separately. Finally, h(x,y) := hc(x + iy, x — iy) is a polynomial of degree 2n in R[x, y].

Proor. Both g and g* are polynomials of degree m + n in z, except for the case m =0
and w = ag, which we ignore in this proof because considering a generic w is enough.
By definition, the resultant of g and g* is the determinant of the following matrix of
size 2(m + n).

a_m ... DEEERY ao—w ... a}’l, () 0
0 0
R= 0 0 a_p, apg—w ay,
| a, ag—w a_, 0o o0}
0 0
0 0 a, ag—w a_,
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All appearances of w or w in R are in the columns numbered m + 1 to m + 2n, which
are the middle 2n columns of the matrix R. Therefore /¢ is a polynomial of degree at
most 2n.

First, let us prove that ¢ has degree n + m in each variable separately. It obviously
cannot be greater than n + m, since each of w and w appears n + m times in the matrix.
The position of ay — w in the top half of the matrix shows that the Leibniz formula for
det R contains the term +a, "a_,,"(ag — w)*™ and no other terms with the monomial
w™  Therefore the coeflicient of w"*™ in his +a, "a_," # 0. Similarly, the coefficient
of w*" in h is +a”, a # 0. This proves that ¢ has degree n + m in w and w separately.

When m = n, the preceding paragraph shows that - has degree 2n in w and w
separately, which implies that deg i = 2n.

We proceed to prove that deg hc = 2n in the case m < n. Let R; be the matrix
obtained from R by replacing all constant entries in the columns m + 1,...,m + 2n
by 0. Since the cofactor of any of the entries we replaced is a polynomial of degree
less than 2n, the difference det R — det R has degree less than 2n. Thus, it suffices to
show that det R; has degree 2n. When deriving a formula for det R; we may assume
that w # ag. Let us focus on the columns of R; numbered m + 1,...,2m. The only
nonzero entries in these columns are:

e qagy—wat(j—m,j)form+1<j<2m;and
o gy—wat(j+m,j)forn+1<j<2m.

We can use column operations to eliminate all nonzero entries in the upper-left
m X m submatrix of R;. Since this submatrix is upper-triangular, the process only
involves adding some multiples of the jth column with m + 1 < j < 2m to columns
numbered k, where j —m < k < m. Such a column operation also affects the bottom
half of the matrix, where we add a multiple of the entry (j + m, j) to the entry (j + m, k).
Since (j+m) —k < j+m—(j —m)=2m < n+ m, the affected entries of the bottom
half are strictly above the diagonal {(n + m + j, j): 1 < j < m}, which is filled with
the value a,. In conclusion, these column operations do not substantially affect the
upper-triangular submatrix formed by the entries (i, j) withn+m+ 1 <i<n+2m,
1 < j < m, in the sense that the submatrix remains upper-triangular and its diagonal
entries remain equal to a,,.

Similar column operations on the right-hand side of the matrix eliminate all nonzero
entries in the bottom right m X m submatrix of R;. Let R, be the resulting matrix: that
is,

0 -+ ag—w 0 0O 0

0o . 0

R = 0 0 0 . ag—w a,
L e a0 —w 0 0 0
0 0

0 0 0 Qo -w 0
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We claim that det R, = +|a,|*"|ag — w|*". Indeed, the first m columns of R, contain only
an upper-triangular submatrix with @, on the diagonal; the last m columns contain only
a lower-triangular matrix with a, on the diagonal. After these are accounted for, we
are left with a 2n X 2n submatrix in which every row has exactly one nonzero element,
either ap — w or its conjugate. This completes the proof of deg hc = 2n.

Define h(x,y) = he(x + iy, x — iy) for real x,y. We claim that # is real valued, and
thus has real coefficients. Recall (for example, [4, page 11]) that the resultant can be
expressed in terms of the roots of the polynomials g, g*. Let zy, . . ., Zy+», be the roots of
g listed with multiplicity. To simplify notation, we separate the cases m > 0 and m = 0.

Case 1: m> 0. We have [12]" zx = (=1)"""a_,,/ay,; in particular, z; # 0 for all k. It
follows from (2.2) that g* has roots 1/z; for k =1,...,n + m. The leading terms of g
and g* are a, and a_,,, respectively. Thus,

n+m n+m ZZ_ _ 1
—_— —_— —_— 1
res(g, ") = @man)"" | (@ = 1/2) = @a)™" | | “2—
i,j=1 i,j=1 <
m+n —(n+m) n+m
=@ ([17) []ezm-
j=1 ij=1
n+m

= (1" @)™ @ fac) " | @z - 1)
ij=1
n+m
— (_1)n+m|an|2(m+n) H(Ziz_j -1). (2.3)

ij=1
The latter product is evidently real.

