2020 IEEE 10th Symposium on Large Data Analysis and Visualization (LDAV)

A Distributed Algorithm for Force Directed Edge Bundling

Yves Tuyishime *

Yu Pan ¥

Hongfeng Yu *

University of Nebraska-Lincoln

ABSTRACT

Existing edge bundling algorithms typically require the global in-
formation structure of a graph. Therefore, with a simple division of
the edges of a graph, it is challenging to conduct edge bundling in a
distributed environment and achieve scalable performance. We se-
lect a representative edge bundling algorithm, Force-Directed Edge
Bundling (FDEB), and parallelize it in a distributed environment.
Particularly, to address the difficulties of partitioning and distri-
butions of a large graph among processors, we first create a high
dimensional space to represent the data distribution of a graph in
FDEB. Second, we map each edge as a data point in this high dimen-
sional space, and then partition and distribute the point cloud among
processors. In this way, we can significantly reduce the data com-
munication across processors, and ensure each processor assigned
with a similar workload.

Index Terms: Human-centered computing— Visualization—Visu-
alization techniques—Graph drawings

1 INTRODUCTION

To address the issue of visual clutter for node-link diagrams, re-
searchers have developed edge bundling algorithms [1, 2] that vi-
sually merge similar edges into curved bundles and can effectively
reveal high-level edge patterns with reduced visual clutter. However,
these algorithms are typically characterized with high computational
complexities and slow speeds for large graphs. For example, Holten
et al. developed a Force-Directed Edge Bundling (FDEB) algorithm
in which edges are considered as flexible springs that can attract
each other while their node positions stay the same, and then a force-
directed technique is used to calculate the bundling [2]. However,
because the algorithm goes through every pair of edges, its complex-
ity is ©'(n?) where n is the number of edges of a graph. To speed up
edge bundling algorithms, the existing efforts have mostly focused
on GPU acceleration, while the size of a graph that can be handled
is constrained by the available memory of a single machine, and
thereby the scalability is limited.

A more scalable solution is to carry out edge bundling using sev-
eral machines in a distributed environment. However, most existing
edge bundling algorithms require the global structure of a graph.
Therefore, with a simple division of edges in a graph, it is difficult
to achieve balanced workloads and lower inter-processor communi-
cation among processors. A naive solution would incur extensive
data exchange among processors, which results in poor scalability.

In this work, we parallelize FDEB in a distributed environment.
Particularly, to partition and distribute a large graph among pro-
cessors, we first create a high dimensional space to represent the
data distribution of a graph in FDEB. Second, we map each edge
as a data point in this high dimensional space, and then partition
and distribute the point cloud among processors. In this way, we
can significantly reduce the data communication across processors,

*e-mail: ytuyishime @cse.unl.edu
fe-mail: ypan@cse.unl.edu
fe-mail: yu@cse.unl.edu

and ensure each processor assigned with a similar workload. Our
experimental results demonstrate the scalability of the algorithm.

2 RELATED WORK

Holten first proposes the use of Hierarchical Edge Bundling (HEB)
for graphs that contain hierarchy [1]. Later, Holten et al. [2] propose
Force Directed Edge Bundling (FDEB) for general graphs. Many
edge bundling algorithms have been proposed. However, they are
typically characterized with high computational complexities and
can take several to hundreds of seconds to generate bundles for large
graphs. Only a few attempts have been perceived to address this
performance issue. Zhu et al. [4] propose a parallelized FDEB on
the GPU (GPUFDEB). Wu et al. [3] use GPU textures to encode
a graph and use GPU to carry out force-directed edge bundling.
However, these solutions mostly leverage multithreading techniques
and require the data of graphs and intermitted calculation results
to be held in the GPU memory, which makes it difficult to tackle
graphs that are not held in a single machine.

3 DISTRIBUTED EDGE BUNDLING
3.1 High-Dimensional Representation

The original FDEB algorithm needs to scan each pair of edges to
determine their compatibility values. We find that it is not nec-
essary to apply this pairwise operation for all edges if we have a
distance measure for all edges. Let us consider angle compatibility
first!. Given an edge [with its start point p and its endpoint g, we
can easily gain its normalized vector v = (¢ — p)/||g — p||, which
can be mapped to a point on a unit circle. In this way, the angle
compatibility between any two edges can be estimated as the arc
length between two corresponding points on the unit circle in a 2D
space. Figure 1 shows a simple example with five edges. We can
see that the angles of I, I5, and 4 are close to zero, and thereby
their corresponding points are close to the x axis of the 2D space.
Meanwhile, the points of /; and /3 are close to each other, but are
relatively far away for the other three points in the 2D space. Given
this 2D representation, we can easily compute the distance between
any pair of points. More importantly, it facilitates us to partition the
points according to their distribution. For example, Figure 1 clearly
shows two distinct groups with respect to their angles.

2
5

Figure 1: Map the edges into a 2D space according to their angles.

We can extend this idea to create a space for each of the edge
compatibility measures. For scale compatibility, we can create a 1D
space and map each edge as a point in this 1D space according to its
scale or length. Figure 2 shows the mapping of the simple example
with five edges. We can see that the scale of /] is considerably larger
than the other four edges. We can easily partition the points into
two groups according to their scales in this 1D space. For position

IFor simplicity, we consider 2D graphs in this work.

978-1-7281-8468-5/20/$31.00 ©2020 IEEE 53
DOI 10.1109/LDAV51489.2020.00013

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 24,2021 at 17:32:29 UTC from IEEE Xplore. Restrictions apply.

