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When translational symmetry is broken by bulk disorder, the topological nature of states in topological
crystalline systems may change depending on the type of disorder that is applied. In this work, we char-
acterize the phases of a one-dimensional chain with inversion and chiral symmetries, where every disorder
configuration is inversion symmetric. By using a basis-independent formulation for the inversion topological
invariant, chiral winding number, and bulk polarization, we are able to construct phase diagrams for these
quantities when disorder is present. We show that unlike the chiral winding number and bulk polarization, the
inversion topological invariant can fluctuate when the bulk spectral gap closes at strong disorder. Using the
position-space renormalization group, we are able to compare how the inversion topological invariant, chiral
winding number, and bulk polarization behave at low energies in the strong disorder limit. We show that with
inversion-symmetry-preserving disorder, the value of the inversion topological invariant is determined by the
inversion eigenvalues of the states at the inversion centers, while quantities such as the chiral winding number
and the bulk polarization still have contributions from every state throughout the chain. We also show that it is
possible to alter the value of the inversion topological invariant in a clean system by occupying additional states
at the inversion centers while keeping the bulk polarization fixed. We discuss the implications of our results
for topological crystalline phases in higher-dimensional electronic systems, and discuss potential experimental
realizations in ultracold-atomic systems.
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I. INTRODUCTION

The relationship between symmetry and topology has been
of fundamental importance in establishing the classification
of symmetry-protected topological phases (SPTs) [1,2]. In
noninteracting systems, the tenfold periodic table provides a
classification of strong topological phases based on the pres-
ence or absence of charge-conjugation, time-reversal, and/or
chiral symmetries [3–6]. This was later extended to systems
with crystalline symmetries, leading to a classification of
topological crystalline phases (TCPs) [7–31]. Recent methods
[21–23,29,30] in classifying these phases in clean systems
have involved examining connectivity of electronic bands
between high-symmetry momenta within the Brillouin zone
(BZ). These approaches identify the classes of (obstructed)
atomic limit states compatible with the crystal symmetries,
and expressible as a linear combination of symmetric, local-
ized orbitals (Wannier functions) on the position-space lattice.
Topological crystalline bands can then be identified as bands
that cannot be characterized by a configuration of localized,
symmetric Wannier functions.

An underlying aspect of these methods is the use of
symmetry properties of localized atomic orbitals on the
position-space lattice in addition to the symmetry properties
of Bloch states across in momentum space. While most TCPs
have been studied in the presence of translation and point-
group symmetry, it is interesting to consider what features
survive when translation symmetry is broken, but point-group
symmetry remains. To address this, one may ask if it is pos-

sible to obtain an understanding of TCPs without having to
rely on any momentum-space description (i.e., by only using
the information provided by the symmetries of the position-
space lattice). Such a question arises in disordered systems,
for example, where translation symmetry is no longer present,
though generic disorder will break the point-group symmetry
as well. However, it is possible to apply correlated disor-
der in such a manner that preserves crystalline symmetries
which may stabilize some topological features. For generic
disorder, previous works have indicated that the surface states
of TCPs are robust as long as the disorder protects the spa-
tial symmetry on average [8,11,31–36]. This suggests that
crystalline symmetries in TCPs play a fundamental role in
preserving the topological properties of these systems, even
if translation symmetry is absent. In this work, we seek to
obtain an understanding of one-dimensional (1D) TCPs (or,
more precisely, obstructed atomic limits) in the presence of
disorder that preserves the point-group symmetry, but not
translation symmetry. Specifically, we will study the bulk
topology of a 1D chain with inversion (and chiral) symmetry
in the presence of correlated disorder that is symmetric around
a fixed inversion center. This type of correlated disorder may
not naturally occur in electronic solid-state systems, but it
can be straightforwardly engineered in cold-atomic gasses
in optical lattices [37]. Additionally, our results apply to
cases when translation symmetry is broken by any kind of
spatially dependent potential, not just a disordered one, as
long as inversion symmetry is preserved (e.g., a harmonic
trap).
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In order to analyze the topological properties of this sys-
tem, we compare the behavior of three bulk topological
invariants (more details below): a Z2-valued inversion-
symmetry indicator topological invariant �X , the Z-valued
chiral winding number ν, and the quantized, Z2-valued bulk
electric polarization P0. The inversion-symmetry indicator in
1D is determined by the parity of the inversion eigenvalues
at certain inversion-symmetric momenta in the BZ, and the
chiral winding number characterizes 1D strong topological
phases in the chiral-symmetric BDI and AIII classes. In the
clean limit there is a remarkable relationship between the
three quantities. Both the inversion topological invariant and
the chiral winding number can be directly related to the bulk
polarization via

�X = 2ν = 4P0 (mod 4). (1)

In clean systems these three quantities are usually deter-
mined by evaluating integrals over the momentum-space BZ.
However, when disorder is present, we utilize an alternative
formulation that does not rely on a specific choice of basis.
Ultimately, we compute these three bulk topological invariants
in position space and study their respective phase diagrams as
a function of model parameters and disorder strength. When
comparing the phase diagrams of the different invariants we
find that at a special value of the disorder strength [which
we denote as the fluctuation onset (FO) value], a boundary
emerges in the phase diagram of the inversion topological
invariant past which it begins to fluctuate between a set of
integer values, while the chiral winding number and the bulk
polarization remain constant. We characterize the nature of
these fluctuations by examining the localized states at the
inversion centers. We find that, unlike the other two invariants
which vary only in the presence of delocalized states, the
inversion-symmetry indicator is sensitive to the closure of the
spectral gap, regardless of whether those states are localized
or delocalized. These findings are further substantiated by
an asymptotically exact analytic calculation using a position-
space renormalization group (RG) technique to determine the
inversion topological invariant, bulk polarization, and chiral
winding number when disorder is present. Using these results
and additional analyses, we explore the fate of the relations
(1) in the presence of strong disorder.

This paper is organized as follows: In Sec. II, we intro-
duce the model Hamiltonian when no disorder is present,
and review the properties of this Hamiltonian as well as the
inversion topological invariant, bulk polarization, and chiral
winding number in both momentum space and position space.
In Sec. III we discuss how disorder is applied to this model so
that the inversion symmetry is preserved, and present phase
diagrams for the inversion topological invariant, chiral wind-
ing number, and bulk polarization. In Sec. IV we provide a
quantitative understanding of the behavior of the inversion
topological invariant at strong disorder. In Sec. V, utilizing
the results of the position-space RG calculation, we compare
the behavior of the inversion topological invariant, the chiral
winding number, and bulk polarization in strong disorder.
Finally, in Sec. VI, we discuss how filling additional localized
states at the inversion centers affects the inversion topolog-
ical invariant and the bulk polarization differently, and thus

FIG. 1. Illustration of the 1D inversion-symmetric chain with
periodic boundary conditions for N = 8 sites in the clean limit. The
dashed boxes indicate the unit cells labeled by x = 1, . . . , 8 with two
orbitals denoted as A and B, respectively. m is the intracell hopping
and t is the intercell hopping. The dashed blue lines indicate the
possible inversion centers in the clean limit, distinguished by ρ = 0
and 1

2 .

allows for violations of Eq. (1) in the absence of translation
symmetry.