Case 2: m=0. We have [/ zx = (=1)"(ap — w)/ay,; in particular, z; # 0 for all k
provided that w # ay. The rest of the proof goes as in case m > 0, with a_,, replaced
by ap — w throughout. Since a_,, cancels out at the end of (2.3), the conclusion that &
is real valued still holds. O

The following description of the local structure of the zero set of a complex-valued
harmonic function is due to Sheil-Small (unpublished) and appears in [10].

THeEoREM 2.3 [10, Theorem 3]. Let Q C C be a domain and let f: Q — C be a harmonic
Jfunction. Suppose that the points {z};. | are distinct zeros of f which converge to a
point 7 € Q. Then 7* is an interior point of a simple analytic arc y which is contained
in £~1(0) and contains infinitely many of the points z.

The fact that z; € y for infinitely many & is not stated in [10, Theorem 3] but is a
consequence of the proof.

Proor oF THEOREM 2.1. (a)—(b) Suppose that w € p(T). Then the rational functions
p(z) —w and p(1/7) — w have a common zero, namely, any preimage of w that lies on
T. Consequently, the polynomials (2.2) have a common zero, which implies that their
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resultant A¢c = res(g, g*) vanishes at w. Claims (a) and (b) follow from Lemma 2.2. For
future reference, note that the zero set of 4 can be written as

V=h"'0)= p(E) where E ={z€C\{0}: p(z) = p(1/3)}. 2.4)

(c) In view of (2.4), to prove that V' \ p(T) is finite it suffices to show that E \ T is
finite. Let g(z) = p(z) — p(1/Z), which is a harmonic Laurent polynomial. Since m < n,
it follows that g(z) = p(z) + O(|2I"™) = a,z" + O(|z"™") as || = co. Thus E is a bounded
set. By symmetry, E is also bounded away from zero.

Suppose that £ \ T is infinite. Then it contains a convergent sequence of distinct
points z; — z* # 0. By Theorem 2.3, there exists a simple analytic arc I' such that
gr =0 and z" is an interior point of I'. In the case z* € T, the arc I is not a subarc of
T because it contains infinitely many of the points z; which are not on T. By virtue
of its analyticity, y has finite intersection with T. By shrinking y we can achieve that
yNT={z}if z* € T, and y N T = @ otherwise.

Since the endpoints of y lie in E \ T, the process described above can be iterated
to extend y further in both directions. This continuation process can be repeated
indefinitely. Since E is bounded, we conclude that E contains a simple closed analytic
curve I, as in the proof of [10, Theorem 4].

If T does not surround zero, then the maximum principle yields ¢ = O in the domain
enclosed by I', which is impossible since ¢ is nonconstant. If I' surrounds zero, then the
complement of I' U T has a connected component G such that 0 ¢ G. The maximum
principle yields g = 0 in G, which is a contradiction. The proof of (c) is complete.

(d) The proof of (c) used the assumption that m < n only to establish that the set
E in (2.4) is bounded. Thus the conclusion still holds if m = n and E is a bounded
set. Recalling that V = p(E) and |p(z)] = oo as |z| = oo, we find that E is bounded
whenever V is bounded.

Finally, if V is an unbounded set, then V \ p(T) must be infinite because p(T) is
bounded. O

Since a real algebraic set has finitely many connected components [9, Theorem 3],
it follows from Theorem 2.1 that when V' \ p(T) is finite, the set p(T) coincides with
one of the connected components of V and the other components of V are singletons.
The number of singleton components of V can be arbitrarily large, even when p is an
algebraic polynomial.

Remark 2.4. For every integer N, there exists a polynomial p such that the set V' \ p(T)
described in Theorem 2.1 contains at least N points.

Proor. Let ay,...,ay be distinct complex numbers with 0 < |a;| < 1 fork=1,...,N.
Using Lagrange interpolation, we get a polynomial g of degree 2N — 1 such that
q(ap) = q(1/a;) =kfork=1,...,N. Let r be a polynomial of degree 2N with zeros at
the points a; and 1/a;, k = 1,..., N. Since infy |r| > 0, for sufficiently large constant
M the polynomial p = g + Mr satisfies g(ay) = g(1/a;) = kfork=1,...,N as well as
|[p(z)| > N for z € T. It follows that the algebraic set V, as described by (2.4), contains
the points 1, ..., N, none of which lie on the curve p(T). O
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Ficure 1. Nonalgebraic image of the circle.

