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Simulating higher-order topological insulators in density wave insulators
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Since the discovery of the Harper-Hofstadter model, it has been known that condensed matter systems with
periodic modulations can be promoted to nontrivial topological states with emergent gauge fields in higher
dimensions. In this paper, we develop a general procedure to compute the gauge fields in higher dimensions
associated to low-dimensional systems with periodic (charge- and spin-) density wave modulations. We construct
two-dimensional (2D) models with modulations that can be promoted to higher-order topological phases with
U(1) and SU(2) gauge fields in 3D. Corner modes in our 2D models can be pumped by adiabatic sliding of the
phase of the modulation, yielding hinge modes in the promoted models. We also examine a 3D Weyl semimetal
(WSM) gapped by charge-density wave (CDW) order, possessing quantum anomalous Hall surface states. We
show that this 3D system is equivalent to a 4D nodal line system gapped by a U(1) gauge field with a nonzero
second Chern number. We explain the recently identified interpolation between inversion-symmetry protected
phases of the 3D WSM gapped by CDWs using the corresponding 4D theory. Our results can extend the search
for (higher-order) topological states in higher dimensions to density wave systems.
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I. INTRODUCTION

Topological crystalline phases in noninteracting, clean
structures have attracted a great deal of recent theoretical and
experimental attention [1–6]. From the discovery of helical
edge states in Z2 topological insulators (TIs) [7–9] to surface
Dirac cones protected by time-reversal (TR) or crystal sym-
metries [2,10–12], the experimental manifestations of band
topology have come primarily through the exploration of sur-
face states. The recent theoretical prediction of higher-order
topological insulators (HOTIs) [13–16] has triggered a wave
of materials predictions [17–21] and experimental efforts to
observe their predicted gapped surfaces but gapless corners
(in 2D) or hinges (in 3D). At a theoretical level, topological
band insulators can be classified by exploiting the constraints
of symmetry, relating the topology of bands to the transforma-
tion properties of Bloch functions under crystal symmetries
[14,17,22–29]. In the simplest cases, the symmetry eigenval-
ues of occupied electronic wave functions at different crystal
momenta in the Brillouin zone can be used to deduce the ab-
sence of an exponentially localized, position space description
of the occupied states, and hence the presence of nontrivial
topology. Progress along these lines has led to a full, pre-
dictive classification of topological band structures both with
and without time-reversal symmetry (TRS). Essential to these
efforts is the presence of discrete translation symmetry, which
ensures that localized electronic functions are identical in each
unit cell, and hence allows the symmetry properties of the
system to be described as a function of momentum.

At the same time, the interplay between topological bands
and symmetry-breaking order has started to attract a great
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deal of attention. It has been argued theoretically that in topo-
logical systems with charge-density wave (CDW) order, the
collective phason mode of the CDW may inherit topologi-
cal properties from the Fermi sea, such as an induced axion
coupling to electromagetic fields [30–34]. Signatures of this
axion coupling have been recently experimentally detected
in (TaSe4)2I [35,36]. Additionally, the quantum anomalous
Hall (QAH) phase in the Dirac semimetal ZrTe5 can be un-
derstood as originating from a magnetic-field induced CDW
transition [37–40]. Because CDW order is, in general, incom-
mensurate with the underlying lattice, a full understanding
of the interplay between mean-field CDW order and band
topology requires us to examine topology of incommensu-
rately modulated electronic systems. Such a study would also
yield insights into topology in artificially modulated photonic
[41,42], metamaterial [43], and cold-atomic lattice systems
[44], which have become a focus of recent research due to
their tunability and experimental accessibility.

Naively, the breaking of translational and point-group sym-
metries implied by incommensurate modulation would seem
to prohibit the application of symmetry-based tools which
have been so successful in identifying and classifying topo-
logical crystalline systems. However, it is often possible to
view the single-particle dynamics in an incommensurately
modulated system as describing the behavior of a particle
in a larger number of dimensions, the phase offsets of the
incommensurate modulations playing the role of momenta in
the extra “synthetic” dimensions. The canonical example of
this mapping is the 1D Harper (Aubry-André) model with
incommensurate on-site potential. As was shown some time
ago [45], the Hamiltonian for the Harper model is equivalent
to the Hamiltonian for a 2D square-lattice system coupled to
a background magnetic field [46,47]. The phase of the on-site
modulation plays the role of the momentum in the second,
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synthetic dimension, while the wave vector of the modulation
plays the role of the magnetic flux per plaquette in the 2D
lattice. Bands in the enhanced, 2D system can be characterized
by a Chern number, which mandates the presence of gapless
chiral modes at the edges of the system. Reducing back to
1D, these 2D edge states manifest as boundary states of a 1D
wire which appear and disappear as a function of the phase of
modulation, thus realizing a Thouless pump [48–50]. Recent
studies also show that certain generalization of the 1D Harper
model allows for the investigation of higher-order topological
phases [51].

In this paper, we will extend the connection beyond 1D to
show how modulated systems in 2D and 3D can be related
to topological crystalline phases in higher dimensions. We
will first review a general method for representing a mod-
ulated system as a higher dimensional system coupled to a
background gauge field [46–48,52]. For systems with negligi-
ble spin-orbit coupling and spin-independent modulation, the
gauge field will be a U(1) magnetic field; for spin-dependent
modulations, we will show that there can also be induced
SU(2) gauge fields. We will exploit the fact that both U(1)
and SU(2) gauge fields with constant field strength preserve
inversion symmetry to show that 2D modulated systems can
realize higher-order chiral [U(1)] and helical [SU(2)] topolog-
ical phases in one extra synthetic dimension. We show how
the hinge states of these synthetic HOTIs manifest as corner
modes in 2D, with energies that can be tuned by changing
the phase of the modulation. Going further, we use the map-
ping to synthetic dimensions to bring order to the complex
landscape of eigenstates of the modulated system, showing
how the states can be interpreted as bulk and surface Landau
level (LL) wave functions in synthetic dimensions. Finally,
we also revisit a 3D minimal model for a Weyl semimetal
(WSM) with (generally incommensurate) CDW order [53],
and show how it realizes a 4D nodal line semimetal gapped
into a phase with a nontrivial second Chern number. We will
verify our conclusions with a combination of exact numeri-
cal results and approximate low-energy analytic calculations.
We will also exploit the fact that the phase of a (charge- or
spin-) density wave (DW) order parameter can be shifted with
an applied electromagnetic field by exciting the (nominally
gapless but sometimes pinned) sliding mode [54]. This will
allow us to make predictions about topological pumping of
boundary states in modulated structures, driven by the sliding
mode of the DW. In contrast to other recent proposals for
topological pumping in synthetic dimensions, the coupling
of the DW sliding mode to electromagnetic fields allows for
tunability of synthetic dimensions in modulated structures.
We will comment on potential experimental realizations in
condensed matter, photonic, and cold-atom systems through-
out. This paper will enable avenues for exploring higher-order
topological phenomena which, with the exception of some
promising results in bismuth [55–57], have not been unam-
biguously identified in crystalline electronic systems.

The rest of the paper is organized as follows. In Sec. II,
we review how the Thouless pump in a 1D Rice-Mele [Su-
Schrieffer-Heeger (SSH)] chain is realized by the sliding of a
CDW, and we review its connection to topology by promoting
the model to a 2D π -flux lattice. In Sec. III, we next develop
a general method to compute the U(1) gauge fields that are

coupled to a higher dimensional models promoted from a
low-dimensional modulated system. In Secs. IV and V, we
construct 2D modulated systems that can be promoted to 3D
chiral and helical HOTIs coupled to U(1) and SU(2) gauge
fields, respectively. We demonstrate the pumping of corner
modes by the sliding of DWs in these systems via numerical
calculations of the energy spectra. We examine the properties
of wave functions in these 2D modulated systems by con-
structing low-energy theories coupled to gauge fields in 3D.
We show how the evolution of bulk, edge, and corner states in
2D can be understood from the perspective of the low-energy
theory in 3D. In Sec. VI, we turn to a model for a 3D WSM
gapped by a CDW. We show that this model can be promoted
to a 4D nodal line system gapped by a U(1) gauge field. We
derive the corresponding low-energy theory in 4D and use it
to explain both the existence of QAH surface states and the
interpolation between topologically distinct QAH phases at
the two inversion-symmetric values of the CDW phase in this
3D system. Finally, in Sec. VII, we give an outlook as to how
our work may extend the search of (higher-order) TIs in higher
dimensions and enable simulations of SU(2) gauge physics
in higher dimensions. Some details of our models, further
numerical results, and detailed derivations of the low-energy
theories are presented in the Supplemental Material (SM)
[58].

Throughout this paper, we use units where h̄ = c = |e| =
1, and where the electron has charge−|e| = −1. Furthermore,
the Einstein summation convention will not be used; whenever
there is a summation over an index, we will write the summa-
tion explicitly.

II. REVIEW: THOULESS PUMP AS SLIDING MODE

In this section, we review the CDW picture of the Rice-
Mele (SSH) model [52,59], and the interpretation of the
Thouless pump [48] as a CDW sliding mode. Consider the
following Hamiltonian for a 1D chain:

HRice-Mele =
∑
n

(t + δt (−1)n cosφ)c†n+1cn + H.c.

+
∑
n

(−1)n+1� sin φc†ncn, (1)

where c†n is the creation operator for an electron at site n. The
nearest-neighbor hopping and on-site potential are modulated
with periodicity 2 and their relative strength is related to the
phase φ of the modulation. We thus identify φ as the phase
of this CDW modulation. In this paper, we use the terms
CDW sliding phase and phases of the mean-field CDW order
parameter interchangeably to refer to φ. For suitable choices
of t , δt , and �, the spectrum of this Hamiltonian is gapped for
all φ ∈ [0, 2π ). Focusing on the half-filled insulating ground
state in this parameter regime, the occupied-band Wannier
centers [17,60–63] will be pumped by a length of one unit
cell (two sites) as the phase φ adiabatically slides from 0
to 2π , leading to a quantized change of bulk polarization
[52,64–66]. This quantization has a topological origin: If we
regard φ as a crystal momentum along a second, synthetic
dimension which we call y, Eq. (1) is equivalent to a 2D
square lattice model with a U(1)π -flux (equivalent to half
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flux quantum �0 = 2π h̄/|e| where electron has charge −|e|)
per plaquette, and with a fixed crystal momentum ky along
y. The quantized polarization change is then identified as the
Chern number [49,65,67–69] of the occupied bands in 2D.
We provide further details, including numerical verification
of charge pumping, and the explicit construction of the di-
mensional promotion to 2D, in the SM [58].

We see from this example that promoting the dimension of
a modulated system to a higher dimensional lattice coupled
to gauge fields can help explain the topological origin of
low-dimensional properties, including charge transport and
boundary modes. A general method for dimensional promo-
tion will thus be helpful in dealing with various topological
modulated systems in more than 1D. In what follows, we
will show that the dimensional promotion approach can be
extended to higher dimensions and to cases where the modula-
tion is incommensurate with the underlying lattice periodicity.