II. CLEAN LIMIT

A. Momentum-space representation

We consider a tight-binding model with N lattice sites, and
two degenerate orbitals per lattice site denoted by A and B.
We use nearest-neighbor hopping, with an intercell hopping
amplitude t , and an intracell hopping amplitude m, as illus-
trated in Fig. 1. In the clean limit the model has the Bloch
Hamiltonian

h(kx ) = [m + t cos(kx )]σ1 + t sin(kx )σ2, (2)

where σα , for α = 1, 2, 3, denotes the Pauli matrices act-
ing on the two orbitals {A,B} in each unit cell. The full
Hamiltonian in momentum space is expressed in terms
of the Bloch Hamiltonian as H = ∑

kx
c†kx h(kx )ckx where

c†kx = (c†kx,A c†kx,B). The energy eigenvalues of (2) are ε± =
±

√
[m + t cos(kx )]2 + t2 sin2(kx ). Thus, the spectrum of the

Hamiltonian is gapped for all |m| �= |t |.
This model is in the BDI class [38] since it has a chiral

symmetry that acts on the Bloch Hamiltonian as

σ3h(kx )σ
−1
3 = −h(kx ) (3)

in addition to time-reversal symmetry [h∗(kx ) = h(−kx )] and
a particle-hole symmetry [σ3h∗(kx )σ−1

3 = −h(−kx )]. Thus,
this system has a strong topological invariant: the winding
number ν. In the basis where the chiral operator is diagonal, ν
is given by the winding of the off-diagonal block of the matrix
h(kx ) [39]:

ν =
∫ 2π

0
∂kx log(te

ikx + m)
dkx
2π i

=
{
1, |m| < t
0, |m| > t .

(4)

ν is always integer valued (i.e., ν ∈ Z), and is gauge invariant
under a change of phase of the Bloch states. It also specifies a
bulk-edge correspondence in the system, where ν determines
the difference between the number of zero-energy end states
having positive and negative chirality [40,41].

This model is also inversion symmetric. When the system
is translation invariant, any position X = x + ρ can serve
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as the inversion center, where x denotes a fixed lattice site
(i.e., x = 1, . . . ,N) and ρ ∈ {0, 1

2 } (e.g., x + 1
2 is the midpoint

between lattice sites x and x + 1), as shown in Fig. 1. When
N is even, there are 2N total possible inversion centers corre-
sponding to the number of distinct values of X . The inversion
symmetry acts on the Bloch Hamiltonian as

ÎX (kx )h(kx )(ÎX (kx ))−1 = h(IX kx ) = h(−kx ), (5)

where the momentum-space representation of the inversion
operator is given as ÎX = e−2ikxρσ1. At the inversion-invariant
momenta kx = 0, π , the constraint (5) can be recast as
[ÎX (kx = 0, π ), h(kx = 0, π )] = 0. Since the inversion oper-
ator and the Hamiltonian commute at the inversion-invariant
momenta, the occupied Bloch states at these special points
can be labeled by the inversion eigenvalues ξX (0) = ±1 and
ξX (π ) = e2iπρ = ±1.

Using these results one can define an inversion topological
invariant as [11,42,43]

�X =
∑

kx=0,π

[n(+)
X (kx ) − n(−)

X (kx )], (6)

where n(α)X (kx ) denotes the number of occupied Bloch states
at the inversion-invariant momenta kx = 0, π with inver-
sion eigenvalue α = ±1 (± as shorthand) for the fixed
inversion center X = x + ρ. For |m| < t , one has {�X=x =
0,�X=x+ 1

2
= −2}, which denotes the topological phase, and

for |m| > t , one has {�X=x = −2,�X=x+ 1
2

= 0} which de-
notes the trivial phase.

Finally, the third quantity we consider is the bulk polar-
ization P0, which is determined by the Berry phase of the
occupied energy bands [5,42–46]

P0 = 1

2π

∫ 2π

0
dkx A(kx ), (7)

where A(kx ) is the Berry connection

A(kx ) = i
∑
n∈occ.

〈un(kx )|∂kx |un(kx )〉, (8)

and |un(kx )〉 denotes the Bloch state with band index n.
A(kx ) is explicitly not gauge invariant, and the polarization
shifts by an integer under large gauge transformations of the
occupied Bloch states. The chiral winding number and the
polarization are related to each other by ν = 2P0 (mod 2) [41].
Furthermore, the polarization is related to the inversion topo-
logical invariant as �X=x+ 1

2
= 4P0 (mod 4) [this is proven in

Supplemental Material (SM) A [47]]. Therefore, the rela-
tionship between the inversion topological invariant, chiral
winding number, and bulk polarization in the clean limit is
given by Eq. (1).

B. Position-space representation

We now express the Hamiltonian, inversion topological
invariant, chiral winding number, and bulk polarization in the
position-space basis, which will be used when translation-
symmetry-breaking disorder is present. To determine the
clean limit of the Hamiltonian in position space, we per-
form a Fourier transform on the Bloch Hamiltonian via

c j = 1√
N

∑
kx
eikx jckx (setting the lattice constant a = 1) to

yield

H =
N∑
j=1

[
mc†jσ1c j +

(
1

2
tc†j (σ1 − iσ2)c j+1 + H.c.

)]
, (9)

where c†j = (c†j,A c†j,B) creates orbitals of type A and B at the
same lattice site j. The position-space basis states are given
by c†j,σ |0〉 = | j, σ 〉 = | j〉 ⊗ |σ 〉 where σ ∈ {A,B}. We use
periodic boundary conditions such that for j ∈ {1, . . . ,N},
c†N+ j ≡ c†j . In the clean limit, any position X = x + ρ for

x ∈ {1, . . . ,N} and ρ ∈ {0, 1
2 } can be an inversion center.

When N is even, the index ρ distinguishes two classes of
inversion centers: the class of inversion centers with ρ = 0
corresponds to reflections leaving a pair of lattice sites fixed,
whereas the class of inversion centers with ρ = 1

2 corresponds
to reflections leaving a pair midpoints between lattice sites
fixed. These two distinct classes of inversion centers result
in N

2 unique operators IX for each ρ ∈ {0, 1
2 } for a total of

N unique inversion centers. This is because each inversion
center X = x + ρ can also be identified as X = N

2 + x + ρ,
resulting in only N

2 unique inversion centers for each value of
ρ. The index ρ is not needed when N is odd since the number
of inversion centers is simply N , and labeled by X = x for
x ∈ {1, . . . ,N}. Each inversion operator Iχ fixes one lattice
site and one midpoint in this case. Throughout this work,
we will consider N to be even for simplicity. The inversion
operator for any positionX can be expressed in position space
as follows:

IX=x+ρ =
N∑
j=1

c†N+2(x+ρ)− jσ1c j . (10)

Given the position-space representation of the inversion op-
erator in (10), it can be shown that [IX ,H] = 0. The chiral
symmetry that acts on the Hamiltonian in (9) can be expressed
in position space as

S =
N∑
j=1

c†jσ3c j (11)

and it follows that {S,H} = 0.
The topological invariants discussed above can also be re-

cast in a formulation that is independent of the choice of basis.
This will prove very useful when considering translation-
symmetry-breaking disorder. Here, the inversion topological
invariant given by (6) can be expressed as [35]

�X = Tr[ĪX ], (12)

where ĪX = Pocc ÎXPocc is the inversion operator projected
onto the subspace of occupied states, with Pocc denoting this
projector. The basis-independent expression for the inversion
topological invariant avoids having to use of the momentum-
space representation. In particular, using the form of the
inversion operator given by (10), one can construct a topo-
logical marker [35] for Eq. (12) in the position-space basis as
follows:

�X (x) = 〈x|Tr′[ĪX ]|x〉, (13)
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FIG. 2. Distribution of the inversion topological invariants (a)
�X= N

2 + 1
2
and (b) �X= N

2
in the clean limit. The parameters used are

indicated at the bottom of each plot. The subscripts on the � for
each plot indicate the inversion center X = N

2 + ρ where ρ ∈ {0, 1
2 }.