3. Examples

First, we observe that p(T) need not be a real algebraic set, even for a quadratic
polynomial p.

Exampie 3.1. Let p(z) = 2> + 3z + 1. Then p(T) is not a real algebraic set.

Proor. Direct computation of the polynomial / in Theorem 2.1 yields

l-w 3 1 0

0 I-w 3 1
Moy =deti 3 5 0

o 1 3 1-w

= x* +2x%% +yt —4x® — 4xy? - 5x% - 9y,

where w = x + iy. By Theorem 2.1, the set 4#~'(0) contains p(T). Since p # 0 on T,
we have 0 € 471(0) \ p(T). If p(T) was an algebraic set, then V would be reducible.
However, A is an irreducible polynomial. Indeed, the fact that the zero set of & is
bounded implies that any nontrivial factorisation & = fg would have deg f = deg g = 2.
This means that V is the union of two conic sections, which it evidently is not, as p(T)
is not an ellipse (see Figure 1). O

According to Theorem 2.1, the set p(T) can be completed to a real algebraic set
by adding finitely many points, provided that p is either an algebraic polynomial or a
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Laurent polynomial with m < n. The following example shows that the case m = n is
indeed exceptional.

ExampLe 3.2. Let p(z) = z +z~'. Then p(T) is the line segment [—2,2]. The smallest
real algebraic set containing p(T) is the real line R.

The claimed properties of Example 3.2 are straightforward to verify. In addition,
the polynomial 4 from Theorem 2.1 can be computed as h(x, y) = —4y?, which shows
that & is not necessarily irreducible.

4. Zero set of harmonic Laurent polynomials

The relation (2.4) highlights the importance of the zero set of the harmonic Laurent
polynomial P(z) = p(z) — p(1/Z), where p is a Laurent polynomial. It is not a trivial
task to determine whether a given harmonic Laurent polynomial has unbounded zero
set: for example, Khavinson and Neumann [2] remarked on the varied nature of zero
sets for rational harmonic functions in general. In this section, we develop a necessary
condition, in terms of the coefficients of p, for the function P to have an unbounded
zero set.

Suppose that p is a Laurent polynomial (2.1) such that the associated function
P(z) = p(z) — p(1/%Z) has unbounded zero set. Consider the algebraic part of P, namely,

n

q(z) = Z ozt -

m
a_ka. 4.1)
k=1 k=1

Then ¢ is a harmonic polynomial such that liminf,_, |g(z)| is finite. In other words, ¢
is not a proper map of the complex plane.

One necessary condition is immediate: if m < n, then |g(z)| = a,|z|" + o(|z|*) as
z — oo. Thus P can only have an unbounded zero set if m = n.

We now look for further conditions on a harmonic polynomial which will ensure
that it is a proper map of R? to R?2. More generally, given a polynomial map
F=(Fy,...,F,): R" > R" let us decompose each component F; into homogeneous
polynomials and let H(F) be the homogeneous term of highest degree in Fy. Write
H(F) for (H(FY),...,H(F,)) so that H(F) is also a polynomial map of R”. The
following result is from [7, Lemma 10.1.9].

Lemma 4.1 (L. Andrew Campbell). If H(F) does not vanish in R" \ {0}, then the map
F: R" — R" is a proper map, that is, |F(x)| — oo as |x| — oo.

Lemma 4.1 can be restated in a form adapted to harmonic polynomials in C.

Lemma 4.2. Consider a harmonic polynomial q(z) = Zzzo(akzk + biZ5) of degree n > 1
as a map from C to C.

(@) Iflay| # by, then q is proper.
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(b)  Iflay| = bl let € T be such that na, = nby. If nax = nby for k=1,...,n, then
q is not proper. Otherwise, let K be the largest value of k such that nay, # nby. If
there is no z # 0 such that

Re(na,z") = 0 = Im((nax — nbx)z%),
then q is proper.
Proor. Part (a) follows from the reverse triangle inequality: that is,
lg(2)] = llan| = [ball 2" + o(lz")  as n — oo.

To prove part (b), observe that

n
Im(ng(2) = ) Im((gax - 7bi"). (4.2)
k=0
If nay = nby fork = 1,.. ., n, then Im(57¢) is constant, which means that, up to a constant

term, 7q is a real-valued harmonic function. By Harnack’s inequality, a nonconstant
harmonic function #: C — R must be unbounded from above and from below, and
therefore g~'(0) is an unbounded set. Since g is constant on an unbounded set, it is not
a proper map.

