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Abstract. Finite Elements are a common method for solving di↵eren-
tial equations via discretization. Under suitable hypotheses, the solution
u = u(t, ~x) of a well-posed initial/boundary-value problem for a linear
evolutionary system of PDEs is approximated up to absolute error 1/2n

by repeatedly (exponentially often in n) multiplying a matrix An to the
vector from the previous time step, starting with the initial condition
u(0), approximated by the spatial grid vector u(0)n. The dimension of
the matrix An is exponential in n, which is the number of the bits of the
output.
We investigate the bit-cost of computing exponential powers and in-
ner products AK

n · u(0)n, K ⇠ 2O(n), of matrices and vectors of ex-
ponential dimension for various classes of such di↵erence schemes An.
Non-uniformly fixing any polynomial-time computable initial condition
and focusing on single but arbitrary entries (instead of the entire vec-
tor/matrix) allows to improve näıve exponential sequential runtime EXP:
Closer inspection shows that, given any time 0  t  1 and space
~x 2 [0; 1]d, the computational cost of evaluating the solution u(t, ~x)
corresponds to the discrete class PSPACE.
Many partial di↵erential equations, including the Heat Equation, admit
di↵erence schemes that are (tensor products of constantly many) circu-
lant matrices of constant bandwidth; and for these we show exponential
matrix powering, and PDE solution computable in #P. This is achieved
by calculating individual coe�cients of the matrix’ multivariate compan-
ion polynomial’s powers using Cauchy’s Di↵erentiation Theorem; and
shown optimal for the Heat Equation. Exponentially powering twoband
circulant matrices is established even feasible in P; and under additional
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conditions, also the solution to certain linear PDEs becomes computable
in P.

Keywords: Reliable Computing · Bit-Cost · Partial Di↵erential Equa-
tions.

1 Introduction and Summary of Contributions

Computable Analysis [31] provides a framework for rigorous computability and
complexity investigations of computational problems over real numbers and func-
tions by approximation up to guaranteed absolute error 1/2n [15,32,2,10]. This
has been applied to ordinary [1,11,14] and partial [27,28,30] di↵erential equa-
tions. It allows to prove asymptotic optimality of numerical algorithms by re-
lating the intrinsic computational bit-cost of a problem to a classical discrete
complexity class [8,13].

The present work considers general classes of systems of linear evolutionary
partial di↵erential equations (PDEs).

In order to solve some system of ordinary di↵erential equations (ODEs)

@tu = ~f(u, t), common numerical approaches—such as Euler’s Method and its
refinements—discretize time t 2 [0; 1] into steps ⌧ ⌧ 1: From the fixed initial
value u(0) = u0 at t = 0 they iteratively proceed to approximations u(⌧), u(2⌧),
. . .u(M · ⌧). In order for the last one to approximate u(1) up to error 1/2n, the
number M = 1/⌧ 2 N of steps is generally exponential in (the number of bits of
the output) n; and the problem thus seen to belong to the discrete complexity
class EXP‡. Closer inspection improves that to PSPACE [15, §7.2], which has
been proven best possible in general [8]. Bit complexity is measured w.r.t. the
output precision parameter n.

Evolutionary PDEs generalize ODEs: by replacing the right-hand side func-
tion ~f = ~f(u, t) with an operator A, commonly involving spatial derivatives.
Solutions u(t) accordingly now take values in some function space, rather than
in Euclidean. The mathematical theory of PDEs is considerably more involved
than that of ODEs [3] regarding existence, uniqueness, and continuous depen-
dence of solutions (=well-posedness in the sense of Hadamard): Recall that one
of the Millennium Prize Problem asks such questions for Navier-Stokes’ Equa-
tion. Computability investigations of PDEs have challenged the Church-Turing
Hypothesis [25,33,30]. The present work considers linear evolutionary PDEs with
initial and boundary conditions:

8
><

>:

ut = Au, 0  t  1, ~x 2 ⌦,

u |t=0= '(~x), ~x 2 ⌦,

Lu(t, ~x) |@⌦= 0, (t, ~x) 2 [0, 1]⇥ @⌦

(1)

where ⌦ = [0, 1]d is the unit cube (for technical simplicity); @⌦ is its boundary;
the solution u = (u1, . . . , ue) = u(t, ~x) is an unknown vector function on ⌦;

‡Definitions of the real-valued counterparts of the complexity classes are given in
Subsection 1.3; for simplicity we use same notation as for the “discrete” case for them.
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L in the boundary condition is a linear di↵erential operator of order less than
the order of the di↵erential operator A. The coe�cients of A =

P
|~||

B~|(~x) ·

@~| are e ⇥ e matrices Bj that may depend on ~x, but not on t (autonomous
case), ~| = (j1, . . . , jd) denotes a multi-index (|~|| = j1 + j2 + . . . + jd), @~| =

@j11 · · · @jd
d

the induced di↵erential operator (with @jk
k

= @
jk

@x
jk
k

), and '(~x) is the

initial condition. Note that the equations (1) are linear in the derivatives, but
the matrix coe�cients Bj can depend on ~x nonlinearly.

Example 1. An important and rich class of PDEs of form (1) are the (first-order)
symmetric hyperbolic systems

B0(~x) · ut =
Xd

j=1
Bj(~x) · @xju (2)

with Bj(~x) = B⇤

j
(~x), j = 0, 1, . . . , d; B0(~x) > 0. The corresponding di↵erential

operator is A =
P

d

j=1 B
�1
0 (~x) ·Bj(~x) ·@j . This class includes the linear acoustics,

elasticity and Maxwell equations [27]. Also the (second-order) Wave Equation

utt = �u (=
nP

j=1

@
2
u

@x2
j
) and many others can be reduced to such a system by

introducing extra unknown functions.
The Heat Equation ut = �u is not of the form (2), but still of the form (1).