These calculations are for a chain of N = 100 sites with periodic
boundary conditions (points appearing after site N = 100 are labeled
1, 2, etc., because of this).

where {|x〉} denotes the position-space basis and Tr′ indicates
that the trace is being performed only over the local degrees
of freedom within each unit cell. The quantity �X (x) captures
the spatial distribution of the inversion-invariant from which
we can calculate �X = ∑N

x=1 �X (x).
In Fig. 2 we show calculations of the spatially resolved

inversion topological invariant given by (13) in the clean
limit, which clearly illustrate that the distribution is sharply
peaked at the inversion centers; for �X= N

2
, the distribution

is peaked at x = N
2 and N , and for �X= N

2 + 1
2
, the distribution

is peaked at x = N
2 + 1

2 and N + 1
2 . To gain intuition about

the structure of this distribution we can calculate �X (x) in
two dimerized, flat-band limits of (9), for which the Wannier
functions of the Hamiltonian take a simple form. In the first
dimerized limit, in which m = 0 and t �= 0, the eigenstates of
(9) (which are also Wannier functions in this limit) are given
as |W∓(n)〉 = 1√

2
(|n + 1,A〉 ∓ |n,B〉), where n ∈ {1, . . . ,N},

and ∓ indicates occupied and unoccupied eigenstates (states
with energies less than the Fermi level EF = 0 are occupied).
These eigenstates are localized and have weight on just two
neighboring unit cells n and n + 1. In this limit, it is possible
to provide a simple form for the inversion topological invari-
ant (12) and its distribution in position space given by (13)
(calculation details in SM B [47]). We find the distribution for
each inversion topological invariant in this limit is given by

�
X=N

2 + 1
2
(n) = − 1

2 (δn,1 + δn, N2
+ δn, N2 +1 + δn,N ), (14)

�X= N
2

= −δn, N2 + 1
2
, (15)

where δm,n is the Kronecker delta, which is only equal to 1
when m = n and is zero otherwise. Performing the sum over
all the lattice sites n in (14) and (15), results in �X= N

2
= 0

and �X= N
2 + 1

2
= −2.

We can establish intuition for why �X= N
2 + 1

2
is nonzero in

this limit by considering the spatial structure of these local-
ized eigenstates. Most of the eigenstates are transformed to
a partner eigenstate under inversion symmetry, and the pair
will contribute both a + and − eigenvalue such that �X will
receive vanishing contributions near the points in space where
those states are localized. In contrast, there are precisely two
occupied eigenstates that get mapped to themselves under in-

version. Indeed, the states centered about positions x = N
2 + 1

2
and x = N + 1

2 , |W−(N2 )〉 and |W−(N )〉, have this property.
Each of these are eigenstates of the inversion operator (10)
with inversion eigenvalue −1. Therefore, the distribution of
�X= N

2 + 1
2
is peaked at the sites x = 1, N

2 , N
2 + 1,N as shown

in Fig. 2(a). Similar arguments can be applied to the second
dimerized limit,m �= 0 and t = 0, in which the eigenstates are
|W∓(n)〉 = 1√

2
(|n,A〉 ∓ |n,B〉), which are localized Wannier

functions with weight solely on unit cell n for n ∈ {1, . . . ,N}.
This results in �X= N

2
= −2 and �X= N

2 + 1
2

= 0, with the dis-

tribution of the former peaked at sites x = N
2 and N with equal

weight, as shown in Fig. 2(b).
The chiral winding number can also be expressed in

a basis-independent representation for eventual evaluation
in position space. Let Q = Punocc − Pocc = 1 − 2Pocc be a
spectrally flat Hamiltonian constructed from the projectors
corresponding to the unoccupied and occupied subspaces
(these are above and below EF = 0, respectively). The chi-
ral operator S has eigenvalues ±1 and can be expressed as
S = S+ − S− where S+ and S− correspond to the projectors
onto the subspaces labeled by eigenvalues ±1, respectively.
Q, being chiral symmetric, can be decomposed as Q =
S+QS− + S−QS+ ≡ Q+− + Q−+ where Q+− = S+QS− and
Q−+ = S−QS+. Then, the basis-independent form of the chi-
ral winding number is [41,48]

ν = 1

N
Tr[Q−+[X,Q+−]], (16)

where X is the position operator. This formula is only well
defined for open boundary conditions, and in all the cal-
culations for ν, the position operator is expressed in the
form X = ∑N

j=1[ j(| j,A〉〈 j,A| + | j,B〉〈 j,B|)]. We are cur-
rently unaware of a basis-independent formula for ν that is
valid for periodic boundary conditions, which is why we use
(16). To illustrate how the winding number ν can be computed
from (16), we once again consider the dimerized limit where
the bulk eigenstates are given as |W∓(n)〉 = 1√

2
(|n + 1,A〉 ∓

|n,B〉). In this limit, one has Q+− = ∑N
n=1 |n + 1,A〉〈n,B| =

Q†
−+ which results inQ−+[X,Q+−] = ∑N

j=1 | j,B〉〈 j,B|. Sub-
stituting this into (16) results in ν = 1.

Finally, we also consider the polarization of the system.
The polarization of the system can be expressed in a basis-
independent formulation by computing the eigenvalues of the
position operator projected onto the occupied states given
as XP = PoccXPocc. When computing the bulk polarization
when disorder is present, we use periodic boundary condi-
tions, and hence the position operator takes the exponential
form [49] X = ∑N

j=1[e
2π i
N j (| j,A〉 j,A| + | j,B〉〈 j,B|)]. Using

the set of eigenvalues {ξn} of XP, the polarization is then
given as

P0 =
N∑

n=1

(
1

2π
Im log ξn

)
. (17)

Similar to the calculations of the inversion invariant and the
winding number, we can calculate the bulk polarization using
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(17) in the same dimerized limit as before. This results in

XP =
N∑

n=1

e
2π i
N ( j+ 1

2 ) cos

(
π

N

)
|W−(n)〉〈W−(n)|. (18)

In the thermodynamic limit N → ∞ the eigenvalues of XP are

{ξn}Nn=1 = {
e

2π i
N (n+ 1

2 )
}N
n=1.

(19)

Substituting this into (17) results in a bulk polarization of
P0 = 1

2 .

III. DISORDERED REGIME

Having established the features of (9) and its topological
invariants in the clean limit in both momentum space and
position space, we now proceed to discuss the effects of disor-
der on this system. We first explain how inversion-symmetric
disorder is applied to this system while taking into consider-
ation the two distinct classes of inversion centers. Then, we
present phase diagrams of the inversion topological invariant,
chiral winding number, and bulk polarization when disorder
is introduced.

A. Adding disorder

We introduce disorder in (9), by varying the values of
the intracell hoppings and intercell hoppings throughout the
lattice. Thus, the Hamiltonian given by (9) becomes

H =
N∑
j=1

[
mjc

†
jσ1c j + 1

2
t jc

†
j (σ1 − iσ2)c j+1 + H.c.

]
, (20)

where

mj = m +W2ω j, t j = t +W1ω
′
j, (21)

W2 andW1 are the intracell disorder strength and intercell dis-
order strength, respectively, and ω j, ω

′
j are random numbers

uniformly distributed in the interval [− 1
2 ,

1
2 ].

To preserve the inversion symmetry, the disorder config-
uration must respect one of the two inequivalent choices of
inversion center on the one-dimensional lattice. Figure 3 il-
lustrates how the disorder can be modeled so that it satisfies
inversion symmetry. If the inversion center is chosen about
X = N

2 , this leads to the constraint that mj = mN− j and t j =
tN−1− j , which can also be expressed as

ω j = ωN− j, ω′
j = ω′

N−1− j . (22)

Alternatively, if X = N
2 + 1

2 is chosen as the inversion center,
this will lead to mj = mN+1− j and t j = tN− j or

ω j = ωN+1− j, ω′
j = ω′

N− j . (23)

In all the results that follow, we will consider X =
N
2 + 1

2 as the inversion center for our disorder con-
figurations. Recall that in the clean limit, �X= N

2 + 1
2

=
2ν = 4P0 (mod 4). For the topological phase |m| < t ,
{�X= N

2 + 1
2

= −2, ν = 1,P0 = 1
2 }, whereas for the trivial

phase |m| > t , {�X= N
2 + 1

2
= ν = P0 = 0}. The results for the

quantity �X= N
2

for inversion-symmetric disorder configu-

rations around the inversion center X = N
2 are discussed

separately in the SM C and F [47].