III. DIMENSIONAL PROMOTION PROCEDURE

In this section, we will generalize the 1D-to-2D promotion
of the Rice-Mele chain to general dimensions. To begin, let
us consider a d-dimensional (dD) electronic model on a cubic
lattice with N mutually incommensurate on-site modulations
[46,47,70–73] described by the Hamiltonian

Hlow-dim =
∑
�n, �m

ψ
†
�n+ �m[H �m]ψ�n +

∑
�n

N∑
i=1

ψ
†
�n
[
V (i)

�n
]
ψ�n. (2)

Here both �n = (n1, · · · , nd ) and �m = (m1, · · · ,md ) ∈ Zd are
vectors in the dD cubic lattice, and ψ

†
�n is the electron creation

operator for an electron at position �n with a given set of spin
and orbital degrees of freedom. We denote by [H �m] the hop-
ping matrix connecting position �n to �n + �m, and by [V (i)

�n ] the
matrix representing ith modulated on-site energy at position
�n (i = 1, . . . ,N), with matrix indices encoding the spin and
orbital dependence of the hopping [74]. Note that Hermiticity

of the Hamiltonian requires that [H �m] = [H− �m]† and [V
(i)
�n ]

† =
[V (i)

�n ]. We further assume that [V (i)
�n ] = [ f (i)(2π �q(i) · �n + φ(i) )]

with [ f (i)(x)] = [ f (i)(x + 2π )], where �q(i) is the ith modu-
lation wave vector and φ(i) is the sliding phase associated
with the ith modulation. For the cubic system with unit lattice
vectors we are discussing here, each component q(i)j , ( j =
1, . . . , d) of �q(i) is defined within [0,1); that is, each 2π �q(i)
lies within the primitive Brillouin zone of the unmodulated
system. Since each [V (i)

�n ] is a periodic function, they can be
expanded in terms of Fourier series as[

V (i)
�n

] =
∑
pi∈Z

[
V (i)
pi

]
eipi (2π �q(i)·�n+φ(i) ), (3)

where [V (i)
pi ] is the matrix-valued pith Fourier component of

[V (i)
�n ]. Note that [V (i)

pi ] = [V (i)
−pi ]

†
due to Hermiticity of the

Hamiltonian.
To perform the enhancement of dimensions, we first insert

the expansion Eq. (3) into the Hamiltonian Eq. (2). We then
regard each φ(i) as the ith crystal momentum ki along one
of the additional N synthetic dimensions. We then promote
the dD model to a (d + N )D space by summing over �k =

(k1, · · · , kN ) ∈ TN (where TN denotes the N-dimensional
torus), which yields the Hamiltonian in (d + N )D as

Hhigh-dim =
∑
�n, �m,�k

ψ
†

�n+ �m,�k[H �m]ψ�n,�k

+
∑

�n,�k,i,pi
ψ

†

�n,�k
[
V (i)
pi

]
eipik

i
ei2π pi �q(i)·�nψ�n,�k . (4)

Each physically distinct configuration of {φ(i)} can be recov-
ered by restricting the Hamiltonian Eq. (4) to a single �k point.
Once we sum over �k, however, we can reinterpret the Hamil-
tonian in a (d + N )D space. As we will see below, adiabatic
pumping of the phases φ(i) by an external field will allow us
to explore dynamics in the full d + N dimensional space.

To obtain the (d + N )D model in position space, we per-
form an inverse Fourier transform of ψ

†

�n,�k , yielding

Hhigh-dim =
∑
�n, �m,�ν

ψ
†
�n+ �m,�ν[H �m]ψ�n,�ν

+
∑

�n,�ν,i,pi

ψ
†
�n,�ν−pi ν̂i

[
V (i)
pi

]
ei2π pi �q(i)·�nψ�n,�ν, (5)

where �ν = (ν1, · · · , νN ) ∈ ZN and ν̂i is the unit vector
along the ith additional dimension, such that �ν − piν̂i =
(ν1, · · · , νi − pi, · · · , νN ). Equation (5) can be viewed as the
Hamiltonian for a system on a (d + N )D cubic lattice whose
lattice sites are located at (�n, �ν ) = (n1, · · · , nd , ν1, · · · , νN ) ∈
Zd+N . The system is coupled to a continuous U(1) gauge field

�A = ( �0︸︷︷︸
dD

, 2π �q(1) · �r, · · · , 2π �q(N ) · �r︸ ︷︷ ︸
ND

) (6)

through a Peierls substitution [75], explaining the appearance
of the phase factors multiplying [V (i)

pi ] in Eq. (5). Note �r ∈ Rd

is a vector in the original dD space.
As the vector potential in Eq. (6) is linear in position �r,

the antisymmetric field strength Fμν = ∂μAν − ∂νAμ is con-
stant in space. In particular, Eq. (6) implies that the nonzero
components of Fμν are given by

Fi, j+d = ∂iA j+d − ∂ j+dAi = ∂iA j+d = 2πq( j)i , (7)

where i = 1, . . . , d and j = 1, . . . ,N . Due to the antisym-
metry of the field strength, Fi+d, j with i = 1, . . . ,N , j =
1, . . . , d is also nonzero and given by Fi+d, j = −2πq(i)j .
Therefore, the (nonzero) constant field strength is proportional
to the magnitude of the modulation wave vectors.

This shows that a dD modulated system with phase offset
{φ(i)} is equivalent to the Bloch Hamiltonian [see Eq. (4)]
of the promoted (d + N )D lattice model with fixed crystal
momenta �k, once we identify φ(i) as ki. In practice, the modu-
lation [V (i)

�n ] can be induced by a set of DW modulations. The
phase offset {φ(i)} is then regarded as the phason degrees of
freedom, namely, the phase of the ith mean-field DW order
parameter. By applying electric fields that depin the DWs
and make them slide [35,54,76], we may sample the whole
spectrum of the (d + N )D model. In particular, and as we
will explore in subsequent sections, nontrivial topology in
the (d + N )D lattice model—which may support localized
boundary states—will manifest in the response of the dD
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model to adiabatic sliding of the DW phase mode(s). We
emphasize here that in our dimensional promotion procedure
for a DW system, there are no emergent electric fields in
the promoted (d + N )D space. The electric fields mentioned
here are external and serve as a way to depin the DW to
vary {φ(i)} adiabatically. This allows for the sampling of the
entire spectrum of the (d + N )D model as a function of {φ(i)},
namely, the additional crystal momenta.

Before we move on to consider the band topology of
promoted lattice models, let us make a few general comments
about our dimensional promotion procedure. First, note that
the dimensional promotion procedure places no constraints
on the modulation vectors �q(i); in particular, they need not
be commensurate with the underlying lattice. In the case
of incommensurate modulation, the dimensional promotion
procedure allows us to write the dD incommensurate model
in terms of a periodic (d + N )D model with an irrational
U(1) flux per plaquette. We will see below how we can use
this to explore the topology of systems with incommensurate
modulation. We emphasize that the dimensional promotion
procedure is independent of whether in the original dD space
the system is infinite or finite. When we promote the dimen-
sion of a dD system to (d + N )D space, the (d + N )D system
is inherently infinite along the additional N dimensions,
as it allows a Fourier transformation to obtain the Bloch
Hamiltonian with fixed N additional crystal momenta. From
this viewpoint, there are two ways to utilize the dimensional
promotion procedure. If we promote the dimension of an in-
finite dD system, we will obtain an infinite (d + N )D system
that allows us to discuss the nontrivial bulk topology in the
promoted (d + N )D space. If we instead promote the dimen-
sion of a finite dD system, we will obtain a (d + N )D system
which is finite along the original d dimensions and infinite in
the additional N dimensions. This allows us to compute the
energy spectrum to examine whether there are boundary states
protected by the nontrivial bulk topology in (d + N )D space.

Second, although here we consider only dimensional
promotion of a dD cubic lattice model with only on-site mod-
ulations and all orbitals located at the lattice points labeled by
�n ∈ Zd to a (d + N )D cubic lattice model, we may generalize
our method to dD models with modulations in both on-site
and hopping matrix elements, together with nonorthogonal
lattice vectors and arbitrary orbital positions. We show how
to systematically promote the dimensions of such dD mod-
els to (d + N )D and compute the corresponding U(1) gauge
fields in the SM [58]. We also give several examples in the
SM [58], including the dimensional promotion of (1) the 1D
Rice-Mele chain in Sec. II to a 2D square lattice with π flux,
(2) 1D lattices with modulation in both on-site energies and
hopping terms to 2D hexagonal lattices under a perpendicular
magnetic field, and (3) 2D modulated systems with hexagonal
lattice to 3D systems also with hexagonal lattices coupled to
a U(1) gauge field. The U(1) gauge fields will take a slightly
different form from Eq. (6) when we consider a system with
nonorthogonal lattice vectors. However, the vector potentials
will still be linear in �r ∈ Rd+N , and hence will still produce
constant field strengths Fμν . Furthermore, note that although
we considered for simplicity models where the electrons were
localized to the origin of each unit cell, this is not essential for
the application of our formalism.

Third, we emphasize that no additional parameters are used
in the above derivation. The hopping matrices connecting
(�n, �ν ) to (�n + �m, �ν ) and (�n, �ν − piν̂i ) are given by [H �m] and
[V (i)

pi ], respectively, in the (d + N )D model. The phase φ(i)

corresponds to the ith crystal momentum along the ith addi-
tional dimensions. Further, the modulation wave vectors �q(i)
specify the strength of the U(1) gauge field in (d + N )D, see
Eq. (6). Notice that the on-site modulations [V (i)

�n ] only lead
to hopping parallel to ν̂i in (d + N )D. If we also consider
modulated hopping matrices in dD, upon dimensional promo-
tion we will get hopping along �m + piν̂i in (d + N )D [46,77],
which we show in the SM [58]. Notice that the index i is not
summed over in piν̂i. Recall also that �m and ν̂i are vectors
in the original dD and additional ND space, respectively. An
example that demonstrates this is the 1D Rice-Mele model
[52] in Sec. II. In the SM [58], we promote Eq. (1) to a 2D
lattice with π flux per plaquette in which the electrons can
hop along x̂ + ŷ (where x̂ and ŷ are in the original 1D and
additional 1D space, respectively).

Next, our construction provides a way to compute the pro-
moted (d + N )D model and the U(1) gauge field to which it is
coupled. As a U(1) gauge field breaks TRS, this dimensional
promotion procedure is suitable to investigate nontrivial topo-
logical phases in (d + N )D space without TRS. Belowwe will
also consider a dimensional promotion to (d + N )D space
with an SU(2) gauge field, which preserves TRS and allows
us to explore nontrivial topological phases protected by TRS
[7,8,78,79]. To construct a low-dimensional modulated model
equivalent to a higher dimensional lattice coupled to an SU(2)
gauge field, we adopt a top-down approach. We will in Sec. V
present a 2D modulated model which is obtained from a 3D
model coupled to one SU(2) gauge field with a fixed crystal
momentum.

In the following sections, we explore various 2D and 3D
modulated systems that admit a dimensional promotion to a
higher dimensional topological phases coupled to either U(1)
or SU(2) gauge fields. We will show how an analysis of the
higher-dimensional models can shed light on the eigenstates
and boundary state dynamics of incommensurate DWs.