Periodic boundary conditions on the unit cube are captured by

Lu(t, x1, . . . , xj�1, 0, xj+1, . . . , xd) := u(t, x1, . . . , xj�1, 0, xj+1, . . . , xd)�

u(t, x1, . . . , xj�1, 1, xj+1, . . . , xd) (3)

for first-order systems, and include similar conditions on spacial derivatives up
to l � 1 order for l-order systems.

Under suitable hypotheses, Euler’s method generalizes from ODEs to evolution-
ary PDEs (1): by discretizing now both physical time and space, the latter with
some grid of su�ciently (=exponentially) small width h ⌧ 1. This turns the
initial condition ' into a vector of exponentially large dimension O(1/h). The
right-hand side linear operator A may be approximated by a matrix A, often
referred to as di↵erence scheme, see Definition 1. And if the evolution equation
is autonomous, said matrix does not depend on time. In this case repeated time-
stepping u(t) 7! u(t+⌧) = A ·u(t) amounts to repeated (M -fold) multiplication
by A, i.e., to (exponential) matrix powering AM .

Now all three, the discretized initial condition u(0) = ' and the matrixA and
the resulting approximation to u(1), have dimension K = O(1/h) exponential
in n: leaving no chance for sub-exponential computational cost. More relevant is
therefore the following question:

Question 1. Fix polynomial-time computable initial condition, fix polynomial-
time computable matrix coe�cients Bj in the right-hand side of PDE (1), and
similarly for boundary condition L. Now consider only (t, ~x) 2 [0; 1] ⇥ ⌦ as
input: What is the bit-cost (measured w.r.t. the parameter n) of approximating
the solution u(t, ~x) at time t and point ~x up to absolute error 1/2n?
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Thus, non-uniformly fixing all data of exponential ‘size’ (formally: from spaces
of exponential entropy [16,32,12]) and restricting to polynomial ‘size’ inputs
(t, ~x) 2 [0; 1] ⇥ ⌦ avoids information-theoretic exponential lower complexity
bounds.

Compact domains ensure that one can restrict to complexity considerations
in terms of one parameter n [31, Theorem 7.2.7] and does not need to resort
to second-order complexity [9]. We use n as parameter for producing approx-
imations up to error bound 1/2n, not 1/n, following the conventions of Real
Complexity Theory [15, Definition 2.7]; see also Remark 1 below.

Note that PSPACE has been proven best possible for solving a certain non-

linear ODE [8]. Poisson’s elliptic (i.e. non-evolutionary) PDE has been estab-
lished to similarly characterize #P1 [13]. Computation on grids of size O(N)
have been shown computable in O(logN) parallel runtime [22]. In our terminol-
ogy of grid width h ⇠ 1/2n for guaranteed output approximation error 1/2n,
this means N = O(1/hd) and parallel runtime O(nd). That would amount to
complexity class PAR =PSPACE, were it not for the superpolynomial number
O(N/ logN) = O(2nd/nd) of processors. Our previous work [17] has rigorously
and in the sense of Question 1 established solutions to a large class of linear
first-order evolutionary PDEs computable in PSPACE, and under additional hy-
potheses even in #P#P.

The main result of the present paper, Theorem 2, improves the latter to #P.
It applies, in particular, to the Heat Equation, where we show #P1 as optimal.

1.1 Main Result and Overview

The complexity considerations in this work refer to (real counterparts, formalized
in Subsection 1.3, of) the classical hierarchy§ commonly conjectured proper:

NC ✓ P ✓ NP ✓ #P ✓ #P#P
✓ . . . ✓ PSPACE = PAR ✓ EXP . (4)

The following hypotheses are very natural and hold for many PDEs including
many of the ones mentioned in Example 1, see Example 2 for more detail. For
the notation of (iii) see Subsection 1.2; k'k

Cl(⌦̄) = sup
~x2⌦̄

P
|~||l

|@~|'(~x)|.

Hypotheses 1 (i) The problem (1) is well-posed (Hadamard) in that the clas-

sical solution u(t, ~x) to (1) exists, is unique and depends continuously on the

initial data in the following sense:

'(~x) 2 C
l(⌦̄), u(t, ~x) 2 C

2([0, 1]⇥ ⌦̄), kukC2([0,1]⇥⌦̄)  C0k'kCl(⌦̄), (5)

for some fixed C0, l � 2.
(ii) The initial functions '(~x) and matrix coe�cients Bj(~x) as well as their

partial derivatives up to order l are computable in P.

§The reader may forgive us for identifying decision and function complexity classes.
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(iii) The system (1) admits a di↵erence scheme Ah(n) (see (6) below) which is

computable in P, and its solution u(n)
converges to the solution u of (1)

w.r.t. the maximum norm on the uniform grid Gh(n) with the step h = h(n):

max
x2Gh(n)

|u |Gh(n)
�u(n)

| < C · h(n), C does not depend on n.

Note that technically a di↵erence scheme is a family Ah(n) of matrices of
dimension growing exponentially in n ! 1 such as to approximate the operator
A with increasing precision; the approximating solution u(n) is a sequence of vec-
tors of dimension growing exponentially in n. See Definitions 5, 7 of Subsection
1.3 for adjustment of the complexity classes to this case.

The main results of the present paper are collected in the following

Theorem 2. a) The solution u of (1) under Hypotheses 1 is computable in

PSPACE.
b) If additionally the di↵erence scheme Ah from (iii) is a sum of tensor prod-

ucts of circulant block matrices of constant bandwidth (as formalized in the

hypothesis of Theorem 4), then evaluating the solution (t, ~x) 7! u(t, ~x) of (1)
is computable in #P.

c) Evaluating the solution u of (2) is computable in P if the matrices Bj are

constant and mutually commute for j = 0, 1, . . . d.
d) For the Heat Equation ut = �u there exists a polynomial time computable

initial condition ' such that the solution u is classical but cannot be computed

in polynomial time unless P1 = #P1.

Item b) harnesses a particular structure common to di↵erence schemes, formal-
ized in Theorem 4 below. Intuitively, in 1D the locality of the grid discretization
of the di↵erential operator yields a di↵erence scheme Ah(n) with constant band-
width, and periodic boundary conditions yield to a circulant structure. Higher-
dimensional Euclidean domains translate to tensor products of such (families of)
matrices.