Finally, suppose that K, as defined in (b), exists. It follows from (4.2) that

H(Im(nq(2))) = Im((nax — nbg)zX).

Since also L
H(Re(np(2))) = Re((na, + nb,)7") = 2Re(na,z"),

the last statement in (b) follows by applying Lemma 4.1 to (Re(nq), Im(nq)) considered
as a map of R? to R2. O

We are now ready to apply Lemma 4.2 to the special case P(z) = p(z) — p(1/2),
where p is a Laurent polynomial. Recall that, in view of Theorem 2.1 and the
relation (2.4), the following result describes when the image p(T) has infinite
complement in the real algebraic set V containing it.

Tueorem 4.3. Suppose p(z) = Y;__, axZ" is a Laurent polynomial with a,a_, # 0. Let
P(z) = p(z) — p(1/2). If the zero set of P is unbounded, then one of the following holds.

(@) p(T) is contained in a line.

(b) There exists n € T such that na, + na_, = 0. Furthermore, there is an integer
ke{l,...,n—1} such that the harmonic polynomial Im((na; + na_)z") is
nonconstant and shares a nonzero root with the harmonic polynomial Re(na,z").

As a partial converse, if (a) holds, then the zero set of P is unbounded.

Although part (b) of Theorem 4.3 is convoluted, it is not difficult to check, in
practice, because 7 is uniquely determined (up to irrelevant sign) and the zero sets of
both harmonic polynomials involved are simply unions of equally spaced lines through
the origin.
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Proor. We apply Lemma 4.2 to the polynomial g in (4.1), which means letting
by = —a_y for k=1,...,n. Since g is not proper, part (b) of the lemma provides two
possible scenarios, which are considered below.

One possibility is that there exists a unimodular constant i such that na; = —na_;
fork=1,...,n. Therefore, forz € T,

Re(7p(2)) = Re(ao) + ) Re(ai* +7az) = Re(a),
k=1

which means that p(T) is contained in a line. The converse is true as well. If p(T)
is contained in a line, then there exists a unimodular constant 7 such that Re(np) is
constant on T. Considering the Fourier coefficients of Re(np), we find nay + na_; =0
forall 1 <k <n.

The other possibility described in Lemma 4.2(b) transforms into part (b) of
Theorem 4.3 with the substitution by = —a_y. O

5. Intersection of polynomial images of the circle

As an application of Theorem 2.1, we establish an upper bound for the number of
intersections between two images of the unit circle T under Laurent polynomials. It
is necessary to exclude some pairs of polynomials from consideration because, for
example, the images of T under any two of the Laurent polynomials

Pa@=z+7'+a for —2<a<2,

have infinite intersection. This is detected by the computation of the polynomial / in
Theorem 2.1, according to which h(x, y) = —4y? regardless of a.

THeEOREM 5.1. Consider two Laurent polynomials

n

p@) = Z a?  and p(z) = Z b7,

k=—m k=-r

wherem,r >0, n,s > 1 and a_,a,b_,b; # 0. Then the intersection p(T) N p(T) consists
of at most 4ns — 2(n — m)(s — r) points unless the corresponding polynomials h and h
from Theorem 2.1 have a nontrivial common factor.

In the special case of algebraic polynomials, m = r = 0, the estimate in Theorem 5.1
simplifies to 2ns. In this case, the theorem is due to Quine [6, Theorem 3], where
the bound 2ns is shown to be sharp. A related problem of counting the self-
intersections of p(T) was addressed in [5] for algebraic polynomials and in [3] for
Laurent polynomials.

Proor. Let hc € C[w,w] be the polynomial associated to p by Theorem 2.1(b).
Consider its homogenisation

Hw,W,{) = {"heW/L,W/)).
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Since hc has degree m + n in the variable w, it follows that H has a zero of order at
least 2n — (m + n) = n — m at the point (1,0, 0) of the projective space CP?. Similarly,
it has a zero of order at least n — m at the point (0, 1, 0).

The homogeneous polynomial H associated with p has zeros of order at least s — r
at the same two points. Therefore the projective curves H = 0 and H = 0 intersect
with multiplicity at least (n — m)(s — r) at each of the points (1,0,0) and (0, 1, 0) [8,
Theorem 5.10, page 114].

Bezout’s theorem implies that, unless H and H have a nontrivial common factor,
the projective curves H = 0 and H = 0 have at most deg H deg H = 4ns intersections in
CP?, counted with multiplicity. Subtracting the intersections at the two aforementioned
points, we are left with at most 4ns — 2(n — m)(s — r) points of intersection in the affine
plane. O
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