FIG. 3. Illustration of the distinct choices of inversion center
X = N

2 + ρ for the 1D inversion-symmetric chain with periodic
boundary conditions for N = 8 unit cells for a given disorder con-
figuration. For (a) ρ = 0, mi = mN−i, and ti = tN−1−i, and for (b)
ρ = 1

2 , mi = mN+1−i, and ti = tN−i. In the figures above, the notation
mN

2 +1 ≡ mN and t N
2 +1 ≡ tN has been adopted (i.e., m5 ≡ m8 and

t5 ≡ t8).

B. Phase diagrams of the inversion topological invariant, chiral
winding number, and bulk polarization

In this section we discuss the phase diagrams of the inver-
sion topological invariant�X= N

2 + 1
2
the chiral winding number

ν, and the polarization P0 for a disordered system. When
performing the numerical calculations, we define the occupied
projector Pocc to include all states that lie below EF = 0.
Furthermore, in all the calculations we set t = 1. All the
results were obtained using (12) for the inversion topological
invariant �X= N

2 + 1
2
, (16) for the chiral winding number, and

(17) for the bulk polarization.
In addition to numerically computing the topological

invariants in the disordered limit, we also computed the lo-
calization length � of the wave function of the end states
[e.g., ψedge(x) ∼ exp {− x

�
}] using a numerical transfer ma-

trix method [50]. Using previous results on a purely chiral
symmetric 1D chain [41], it is possible to obtain an analytic
form for the critical scaling of the localization length in the
thermodynamic limit where N → ∞, yielding

� =
(∣∣∣∣∣ln

[
|2 +W1|

1
W1

+ 1
2 |2m −W2|

m
W2

− 1
2

|2 −W1|
1
W1

− 1
2 |2m +W2|

m
W2

+ 1
2

]∣∣∣∣∣
)−1

. (24)

This equation traces out a critical surface Sc in the space
of (m,W1,W2), along which � → ∞, delineating the phase
boundaries within which the chiral winding number ν is quan-
tized and has a nonzero value.

We consider the three phase diagrams for parameter values
W2
W1

= 2, W2
W1

= 1
2 , and m = 0.5 shown in Figs. 4–6, respec-

tively. These phase diagrams were constructed by computing
the disorder-averaged values of the inversion topological in-
variant �X= N

2 + 1
2
, the chiral winding number ν, and the bulk
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FIG. 4. Phase diagrams for (a)�X= N
2 + 1

2
, (b) ν, (c) P0, and (d) the

phase boundary for W2
W1

= 2 with t = 1. The phase diagrams for
�X= N

2 + 1
2
and ν were constructed for N = 500 sites and disorder

averaged over Nconfigs = 10 configurations, while the phase diagram
for P0 was performed over N = 100 sites and Nconfigs = 500 configu-
rations. For (d) the phase boundary is given by the divergence of the
localization length, constructed for N = 5000 sites. In this regime,
all three quantities are quantized and nonfluctuating within the phase
boundaries.

polarization P0. In addition to the phase diagrams, Figs. 4(d),
5(d), and 6(d) illustrate the phase boundaries of the phase
diagram as determined by the critical surface given by (24)
where the localization length � diverges. Figure 4 illustrates
that when W2

W1
= 2, the phase diagrams for �X= N

2 + 1
2
, ν, and

FIG. 5. Phase diagrams for (a)�X= N
2 + 1

2
, (b) ν, (c) P0, and (d) the

phase boundary for W2
W1

= 1
2 with t = 1. The parameters used for

N and Nconfigs are the same as in Fig. 4. In this regime, �X= N
2 + 1

2
begins to deviate from its disorder-averaged value |�X= N

2 + 1
2
| = 2

due to the onset of fluctuations for |W1| > |W ∗
1 | = 2 (indicated by the

bold red line), which is also the value the bulk spectral gap closes.
However, the ν and P0 remain quantized and nontrivial within their
phase boundaries.

FIG. 6. Phase diagrams for (a)�X= N
2 + 1

2
, (b) ν, (c) P0, and (d) the

phase boundary for m = 0.5 with t = 1. The parameters used for
N and Nconfigs are the same as in Fig. 4. In this regime, �X= N

2 + 1
2

begins to deviate from its disorder-averaged value |�X= N
2 + 1

2
| = 2

due to the onset of fluctuations for |W1| > |W ∗
1 | = 2 (indicated by the

bold red line), which is also the value the bulk spectral gap closes.
However, the ν and P0 remain quantized and nontrivial within their
phase boundaries.

P0 are identical. Within each region of the phase diagram,
the relationship given by (1) is upheld. The disorder-averaged
values of �X= N

2 + 1
2
, ν, and P0 are quantized and nontrivial up

to the phase boundary where � diverges, past which there is
a transition in the values of �X= N

2 + 1
2
, ν, and P0 with all three

of them becoming trivial and equaling 0.
In contrast, Fig. 5 illustrates that when W2

W1
= 1

2 , the inver-
sion topological invariant is only precisely �X= N

2 + 1
2

= −2
within a smaller region of the phase diagram compared to the
phase diagrams of the other two invariants. For the inversion-
invariant phase diagram we find that there are two distinct
boundaries surrounding this region: one is the phase boundary
separating the topological and trivial phases, and the other is
given by a special value of the disorder strength which we
denote as the fluctuation onset (FO) value [denoted by the
bold red line in Fig. 5(a) and summarized for each phase
diagram in Table I]. This also holds true in the regime where
m = 0.5 for generic values of W2 and W1 [the FO value is
denoted by the bold red line in Fig. 6(a)]. The FO values
for each phase diagram are specified in the accompanying
Table I. Past this value, there is a region of the phase di-
agram where the disorder-averaged value of the inversion
topological invariant is no longer quantized. This occurs be-
cause the inversion topological invariant fluctuates between

TABLE I. Fluctuation onset of �X= N
2 + 1

2
in each phase diagram.

Section FO value Fluctuations present

W2
W1

= 2
W2
W1

= 1
2 |W ∗

1 | = 2 |W1| > |W ∗
1 | = 2

m = 0.5 |W ∗
1 | = 2 |W1| > |W ∗

1 | = 2
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a set of integer values which alters the disorder-averaged
value of �X= N

2 + 1
2
.

The fluctuations can be explained as follows. Given a dis-
order configuration at weak disorder, the inversion topological
invariant is still sharply peaked at the inversion centers, but
also has contributions from sites neighboring the inversion
centers. When the disorder strength exceeds the FO value, we
find (numerically) that it is possible for �X= N

2 + 1
2
to change

from −2 in the clean limit to 0 or +2 for a given disorder
configuration. When disorder averaged this will appear as a
nonquantized invariant, but the value is quantized for each
individual disorder configuration. To provide an interpretation
for these results we will show explicitly in the next section that
the FO value of the disorder strength |W ∗

1 | = 2 is equal to the
value of the disorder strength at which the disorder-averaged
gap in the bulk energy spectrum closes. Using this observa-
tion, we will analyze the physical reasons why this occurs,
and also determine the mean and variance of the inversion
topological invariant �X= N

2 + 1
2
as a function of the disorder

strength |W1| for |W1| > |W ∗
1 |.

IV. FLUCTUATIONS OF THE INVERSION
TOPOLOGICAL INVARIANT

As shown in Figs. 5 and 6, when the disorder strength |W1|
exceeds the FO value shown in Table I, the disorder-averaged
value of the inversion topological invariant �X= N

2 + 1
2
begins

to deviate from its quantized value. Specifically, in Sec. III B
it was stated that the inversion topological invariant fluctuates
between the values of −2, 0, and 2 based on whether one
or both peaks in the distribution of the inversion topological
invariant switch sign. We will now quantify these statements
by considering the dimerized limits of (20). We will show
that the onset of fluctuations is caused by the closing of the
disorder-averaged spectral gap also occurs at the FO value of
|W ∗

1 | = 2. We also derive the mean and variance of �X= N
2 + 1

2

as a function of |W1| > |W ∗
1 |.