IV. CHIRAL HIGHER-ORDER TOPOLOGICAL
SLIDING MODES

In this section, we will show how the dimensional promo-
tion procedure can be used to realize 3D chiral HOTIs in 2D
DW materials. We will first construct a Hamiltonian for an
insulating 2D modulated system that is inversion symmetric
for special values of the DW sliding phase φ. Then, we will
show how, after dimensional promotion, the Hamiltonian cor-
responds to a 3D inversion-symmetric chiral HOTI coupled to
a U(1) gauge field. We will explore the connection between
hinge states of the 3D system and corner states of the 2D
system using a combination of numerical diagonalization and
a 3D low-energy �k · �p theory.

A. Dimensionally promoted chiral model

Consider the following 2D Hamiltonian for electrons
on a square lattice, with one modulated on-site potential
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[V (�q, �n, φ)]:
H =

∑
�n

ψ
†
�n+x̂[H+x̂]ψ�n + ψ

†
�n+ŷ[H+ŷ]ψ�n + H.c.

+
∑

�n
ψ

†
�n ([Hon-site] + [V (�q, �n, φ)])ψ�n, (8)

where the unmodulated hoppings and on-site energies are

[H+êi ] = Ji
2

τzσ0 − λi

2i
τxσi, (9)

[Hon-site] = Mτzσ0 + τ0 �B0 · �σ . (10)

We use êi to denote the unit vector along the ith (i =
1, 2) direction. The Pauli matrices �τ = (τx, τy, τz ) and �σ =
(σx, σy, σz ) denote, respectively, orbital (for example, s and
p orbitals) and spin degrees of freedom. This Hamiltonian is
inversion symmetric, with inversion symmetry represented by
τz. Furthermore, when �B0 = 0, the model is also TR symmet-
ric, with the TR operator represented as iσyK (where K is the
complex conjugation operator).

We assume that both orbital degrees of freedom are located
at the lattice sites. The hopping matrices [H+êi ], and Mτzσ0

give rise to, at low energy, four-component massive Dirac
fermions, allowing us to access various topological phases
[69,78,80]. Physically, we can interpret Mτzσ0 as the on-site
energy difference for different orbitals and τ0 �B0 · �σ as a ferro-
magnetic potential which splits the spin degeneracy of bands
[81]. The modulated on-site potential, which can arise from a
DW modulation, is

[V (�q, �n, φ)] =Jz cos θ�q,�n,φτzσ0 + λz sin θ�q,�n,φτxσz, (11)

where θ�q,�n,φ = 2π �q · �n + φ, �q = (qx, qy) is the modulation
wave vector in 2D, �n ∈ Z2 is the lattice position, and φ is

the sliding phase. The first term in Eq. (11) modulates the
massMτzσ0 in Eq. (10), while the second modulation denotes
an on-site spin-orbit coupling between s and p orbitals. Note
that the modulation Jz cos θ�q,�n,φτzσ0 is a TR-even charge or-
dering, while λz sin θ�q,�n,φτxσz is a TR-odd spin ordering. To
see this, note that TR maps (τ0, τx, τy, τz ) → (τ0, τx,−τy, τz )
and (σ0, σx, σy, σz ) → (σ0,−σx,−σy,−σz ). In addition, the
modulations Jz cos θ�q,�n,φτzσ0 and λz sin θ�q,�n,φτxσz are both in-
version symmetric when φ = 0, π .

Denoting the third, synthetic dimension as z and identi-
fying φ as the corresponding crystal momentum kz, we may
use our general procedure in Sec. III to promote this 2D
modulated system to a 3D lattice model. We first expand the
modulations in terms of Fourier series as

Jz cos θ�q,�n,φτzσ0 = Jz
2

(
eiθ�q,�n,φ + e−iθ�q,�n,φ

)
τzσ0, (12)

λz sin θ�q,�n,φτxσz = λz

2i

(
eiθ�q,�n,φ − e−iθ�q,�n,φ

)
τxσz. (13)

According to Eqs. (3) and (5), the hopping along +ẑ can be
identified with the terms associated with e−iθ�q,�n,φ in Eqs. (12)
and (13). Therefore, the hopping along +ẑ in the promoted 3D
space reads

[H+ẑ] = Jz
2

τzσ0 − λz

2i
τxσz. (14)

From Eq. (6), we can also identify the vector potential in the
promoted 3D space as

�A = (0, 0, 2π �q · �r) = (0, 0, 2πqxx + 2πqyy), (15)

where �r = (x, y) ∈ R2. Therefore, we have that the lattice
Hamiltonian in the promoted 3D space is given by

H =
∑

�n
[(ψ†

�n+x̂[H+x̂]ψ�n + ψ
†
�n+ŷ[H+ŷ]ψ�n + ψ

†
�n+ẑ[H+ẑ]e

−i2π (qxnx+qyny )ψ�n + H.c.) + ψ
†
�n [Hon-site]ψ�n], (16)

where the vector potential Eq. (6) is coupled to the system
through a Peierls substitution [75], and [H+x̂], [H+ŷ], [H+ẑ]
and [Hon-site] are given by Eqs. (9) and (10), respectively.
Hereafter, we will set Jx = Jy = Jz = J for simplicity. If we
Fourier transform Eq. (16) along z and regard kz (the wave
number along z) as the sliding phase φ, we can obtain the 2D
modulated system in Eq. (8).

We will now use Eq. (16) to analyze the topological prop-
erties of the higher-dimensional model to infer the properties
of the low-dimensional modulated system. This approach
can also be employed in other low-dimensional modulated
systems provided the corresponding higher-dimensional mod-
els are constructed. For qx = qy = 0 and �B0 = 0, Eq. (16)
describes a TR and inversion-symmetric insulator whose in-
version operation is represented by τz (note that inversion
symmetry acts to flip the sign on the synthetic momentum
kz). We can employ the theory of symmetry-based indicators
of band topology [14,21,22,26,53,82–84] to compute the Z4

indicator,

z4 = 1

4

∑
�ka∈TRIMs

(na+ − na−) mod 4, (17)

where na+[n
a
−] is the number of positive[negative] parity eigen-

values in the valence band at the time-reversal invariant
momentum (TRIM) �ka. We find that for |M/J| > 3, |M/J| <

1, 1 < M/J < 3, −3 < M/J < −1, the Z4 symmetry-based
indicator is given by z4 = 0, 0, 1 and 3, respectively. The
regimes where z4 mod 2 = 1 give a strong TRS-invariant
TI. For nonzero �B0 which breaks TRS but does not induce
additional band inversions, the magnetic Z4 symmetry-based
indicator [14,15,17,21,26–29,53,81,85–87] is given by

z̃4 = 1

2

∑
�ka∈TRIMs

(na+ − na−) mod 4, (18)

such that for |M/J| > 3, |M/J| < 1, 1 < |M/J| < 3 we have
z̃4 = 0, 0, and 2. The corresponding weak indices are all
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necessarily trivial. Therefore, for 1 < |M/J| < 3 with qx =
qy = 0, the system described by Eq. (16) gives a strong TI
with �B0 = 0 and a chiral HOTI (axion insulator) [26] with
�B0 �= 0, where the gapless surface states of the strong TI
are gapped by the inversion-preserving ferromagnetic poten-
tial τ0 �B0 · �σ . Therefore, Eq. (16) with �q �= 0 describes an
inversion-symmetric chiral HOTI [88] coupled via a Peierls
substitution to a 3D U(1) gauge field given by the �A in Eq. (6).
This �A produces a constant U(1) magnetic field,

∇ × �A = (2πqy,−2πqx, 0), (19)

which preserves the inversion symmetry represented by τz in
3D, up to a gauge transformation (see SM [58]). Therefore, for
a suitable choice of parameters, as long as the U(1) gauge field
does not close the bulk gap in 3D, the insulating ground state
will be in the same inversion symmetry-protected nontrivial
chiral HOTI phase. This implies that our model should exhibit
the characteristic boundary modes of a chiral HOTI in 3D. In
particular, our promoted model will support odd numbers of
sample-encircling chiral hinge modes in rod geometries which
respect inversion symmetry [53,81,88].

B. Corner states

Recalling that in our case the ẑ direction is conjugate to the
phase φ of the sliding mode (regarded as the crystal momen-
tum kz), it is natural for us to consider inversion-symmetric
rod geometries which are finite in the x̂ and ŷ directions and
infinite in the ẑ direction. In our 2D system, this corresponds
to considering the properties of a finite system as a function
of the phase φ. We can thus compute the energy spectrum
of our 2D system in an open geometry with size Lx × Ly as
a function of φ to obtain the energy dispersion along kz in
the promoted model. In the following, we call this kind of
calculation the φ-sliding spectrum, since the variation of φ

can be obtained by electromagnetically exciting the sliding
mode of the underlying DW. Figure 1(a) shows the φ-sliding
spectrum of Eq. (8) with parameters J = 1, M = 2, λi = 1,
( �B0)i = 0.5/

√
3 [88], and �q = (0, qy), where qy = 0.11957

is comparable with the experimental CDW wave vectors in
(TaSe4)2I [36] and is incommensurate with the underlying 2D
square lattice in Eq. (8). The system size is 31 × 31. As we can
see, the spectrum contains modes which, as a function of φ,
traverse the bulk spectral gap. Examining the wave functions
of these gap-crossing modes, we see that they are localized
to the corners of our 2D sample, as shown in Fig. 1(b).
The gap-crossing modes with opposite slopes correspond
to states at inversion-related corners; in our example, one
mode is localized at the corner (xcorner, ycorner ) = (L/2,−L/2)
[Fig. 1(b)] and the other at (xcorner, ycorner ) = (−L/2,L/2)
where L = 30. If we start in a half-filled insulating ground
state (with Fermi level EF = 0), then as φ slides from 0 to
2π , we realize charge pumping as one corner mode merges
into the occupied-state subspace while the inversion-related
counterpart flows into the unoccupied-state subspace. The
ground states at the two inversion-symmetric values φ =
0, π differ in electron number by 1, demonstrating a filling
anomaly [89,90]. Because these corner modes originate as
hinge modes in the 3D dimensionally promoted system
(where, recall, φ is the momentum kz), their existence is

FIG. 1. (a) φ-sliding spectrum of the chiral 2D model in Eq. (8)
with parameters given in the text. (b) Probability distribution of cor-
ner modes in the gap-crossing bands at φ = 0.5π and E = −0.1368.
(c), (d) Probability distribution of edge and bulk modes at φ = 0.9π
and E = −0.2508 and E = 0.278, respectively. The darker (black)
color in (b)–(d) implies higher probability density. (b)–(d) corre-
spond to the corner mode, edge-confined mode, and bulk-confined
mode discussed in Secs. IVB–IVD, respectively. In (b)–(d), the x
and y coordinates both range from −15, . . . , +15.

mandated by the nontrivial higher-order topology of the model
Eq. (16).