Example 2. Many evolutionary linear PDEs admit di↵erence schemes that sat-
isfy the hypotheses of Theorem 2 b), and thus can be computed in #P, including:

a) the Heat Equation with periodic boundary conditions and polynomial time
computable initial function: see [19, §2.11] for maximum norm di↵erence
scheme convergence, and e.g. [3] for well-posedness.

b) the Wave Equation with periodic boundary conditions and polynomial time
computable initial functions. Indeed, the wave equation admits a max-norm
convergent di↵erence scheme under additional smoothness assumptions, see
Theorem 3.1 of [20] for the two-dimensional case, given that u(t, x, y) 2

C(4,5)([0, T ] ⇥ ⌦̄). The continuous dependence condition (5) can be veri-
fied combining the well-known continuous dependence w.r.t. L2-norms, and
Sobolev Embedding Theorem, see e.g. [3, §5.6.3].
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c) Note that the two-dimensional acoustics system

8
>>>>><

>>>>>:

⇢0
@u

@t
+
@p

@x
= 0,

⇢0
@v

@t
+
@p

@y
= 0,

@p

@t
+ ⇢0c

2
0

✓
@u

@x
+
@v

@y

◆
= 0

can be equivalently reduced to the two-dimensional wave equation (e.g. [4]);
see also [5] for other examples of symmetric hyperbolic systems (2) (with
constant coe�cients Bj), which are equivalent to higher-order wave equa-
tions.

Note that without assuming the boundary conditions periodic, the solution u
in the examples a), b), c) above can be computed in PSPACE, according to
Theorem 2 a).

Subsection 1.2 collects notational conventions and recalls some basic definitions.
Subsection 1.3 formalizes computational bit-complexity theory of real vectors
and matrices of exponential dimension. Section 2 presents the proof (sketches)
to our main Theorem 2.

1.2 Notation

We use n 2 N to parametrize the absolute output approximation error bound
1/2n; d 2 N is the dimension of the torus ⌦ = [0; 1)d mod 1 as compact spatial
domain of the partial di↵erential equation under consideration and e 2 N denotes
the dimension of the solution function vector u.

Definition 1 (Di↵erence schemes).

a) Consider, for any positive integer N , the uniform rectangular grid GN on ⌦
defined by the points

✓
i1 �

1
2

2N
,
i2 �

1
2

2N
, . . . ,

im �
1
2

2N

◆

where 1  i1, i2, . . . , im  2N . Let h = 1/2N be the corresponding spatial

grid step and ⌧ be a time step. Denote G⌧

N
= GN ⇥ {l⌧}M

l=1, where M is the

number of time steps. The choice of steps h and ⌧ , depending on the output

precision parameter n, is specified below in Subsection 2.3. We consider the

following grid norm: |g(h)| = maxx2GN |g(h)(x)|.
b) For a linear di↵erential operator A, the matrix A(h) (with the grid step

h = h(n)) defines the corresponding di↵erence scheme

u(h,(l+1)⌧) = Ahu
(h,l⌧), u(h,0) = '(h) (6)
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under consideration. Its entries are denoted (A(h))I,J , 1  I, J  K. Here

K ⇠ 2O(n)
is the dimension of the vectors u(h,m⌧)

approximating the solution

u(m⌧, ~x, ) at time m⌧  1, i.e., for 1  m  M := 1/⌧ ⇠ 2n. ⌧, h ⇠ 1/2n

denote the temporal and spatial grid widths, respectively. Generally speaking,

capital letters denote quantities (ranging up to) exponential in n.
c) The solution u(h)

of the di↵erence scheme (6) converges to the solution u of

(1) if there is a constant C not depending on h and ⌧ such that

|u|G⌧
h
� u(h)

|  Chp . (7)

Due to the Lax Convergence Theorem, a di↵erence scheme (6) converges in
the sense of (7) to the solution of the PDEs (1) if and only if it is approximating

and stable; see e.g. [29]. The latter means that the matrix Ah has bounded
powers, see Definition 2 b) below.

Definition 2 (Matrices).

a) Equip vectors with the maximum norm, and matrices with the induced oper-

ator norm: kuk = maxj |uj |, kAk = max
�
kA · uk/kuk

 
.

b) A square matrix A with entries AI,J (0  I, J < K) is said to have bounded
powers if its powers are uniformly bounded, i.e., i↵ there exists some C 2 N
such that kAM

k  C holds for all M 2 N.
Similarly for a family An of square matrices of possibly varying format,

n 2 N: Here kAM
n
k must be bounded independently of both M 2 N and of

n 2 N.
c) For a (not necessarily commutative) ring R, let R

N⇥N

D
denote the vector

space of N ⇥N matrices of bandwidth < D:

A 2 R
N⇥N

D
, |I � J | � D ) AI,J = 0.

The (one-)norm of an integer multi-index ~| = (j1, . . . , jL) 2 ZL is |~|| =
j1 + · · · + jL. We write “~| � ~0” to indicate non-negative (i.e. natural number)
multi-indices. D = max

�
|~|| : B~| 6= 0

 
denotes the order of the PDE (1).

A main tool in our algorithms translates circulant matrix powering to poly-
nomial powering. Indeed, the above notions have immediate counterparts:

Definition 3 (Polynomials). Fix a (not necessarily commutative) ring R.

a) A polynomial in L commuting variables of componentwise degree less than

~D 2 NL
has the form

P ( ~X) = P (X1, . . . , XL) =
X

~0<|~D
p~| ~X

~| =
X

~|�~0,|~||<~D
p~|·
YL

`=1
Xj`

`
.