We consider the limit m = 0 and t = 1 with bond disorder
strength W1 �= 0 and intracell disorder strength W2 = 0 (i.e.,
W2
W1

= 0) in (20). For a fixed W1, we consider a set of Nconfigs

disorder configurations and enumerate a collection of N ran-
dom numbers {ω′(n)

i }Ni=1 for each disorder configuration. The
subscript i = 1, . . . ,N indicates the random number, and the
superscript n = 1, . . . ,Nconfigs labels the disorder configura-
tion [note that in (21)–(23) this index was suppressed]. This
notation fixes the disorder configuration n and indexes a set
of N random numbers labeled by i. For each disorder config-
uration n, {ω′(n)

i } is chosen so that it is symmetric about the
inversion center X = N

2 + 1
2 , which constrains ω

′(n)
i = ω

′(n)
N−i

as per (23).
In this dimerized limit where all the intracell hoppings are

set to 0, the energy eigenvalues can be determined exactly
from the Hamiltonian given by (20) and are{

E (n)
i,±

} = {±t (n)i

} = { ± (
1 +W1ω

′(n)
i

)}
. (25)

The inversion symmetry implies that each of the E (n)
i for

i = 1, . . . , N
2 − 1 is twofold degenerate, while E (n)

N
2

and E (n)
N

are generically nondegenerate since the random numbers ω′
N
2

FIG. 7. Plots of the disorder-averaged spectral gap for (a) m = 0
and (b) m = 0.5. The plots were constructed for a chain of N = 300
sites with t = 1 and W2

W1
= 2, and disorder averaging was performed

over 1000 disorder configurations. For (a) and (b), the disorder-
averaged spectral gap vanishes at W1 = 2 which is consistent
with (28).

and ω′
N are independent. At half-filling, where the Fermi

level is set to EF = 0, the bulk spectral gap is determined
by the difference between the positive-energy eigenvalue
and negative-energy eigenvalue that are closest to the Fermi
level EF = 0. For positive W1 these energy eigenvalues are
±[1 +W1 min({ω′(n)

i })] while for negativeW1 these are ±[1 −
W1 max({ω′(n)

i })]. Hence, if we let SG(n) denote the bulk spec-
tral gap for a disorder configuration n, we find

SG(n) = 2
[
1 +W1 min

({
ω

′(n)
i

})]
,

SG(n) = 2
[
1 −W1 max

({
ω

′(n)
i

})]
, (26)

for positive and negative W1, respectively, with i =
1, . . . , N

2 − 1, i = N
2 , and i = N . We now perform a disorder

average of the bulk spectral gap over Nconfigs disorder configu-
rations:

〈SG〉 = 1

Nconfigs

Nconfigs∑
n=1

SG(n). (27)

In SM C [47], we show that taking the thermodynamic
limit where N → ∞ ensures that the disorder averages
〈min({ω′

i}Ni=1)〉 and 〈max({ω′
i}Ni=1)〉 equal − 1

2 and 1
2 , re-

spectively. This leads to the following expression for the
disorder-averaged bulk spectral gap:

〈SG〉 = 2 − |W1|. (28)

The disorder-averaged spectral gap will vanish when 〈SG〉 =
0 at precisely the FO value of |W ∗

1 | = 2. This is illustrated in
the numerical calculations shown Fig. 7, which also indicate
that the relationship holds away from the dimerized limit.

We have now shown that the fluctuations in the inver-
sion topological invariant �X= N

2 + 1
2
can be connected to the

closing of the disorder-averaged spectral gap, but now let us
provide some physical intuition. For |W1| < |W ∗

1 |, the system
is gapped and the occupied states (states with E < EF =
0) and unoccupied states (states with E > EF = 0) can be
clearly distinguished. For |W1| > |W ∗

1 |, there is no longer a
well-defined gap in the energy spectrum, and hence no clear
distinction between the two sets of states. Specifically, states
that were previously denoted as occupied states before the
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FIG. 8. Plots of (a) mean (disorder-averaged) inversion topolog-
ical invariant �X= N

2 + 1
2
and (b) the variance of �X= N

2 + 1
2
, past the

disorder-averaged spectral gap closing. Both plots were constructed
for a chain of N = 300 sites with m = 0.5, t = 1, and W2

W1
= 2.

Each blue dot in (a) is the mean value of the inversion topological
invariant at each disorder strength computed over 1000 disorder con-
figurations, and each blue dot in (b) is the variance of the inversion
topological invariant at each disorder strength also computed over
1000 disorder configurations. The red curve in (a) is the plot of (30)
and the red curve in (b) is the plot of (31).

gap closed can become unoccupied states and vice versa. As
a result, the eigenstates associated with these energies will
undergo exchanges between the occupied and unoccupied
subspaces. Since the inversion topological invariant is dom-
inated by the occupied eigenstates that are localized at the
inversion centers, we examine the energies of the occupied
and unoccupied states at x = N

2 and N . The energies of the
occupied and unoccupied eigenstates at the inversion centers
in the dimerized limit are given by

E (n)
N
2 ,± = ±t (n)N

2
= ±(

1 +W1ω
′(n)
N
2

)
,

E (n)
N,± = ±t (n)N = ±(

1 +W1ω
′(n)
N

)
.

(29)

When either t (n)N
2

or t (n)N changes sign, there will be one

exchange of occupied and unoccupied states. When both
t (n)N
2

and t (n)N change sign, then two exchanges will occur.

This is precisely when |ω′(n)
N
2

| > 1
|W1| and/or when |ω′(n)

N | >

1
|W1| . The maximum value of |ω′(n)

N
2

| or |ω′(n)
N | is 1

2 (since

ω
′(n)
N
2

, ω
′(n)
N ∈ [− 1

2 ,
1
2 ]). This means 1

2 > 1
|W1| which results in

|W1| > |W ∗
1 | = 2. Therefore, for |W1| > |W ∗

1 | = 2, fluctua-
tions in the inversion topological invariant �X= N

2 + 1
2
onset

simultaneously with the vanishing of the disorder-averaged
spectral gap. These arguments hold even when m andW2 are
generically nonzero as we can show numerically as shown in
Figs. 7 and 8, or even analytically if we treat m perturbatively
(for details see SM C [47]). We note that exchanges of the
occupied and unoccupied states occur throughout the chain
when disorder is added, even at sites away from the inversion
center. However, the inversion topological invariant obtains
its largest nonzero contributions from exchanges that are lo-
calized at or near the inversion centers.

Once the FO disorder strength is reached, the inversion
topological invariant �X= N

2 + 1
2
fluctuates between the values

of −2, 0, and 2 for each disorder configuration. The mean and
variance of the distribution of �X= N

2 + 1
2
can be determined

analytically in the thermodynamic limit N → ∞ when the

model is tuned to the dimerized limit m = 0, t = 1 with dis-
order strengths W1 �= 0 and W2 = 0 (W2

W1
= 0). The resulting

expressions for the mean and variance shown below also hold
for other values of m, t ,W1, andW2 away from the dimerized
limit, which is illustrated in our numerical results (see Fig. 8),
and can be demonstrated through a simple perturbation theory
analysis (see SM C [47]). The mean is

〈
�X= N

2 + 1
2

〉 = − 4

|W1| for |W1| � |W ∗
1 | = 2, (30)

and the variance is

Var
(
�X= N

2 + 1
2

) = 2 − 8

|W1|2 for |W1| � |W ∗
1 | = 2. (31)

The derivation of the mean and variance of the fluctuations in
�X= N

2 + 1
2
can be found in SM C [47]. At the FO value |W ∗

1 | =
2, the mean 〈�X= N

2 + 1
2
〉 = −2 and the variance is 0, indicating

that the inversion topological invariant is still quantized and
nonfluctuating at this disorder strength. For |W1| > |W ∗

1 |, the
disorder-averaged value (mean) of the inversion topological
invariant deviates from its quantized value of −2, and the
variance becomes nonzero.