By analyzing the low-energy theory of the 3D hinge
modes, we will now derive the dynamics of the 2D corner
modes as a function of φ. In 3D, the corresponding low-energy
1D hinge Hamiltonian [13,82,91] with a chiral mode as a
function of kz is given by

Hhinge = ξvF [kz + 2π (qxxhinge + qyyhinge)]. (20)

We have assumed that for the hinge along z at position
(xhinge, yhinge) there is only one chiral mode with Fermi veloc-
ity ξvF where vF > 0. We have introduced ξ = ±1 to denote
whether the chiral mode has positive or negative velocity. Fol-
lowing our dimensional promotion procedure, Eq. (20) is then
minimally coupled to a U(1) gauge field in Eq. (15) through
the Peierls substitution kz → kz + 2π (qxx + qyy), where x =
xhinge and y = yhinge are fixed.

To map Eq. (20) in 3D to the corner mode dispersion in
2D, it is helpful to first compute the φ-sliding spectrum for
Eq. (8) with �q = (0, 0), as shown in Fig. 2(a). If we identify
φ as kz in the hinge theory (modulo a constant offset that we
will fix later), Fig. 2(a) is the ẑ-directed rod band structure
for Eq. (16) without coupling to any vector potential. As we
can see, there are linear dispersing hinge modes spanning the
bulk gap, which cross each other at kz = π . This will be used
below in Eq. (21) to complete the mapping from Eq. (20)
to 2D. Figure 2(a) will also serve as a reference calculation
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FIG. 2. (a), (b) φ-sliding spectrum of the chiral 2D model with the same parameters as Fig. 1(a) but with qy = 0 and 0.02, respectively.
(c), (d) Probability distribution of the corner modes in (b) at φ = 0.4π and 1.6π and both with E = 0.0365. (e)–(g) Average of the probability
distribution for the doubly degenerate edge-confined modes in the flat bands in (b) at φ = π . The double degeneracy is due to the pair of
opposite edges related by inversion symmetry. (e)–(g) are edge-confined modes at φ = π with energies E = −0.4705, −0.2235, and 0.3811,
which are marked orange, green, and red, respectively, in (b). The corresponding energy eigenvalues are E−

kz=0,n=1, E
−
kz=0,n=0, and E+

kz=0,n=1 in
Eq. (28). (h) Edge-confined mode at φ = 0.9π with energy E = −0.2235 corresponding to E−

kz=−0.1π,n=0 in Eq. (28). The darker (black) color
in (c)–(h) implies higher probability density. The inset in (e)–(h) is the probability distribution integrated over all x coordinates. In (c)–(h), the
x and y coordinates both range from −15, . . . , +15.

when we examine the response of the φ-sliding spectrum
as we increase the magnitude of �q, which will confirm our
low-energy analysis.

We now use Eq. (20) to construct a low-energy description
of the corner modes in Fig. 1(a) for Eq. (8). Upon projecting
from 3D to 2D, the fixed hinge mode position (xhinge, yhinge)
becomes the fixed corner mode position (xcorner, ycorner ), and
the hinge modes become corner modes. Since the gap-
crossing modes in the q = 0 system shown in Fig. 2(a)
intersect at φ = π , we replace kz in the hinge theory by �φ =
φ − π . Thus, we obtain an effective low-energy description of
the corner modes as

Hcorner = ξvF · [�φ + 2π (qxxcorner + qyycorner )]. (21)

We now verify Eq. (21) by numerically computing the φ-
sliding spectrum shown in Fig. 2(b) with the same parameters
as Fig. 1(a) but with qy changed to 0.02. This small value
of qy gives a smooth modulation—and hence a low flux per
plaquette in the dimensionally promoted model—and is thus
a suitable platform to examine the low-energy theory with
minimal coupling. We observe gap-crossing modes with neg-
ative and positive slopes corresponding to corner modes at
(−L/2,L/2) and (L/2,−L/2) where L = 30, respectively.
These are shown in Figs. 2(c) and 2(d) at φ = 0.4π and
1.6π , respectively. Using Eq. (21), we have the low-energy

descriptions for these two corner modes governed by the
Hamiltonians

Hcorner 1 = −vF (�φ + πqyL), (22)

Hcorner 2 = +vF (�φ − πqyL), (23)

where we have used qx = 0. Thus, if we ramp up qy from 0 to
some nonzero value, we expect to see the corner mode disper-
sion shift along the φ axis. This is demonstrated in Fig. 2(b),
which is to be compared with Fig. 2(a). In fact, a careful ex-
amination of Figs. 2(a) and 2(b) shows that the dispersions of
the two corner modes shift in opposite directions as a function
of �φ, as indicated in Eqs. (22) and (23), with the shift given
by πqyL ≈ 0.6π for qy = 0.02 and L = 30. We thus see that
the corner mode dispersion in Fig. 2(b) can be explained by
Eq. (21). This demonstrates the origin of the corner modes in
the 2D modulated system as higher dimensional hinge modes
minimally coupled to a U(1) gauge field. If we consider larger
qy, such as in Fig. 1 where we have qy = 0.11957, then the
shift of the corner mode dispersion is predicted to be πqyL ≈
3.5871π . This lies outside the first Brillouin zone and needs
to be folded back into the range φ = [0, 2π ). This occurs
because, in passing from low-energy continuum theory to a
lattice model, the periodicity of φ—which in the promoted
dimension is the continuous wave number kz—is restored.
Additionally, note that Eq. (21) implies that we may tune the
range of φ where the corner-mode energies emerge from the
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bulk continuum by varying the periodicity of the modulation
∼1/| �q|. As shown in Eqs. (15) and (19), tuning �q is equivalent
to changing the direction and strength of the U(1) gauge field
and the corresponding magnetic field in 3D.

C. Edge states

Having accounted for the low-energy description of the
corner modes, we observe that in Fig. 1(a) there are additional
modes with flat dispersion. These nondispersing modes de-
scribe states confined either to the bulk or edge of the system,
as shown in Figs. 1(c) and 1(d). We now use low-energy
theories to demonstrate that these states originate from the
U(1) Landau quantization of the surface and bulk electrons in
the promoted 3D chiral HOTI. We will revisit Figs. 1(c) and
1(d) after we complete the low-energy theory analysis using
relatively small qy.

We start with the edge-confined modes. Since a chiral
HOTI can be obtained by gapping out the surface of a 3D
inversion and TR-symmetric TI with a TR-breaking mass
term, the generic surface theory reads [81,82,92]

Hsurf = ( �p× �σ ′) · n̂ + mn̂ · �σ ′, (24)

where �σ ′ are Pauli matrices that act in the basis of low-energy
surface states and which capture their spin and orbital texture,
�p is the momentum operator, and n̂ is the surface normal
vector. The TR operator in this surface theory is given by T =
iσ ′

yK such that T �σ ′T −1 = −�σ ′. The momentum dependent
term ( �p× �σ ′) · n̂ describes a helical surface Dirac cone, while
mn̂ · �σ ′ is the TR-breaking mass term. As shown in Eq. (19),
if qx = 0, which is the case we consider in Figs. 1 and 2, we
have that ∇ × �A is parallel to x̂. We then consider a surface
theory on the yz plane coupled to a perpendicular magnetic
field Bx̂ generated by a Landau-gauge U(1) gauge field �A =
(0, 0,By). The corresponding surface Hamiltonian with the
U(1) gauge field reads Hsurf = pyσ ′

z − (pz + By)σ ′
y + mσ ′

x,

where we have made a Peierls substitution such that pz →
pz + By, and we have assumed that both B and m are positive.
To facilitate the derivation, we perform a basis transformation
through a −2π/3 radian spin rotationU along the [1,1,1] axis
such that U †(σ ′

x, σ
′
y, σ

′
z )U = (σ ′

z, σ
′
x, σ

′
y). The transformed

Hamiltonian then reads

Hsurf = pyσ
′
y − (pz + By)σ ′

x + mσ ′
z . (25)

Fourier transforming Eq. (25) to replace pz by the wave num-
ber kz and defining a kz-dependent ladder operator

a†kz = 1√
2B

[(kz + By) − ipy], (26)

where [akz , a
†
kz
] = 1, we can rewrite Eq. (25) as

Hsurf(kz ) =
[

m −√
2Bakz

−√
2Ba†kz −m

]
. (27)

We can solve for the eigenstates and energy eigenvalues of
Eq. (27) to find

ψ−
kz,n=0 = eikzz

[
0|0, kz〉

]
, E−

kz,n=0 = −m,

ψ−
kz,n>0 = eikzz

[
α−(n)|n − 1, kz〉

|n, kz〉
]
, E−

kz,n>0 = −
√
m2 + 2Bn,

ψ+
kz,n>0 = eikzz

[
α+(n)|n − 1, kz〉

|n, kz〉
]
, E+

kz,n>0 = +
√
m2 + 2Bn,

where α±(n) = −1√
2Bn

(±
√
m2 + 2Bn + m). (28)

Here n is a non-negative integer labeling the U(1) LLs, and
|n, kz〉 is the nth simple harmonic oscillator (SHO) eigenstate
localized along y defined by the a†kz in Eq. (26). Notice that
the energies E−

kz,n=0, E
−
kz,n>0 and E+

kz,n>0 of these LLs shown
in Eq. (28) are all independent of kz. As before, we now
construct the low-energy description of the edge-confined
modes in the 2Dmodulated system from the above low-energy
surface theory in Eq. (25). We identify kz in the surface theory
as �φ = φ − π , since we have flat bands as a function of φ

in our 2D modulated system. We also identify B with 2πqy
since in our examples of Figs. 1(a) and 2(b), we have qx = 0
and the corresponding vector potential is �A = (0, 0, 2πqyy).
When we project down to the 2D model, the surface electrons
correspond to states confined in the left and right edges, as
shown in Figs. 1(c) and 2(e)–2(h). We again use qy = 0.02 to
demonstrate the low-energy theory.

We now remark on the implications of our low-energy
analysis. First, the spectrum in Eq. (28) breaks particle-hole
symmetry as there is a −m energy eigenvalue but no +m
energy eigenvalue. This can be observed in Fig. 2(b), where
there are no flat bands of edge-confined modes around E ≈
+0.2, which corresponds to E = +m. We thus identify the
flat bands in Fig. 2(b) marked by red, green, and orange as
E+
kz,n=1, E

−
kz,n=0, and E−

kz,n=1 in Eq. (28).