Write R~D
[X1, . . . , XL] = R~D

[ ~X] for the vector space of such polynomials.

b) An L-variate Laurent polynomial of componentwise degree < ~D has the form

P ( ~X) = P (X1, . . . , XL) =
X

�~D<~|<~D
p~| ~X

~| ,
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that is, including negative powers of the variables. Write R~D
[X1, X

�1
1 , . . . , XL, X

�1
L

] =

R~D
[ ~X, ~X�1] for the vector space of such Laurent polynomials; and P

⇥
~X~|
⇤
:=

p~| for the coe�cient to ~X~|
in P , ~| 2 ZL

.

c) Suppose R is equipped with a norm | · |. Consider the ring R[ ~X, ~X�1] of all
(Laurent) polynomials, equipped with the induced norm kPk :=

P
|~||

|p~||. A

(Laurent) polynomial P has bounded powers i↵ kPM
k is bounded indepen-

dently of M 2 N.
Similarly for a family Pn of polynomials of possibly varying number of vari-

ables, n 2 N : Here kPM
n

k must be bounded independently of both M 2 N
and of n 2 N .

Multivariate degree is understood componentwise and w.r.t. strict inequality
< (not = nor ). For example X2

· Y 3 + X3
· Y 2 has componentwise degree

< ~D = (4, 4), but not < (3, 4) nor < (4, 3). An L-variate Laurent polynomial P
of componentwise degree < ~D can be converted to an ordinary polynomial by
multiplying P with XD1

1 · · ·XDL
L

.
In the sequel, exponential growth is to be understood as bounded by 2p(k),

k ! 1, for some polynomial p.

1.3 Real Complexity Theory

In [15], major classical complexity classes have been adapted from the discrete
case to the setting of real numbers and (continuous) real functions. There the
integer parameter n governing the output approximation error 1/2n replaces
the role of the binary input length. Let us recall the definitions of polyno-
mial/exponential time/space computability of real numbers, (fixed-dimensional)
real vectors, sequences of real numbers, and partial real functions [15].

Definition 4. a) Computing a real number r 2 R means to output, given

n 2 N, some numerators an 2 Z in binary with |r � an/2p(n)|  1/2n for

some polynomial p 2 N[N ]. Such a computation runs in polynomial time
(P) if said an is output within a number of steps bounded by a polynomial

in n. It runs in exponential time (EXP) if the number of steps is bounded

exponentially in n. The computation runs in polynomial space (PSPACE) if

the amount of memory is bounded polynomially in n.
b) Computing a (finite-dimensional) real vector (in P, EXP, PSPACE)

means to compute each of its entries separately (in P, EXP, PSPACE).
c) Computing a sequence r̄ = (rk) 2 R of real numbers means to output,

given n and k, some an,k 2 Z in binary with |rk � an,k/2p(n+k)
|  1/2n for

some polynomial p 2 N[N ]. Such a computation runs in polynomial time (P)
if said an,k is output within a number of steps bounded by a polynomial in n+
k. Similarly for exponential time (EXP) and polynomial space (PSPACE).

d) Computing a partial real function f :✓ R ! R (w.r.t. some polynomials

q, p 2 N[N ]) means, given n 2 N and any numerator a 2 Z with |x �

a/2q(p(n))|  1/2p(n) in binary for some x 2 dom(f), to output some b =
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bn(a) 2 Z in binary with |f(x) � bn/2p(n)|  1/2n. The computation may

behave arbitrarily on inputs a that do not satisfy the hypothesis.

Remark 1. In addition to following the conventions of Real Complexity Theory
[15, Definition 2.7], we prefer error bound 1/2n (as opposed to 1/n) for four
reasons:

a) It corresponds to measuring computational cost of discrete problems, such
as of integer factorization, in dependence of the binary (as opposed to unary)
length n.

b) It reflects that (for instance Chudnovsky’s or Borwein’s) algorithms can ap-
proximate ⇡ in time polynomial in n up to error 1/2n (while error bound
1/n is trivial to achieve).

c) It gives rise to the aforementioned and subsequent and many more [15] nu-
merical characterizations of discrete complexity classes.

d) The first-order theory of the two-sorted structure (Z, 0, 1,+, >) [ (R, 0, 1,+,⇥, >)
with ‘error embedding’ ı : Z 3 n 7! 2�n

2 R (capturing Exact Real Compu-

tation) is decidable, while that with N+ 3 n 7! 1/n 2 R is not [24, Theorem
4.4].

For real vectors of exponential (in some integer parameter k) dimension Dk,
our notions of (time/space) complexity are more subtle and we adapt them to
the computation of any desired entry rather than of the entire matrix. The
complexity of computing said dimension Dk itself must be taken into account
as well (see details in the Appendix). Defining real counterparts to #P is subtle
and discussed in detail, since most of our major results refer to it.

When speaking of complexity of computation for matrices, we identify a
D⇥E-dimensional matrix B = (bI,J) with the D⇥E-dimensional vector BhI,Ji

for the pairing function hI, Ji = J + (I + J) · (I + J + 1)/2.

Definition 5. a) Computing a sequence ~rk = (rk,J)JDk 2 RDk of Dk-
dimensional real vectors means to output, given n, k 2 N (in unary)

and J  dim(~rk) = Dk in binary, some an,k,J 2 Z in binary with |rk,J �

an,k,J/2p(n+k)
|  1/2n for some polynomial p 2 N[N ].

Such a computation runs in polynomial time (P) if said an,k,J is output

within a number of steps bounded by a polynomial in n+k but independently

of J . Similarly for exponential time (EXP) and polynomial space (PSPACE).
b) More generally, computing a sequence ~fk :✓ Rd

! RDk of partial vector
functions (w.r.t. some polynomials q, p 2 N[N ]) means, given n, k, J 2 N
and any numerator ~a 2 Zd

with |~x � ~a/2q(p(n+k)+k)
|  1/2p(n+k)

for some

~x 2 dom(fk) and J  Dk = dim fk, to output some b = bn,k,J(a) 2 Z with

|fk,J(~x) � b/2p(n+k)
|  1/2n. Here k~yk = max{|y1|, . . . , |yd|} denotes the

maximum norm.