V. ESTABLISHING SIMPLIFIED POSITION-SPACE
TOPOLOGICAL INVARIANTS USING A

RENORMALIZATION GROUP PROCEDURE
AT STRONG DISORDER

At this point, we have shown from the phase diagrams
in Figs. 5 and 6 that the inversion topological invariant can
fluctuate at strong disorder unlike the chiral winding num-
ber and the bulk polarization, which remain quantized and
nonfluctuating within each noncritical region of the phase
diagram. We have demonstrated that the onset of fluctuations
in the inversion topological invariant is caused by the spectral
gap closing where exchanges between the occupied and unoc-
cupied states can occur at the inversion centers. The difference
in how the inversion topological invariant, the chiral winding
number, and the bulk polarization all behave at strong disorder
indicates that the relationship between all three quantities
given by (1) in the clean limit breaks down in the strong
disorder limit.

In this section, we will establish that the relationship
between the inversion topological invariant and the bulk po-
larization and, separately, that the relationship between the
inversion topological invariant and chiral winding number no
longer hold at strong disorder. However, we will also show
that the relationship between the chiral winding number and
bulk polarization persists at strong disorder. We do this by
computing the asymptotic ground state of the system through
a position-space renormalization group (RG) method that is
asymptotically exact in the thermodynamic limit, and in the
limit of disorder strength going to infinity [51]. Using the
ground state obtained from this RG method, we analytically
derive the inversion topological invariant, chiral winding num-
ber, and bulk polarization and compare them.

We first map the Hamiltonian given by (20) to a spin-
1
2 Hamiltonian defined on a lattice of size 2N via the
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Jordan-Wigner transformation

cn,A = K (2n − 1)S−
2n−1, cn,B = K (2n)S−

2n, (32)

where Sai are spin- 12 variables, and K (m) =
exp {iπ ∑m−1

j=1 S+
j S

−
j } is a string operator. These transfor-

mations lead to the Hamiltonian

H =
N∑

n=1

[
2tn

(
Sx2nS

x
2n+1 + Sy2nS

y
2n+1

)
+ 2mn

(
Sx2nS

x
2n−1 + Sy2nS

y
2n−1

)]
. (33)

The Hamiltonian above shows that the exchange couplings
2mi occur on the odd bonds, while the exchange couplings 2ti
occur on the even bonds. We will consider the Hamiltonian
in (33) with the disorder configuration about the inversion
center X = N + 1

2 (mn = mN+1−n and tn = tN−n), and treat
the system with periodic boundary conditions (note that we
denote the inversion center as X = N + 1

2 since we are now
considering a lattice of size 2N). The Hamiltonian given by
(33) is an inversion-symmetric spin- 12 XX model with ran-
dom exchange couplings 2tn (2mn+1) between the even (odd)
bonds.

Each step in the position-space RG method consists of
replacing a pair of spins that have the strongest exchange
interaction by enforcing a spin-singlet state for that pair, and
then generating a new and weaker bond between the neighbor-
ing spins. However, because of the spatial inversion symmetry,
the exchange couplings appearing on one half of the chain will
also appear on the other half, while the exchange couplings at
the inversion centers (t N

2
and tN ) are arbitrary. As a result, the

position-space RG method needs to be handled carefully, both
away from the inversion centers and at the inversion centers
(details in SM D [47]).

The nature of the RG procedure generates singlets that
never cross each other. Every singlet state formed during
this RG procedure will be formed by one spin belonging to
sublattice A and another spin belonging to sublattice B (which
occurs due to the underlying chiral symmetry). There are two
types of singlets that form during this procedure: singlets that
are inversion-symmetric partners with each other that form
away from the inversion centers, and singlets that form across
the inversion centers. The end of the RG procedure is reached
when there are a total of N singlets formed. We denote the
number of singlets formed across the inversion centers as M,
and the remaining N − M of these singlets are formed away
from the inversion centers. Importantly, due to the inversion
symmetry there are 1

2 (N − M ) inversion-symmetric pairs of
these singlets. The nth singlet is associated to a pair of num-
bers dn = {dn1, dn2} which specify the sites of the two spins in
the singlet. The asymptotic ground state is

|�〉 =
1
2 (N−M )∏
i=1

M∏
j=1

(
1√
2

(
S+
2N+2−2di2

− S+
2N+1−2di1

))

×
(

1√
2

(
S+
2d j

− S+
2N+1−2d j

))

×
(

1√
2

(
S+
2di1

− S+
2di2−1

))|↓ · · · ↓〉. (34)

Mapping this back to the fermion representation, the ground
state can be simplified to

|�〉 =
N∏
i=1

(
1√
2

(
αic

†
di1,B

− βic
†
di2,A

))|0〉, (35)

where αi and βi are coefficients that have unit modulus. When
mapping (34) back to the fermion representation, the αi and
βi are constructed by accumulating the product of coefficients
obtained by successively moving Jordan-Wigner string opera-
tors towards the vacuum |0〉 [this is detailed in SM E [47] and
appears in multiple steps in the simplification of the ground
state, specifically (S74), (S75), (S80)–(S82), (S93), (S94),
(S103)–(S108), (S112), and (S113)]. Note that because we
have mapped this back to the fermionic representation, this
form of the ground state is expressed over a lattice of size N .
The ground state in this representation is a Slater determinant
of single-particle states of the form

|ψi〉 = 1√
2

(
αic

†
di1,B

− βic
†
di2,A

)|0〉, (36)

which only have weight on two sites, where the sites can have
arbitrary distance from each other. We call this distance the
length of the singlet, and we define it as the difference in unit-
cell indices, i.e., for (36) this is given by di2 − di1. When the
ground state is expressed in this form, there are three notable
properties that are enforced by the RG procedure:

(1) The singlets formed across the inversion centers are
labeled by the index i where 1 � i � M. The numbers di1
and di2 are expressed in terms of a single number di such that
di1 ≡ di and di2 = N + 1 − di.

(2) The singlets formed in pairs away from the inversion
centers are labeled by the index i where M + 1 � i � N . An
inversion-symmetric pair of singlets consists of one singlet
between sites di1 and di2, and, separately, another singlet be-
tween sites N + 1 − di2 and N + 1 − di1.

(3) In general, no two intervals [di1, di2] and [d j1, d j2] with
i �= j can overlap in such a way that only one of the ends of
one interval is contained in the other. Otherwise, this violates
the noncrossing nature of the singlets.

Using the fermionic basis, the inversion topological invari-
ant simplifies to the following expression:

�X= N
2 + 1

2
= −1

2

M∑
i=1

[αiβ
∗
i + βiα

∗
i ]. (37)

This expression solely involves the singlets crossing the inver-
sion center. The ground state in the fermionic representation
also leads to the following expression for the chiral winding
number:

ν = 1

N

N∑
i=1

(di2 − di1), (38)

which is precisely the same as the simplified form of the chiral
winding number derived in [41] with no inversion symmetry
present. Thus, in the strong disorder limit, the chiral winding
number ν takes on a simple form given by the sum of the
singlet lengths in the ground state.