Second, from Eq. (28), the probability distributions for the
states ψ−

kz,n=0 and ψ±
kz,n=1 are given by∣∣ψ−

kz,n=0

∣∣2 ∝ |ϕ0,B(y + kz/B)|2 (29)∣∣ψ±
kz,n=1

∣∣2 ∝ |α±(1)|2|ϕ0,B(y + kz/B)|2 + |ϕ1,B(y + kz/B)|2
(30)

up to a normalization factor, where ϕn,B(y) is the nth eigen-
state of an SHO localized along y. Notice that we have indi-
cated the explicit B dependence on ϕn,B(y) since the cyclotron
frequency and the localization of the wave function depend
on the strength of magnetic field. This implies that ψ−

kz,n=0
has a pure Gaussian distribution. Furthermore, we expect that
ψ−

kz,n=1 is more characteristic of an SHO first excited state

than ψ+
kz,n=1 since |α−(1)|2 = (−√

m2 + 2B + m)
2
/(2B) <

(
√
m2 + 2B + m)

2
/(2B) = |α+(1)|2, as we have assumed

both B and m are positive. Figures 2(e)–2(g) show the 2D
wave function probability distributions at φ = π for edge
confined modes in different LLs in our lattice model, to-
gether with the insets showing the integrated wave function
probability over all x coordinates. While both Figs. 2(e) and
2(g) correspond to n = 1 LL, the former is at the negative
energy branch and the latter is at the positive energy branch.
Therefore Fig. 2(e) shows split peaks characteristic of the
SHO first excited state, more so than Fig. 2(g). In contrast,
Fig. 2(f), corresponding to the n = 0 LL wave function, shows
the Gaussian probability distribution characteristic of the SHO
ground state. We see that the qualitative properties of the wave
functions are all consistent with the low-energy surface theory.
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Third, the definition of the ladder operator in Eq. (26)
implies that the center of the wave functions will be shifted
by −kz/B from y = 0. Identifying kz in the low-energy theory
as �φ = φ − π and B as 2πqy, we deduce that the distance
l that the edge-confined mode gets shifted along y in the
lattice model will be l = −�φ/(2πqy). Notice that the edge-
confined mode in Fig. 2(h) at φ = 0.9π (�φ = −0.1π) is
shifted by ≈ +2.5 lattice constants along y comparing with
Fig. 2(f), which is at φ = π (�φ = 0). This is consistent with
our prediction, as l will be +2.5 when �φ = −0.1π and
qy = 0.02.

Fourth, although Eq. (28) predicts nondegenerate energy
levels for a single surface with a perpendicular U(1) magnetic
field, in Fig. 1(a) the flat band corresponding to the E−

kz,n=0
level is highly degenerate. This is due to zone-folding effects,
similar to what we observed for the corner mode dispersion in
Fig. 1(a). As the gap-crossing modes are shifted outside φ =
[0, 2π ), they get folded back to φ = [0, 2π ) together with the
flat bands connected to them. Up to the degeneracy due to
zone folding, the universal feature is that the edge-confined
modes appearing in our 2D chiral DW system originate from
the projection of surface electrons in a chiral HOTI with U(1)
Landau quantization.

Before moving on, let us remark on the robustness of
our low-energy predictions to perturbations of the model. If
we consider a more complicated modulated system with, for
example, long-range and anisotropic hopping terms together
with other on-site potentials, as long as the promoted 3D
system still preserves inversion symmetry and the gap is
not closed, the 3D system will still be in the same chiral
HOTI phase. However, the low-energy theories that we have
constructed might be modified. For example, the low-energy
theory at the surfaces, which we model with Eq. (25), may be
modified as

Hsurf = αy pyσ
′
y − αz(pz + By)σ ′

x + mσ ′
z + �σ ′

0

+ O(p2y, p
2
z , pypz ). (31)

Differences between αx and αy can lead to an anisotropic
gapped Dirac cone. A nonzero � induces unequal masses
in different subspace of �σ ′ which can shift the entire energy
spectrum.O(p2y, p

2
z , pypz ) represents higher-order terms in the

low-energy theory which might cause nonlinearity in the band
dispersion in Eq. (31) without minimal coupling. By the same
reasoning, we might also have nonlinear hinge mode energies
with a quadratic momentum correction in Eq. (20). All of

these additional terms will change the energetic feature of
the system, such as energy spectra, Fermi velocities, together
with the detailed form of the wave functions, which will be
inevitably different from Eq. (28). Nevertheless, the following
features are universal: (1) There will be electrons confined
to the surface that undergo U(1) Landau quantization, and
therefore there will be states that are confined along some di-
rections. Upon projecting down to the 2D modulated system,
we will still obtain edge-confined modes. (2) There will be
(non)linear hinge mode dispersion that will be shifted along
kz due to the minimal coupling. Therefore, the statement that
we can tune the range of φ where the gap-crossing corner
modes appear by tuning the magnitude of the modulation
wave vectors, will still hold. We use the low-energy theories
Eqs. (20) and (25) since these allow us to uncover the relation
between the states in the promoted dimension and those in the
original low-dimensional modulated system in an analytically
tractable way.

D. Bulk states

The above analysis on corner- and edge-confined modes
shows that the corresponding higher dimensional description
of our modulated system is a 3D chiral HOTI minimally
coupled to a U(1) gauge field. To complete our analysis, we
will now focus on the bulk states. As expected, the low-energy
description of the bulk-confined modes, shown in Fig. 1(d),
will correspond to the low-energy theory of bulk electrons in a
3D chiral HOTI minimally coupled to a U(1) gauge field. We
start with the Bloch Hamiltonian of the promoted 3D chiral
HOTI [Eq. (16) with qx = qy = 0] expanded around the �

point [88]:

Hbulk = mbulkτzσ0 + τx �p · �σ + τ0 �M · �σ . (32)

We have defined several parameters to make Eq. (32) com-
pact for later convenience, and introduced τ0 �M · �σ where
�M = (M,M,M ) corresponds to the ferromagnetic potential
in Eq. (10). We now couple this Hbulk to �A = Byẑ, which
is equivalent to Eq. (15) with qx = 0. This can be done via
the minimal substitution pz → pz + By. Fourier transforming
along x and z to replace px and pz by wave numbers kx and kz,
and defining the kz-dependent ladder operator as

a†kz = 1√
2B

(kz + By − ipy), (33)

we can rewrite Eq. (32) coupled to �A = Byẑ in terms of akz
and a†kz as

Hbulk(kx, kz ) = mbulkτzσ0 + τx

⎡
⎣

√
B
2

(
akz + a†kz

)
kx −

√
B
2

(
akz − a†kz

)
kx +

√
B
2

(
akz − a†kz

) −
√

B
2

(
akz + a†kz

)
⎤
⎦ + τ0 �M · �σ . (34)

We have numerically shown in the SM [58] that the effec-
tive theory in Eq. (34) captures several properties of the
flat bulk bands in Fig. 2(b) with relatively small qy = 0.02,
such as energy asymmetry with respect to E = 0 and the

confinement direction of the bulk states due to U(1) Landau
quantization.

From the above analysis on corner-, edge-, and bulk-
confined modes, we conclude that we can characterize this
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topological 2D modulated system with chiral sliding modes
in terms of a 3D chiral HOTI coupled to a U(1) gauge field.
In addition, such 2D modulated systems provide a platform to
examine the properties of a 3D chiral HOTI by sliding the DW
order parameter φ.

V. HELICAL HIGHER-ORDER SLIDING MODES
AND SU(2) GAUGE FIELDS

Next, we will generalize our formalism to TR invariant
spinful systems. In doing so, we will see that incommensurate
modulations induce coupling to SU(2) gauge fields in the
dimensionally promoted models. SU(2) gauge fields can be
used to represent spin-orbit coupling [93], which is ubiquitous
in topological states of matter. For example, SU(2) gauge
fields in 3D and 4D generates SU(2) LLs that give rise to
3D TIs and 4D QHEs [94,95]. A non-Abelian SU(2) Peierls
phase in 2D and 3D lattices can also lead to 2D and 3D TIs
[93,96]. In addition, in response to a bulk SU(2) gauge flux
insertion, a 2D TI can bind various quasiparticle excitations
such as spinons, holons, and chargeons [97]. In this section,
we present a 2D modulated system that allows us to simulate
a 3D helical HOTI coupled to an SU(2) gauge field.

A. Dimensionally promoted helical model

We start by considering the following 2D Hamiltonian
on a square lattice with one modulated on-site potential
[V (�q, �n, φ)]:

H =
∑

�n
ψ

†
�n+x̂[H+x̂]ψ�n + ψ

†
�n+ẑ[H+ẑ]ψ�n + H.c.

+
∑

�n
ψ

†
�n ([Hon-site] + [V (�q, �n, φ)])ψ�n, (35)

where the unmodulated couplings are

[H+x̂] = vx

2
τzμ0σ0 − ux

2i
τyμyσ0, (36)

[H+ẑ] = vz

2
τzμ0σ0 − uz

2i
τxμ0σ0, (37)

[Hon-site] = m1τzμ0σ0 + m2τzμxσ0 + m3τzμzσ0

+ mv1τ0μzσ0 + mv2τ0μxσ0. (38)

The matrices �τ , �μ, and �σ , are Pauli matrices and denote
the orbital, sublattice, and spin degrees of freedom, respec-
tively. The hopping matrices [H+x̂] and [H+ẑ], together with
the on-site potential [Hon-site] respect both inversion and TR
symmetries. The inversion and TR operations are represented
by τz and iτzσyK, respectively [84]. These hoppings give rise
to low-energy four-component Dirac fermions in each spin
subspace, realizing a topological critical point. The modulated
on-site energy is given by

[V (�q, �n, φ)] = vyτzμ0

[
cos θ+

�q,�n,φ 0

0 cos θ−
�q,�n,φ

]

+vHτyμz

[
sin θ+

�q,�n,φ 0

0 sin θ−
�q,�n,φ

]
, (39)

where θ±
�q,�n,φ = 2π �q · �n ± φ, �q = (qx, qz ) is the modulation

wave vector in 2D, �n ∈ Z2 is the lattice position and φ is the
sliding phase. The first term in Eq. (39) modulates the mass
m1τzμ0σ0 in Eq. (38), which may represent unequal on-site
energy for s and p orbitals, with forward (−φ) and backward
(+φ) sliding phases in each spin subspace [96,98]. The second
term in Eq. (39) describes a modulation of the on-site energy
which mixes s and p orbitals with unequal strength for dif-
ferent sublattices. Similarly, we have forward and backward
sliding phases in different spin subspaces for the second term.
Since the modulation in Eq. (39) has opposite phase offsets
in each spin subspace, it may be induced from spin-orbit
coupled spin ordering. This modulation is TR and inversion
symmetric only when φ = 0, π . Note, however, that the prod-
uct of inversion and TR symmetry, which we will denote IT
symmetry, is preserved for all values of φ. If we denote the
third, synthetic dimension as y, this 2D model is equivalent
to the inversion and TR symmetric 3D helical HOTI model of
Ref. [84], coupled to an SU(2) gauge field given by

�A = (0, 2π (qxx + qzz)σz, 0). (40)

This matrix-valued �A produces a constant SU(2) magnetic
field [99] �B = ∇ × �A − i �A × �A, determined from the field
strength [100] Fμν = ∂μAν − ∂νAμ − i[Aμ,Aν], and given by

�B = (−2πqzσz, 0, 2πqxσz ). (41)

This constant SU(2) field strength preserves both inversion
and TR symmetry in 3D, up to a spin-dependent gauge
transformation (see SM [58]). Notice that Eq. (41) implies that
the SU(2) magnetic field in this example can be interpreted as
a U(1) magnetic field with opposite sign for spin-up and spin-
down electrons [96,98]. We then expect that, for a suitable
choice of parameters such that the SU(2) gauge field does not
close the bulk gap in 3D, the insulating ground state will be
in the same nontrivial helical HOTI phase as the model with
�q = 0 [13,14,82]. Therefore, in 3D, our promoted model will
support an odd number of pairs of sample-encircling helical
hinge modes respecting inversion and TR symmetries [82,84].
Upon being projected back to 2D, the helical hinge modes in
3D become IT -related pairs of corner modes at the same φ

in the 2D modulated system. In the SM [58], we give the form
of the 3D dimensionally promoted model in position space.