Such a computation runs in polynomial time (P) if said b = bn,k,J (a) is

output within a number of steps bounded by a polynomial in n+ k but inde-

pendently of J and a. Similarly for exponential time (EXP) and polynomial
space (PSPACE).
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c) A sequence (Dk) of natural numbers is computable in unary polynomial time
(Pone) if the mapping 0k 7! bin(Dk) 2 {0, 1}⇤ is computable in time poly-

nomial in the input length.

Note that a polynomial-time computable real sequence rk according to (4c) can
grow at most exponentially (in k); similarly for both the entries and the dimen-
sion Dk of a polynomial-time computable vector sequence according to (4d),
and for vector functions according to (5b): in agreement with a sequence Dk

computable in unary polynomial time according to (5c) growing at most expo-
nentially in k. Memory-bounded computation here is understood to charge for
all, input and working and output tape; hence sequences of reals and real vec-
tors computable in polynomial space also satisfy exponential bounds of growth
of value and dimension.

In this way our real counterparts of P and PSPACE above agree with both
the conception of real numbers as ‘streams’ of approximations [31,32] as well as
with the oracle-based approach [15,9].

Recall that the discrete complexity class #P consists of all total functions  :
{0, 1}⇤ ! N such that some non-deterministic polynomial-time Turing machine
on input ~x 2 {0, 1}⇤ has precisely  (~x) accepting computations.

Definition 6. Fix  : {0, 1}⇤ ! N.

a) We say that  counts the real number r 2 R if it holds an =  (1n)�  (0n)
according to Definition 4a. If  2 #P, call r computable in #P.

b) Say that  counts the real sequence r̄ = rk if an,k =  (1n 0k) �  (0n 1k)
according to Definition 4c. If  2 #P, call r̄ computable in #P.

As in Definitions 4, the case of vectors of exponential dimension is more subtle:

Definition 7. a) Suppose log(Dk) grows at most polynomially. We say that  
counts the sequence ~rk of Dk-dimensional real vectors if

an,k,J =  
�
1n 0k 1 bin(J)

�
�  

�
0n 1k 0 bin(J)

�

according to Definition 5a. If  2 #P, call ~rk computable in #P.
b) Say that  counts the partial function f :✓ R ! R if

bn(a) =  
�
1n 0 bin(a)

�
�  

�
0n 1 bin(a)

�

according to Definition 4d. If  2 #P, call f computable in #P.
c) Suppose log(Dk) grows at most polynomially. We say that  counts the se-

quence of partial vector functions ~fk :✓ Rd
! RDk if

bn,k,J(a) =  
�
1n 0k bin(J), bin(a)

�
�  

�
0n 1k bin(J), bin(a)

�

according to Definition 5b. If  2 #P, call ~fk computable in #P.



Bit-Complexity of Linear Systems of PDEs 11

It is unknown under which arithmetic operations #P is closed; for instance
GapP has been introduced as the closure of #P under subtraction [6]. The
above real counterparts could thus perhaps more accurately be called “GapP-
computability”, rather than #P-computability. Since it holds P#P = PGapP, the
di↵erence between #P and GapP seems minor, if any, from the perspective of
computational cost. For notational convenience, we define real counting complex-

ity neglecting such subtleties. Also Definition 4a) actually refers to P1 rather
than P. Similarly, Definition 6a) could perhaps better (but more awkwardly)
refer to “#P1-computability”, since it employs restrictions  |1⇤ of  2 #P to
unary arguments. This might cause our notions to slightly deviate from [15,
p.184].

Polynomial-time computability implies computability in #P, which in turn
implies computability in PSPACE: Note that, since  2 #P grows in value at
most exponentially in the input length, any real sequence rk computable in #P
according to c) also has |rk| growing at most exponentially in k.

2 Techniques and Proof Ideas

For the di↵erence scheme approach (6), taking into account Hypotheses 1 (ii),
(iii), the computational problem is equivalent to: first raise a matrix A (or,
rather, any desired one from a sequence of matrices Ah(n)) of exponential di-

mension K ⇠ 2O(n) to an exponential power M ⇠ 2O(n); then multiply the
intermediate result to a K-dimensional sample vector '(h) of the initial condi-
tion '; and finally return an approximation to any desired entry with given index

#J of the result vector
�
AM(n)

h(n) ·'(h(n))
�
J
up to error 1/2n, 0  J < K. Näıvely

the intermediate result matrices and vectors have exponential dimension, hence
leading to complexity class EXP.

On the other hand, according to Question 1, only one entry #J of the re-
sult is required; and both the di↵erence-scheme matrix Ah(n) and the sampled

initial vector '(h(n)) do not need to be stored, but by hypothesis any desired
of its entries can be (re-)computed on-the-fly in P, whenever and however often
required: only J 2 {0, 1, . . . ,K�1} and M are part of the input, given in binary
with a linear number O(n) of bits.

The discrete counterpart to our real problem would ask for any desired en-
try of a P-computable Boolean matrix of exponential dimension to exponential
power; and this can be solved in PSPACE by Savitch’s Algorithm. When applying
the same approach to the integer or to the present real case, the hypothesis of A
having bounded powers (Definition 2b) becomes crucial: to guarantee that the
resulting entries do not blow up, nor do they require excessive initial precision
in order to keep the rounding error propagation in check (details omitted). We
thus have an improved, namely PSPACE algorithm, and establish Theorem 2a).

Regarding Theorem 2b), Subsection 2.2 reduces the problem of (recovering
any desired entry of a) circulant matrix raised to an exponential power to that
of (recovering any desired coe�cient of a) polynomials raised to such power; in a
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way that relates bandwidth to degrees. Subsection 2.1 solves the latter problem in
#P by reduction to Riemann integration via Cauchy’s Di↵erentiation Theorem.
Linear polynomials can even be raised to exponential powers in P according to
Proposition 1.

Subsection 2.3 concludes the proof of Theorem 2 a), b) by treating both
grid and nongrid points to compute the solution of (1); this proof makes use of
Hypotheses 1 (i). Subsections 2.4, 2.5 establish Theorem 2 c), d), respectively.