Figure 9 shows an example of a random singlet ground
state after implementing the position-space renormalization
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FIG. 9. Example of an inversion-symmetric random singlet
ground state after the position-space renormalization group. The
lattice has 2N = 20 sites with periodic boundary conditions, and
we labeled the sites nearest the inversion centers. The dashed line
indicates the inversion center fixed by the disorder configuration.
For this example, there are M = 4 singlets over one of the inversion
centers, and 1

2 (N − M ) = 3 inversion-symmetric pairs of singlets
formed away from the inversion center.

group. This mapping to the spin model can be used to un-
derstand the nature of the topological phase transition. At
strong disorder, (38) shows that the chiral winding number
ν is given by the average singlet length where di2 − di1 is the
length of the ith singlet for i = 1, . . . ,N . In the topological
phase, the ground state of the system has singlets on the even
bonds. As the system approaches criticality, the localization
length diverges and singlets are formed over all length scales.
Once the system has passed criticality, the singlets are formed
over the odd bonds, which corresponds to a trivial phase. Fur-
thermore, comparing (37) and (38) reveals that the inversion
topological invariant �X= N

2 + 1
2
and the chiral winding number

ν behave differently near criticality (defined by the phase
boundary where the localization length diverges) despite the
two quantities having similar phase diagrams as evidenced in
Figs. 4–6. The inversion topological invariant �X= N

2 + 1
2
de-

pends only on the set of coefficients {αi}Mi=1 and {βi}Mi=1 for the
singlets over the inversion centers, whereas the chiral winding
number has an explicit dependence on the lengths of all the
singlets formed. As mentioned in the previous section, when
the spectral gap closes, the energies of the occupied and unoc-
cupied states undergo exchanges, and so do the corresponding
states. When the corresponding states undergo exchanges, this
alters the set of coefficients {αi}Mi=1 and {βi}Mi=1 which, in turn,
can shift the value of the inversion topological invariant. This
is consistent with the phase diagrams shown in Figs. 5 and
6 since at |W ∗

1 | = 2, the spectral gap closes. Thus, from the
RG picture, the inversion topological invariant and the chi-
ral winding number behave differently because the inversion
topological invariant changes either when the gap closes or
when criticality is reached, as opposed to the chiral winding
number which only changes when the system becomes criti-
cal. This suggests that the relation �X= N

2 + 1
2

= 2ν (mod 4) no
longer holds at strong disorder.

Motivated by the results from the position-space RG pro-
cedure, we contrast the behavior of the inversion topological
invariant �X= N

2 + 1
2
, and the chiral winding number ν, with

the bulk polarization P0. The bulk polarization P0 can be
computed using the ground state (35):

P0 = 1

N

N∑
n=1

(
1

2
(dn1 + dn2)

)
. (39)

This expression for P0 illustrates that the contributions to the
polarization come from the location of each singlet center. At
strong disorder, (39) shows that the bulk polarization P0 is
given by the average of the singlet centers [e.g., for the ith sin-
glet, its center is given as 1

2 (di1 + di2)]. Within the topological
phase, the singlet centers are located at the midpoints between
lattice sites, which directly corresponds to the singlets formed
over even bonds. As criticality is approached, singlets are
formed over all length scales and the singlet centers begin to
shift. When the system has passed criticality, the singlet cen-
ters are located on the lattice sites themselves, which directly
corresponds to the singlets formed over odd bonds, signaling
the trivial phase. Therefore, because the singlet centers shift at
criticality, and not when the spectral gap closes, this signifies
a major difference in P0 and �X= N

2 + 1
2
. Hence, the relation

�X= N
2 + 1

2
= 4P0 (mod 4) does not hold at strong disorder.

Finally, to complete the discussion, we now consider the
relationship between ν and P0 at strong disorder. Comparing
(38) and (39), we note that N (ν − 2P0) = −∑N

n=1 2dn1 ∈ 2Z,
which implies that Nν = 2NP0 (mod 2) and, therefore, ν =
2P0 (mod 2). Thus, the relation between the chiral winding
number and the bulk polarization established in the clean limit
holds when strong disorder is present. This is supported by
the calculations shown in Fig. 10 which contains plots of the
difference |ν − 2P0| for W2

W1
= 2, W2

W1
= 1

2 , andm = 0.5, respec-
tively. Figure 10 shows that throughout the phase diagram
the relationship holds, but that it seems to break down as the
system approaches criticality, but this is likely an artifact of
finite-size effects.

VI. EFFECTS OF FILLING ADJUSTMENT AND
REMOVING DISORDER AT THE INVERSION CENTERS

To further illustrate the differences between the inversion
topological invariant and the polarization, here we use a very
simple violation of translation symmetry to break the clean-
limit relationship. To provide a proof of concept we consider
the effects of including additional occupied states localized at
only the inversion centers. We will show that filling additional
states at the inversion centers will cause the value of the
inversion topological invariant to change, but will leave the
polarization unaffected. In order to do this, we consider a
1D system comprised of N unit cells with periodic boundary
conditions in the clean limit, where each unit cell consists
of two s orbitals labeled 1 and 2. The Hamiltonian has the
same form as (9), replacing the labels A and B with 1 and
2, respectively. We consider the inversion center X = N

2 + 1
2 .

When N is even, in the dimerized limit where m = 0 and
t �= 0, we have that �X= N

2 + 1
2

= −2, and the bulk polarization
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FIG. 10. Plots of the difference |ν − 2P0| between the winding
number ν and the bulk polarization P0. (a) and (b) were constructed
for a chain of N = 500 sites for W2

W1
= 2 and W2

W1
= 1

2 , respectively,
while (c) was constructed for a chain of N = 400 sites for m = 0.5.
Each plot was disorder averaged over 10 configurations.

is P0 = 1
2 . The eigenstates in this limit are given by

{|W±(n)〉}Nn=1 =
{

1√
2
(|n + 1, 1〉 ± |n, 2〉)

}N

n=1

. (40)

Now we add an additional s orbital to each of the unit cells
located at N

2 and N
2 + 1 as well as 1 and N . The additional s

orbital is labeled as 3 in each of these unit cells. In doing so,

we introduce the following term to the Hamiltonian:

H ′ = ε

2∑
j=1

(�†
+, j�+, j − �

†
−, j�−, j ). (41)

{�±, j}2j=1 are the states formed by hybridizing the two s
orbitals at each of the inversion centers, i.e.,

�
†
±,1|0〉 = 1√

2

(
c†N

2 +1,3
± c†N

2 ,3

)|0〉 = |�±,1〉 (42)

and

�
†
±,2|0〉 = 1√

2
(c†N,3 ± c†1,3)|0〉 = |�±,2〉, (43)

where the subscript ± indicates unoccupied and occupied
states, respectively. The additional states have energies ±ε.
The addition of this term to the Hamiltonian breaks the trans-
lation symmetry, but preserves both the chiral and inversion
symmetries. Indeed, the states {|�±, j〉}2j=1 are eigenstates of
the inversion operator IX= N

2 + 1
2
:

IX= N
2 + 1

2
|�±, j〉 = ±|�±, j〉, (44)

where the inversion operator IX= N
2 + 1

2
has been modi-

fied to account for the additional states |�±〉 so that
[IX= N

2 + 1
2
,H] = 0:

IX= N
2 + 1

2
=

N∑
n=1

(c†N+1−n,1cn,2 + c†N+1−n,2cn,1) + c†N
2 ,3

c N
2 +1,3

+ c†N
2 +1,3

c N
2 ,3 + c†N,3c1,3 + c†1,3cN,3. (45)

Similarly, the chiral operator S can be modified to account for
these additional states so that {S,H} = 0:

S =
N∑
j=1

(c†j,1c j,1 − c†j,2c j,2) + c†1,3c1,3 − c†N
2 ,3

c N
2 ,3

+ c†N
2 +1,3

c N
2 +1,3 − c†N,3cN,3. (46)

The occupied projector now includes an additional term for
the additional occupied states |�−, j〉 and is given by

Pocc =
N∑

n=1

W †
n,−Wn,− +

2∑
j=1

�
†
−, j�−, j, (47)

whereW †
±,n|0〉 = 1√

2
(c†n+1,1 ± c†n,2)|0〉 = |W±(n)〉. Evaluating

PoccIX= N
2 + 1

2
Pocc and taking the trace yields

�X= N
2 + 1

2
= Tr

[
PoccIX= N

2 + 1
2
Pocc

] = −4. (48)

Hence, occupying the additional s orbitals at both inversion
centers changes the value of the inversion topological in-
variant �X= N

2 + 1
2
. Before filling the additional s orbitals, the

spectrum of PoccIX= N
2 + 1

2
Pocc consisted of two more eigen-

states that had inversion eigenvalues of −1 than eigenstates
with inversion eigenvalues of +1. When taking the trace,
eigenstates away from the inversion centers form inversion-
symmetric pairs with inversion eigenvalues opposite each
other, so their contributions cancel each other. The only
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nonzero contributions come from the eigenstates at the in-
version centers, each of which have inversion eigenvalue −1,
yielding �X= N

2 + 1
2

= −2 in the clean limit. Once the addi-
tional s orbitals were occupied, two more negative inversion
eigenvalues were included in the spectrum of PoccIX= N

2 + 1
2
Pocc,

shifting the value of �X= N
2 + 1

2
by −2. Hence, the value of the

inversion topological invariant can be shifted by occupying
additional states at the inversion centers.