B. Calculation of the spectrum

Let us now numerically verify these conclusions.
Figure 3(a) shows the φ-sliding spectrum of Eq. (35) with pa-
rameters m1 = −3, m2 = 0.3, m3 = 0.2, mv1 = −0.4, mv2 =
0.2, vx = vz = ux = uz = 1, vy = 2, vH = 1.2 [84], and �q =
(0, qz ), where qz = 0.11957 [36]. The system size is 31 × 31.
There are doubly degenerate pairs of states which cross the
gap as a function of φ, where the degeneracy is protected by
IT symmetry. We see from the wave functions that these are
corner modes related by IT symmetry, as shown in Fig. 3(b)
for the branch with negative slope around φ ≈ 0.4π . In the
other branch of doubly degenerate gap-crossing states with
positive slope, the corner modes are the inversion-symmetric
counterpart (where recall that inversion symmetry leaves spin
invariant) to those in Fig. 3(b). Therefore, as φ slides from
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FIG. 3. (a) φ-sliding spectrum of the 2D helical model in Eq. (35)
with parameters given in the text. (b) Summation of the probability
density of the doubly degenerate corners modes at φ = 0.4π and
E = 0.0146. The two corner modes at the same φ are related to
each other by the IT symmetry, and hence they are localized at
inversion-related corners and have opposite spins. (c), (d) Probability
distribution of edge and bulk modes at φ = 0.9π and E = −0.1459
and E = 0.5227, respectively. The darker (black) color in (b)–(d) im-
plies higher probability density. In (b)–(d), the x and z coordinates
both range from −15, . . . ,+15.

0 to 2π , this model realizes a Z2 pump [101,102] as one of
the pairs of corner states will merge into the occupied-state
subspace (with Fermi level EF = 0) while the other pair will
flow out. In our specific examples, the two states in each IT -
related pair at the same φ are spin eigenstates and, therefore,
in this case the Z2 pump is a spin pump; our conclusions,
however, hold even when spin is not conserved.

As mentioned earlier, and in analogy with our chiral HOTI
model, the corner modes here are equivalent to hinge modes
along y in 3D. The corresponding low-energy theory for these
corner modes is

Hcorner = vF [φσ ′
z + 2π (qxxcorner + qzzcorner)σ

′
0], (42)

where vF is the group velocity of the hinge modes
in 3D. We use the Pauli matrices �σ ′ to denote the effective
basis where in each subspace the states have opposite spins
together with some orbital and sublattice textures. We have
assumed without loss of generality that there is only one pair
of helical hinge modes at the hinge along y in the promoted 3D
system. By denoting φ as ky, which is the crystal momentum
along y, we recognize Eq. (42) as the hinge mode dispersion
H (ky) = vFkyσ ′

z in 3D minimally coupled to an SU(2) gauge
field described by Eq. (40). Similar to Sec. IV, as we vary
�q—which is equivalent to changing the strength and (spatial)
direction of the SU(2) gauge field in Eqs. (40) and (41)—the
dispersion of the spin-polarized corner modes will shift along

the φ axis. In the SM [58], we present a complete low-energy
theory analysis for the corner modes with the same structure
as Sec. IV.

In addition, we show in Figs. 3(c) and 3(d) the probability
density for the edge- and bulk-confined modes in the flat
bands of Fig. 3(a). Similar to the corner modes, these can be,
respectively, understood in terms of 3D low-energy surface
and bulk theories minimally coupled to an SU(2) gauge field,
leading to an SU(2) Landau quantization [93,94]. The relevant
surface theory describes a time-reversed pair of Chern insu-
lators (CIs). The relevant bulk theory is the �k · �p expansion
around � of the promoted 3D helical HOTI Hamiltonian [84].
We provide further details in the SM [58]. Together with the
corner mode analysis, we see that this topological 2D modu-
lated system with helical sliding modes can be characterized
by a 3D lattice model coupled to an SU(2) gauge field. In
addition, we have shown how 2D modulated systems can
provide a platform to examine SU(2) gauge physics in higher
dimensions, by sliding the phase φ of the DW order parameter.

VI. WEYL-CDWs AND 4D TOPOLOGICAL MODES

As a final demonstration of our dimensional promotion
formalism and its utility to investigating physics in more
than 3D, we consider the mean-field state of a correlated
inversion-symmetric 3D WSM with CDW distortion (Weyl-
CDW) [30,35,36,53,103–106]. It has been shown that such
a system can realize various topological phases. Depending
on the phase φ of the CDW order parameter, the system
can interpolate between QAH and obstructed QAH (oQAH)
phase [53]. This is due to the π mod 2π axion angle difference
δθφ = θ (φ = π ) − θ (φ = 0) for the system with φ = 0 and
φ = π in the thermodynamic limit. Physically, this leads to a
Hall conductance difference

|Gxy(φ = π ) − Gxy(φ = 0)| = e2/h mod 2e2/h (43)

for a semi-infinite slab (see also Eq. (61) below, as well as
Refs. [107,108]). In this section, we analyze a minimal model
of a 3D inversion-symmetric magnetic Weyl-CDW system,
which admits a dimensional promotion to 4D with a U(1)
gauge field. We will explain the origin of the background
QAH response and the interpolation between QAH and oQAH
phases using the corresponding 4D theory. In the following,
we will denote a sample infinite along x and y with finite
thickness Lz along the z direction as an xy slab. Similarly, we
will use the term y rod to denote a sample infinite along y and
finite along x and z with size Lx × Lz.

A. 3D Weyl-CDW model and dimensional promotion

To begin, we consider electrons on a 3D cubic lattice with
Hamiltonian H = H0 + HCDW(φ). Here H0 is a periodic tight-
binding Hamiltonian given by

H0 =
(∑

�n
[−itxψ

†
�n+x̂σxψ�n − ityψ

†
�n+ŷσyψ�n + tzψ

†
�n+ẑσzψ�n]

+
∑

�n

m

2
(ψ†

�n+x̂σzψ�n + ψ
†
�n+ŷσzψ�n − 2ψ†

�nσzψ�n)

−
∑

�n
tz(cos(πq))ψ

†
�nσzc�n

)
+ H.c. (44)
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FIG. 4. (a) φ-sliding spectrum of the Weyl-CDW model in a y rod geometry at ky = 0 with size Lx × Lz = 25 × 25, tx = −ty = tz = 1,
m = 2, 2|�| = 0.75, and q = 1/5. (b) The average probability distribution of the ten zero modes at φ = 0 in (a). These zero modes correspond
to QAH surface states. (c) The average probability distribution of the five nontrivial states at �k = � of the xy slab at φ = 0, which in total lead
to Gxy(φ = 0) = −5e2/h. (d) The average probability distribution of the eight zero modes at φ = π in (a). These zero modes correspond to
QAH surface states. (e) The average probability distribution of the four nontrivial states at �k = � of the xy slab at φ = π , which in total lead
to Gxy(φ = π ) = −4e2/h. The darker (black) color in (b)–(e) implies higher probability density. In (b) and (d), the x and z coordinates both
range from −12, . . . , +12. In (c) and (e), the z coordinate ranges from −12, . . . ,+12.

in position space. The corresponding Bloch Hamiltonian is

H0(�k) = −2[tx sin(kx )σx + ty sin(ky)σy]

− m[2 − cos(kx ) − cos(ky)]σz + 2tz[cos(kz ) − cos(πq)]σz,

(45)

withm/2 � tx,−ty, tz > 0. We take for the on-site modulation

HCDW(φ) = 2|�|
∑

�n
cos(2πqnz + φ)ψ†

�nσzψ�n. (46)

Here 2|�| is the strength of the CDW modulation, 2πq is the
magnitude of the modulation wave vector 2π �q = (0, 0, 2πq),
and φ is the phase of CDW order parameter. We again use
�σ to denote the Pauli matrices, which here index an orbital
degree of freedom. The inversion and TR operation are rep-
resented by σz and K, respectively (note that this is a model
of spinless electrons). The Hamiltonian H0 then describes a
TR-breaking, inversion-symmetric magnetic WSM with Weyl
nodes at �k = (0, 0,±πq), see Eq. (45) [109]. The perturbation
HCDW(φ) is the CDWmodulation that couples these twoWeyl
nodes and opens a gap in the bulk spectrum [53]. Note that
in this simple model, we have chosen the modulation wave
vector to be exactly equal to the Weyl node separation vector
for simplicity of analysis. Even though the bulk is gapped, the
surface of this 3D Weyl-CDW is gapless, due to the presence
of QAH surface states. In Fig. 4(a), we show the φ-sliding
spectrum for a y rod of H0 + HCDW(φ) at ky = 0 with size
Lx × Lz = 25 × 25, tx = −ty = tz = 1, m = 2, 2|�| = 0.75
and q = 1/5. This corresponds to a commensurate Weyl-
CDW system. The midgap zero modes in Fig. 4(a) correspond
to the QAH surface states. In Fig. 4(b), we show the proba-
bility distribution of the ten zero modes at φ = 0. Together
with Wilson loop and Berry curvature calculation in the SM
[58], we verify that the corresponding xy slab with Lz = 25
carries a slab Hall conductance Gxy(φ = 0) = −5e2/h. We
can then identify the weak Chern number [10,110–112] of the
3D periodic system with 5 = 25/5 unit cells (since q = 1/5)
as νz = −1.

As in Secs. IV and V, we identify φ with the crystal
momentum kw along a fourth, synthetic direction denoted by

w. Using the dimensional promotion procedure in Sec. III,
we can promote H0 + HCDW(φ) to a 4D nodal line system
coupled to a U(1) gauge field. In the SM [58], we give the
explicit form of the promoted model in 4D position space.
The corresponding 4D nodal line system (with q = 0) has a
Bloch Hamiltonian:

H (�k) = −2[tx sin(kx )σx + ty sin(ky)σy] + 2|�| cos (kw )σz

− m[2 − cos(kx ) − cos(ky)]σz + 2tz[cos(kz ) − cos(πq)]σz.

(47)

The spectrum of this Hamiltonian features nodal lines at kx =
ky = 0 defined by the implicit equation

tz cos (kz ) + |�| cos (kw ) = tz cos (πq). (48)

According to Eq. (6), we then couple this Hamiltonian to a 4D
U(1) gauge field given by

�A = (0, 0, 0, 2πqz), (49)

since 2π �q = 2πqẑ in this system. This �A only produces
nonzero field strength threading the zw plane,

Fzw = −Fwz = ∂zAw − ∂wAz = 2πq, (50)

where all other components of Fμν = ∂μAν − ∂νAμ are zero.
We are now in a position to reinterpret the existence of a
background QAH response and QAH surface states when the
bulk gap is opened due to the CDW. We will see how these
features emerge from the low-energy approximation for this
4D system minimally coupled to Eq. (49).