2.1 Raising Polynomials to Exponential Powers

Consider the problem of raising a fixed P-computable univariate polynomial P
of ‘small’ degree to an exponential M -th power, and read o↵ the J-th coe�cient
P [XJ ] with J,M 2 N in binary as only actual input. Of course having bounded
powers (Definition 3c) is again a crucial hypothesis to prevent coe�cient explo-
sion and numerical instability. Note that already for the quadratic polynomial
P (X) = (1 +X +X2)/3, näıve evaluation of the ‘explicit’ formula

�
1
3 + 1

3X + 1
3X

2
�K

[XJ ] = 3�K
·

X

0µ,⌫K

µ+2⌫=M

K!

µ! · ⌫! · (K � µ� ⌫)!
(8)

involves terms like K! of value, and the sum with a number of terms, doubly
exponential in k: not at all obvious to compute in #P.

However, thanks to Cauchy’s Integral Theorem, we can express any single
desired coe�cient of PM as loop integral over PM (z)/zM+1 for |z| = 1 run-
ning over the complex unit circle. And due to P having bounded powers, the
values of PM (z)/zM+1 are bounded, can be computed with repeated squaring
on real numbers, and their dependence on z is su�ciently well-behaved: Such
Riemann integrals are known computable in #P [15, §5.4]. This generalizes to
the multivariate case:

Theorem 3. Fix a sequence Pk( ~X) of L-variate polynomials of componentwise

degree < ~D and bounded powers. Let Kk denote a sequence of natural numbers

with binary representation computable in time polynomial (and thus of value

exponentially bounded) in k.
Then each coe�cient PKk

k
[ ~X~|] of PKk

k
, ~0  ~| < ~D, formalized as mapping

bin(1k, bin(~|)
�
7! PKk

k

⇥
~X~|
⇤
, is computable in #P.

Note that PKk
k

has componentwise degree < ~D · Kk, increased at most expo-
nentially in k; hence the binary length of ~| is polynomial in k, the binary length
of 1k. Recall Definition 6 for the formal notion of a (sequence/family of) real
vectors/matrices/polynomials to be computable in #P. Theorem 3 extends im-
mediately to Laurent polynomials.

Raising linear polynomials is feasible in P: Note that
�
N

K

�
pKqN�K is the

coe�cient of XK of the polynomial (pX + q)N .

Proposition 1. Fix P-computable q 2 (0; 1) and k 2 N. Abbreviate p := 1� q.
Given K  N 2 N, one can approximate

�
N

K

�
pKqN�K

to absolute error N�k
in

time polynomial in logN .
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2.2 Circulant Matrices as Polynomials

Consider an N ⇥N circulant matrix A with parameters a0, . . . , aN�1,

A =
�
aI�J mod N

�
0I,J<N

=
XN�1

J=0
aJ · C

J

N
(9)

for the ‘generator’ circulant matrix CN with parameters (0, 1, 0, 0, . . . , 0). Let

PA(X) =
P

N�1
j=0 ajXj denote the associated polynomial to circulant matrix A:

so A
M = PM

A
(CN ), and the entry with indices (I, J) of AM is

(AM )I,J =
X

K⌘(I�J) mod N
PM

A
[XK ]

in the terminology of Definition 3. The associated polynomial is a well-known
concept [18]. We will primarily consider circulant matrices A with small band-
width D. These correspond to the images of Laurent polynomials with small
degrees D: linear combinations of monomials Xj of possibly negative exponents
j ranging from �D to +D. More generally, we treat matrices that can be de-
composed into components combined by Kronecker product as in Equation (11).

Lemma 1. Fix a not necessarily commutative ring R of characteristic zero. Let

CIRCN

D
(R) ✓ R

N⇥N

D
denote the subspace of N ⇥N circulant matrices of band-

width < D. Recall that CN 2 CIRCN

2 (R) denotes the N ⇥N cyclic permutation

matrix from (9) and (Definition 2) we write P [ ~X~|] 2 R for the coe�cient to

~X~| = Xj1
1 · · ·XjL

L
in an L-variate Laurent polynomial P 2 R[ ~X, ~X�1], ~| 2 ZL

.

a) For any P 2 RD[X,X�1] it holds P (CN ) 2 CIRCN

D
(R). More precisely

P (CN )I,J =
X

n2Z
P [XJ�I+nN ] 2 R ,

and the sum is finite. The mapping R[X,X�1] 3 P 7! P (CN ) 2 CIRCN (R)
is a homomorphism of non-commutative algebras. For D  N/2 and normed

R, the restriction RD[X,X�1] 3 P 7! P (CN ) 2 CIRCN

D
(R) is an isometry

of vector spaces with respect to the induced norms from Definitions 3 and 2.

b) Generalizing a), fix m,L,N1, . . . , NL 2 N and consider ring homomorphism

�
m, ~N

: Rm⇥m[X1, X
�1
1 , . . . , XL, X

�1
L

] 3 P 7! Rm⇥m
⌦ RN1⇥N1 ⌦ · · ·RNL⇥NL

Rm⇥m
3 B 7! B⌦ DN1 ⌦ · · ·⌦ DNL , X` 7! Dm ⌦ DN1 ⌦ · · ·⌦ CN` ⌦ · · ·⌦ DNL

Then it holds
�
�
m, ~N

(P )
�
I1,J1,...,IL,JL

=

X
n2Z

P
⇥
XJ1�I1+n1N1

1 , . . . XJL�IL+nLNL
L

⇤
2 Rm⇥m. (10)

For D`  N`/2, �m, ~N
restricted to Rm⇥m

~D
[ ~X, ~X�1] maps isometrically and

surjectively onto the vector space of matrices of the form (11). ut
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The following Theorem 4 now is a corollary to Theorem 3: Translate the ma-
trix A = Ak into normal form according to Lemma 1b); then further on into
a multivariate Laurent polynomial P according to the inverse isometry from
Lemma 1c); raise PM

k
to the desired power following Theorem 3; and finally

recover the desired coe�cient of AM according to Equation (10).