- 0 4523 1 k

Figure 2: Map the edges into a 1D space according to their scales.

compatibility, we create a 2D space and map each edge as a point
in this 2D space according to the positions of its middle point. In
this space, we can easily measure the distance with respect to the
positions between any two edges.

The total compatibility of two edges is the multiplication of the
individual compatibility measure. This inspires us that we can create
a high-dimensional space by combining the point distribution in the
space of each compatibility measure. We can then map each edge
as a data point in this high-dimensional space, and measure their
distance as their total compatibility among any pair of edges. Given
the space of each compatibility measure, we can obtain a 5D space.

We did not handle visibility compatibility in the current work
due to the difficulty in designing its representation. By introducing
additional dimensions, we can gain finer partitioning results. The
current partitioning can be regarded as a coarser result with a larger
bound, and does not compromise our data partitioning.

3.2 Distributed FDEB

Given our high-dimensional representation, we can carry out FDEB
in a distributed environment by increasing the performance and
avoiding data duplication among the processors.

First, given an input graph, we map each edge into a point in our
5D space where each subspace encodes the data distribution with
respect to each individual compatibility measure. The distance be-
tween any two points in this high-dimensional space is proportional
to the compatibility measure between the two corresponding edges.

Second, we partition the point cloud using the K-D tree that
can ensure that each partition has a similar number of points. The
number of partitions is equal to the number of processors. For
simplicity, we assume that the number of processors is an exact
power-of-two. In this case, if we assign the points within a partition
to a processor, the processors can have a similar number of edges
to be bundled. To avoid data exchange among the processors, we
create a ghost area for each partition such that a processor can always
find the corresponding interacting edges of its local data without
fetching data from any remote processors, thus minimizing the data
communication cost.

Third, each processor computes edge compatibility measures for
its local data. With our high-dimensional partitioning, a processor
can find the pairwise interacting edges within its local data.

Fourth, each processor conducts force-directed edge bundling
based its local edge compatibility measures. We note that each
processor does not bundle the edges within the ghost area, but use
these edges to bundle its local edges. The edges within the ghost
area are bundled in remote processors. In this way, although the
edges in the ghost area may be different, the total number of local
bundled edges is approximately equal for each processor. This
ensures balanced workloads among processors.

Finally, the partial edge bundling results generated at each pro-
cessor are then aggregated. This is simply implemented using dis-
tributed gather operations (e.g., MPI_Gather).

4 REsSULTS

We implement our algorithm using MPI and C++ and experiment
with it on Crane, a supercomputer operated by the Holland Comput-
ing Center at the University of Nebraska-Lincoln. We used a US
airline graph (2100 edges) and a US migration graph (9780 edges)
to design and conduct our scalability experiment.

—e—Measured Time ~ » - Ideal Speedup Time

Ideal Speedup Time

—e— Measured Time

Number of Processors
Number of Processors

(a) (b)

Figure 3: Speedup of our scalability experiment to bundle (a) the US airline
graph and (b) the US migration graph. In each plot, the horizontal axis presents
the number of processors, and the vertical axis represents the running time in
seconds. In each plot, we show the measured time and ideal speedup time.

Figure 4: Visualization results of the US migration graph using (a) node-link
diagram and (b) edge bundling.

Figure 3 shows the performance of distributed FDEB carried out
on the processors. Thanks to our high-dimensional representation
and partitioning approach, there are no communications required
among the processors, and each processor has a balanced workload.
Figure 3 conveys that our distributed algorithm achieves almost
ideal speedup, and the parallel efficiencies are 94% and 97.6% (32
processors vs. 1 processor) for the US airline graph and the US
migration graph, respectively.

Figure 4 shows the visualization results of the US migration graph.
It is hard to perceive clear patterns from the node-link diagram in
Figure 4(a) due to the visual clutter problem. Figure 4(b) shows the
edge bundling result, which significantly reduces the visual clutter
and is close to the ones generated by the original FDEB on a single
machine. However, our method can generate these results in a more
scalable fashion.

5 CONCLUSION

Our method is simple and easy to understand and implement. We
will study visibility compatibility and larger graphs in our next
development and experiment to gain a deeper understanding of the
impact of data partitioning and distribution schemes on conducting
distributed edge bundling. Although we design the approach for
FDEB, we expect that the parallelization methodology developed in
this work can be extended to other edge bundling algorithms.

ACKNOWLEDGMENTS

This research has been sponsored by the National Science Founda-
tion through the grant IIS-1652846.

REFERENCES

[1] D. Holten. Hierarchical edge bundles: Visualization of adjacency re-
lations in hierarchical data. IEEE Transactions on visualization and
computer graphics, 12(5):741-748, 2006.

[2] D. Holten and J. J. Van Wijk. Force-directed edge bundling for graph
visualization. Computer Graphics Forum, 28(3):983-990, 2009.

[3] J. Wu, L. Yu, and H. Yu. Texture-based edge bundling: A web-based
approach for interactively visualizing large graphs. In 2015 IEEE Inter-
national Conference on Big Data (Big Data), pp. 2501-2508, 2015.

[4] D. Zhu, K. Wu, D. Guo, and Y. Chen. Parallelized Force-Directed
Edge Bundling on the GPU. In 2012 11th International Symposium
on Distributed Computing and Applications to Business, Engineering
Science, pp. 52-56, 2012.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 24,2021 at 17:32:29 UTC from IEEE Xplore. Restrictions apply.