B. Low-energy theory analysis

We start from the 4D Bloch Hamiltonian in Eq. (47). Ex-
panding around �k = �0, we have

H (�k) ≈ −2[txkxσx + tykyσy] + 2tz

(
1 − k2z

2
− cos(πq)

)
σz

+ 2|�|
(
1 − k2w

2

)
σz. (51)
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The nodal line in this low-energy theory is an ellipse in the
kz-kw plane with kx = ky = 0, defined by

tzk
2
z + |�|k2w = 2tz[1 − cos (πq)] + 2|�| > 0. (52)

Replacing the 4D wave vector �k = (kx, ky, kz, kw ) by the 4D
momentum operator �p = (px, py, pz, pw ) using the so-called
envelope function approximation [8,91,113–118], the Hamil-
tonian governing the low-energy dynamics reads

H = −2[tx pxσx + ty pyσy] + 2tz

(
1 − p2z

2
− cos(πq)

)
σz

+ 2|�|
(
1 − p2w

2

)
σz. (53)

Next, let us minimally couple Eq. (53) to a 4D U(1) gauge
field �A = (0, 0, 0, 2πqz) via a Peierls substitution such that
pw → pw + 2πqz. Equation (53) then becomes

H = −2[tx pxσx + ty pyσy] + 2(tz[1 − cos (πq)] + |�|)σz

− (
tz p

2
z + |�|(pw + 2πqz)2

)
σz, (54)

where we have assumed that the particle carries −1 charge.
Fourier transforming along x, y, and w, we may replace px,
py, and pw by the corresponding wave numbers kx, ky, kw,
such that

H (kx, ky, kw ) = −2[txkxσx + tykyσy] + 2(tz[1 − cos (πq)]

+ |�|)σz − (
tz p

2
z + |�|(kw + 2πqz)2

)
σz.

(55)

Notice that the coefficient of σz in the final term in the Hamil-
tonian,

tz p
2
z + |�|(kw + 2πqz)2, (56)

is an SHO Hamiltonian along z which can be diagonalized as

4πq
√
tz|�|

(
n + 1

2

)
. (57)

Here n is a non-negative integer and the eigenvalue of the
number operator a†kw,qakw,q with

a†kw,q = 1√
4πq

(
tz

|�|
) 1

4

[( |�|
tz

) 1
2

(kw + 2πqz) − ipz

]
.

(58)

The quantum number n is the 4D U(1) LL index. By restrict-
ing to a subspace of the full Hilbert space with fixed n and
kw, we see that the 4D low-energy Hamiltonian Eq. (54) may
be decomposed into a direct sum of 2D low-energy CIs in xy
plane parameterized by n and kw. The Hamiltonian for these
2D CIs is given by

H2D CI(n, kw ) = −2[tx pxσx + ty pyσy] + 2mσz, (59)

where

m = tz(1 − cos (πq)) + |�| − 2πq
√
tz|�|

(
n + 1

2

)
. (60)

Since we have restricted to the subspace with fixed n and kw

in Eq. (59), according to Eq. (56) the wave function along z
and w will be SHO eigenstates centered at z = −kw/(2πq)

multiplied by a plane wave eikww. Notice that the kw depen-
dence of Eq. (59) is due to the integer n in Eq. (60), which
is an eigenvalue of the number operator a†kw,qakw,q. Therefore,
the eigenstates in the low-energy approximation take the form
of plane waves in w, and CI eigenstates as a function of (x, y)
localized at different constant-z planes for different kw. This
provides a 4D interpretation of the layer construction of the
Weyl-CDW presented in Refs. [53,103].

As in a 3D nodal ring system with a perpendicular mag-
netic field [119], Eq. (59) can yield a gapped 4D bulk
spectrum provided that m �= 0 ∀n � 0. This insulating ground
state will then carry nontrivial topology inherited from the
nodal line system, since in Eq. (59) we found that the gapped
4D continuum theory is composed of low-energy 2D CIs. We
then expect that there will be CI layers in the xy plane of the
corresponding 4D lattice model (see SM [58]). The CI layers
will also be separated along z by 2π/(2πq) = 1/q for a fixed
kw, due to the 2π periodicity of kw in the lattice model. In our
current example, this separation is 5 since q = 1/5. Notice
that kw is now interpreted as the crystal momentum along
the fourth dimension. To connect these observation in 4D
back to the physical 3D Weyl-CDW system with Hamiltonian
H0 + HCDW(φ), we notice that each 3D Weyl-CDW system
with a fixed φ corresponds to the 4D theory with a fixed kw.
Focusing on the xy slab with φ = 0 and thickness Lz = 25, in
which Gxy(φ = 0) = −5e2/h, we show wave functions cor-
responding to the only 5 layers of nontrivial CIs separated
from each other by five lattice constants along z in Fig. 4(c).
Each of these CI layers carries Chern number C = −1 and
contributes one chiral edge mode along y in the y rod, shown
in Fig. 4(b). In the SM [58], we provide technical details
on identifying the nontrivial CI layers using hybrid Wannier
function, Berry phases, and Berry curvature calculations for
an xy slab. We can thus regard the CDW-induced gap open-
ing and the existence of background QAH response as the
results of U(1) Landau quantization in the 4D nodal line
system.

Next, we address the interpolation between the QAH phase
at φ = kw = 0 and the oQAH phase at φ = kw = π using
the 4D theory. Before we turn to the 4D low-energy theory,
we begin with the observation that in Fig. 4(a), the num-
ber of midgap zero modes corresponding to QAH surface
states decreases by 2 as φ slides from 0 to π ; one state is
lowered into the valence band, while one state is elevated
to the conduction band. This is consistent with the change
in Hall conductance Eq. (43), which is derived in the ther-
modynamic limit where the 2D slab thickness Lz → ∞ with
infinitesimal but nonzero 2|�| [53]. The ambiguity modulo
2e2/h in the change of Hall conductance is due to the ax-
ion angle θ , which is only well-defined mod 2π , as shown
below in Eq. (61). Taking Lz → ∞ with infinitesimal 2|�|
ensures that the only effect the CDW modulation has is to
open the gap at the Weyl points without inverting bands at
other high-symmetry points in the 3D Brillouin zone. We have
also verified that our choice for the parameters in Fig. 4(a) is
adiabatically connected to this condition by increasing Lz and
decreasing 2|�|. The slab Hall conductance Gxy of the xy slab
contains both an extensive contribution from the bulk QAH
phase through the weak Chern number νz, and an intensive
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FIG. 5. (a) φ-sliding spectrum of the Weyl-CDW model in a y rod geometry at ky = 0 with size Lx × Lz = 21 × 21, tx = −ty = tz = 1,
m = 2, 2|�| = 2, and q = τ/4 where τ = (1 + √

5)/2. (b) The average probability distribution of the 18 zero modes at φ = 0 in (a). These
zero modes correspond to QAH surface states. (c) The average probability distribution of the nine nontrivial states at �k = � of the xy slab
at φ = 0, which in total lead to Gxy(φ = 0) = −9e2/h. (d) The average probability distribution of the 16 zero modes at φ = π in (a). These
zero modes correspond to QAH surface states. (e) The average probability distribution of the eight nontrivial states at �k = � of the xy slab at
φ = π , which in total lead to Gxy(φ = π ) = −8e2/h. The darker (black) color in (b)–(e) implies higher probability density. In (b) and (d), the
x and z coordinates both range from −10, . . . , +10. In (c) and (e), the z coordinate ranges from −10, . . . , +10.

contribution from axion angle θ , which collectively gives
[92,108]

Gxy = e2

h
(νzlz + θ/π ), (61)

where lz is the number of unit cells in the slab. In our ex-
amples for q = 1/5, lz will be given by Lz/5. Recall also
that as we slide φ from 0 to π , the bulk gap of the 3D
Weyl-CDW system never closes, hence the νz is unchanged
during the process. Putting this all together, we see that
Eq. (43) implies that there is a π mod 2π change in the
axion angle between φ = 0 and φ = π . To be more specific,
in our current examples we have Gxy(φ = 0) = −5e2/h and
Gxy(φ = π ) = −4e2/h. This quantized change ofGxy or θ can
be explained again using the 4D low-energy theory, as we now
show.

Going back to the 4D low-energy theory, Eq. (56) pre-
dicts that if we shift kw to kw + �kw, the corresponding CI
layers described by the Hamiltonian in Eq. (59)—which are
localized around z = −kw/(2πq)—will be shifted in the z
direction by�z = −�kw/(2πq). Connecting this observation
back to the physical 3D Weyl-CDW system, it implies that as
we slide φ from 0 to π , all the CI layers will be shifted by
�z = −π/(2πq) = −1/(2q); for our choice of q = 1/5, this
gives a shift of �z = −2.5. We demonstrate this numerically
in Figs. 4(d) and 4(e) which show the probability distribution
of the eight QAH zero modes and the corresponding four
nontrivial CI layers (with Chern number C = −1) for φ = π .
The physical interpretation of Eq. (43) is now clear: As we
slide φ from 0 to π , the nontrivial CI layers will be shifted by
�z = −2.5 unit cells, all in the same direction. Therefore, the
bottom nontrivial CI layer at φ = 0 and z = −10 depicted in
Fig. 4(c) will be shifted outside the finite sample and hence
will not appear when φ = π . At φ = π , there will be only
four nontrivial CI layers remaining. This leads to a change
in the Hall conductance by e2/h, as indicated by Eq. (43).
Simultaneously, the number of QAH zero modes in the y rod
decreases by 2 when we slide φ from 0 to π . Physically,
these two QAH zero modes are pushed toward the boundary
of the system, due to the shifting of the bottom nontrivial

CI layer. Therefore, their energies will be pushed toward
the bulk continuum, leading to the inevitable appearance of
gap-crossing bands as shown in Fig. 4(a). Numerically, we
have observed that in all of our examples (Figs. 4 and 5), the
zero modes in the band structure of the y rod only appear at
ky = 0. Therefore, as far as the zero modes are concerned, we
can focus on the energy spectrum of the y rod at ky = 0, as
in Figs. 4(a) and 5(a). Analytically, this can be understood
from the Hamiltonian of the low-energy CI Eq. (59) for each
n and kw, which has zero-energy edge modes only at ky = 0
[69,91,118,120].

To summarize, we have shown that the identity Eq. (43)
can be regarded as a consequence of the U(1) Landau quan-
tization of a 4D nodal line system in which the localization
centers along z of the states are directly related to kw. We
then identified kw with the sliding phase φ through our di-
mensional promotion formalism in Sec. III. The change in
conductance as a function of φ can thus be regarded as a phys-
ical manifestation of the Chern number polarization, which
can alternatively be computed in terms of z-localized hybrid
Wannier centers [53,106–108,121].