Theorem 4. Fix J, L 2 N and, for k = 1, 2, . . ., let

– K = K(k, j, `) 2 N with binary representation computable in time polynomial

(and thus of value exponentially bounded) in k, 1  j  J , 1  `  L
– Ck,j,` polynomial-time computable circulant matrices of bandwidth < D and

dimensions K = K(k, `), `  L
– Qj polynomial time computable real matrices of constant dimension d, 1 

j  J
– M = M(k) natural numbers with binary representations computable in time

polynomial in k.

Consider the following (sequence of) Kronecker/tensor products:

Ak :=
XJ

j=1
Qj ⌦ Ck,j,1 ⌦ Ck,j,2 ⌦ · · ·⌦ Ck,j,L (11)

If that matrix sequence has bounded powers, then the sequence AM(k)
k

of matrix

powers is computable in #P. ut

Replacing Theorem 3 with Proposition 1, we obtain the following corollary which
may be of independent interest:

Corollary 1. If the circulant matrices Ck,j,` in Theorem 4 have bandwidth two,

then the sequence AM(k)
k

of matrix powers is computable in polynomial time.

Di↵erence schemes of bandwidth two correspond to simple transport equations,
which admit explicit solutions in Subsection 2.4. Also, fast exponentiation AM

of a di↵erence scheme A by itself is insu�cient: It remains to apply the inner
product with the initial condition, which still incurs cost #P [17, Proposition 6e].

2.3 Complexity of Solutions of Evolutionary PDEs

Proof (Theorem 2a,b). To compute the solution u at a fixed point (t, x) with the
prescribed precision 2�n and estimate the bit-cost of the computation, consider
the following computation steps.

1. Choose the space and time grid steps, h and ⌧ , in the following way:

• h is any binary-rational number of the form h = 2�N , where N = O(n),
satisfying the Inequality (13) below;

• ⌧ is any binary-rational number meeting the Courant inequality ⌧  ⌫h,
where ⌫ is the Courant number guaranteeing convergence property of the
considered di↵erence scheme which can be computed from the coe�cients of
the system (1).
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2. For a grid point (t, ~x) put l = t

⌧
(note that l  M =

⇥
1
⌧

⇤
= O(2n)) and

calculate the matrix powers and vector products AM(n)
h(n) · '(h(n)). Note that we

use matrix powering instead of step-by-step iterations initially suggested by the
di↵erence scheme (6).

3. For non-grid points take (e.g.) a multilinear interpolation gu(h) of u(h),
which can be computed in polynomial time from the (constant number of)
“neighbor” grid points. Due to well-known properties of multilinear interpo-
lations,

sup
t,~x

|
gu(h)(t, ~x)|  C̃ sup

G⌧
N

|u(h)
|; sup

t,~x

|u(t, ~x)�û |G⌧
N
(t, ~x)|  C̄ sup

t,~x

|@
~2u(t, ~x)|·h2,

(12)
where C̃ and C̄ are absolute constants.

Based on (12) and on the continuous dependence property, as well as on
linearity of the interpolation operator, infer

sup
t,~x

|u(t, ~x)�gu(h)(t, ~x)|  sup
t,~x

⇣
|u(t, ~x)� û |G⌧

N
(t, ~x)|+ |û |G⌧

N
(t, ~x)� gu(h)(t, ~x)|

⌘

 C̄C0||'||Cl(⌦̄)h
2 + C̃C · h  2�n.

Thus choosing a grid step h = 2�N such that

h  Ch · 2�n, Ch = C̄C0||'||Cl(⌦̄) + C̃C, (13)

will guarantee the computed function gu(h) approximate the solution u with the
prescribed precision 2�n (here Ch depends only on the fixed P-computable func-
tions ', Bi and therefore is a fixed constant. Hence it remains to estimate com-
plexity of matrix powering (which turns out to be in PSPACE or #P in items
a) or b) of Theorem 2, respectively) and inner product (which turns out to be
in #P), see comments in the beginning of this Section and Theorem 3.

2.4 Symmetric Hyperbolic PDEs with Commuting Coe�cients

Towards proving Theorem 2c), first consider the following scalar linear PDE
with constant coe�cients and its explicit solution

�0ut =
X

j
�j@ju, u(~x, t) = u0

�
t
X

j
�j + �0

X
j
xj

�
(14)

which is obviously computable in P, provided that �0,�1, . . . ,�d 2 R are.
Theorem 2c) considers vector systems of such PDEs, with constant sym-

metric mutually commuting matrix coe�cients B~|. These hypotheses assert a
simultaneous diagonalization, that is, a basis of joint eigenvectors: which ‘decou-
ples’ the system into e independent scalar equations (14). It remains to prove
that such a joint spectral decomposition can be computed in P: which is wrong
in case (even a single symmetric) matrix B~| is given as input [34]. Fortunately,
in agreement with Question 1, these matrices are not part of the input but fixed
computable in P. And for this case we have and apply the following
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Theorem 5. Fix symmetric and mutually commuting matrices B~| = B⇤

~|
of fixed

dimension e 2 N with fixed real polynomial-time computable entries. Then a joint

spectral decomposition B~| = T|
·D~| ·T can be computed in time polynomial in

the output precision parameter n (and unspecified dependence on the dimension

e as well as on the ‘input’ matrix entries). Here D~| is a diagonal matrix with

the eigenvalues of B; and T is an orthonormal matrix consisting of a joint basis

of eigenvectors of all B~|.