Unlike the inversion topological invariant, the value of the
bulk polarization P0 remains unaffected by such an addition.
To illustrate this, we note that the position operator for peri-
odic boundaries with the addition of the s orbitals is

X =
N∑

n=1

e
2π i
N n(c†n,1cn,1 + c†n,2cn,2)

− (
c†N

2 ,3
c N

2 ,3 + e
2π i
N c N

2 +1,3c N
2 +1,3

)
+ (

c†N,3cN,3 + e
iπ
N c†1,3c1,3

)
. (49)

Evaluating the projected position operator XP = PoccXPocc in
the thermodynamic limit N → ∞ gives

PoccXPocc =
N∑

n=1

e
2π i
N

(
n+ 1

2

)
W †

n,−Wn,− + e
2π i
N

(
N
2 + 1

2

)
�

†
−,1�−,1

+ e
2π i
N

(
N+ 1

2

)
�

†
−,2�−,2. (50)

The spectrum of PoccXPocc is given by {ξn}N+2
n=1 =

{e 2π i
N (n+ 1

2 )}Nn=1 ∪ {e 2π i
N ( N2 + 1

2 ), e
2π i
N (N+ 1

2 )}, where, compared
to the result at the end of Sec. II B, there are additional
eigenvalues with arguments (after multiplying by N

2π ) of
N
2 + 1

2 and N + 1
2 in the spectrum of PoccXPocc. These

correspond to the additional eigenstates filled by the two
coupled s orbitals at each inversion center. We compute the
polarization P0 using (17) which gives P0 = 1

2 . Thus, the bulk
polarization P0 is unchanged under the filling of additional s
orbitals at the inversion centers.

It is worthwhile to note that just as how filling additional
states at the inversion centers causes the value of the inversion
topological invariant �X= N

2 + 1
2
to change, removing disorder

from the inversion centers can also eliminate the fluctuations
present in the phase diagrams, and stabilize the inversion
invariant as shown in Fig. 11. Specifically, if for every disor-
der configuration n = 1, . . . ,Nconfigs, we fix ω

′(n)
N
2

= ω
′(n)
N = 0,

then from (29) we have that the energy eigenvalues at the
inversion centers are E (n)

N
2 ,± = ±t (n)N

2
= ±1 and E (n)

N,± = ±t (n)N =
±1. Hence, no exchanges can ever occur at the inversion
centers and �X= N

2 + 1
2

= −2. Note that disorder is still ap-
plied to all of the sites away from the inversion centers (i.e.,
ω

′(n)
i �= 0 ∀ i �= N

2 ,N). This results in the inversion topolog-
ical invariant becoming nonfluctuating, as shown in Fig. 11,
further illustrating how the inversion topological invariant can
be altered by adjusting the states at the inversion centers.

VII. CONCLUSION

In this work, we have given a complete picture of the dis-
ordered 1D inversion-symmetric chain with chiral symmetry.

FIG. 11. Phase diagrams of the inversion topological invariant
�X= N

2 + 1
2
when no disorder is placed at the inversion centers for all

disorder configurations (i.e., ω
′(n)
N
2

= ω
′(n)
N = 0, but ω

′(n)
i �= 0 ∀ i �=

N
2 ,N and ∀ n ∈ {1, . . . ,Nconfigs}). The phase diagram in (a) is for the
regime W2

W1
= 1

2 and in (b) is for when m = 0.5. One can directly
compare with Figs. 5(a) and 6(a) where the inversion topological
invariant experienced fluctuations past |W1| > |W ∗

1 | = 2. With no
disorder placed at the inversion centers, the fluctuations are removed
completely. These plots were constructed for a chain of N = 500
sites disorder averaged over 10 configurations.

We showed that with disorder that preserves inversion symme-
try, the inversion topological invariant exhibits a similar phase
diagram to other topological invariants such as the chiral
winding number and bulk polarization. However, these phase
diagrams differ when the bulk energy gap closes, causing the
inversion topological invariant to deviate from its quantized
value since occupied and unoccupied states at the inversion
centers exchange at half-filling. This results in fluctuations
that occur between a fixed set of values depending on whether
one or both states at the inversion centers exchange for a
given set of disorder configurations, thereby changing the
inversion eigenvalues of these states. The mean and variance
of these fluctuations past the closing of the spectral gap were
determined in limits where either only the intercell or intracell
hoppings are nonzero. The results from a position-space RG
calculation illustrate how singlet states that are formed across
the inversion centers determine the value of the inversion
topological invariant, as opposed to the chiral winding number
which has a contribution from each of the states throughout
the 1D chain. This property also extends to situations where
additional states are applied to the inversion centers, in which
only the inversion topological invariant changes but quantities
such as the bulk polarization remain invariant.

Previous experimental realizations of the disordered chiral-
symmetric BDI and AIII chains have been performed in
ultracold-atomic systems [37]. Given that the model studied in
this work is still fundamentally based in the chiral-symmetric
BDI class, our findings could potentially be realized ex-
perimentally in ultracold-atomic systems. We note that the
Hamiltonian in (20) has been previously studied in [37], but
only with uncorrelated, chiral-symmetric disorder. Using a
spectroscopic Hamiltonian engineered by driving lasers into
a weakly trapped Bose-Einstein condensate of 87Rb atoms,
the spatial periodicity of the interference pattern between the
lasers results in a set of discrete momentum states that can be
considered as effective sites of a synthetic lattice that repli-
cates the Hamiltonian in (20). The tunneling energies mj and
t j in (21) are produced in this setup by simultaneously driving
many two-photon Bragg transitions between the applied laser
fields, and can be precisely controlled by manipulating the
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amplitudes and phases of the laser fields. This allows for con-
trollable disorder to be introduced into the model. Therefore,
with this experimental setup, it would be possible to produce
the inversion-symmetric disorder configurations given by (22)
and (23). Because the disorder is also chiral symmetric, the
mean chiral displacement given by the expectation value of
the chiral displacement operator C = 2〈SX 〉 [52] can be uti-
lized to probe the chiral winding number ν, where S is the
chiral operator given by (11) and X is the position operator for
open boundary conditions. When disorder averaged, the mean
chiral displacement converges to the chiral winding number
ν. Therefore, when inversion-symmetric disorder is present,
it should be viable to determine the chiral winding number
ν using the mean chiral displacement in the same manner as
in [37].

Our results provide a pathway to exploring the bulk nature
of TCPs when crystalline-symmetry-preserving disorder is
present, and indicate that examining the behavior of the states
at the fixed points of the symmetry group on the position-
space lattice is vital to understanding the stability of TCPs.
By utilizing projected symmetry operators to formulate topo-
logical crystalline invariants in position space, it is possible to
extend this work to higher dimensions where one can study
disordered systems preserving rotation symmetries or mirror
symmetries.

Furthermore, there is still an open question of how in-
cluding interactions while maintaining inversion-symmetric

disorder can affect the results obtained in this work (e.g.,
how it can affect the ground state of the topological crys-
talline phase). Such a scenario has been studied previously in
many-body localized (MBL) systems [53] but has not been
considered in TCPs. Therefore, it would be interesting to
study the effects of interactions in addition to point-group-
symmetric disorder on TCPs.
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