Having demonstrated the utility of our dimensional pro-
motion formalism for a 3D Weyl-CDW system coupled to
a commensurate CDW with q = 1/5, we next explore the
case of incommensurate modulations which are prevalent
in nature [54]. In particular, the experimentally intriguing
Weyl-CDW (TaSe4)2I is incommensurate [36,122–125]. We
still consider H0 + HCDW(φ) with tx = −ty = tz = 1, m = 2,
2|�| = 2. However, we now choose the modulation q = τ/4
where τ = (1 + √

5)/2 is the golden ratio. For an xy slab,
we choose Lz = 21 and for the y rod we choose Lx × Lz =
21 × 21. Since q = τ/4 is an irrational number, the modula-
tion HCDW(φ) is incommensurate with H0. Crucially though,
we can use our dimensional promotion procedure regardless
of whether or not the modulation is commensurate with the
underlying lattice. The U(1) gauge field to which the 4D nodal
line system is coupled still takes the form in Eq. (49). The
main difference is that now, the 4D system has an irrational
flux 2πq = πτ/2 per plaquette in the zw plane. We have
verified that for the xy slab we have Gxy(φ = 0) = −9e2/h

245107-14



SIMULATING HIGHER-ORDER TOPOLOGICAL … PHYSICAL REVIEW B 103, 245107 (2021)

and Gxy(φ = π ) = −8e2/h, consistent with Eq. (61). We also
show in Fig. 5(a) the φ-sliding spectrum of the y rod at ky = 0.
We see that there are two fewer QAH zero modes at φ = π

than at φ = 0. The 18 and 16 QAH zero modes for φ = 0 and
φ = π are shown in Figs. 5(c) and 5(e), respectively. We again
identify nine and eight nontrivial states in the xy slab at �k = �

for φ = 0 and φ = π , and show their probability distributions
in Figs. 5(b) and 5(d), respectively. In the SM [58], we present
the details of the numerical methods for identifying nontrivial
states in the xy slab. The existence of nonzero QAH response
and QAH zero modes can again be attributed to 4D U(1)
Landau quantization which gaps the 4D nodal line system,
yielding a topologically nontrivial insulating ground state. In
particular, we also have |Gxy(φ = π ) − Gxy(φ = 0)| = e2/h
mod 2e2/h. This can again be understood from the shifting
of nontrivial CI layers. In this case, as φ slides from 0 to π ,
all the nontrivial CI layers will be shifted downward by �z =
−π/(2πq) = −2/τ ≈ −1.236 lattice constants. The nontriv-
ial CI layer at the bottom (z = −10) of Fig. 5(b) will be shifted
outside the finite size system and thus the absolute value of
slab Hall conductance will be changed by −1. Consequently,
the number of QAH zero modes in the y rod at ky = 0 will
be decreased by 2. Therefore, together with the examples
in Secs. IV and V, we see that our dimensional promotion
procedure provides a way to understand topological properties
of systems with incommensurate modulations.

C. Weyl-CDW and 4D Chern number

We can also understand the topological properties of the
Weyl-CDW model from the perspective of 4D response the-
ory. Combining the field strength in Eq. (50) with our analysis
of the Hall conductance above allows us to formulate a (4 +
1)D field-theoretical description of the QAH response in a 3D
Weyl-CDW system. The corresponding action is that of the
(4 + 1)D Chern-Simon theory [95,110],

S = C2

24π2

∑
μνλρσ

∫
d5xεμνλρσAμ∂νAλ∂ρAσ , (62)

where C2 is the second Chern number, Aμ is the electromag-
netic gauge potential, and εμνλρσ is the Levi-Civita symbol
in (4 + 1)D. The Greek indices here are taken to run over
all 4 + 1 dimensions. Equation (62) gives the electromagnetic
response through

Jμ = δS

δAμ

= C2

32π2

∑
νλρσ

εμνλρσFνλFρσ , (63)

where Jμ is the current density along the μ direction. Since
we have Fzw = 2πq, an electric field Ey along y (implying
Fty = Ey) will induce a Hall current density along x through

Jx = q
C2

2π
Ey. (64)

Integrating this along the z direction, we find then that, with
nonzero C2, the Hall conductance Gxy is proportional to qLz.
This is consistent with Eq. (61) and the recent calculation [53]
showing that the Hall conductance Gxy of a 3D Weyl-CDW
system is given by

Gxy = (| �Q|Lz + 2θ ) · e2/(2πh), (65)

where Lz is the thickness of the xy slab, �Q is the CDW
wave vector along z, which in our specific model system is
�Q = 2πqẑ, and θ is the bulk axion angle computed from the
inversion-symmetric unit cell. As we take the thermodynamic
limit Lz → ∞, the axion angle contribution to Gxy becomes
negligible and thus Gxy can also be regarded as proportional
to the magnitude of CDW wave vector, which is consistent
with Eq. (64). Therefore, the field strength in Eq. (50) indeed
allows a sensible construction of higher dimensional contin-
uum theory.

To see concretely that the 3D Weyl-CDW system indeed
emulates a 4D system with nonzeroC2, we notice that for both
examples in Figs. 4 and 5, the system can be deformed into a
limit where we have layers of decoupled CIs localized along
z. In the decoupled-layer limit, for the commensurate case,
for example, q = 1/5, where we consider the single nontrivial
band in each unit cell, this implies that C2, which is defined
through [42,71,110,121,126]

C2 = 1

4π2

∫
T 4

d4k(�xy�zw + �wx�zy + �zx�yw ) (66)

becomes

C2 = 1

4π2

(∫
T 2

dkxdky�xy

)(∫
T 2

dkzdkw�zw

)
(67)

in this limit, where �μν is the Abelian Berry curvature in
the kμ-kν plane. For both examples in Figs. 4 and 5, we
have identified the weak Chern number νz = −1, implying
that both systems have 1

2π

∫
T 2 dkxdky�xy = −1. In fact, for

a 3D Weyl-CDW system, it has been shown that there will
always be a background QAH response in the xy plane
[53], implying that in the limit of decoupled CIs, we have
1
2π

∫
T 2 dkxdky�xy �= 0. Furthermore, as we shift the CDW

sliding phase φ, which is equivalent to shifting the momentum
kw, by 2π , all the Chern insulating layers will be shifted
by �z = −�kw/(2πq) = −2π/(2πq) = −1/q, implying a
nontrivial Thouless charge pump along z. Specifically, for
Fig. 4 with q = 1/5, all the Chern insulating layers will be
shifted by �z = −5, which is equal to the unit cell length
along z, implying | 1

2π

∫
T 2 dkzdkw�zw| = 1. The fact that the

3D Weyl-CDW system can be viewed as layers of CIs [53]
and the expression�z = −1/q governing the charge pumping
along z as we vary kw by 2π collectively predict a nonzero
1
2π

∫
T 2 dkzdkw�zw. Therefore, for a 3D Weyl-CDW system

with QAH surface states [53], the corresponding 4D theory is
described by a (4+1)D Chern-Simon theory in Eq. (62) with
nonzero C2. Furthermore, this result holds even as we deform
away from the decoupled-layer limit, provided no energy gaps
close. Thus the 3D Weyl-CDW system serves as a platform to
study higher-dimensional topological field theories.

Let us conclude with two remarks. First, from the above
analysis, we see that a 3D Weyl-CDW system with QAH
surface states provides a platform to examine a 4D nodal line
system gapped by a U(1) gauge field and carries nonzero
second Chern number C2. Second, as opposed to Secs. IV
and V where we have in higher dimensions a gapped topo-
logical phase coupled to U(1) or SU(2) gauge fields, in the
4D model promoted from a 3D Weyl-CDW system, it is pre-
cisely the coupling to a U(1) gauge field that opens up a bulk
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gap, inducing emergent CI layers, QAH surface states, and
nonzero C2.

VII. OUTLOOK

To conclude, we have shown in Secs. IV and V that higher-
order topology in 3D can be probed in 2D DW systems.
Furthermore, we showed in Sec. VI how 3D Weyl-CDW sys-
tems with background QAH response can be used to study
4D topology. The next and natural step is to identify 3D
systems with modulations coexisting with hinge or corner
modes. This will be a platform for studying four- or even
higher dimensional higher-order topology. Our dimensional
promotion procedure in Sec. III can also be used together with
the topological classification based on crystalline symmetries
[14,15,17,127] in the promoted dimensions to explore topo-
logical crystalline phases in higher dimensions. With suitably
chosen modulated systems, we may either study (1) how topo-
logical crystalline insulators diagnosed by symmetry-based
indicators [14,20,24,27,82,128] in the promoted dimensions
respond to a background U(1) or SU(2) gauge fields or (2)
how topological semimetals [129] in the promoted dimensions
can be gapped by background U(1) or SU(2) gauge fields.
With the dimensional promotion procedure, we may also ex-
tend our studies of topological materials to those with space
groups beyond 3D, known as superspace groups [130–134].
To extract the full information in higher dimensions, a way
to control the phase offset {φ(i)} experimentally is needed,
and currently applying electromagnetic fields to depin the
(charge- or spin-) DWs is one practical approach [35,54]. In
addition, since we can systematically compute the background
continuous gauge field coupled to the dimensionally promoted
model, we can again use low-dimensional modulated sys-
tems to study the low-energy dynamics in higher dimensions
by minimally coupling the low-energy theory to the known
continuous gauge fields as in Sec. VI. As our dimensional pro-
motion procedure can be carried out for both commensurate
and incommensurate modulations, this approach can be used
to study topological properties of system with quasiperiodic
potentials [46,47,70,71,121] where conventional band theory
is not applicable. The general procedure will be to promote
the dimension of these quasiperiodic systems and examine the
response of possible topological phase in higher dimensions
to a gauge field producing an irrational flux per plaquette.
These techniques can be applied to analyze the DW phases in
material systems of interest such as (TaSe4)2I [35,36,124,125]

and ZrTe5 [37–40]. This can also lead to interesting studies
on the higher-dimensional Hofstadter butterfly, complement-
ing the recent studies of Refs. [135,136]. Another interesting
direction is to introduce dynamics to the DWmodulation. This
can happen, for example, when the phase offsets {φ(i)} acquire
nonadiabatic time dependence and become {φ(i)(t )}. Previous
studies have focused on promoting the dimension of a period-
ically driven system to a Floquet lattice, which under certain
conditions can lead to a topologically protected quantized
energy pump [72,73,137]. We expect that richer phenomena
in higher-dimensional space can be investigated when the DW
modulations are not only periodic in real space but also (1)
periodic in time or (2) have general time dependence. Finally,
we have shown in Sec. V the simplest case of how SU(2)
gauge field physics may be studied through a 2D modulated
system. Recently, the spin-orbit-coupled Hofstadter models
induced by non-Abelian SU(2) gauge fields have also been
studied both in 2D [138] and 3D [139], where Dirac points
with up to 16-fold degeneracy and various topological insu-
lating states were found. We expect that 3D DW materials
with different types of spin-orbit coupled modulations may
enable simulation of various aspects of the physics of SU(2)
gauge fields in 4D or higher dimensions, including topological
states and SU(2) Hofstadter butterflies [93,138,139]. We hope
that this work will lay the groundwork for the exciting future
investigations mentioned above, and extend the search for
exotic topological phases beyond 3D. In particular, there are
many possible defects that one can imagine in a spin-orbit
coupled DW order parameter, each of which may correspond
to a nontrivial response to SU(2) gauge field defects in the
higher-dimensional system.
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