Proof. Let k denote the dimension of B. By [21], the d-tuple of eigenvalues with
multiplicity (i.e. the sought diagonal matrix D) can be approximated up to ab-
solute error 1/2n in time polynomial in n. Note that the (integer) multiplicities
themselves depend discontinuously on the entries of B and therefore cannot be
computed; but, since the matrix is fixed, they can be hardcoded into the thus
non-uniform computation. It then remains to compute, for each eigenvalue �
with correct multiplicity k = k(�), an orthonormal basis of the k-dimensional
kernel of B�� · id [23]. Naive Gaussian Elimination does not su�ce for this pur-
pose since the tests for in/equality during pivot search are undecidable. Bareiss
Algorithm avoids the divisions; but cannot avoid tests either. On the other hand
Bareiss performs (more than Gauss, but still) only a number of test polyno-
mially bounded in the dimension d, which is constant in our setting, namely
independent of the output precision parameter n. Hence, again, the outcomes
of these tests can be hardcoded in this non-uniform computation. The remain-
ing operations of Bareiss are arithmetic, and can performed on approximations.
More precisely consider the d ⇥ d matrix B̃m,� of integer numerators such that
dyadic B̃m,�/2m approximates B � � · id ‘su�ciently’ well: Since the number of
arithmetic operations is polynomial in d, it su�ces to choose m polynomially
larger than n in order to guarantee that the output of Bareiss is still within
absolute error 1/2n from the hypothetical exact result. The bit-cost of Bareiss
is well-known polynomial in (d and) m.

2.5 #P1 is Optimal for the Heat Equation

#P is known optimal for indefinite Riemann Integration [15, Theorem 5.33],
while #P1 is optimal for definite Riemann Integration [15, Theorem 5.32] in the
following sense:

Fact 6 a) There is a P-computable (hence continuous) h : [0; 1] ! [�1; 1] such

that
R 1
0 h(x) dx is not computable in P1 unless FP1 = #P1.

b) For every P-computable analytic function g : [0; 1] ! R,
R 1
0 g(x) dx is com-

putable in P1 [15, bottom of page 208].
c) Let u = u(x, t) solve the 1D Heat Equation ut = uxx on [0; 1] with periodic

boundary conditions u(0, t) = u(1, t) and ux(0, t) = ux(1, t) such that u0 =
u(x, 0) is in C

2[0; 1]. Then u(x, t) is analytic in x for each fixed t > 0, and

the ‘overall heat’
R 1
0 u(x, t) dx does not depend on t; see e.g. [7]. ut

In order to establish Theorem 2d), consider u0 := h from Fact 6a). W.l.o.g.
h(0) = h(1): otherwise consider [0; 1/2] 3 x 7! h(2x)/2 and [1/2; 1] 3 x 7!

h(2� 2x)/2. Then apply Fact 6b) to g(x) := u(x, t) according to Fact 6c).
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3 Conclusion and Perspective

We have extended previous rigorous bit-cost investigations of PDEs [13] from
elliptic to hyperbolic and parabolic linear PDEs, improving upper complexity
bounds PSPACE and #P#P [17] to #P. #P1 (not #P, as claimed in [13, §6])
turned out as necessary for both Poisson and Heat equation. Current (limited)
evidence suggests that di↵erential equations might exhibit a dichotomy [26]:
either P (Subsection 2.4 of the present paper, Theorem 3 of [17] for the case of
linear evolutionary systems of PDEs with analytic initial functions and matrix
coe�cients, and [1] for analytic ODEs) or #P/#P1-hard.
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Müller, N., Neumann, E., Preining, N., Ziegler, M.: Foundation of com-
puter (algebra) analysis systems: Semantics, logic, programming, verification.
https://arxiv.org/abs/1608.05787 (2020)

25. Pour-El, M.B., Richards, J.I.: The wave equation with computable inital data such
that its unique solution is not computable. Advances in Math. 39, 215–239 (1981)

26. Schaefer, T.J.: The complexity of satisfiability problems. In: Lipton, R.J.,
Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) Proceedings of
the 10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San
Diego, California, USA. pp. 216–226. ACM (1978)

27. Selivanova, S., Selivanov, V.L.: Computing solution operators of boundary-value
problems for some linear hyperbolic systems of PDEs. Logical Methods in Com-
puter Science 13(4) (2017). https://doi.org/10.23638/LMCS-13(4:13)2017

28. Selivanova, S.V., Selivanov, V.L.: Bit complexity of computing solutions for sym-
metric hyperbolic systems of PDEs (extended abstract). In: Proceedings of CiE
2018. pp. 376–385 (2018). https://doi.org/10.1007/978-3-319-94418-0 38

29. Strikwerda, J.C.: Finite Di↵erence Schemes and Partial Di↵erential Equations.
SIAM (2004)

30. Sun, S., Zhong, N., Ziegler, M.: Computability of the solutions to Navier-Stokes
equations via e↵ective approximation. In: Du, D., Wang, J. (eds.) Complexity and
Approximation - In Memory of Ker-I Ko. Lecture Notes in Computer Science, vol.
12000, pp. 80–112. Springer (2020). https://doi.org/10.1007/978-3-030-41672-0 7

https://doi.org/10.1090/noti804
https://doi.org/10.1016/j.cam.2010.10.019
https://doi.org/10.1016/S0022-0000(05)80061-3
https://doi.org/10.23638/LMCS-13(4:13)2017
https://doi.org/10.1007/978-3-319-94418-0_38
https://doi.org/10.1007/978-3-030-41672-0_7


Bit-Complexity of Linear Systems of PDEs 19

31. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)
32. Weihrauch, K.: Computational complexity on computable metric spaces. Mathe-

matical Logic Quarterly 49:1, 3–21 (2003)
33. Weihrauch, K., Zhong, N.: Is wave propagation computable or can wave computers

beat the Turing machine? Proceedings of the London Mathematical Society 85(2),
312–332 (2002)

34. Ziegler, M., Brattka, V.: A computable spectral theorem. In: Blanck, J., Brattka,
V., Hertling, P. (eds.) Computability and Complexity in Analysis. Lecture Notes
in Computer Science, vol. 2064, pp. 378–388. Springer, Berlin (2001), 4th Interna-
tional Workshop, CCA 2000, Swansea, UK, September 2000


	Bit-Complexity of Solving Systems of Linear Evolutionary Partial Differential Equations

