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Abstract. Finite Elements are a common method for solving differen-
tial equations via discretization. Under suitable hypotheses, the solution
u = u(¢, &) of a well-posed initial/boundary-value problem for a linear
evolutionary system of PDEs is approximated up to absolute error 1/2"
by repeatedly (exponentially often in n) multiplying a matrix A,, to the
vector from the previous time step, starting with the initial condition
u(0), approximated by the spatial grid vector u(0),. The dimension of
the matrix A, is exponential in n, which is the number of the bits of the
output.

We investigate the bit-cost of computing exponential powers and in-
ner products AX - u(0),, K ~ 29 of matrices and vectors of ex-
ponential dimension for various classes of such difference schemes A,,.
Non-uniformly fixing any polynomial-time computable initial condition
and focusing on single but arbitrary entries (instead of the entire vec-
tor/matrix) allows to improve naive exponential sequential runtime EXP:
Closer inspection shows that, given any time 0 < ¢ < 1 and space
# € [0;1]%, the computational cost of evaluating the solution u(t, )
corresponds to the discrete class PSPACE.

Many partial differential equations, including the Heat Equation, admit
difference schemes that are (tensor products of constantly many) circu-
lant matrices of constant bandwidth; and for these we show exponential
matrix powering, and PDE solution computable in #P. This is achieved
by calculating individual coefficients of the matrix’ multivariate compan-
ion polynomial’s powers using Cauchy’s Differentiation Theorem; and
shown optimal for the Heat Equation. Exponentially powering twoband
circulant matrices is established even feasible in P; and under additional
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conditions, also the solution to certain linear PDEs becomes computable
in P.

Keywords: Reliable Computing - Bit-Cost - Partial Differential Equa-
tions.

1 Introduction and Summary of Contributions

Computable Analysis [31] provides a framework for rigorous computability and
complexity investigations of computational problems over real numbers and func-
tions by approximation up to guaranteed absolute error 1/2™ [1532I2/10]. This
has been applied to ordinary [1J1T14] and partial [27)28/30] differential equa-
tions. It allows to prove asymptotic optimality of numerical algorithms by re-
lating the intrinsic computational bit-cost of a problem to a classical discrete
complexity class [8I13].

The present work considers general classes of systems of linear evolutionary
partial differential equations (PDEs).

In order to solve some system of ordinary differential equations (ODEs)
oyu = f (u,t), common numerical approaches—such as Euler’s Method and its
refinements—discretize time ¢ € [0;1] into steps 7 < 1: From the fixed initial
value u(0) = ug at ¢t = 0 they iteratively proceed to approximations u(r), u(27),
...u(M - 7). In order for the last one to approximate u(1) up to error 1/2", the
number M = 1/7 € N of steps is generally exponential in (the number of bits of
the output) n; and the problem thus seen to belong to the discrete complexity
class EXPE>. Closer inspection improves that to PSPACE [15, §7.2], which has
been proven best possible in general [§]. Bit complexity is measured w.r.t. the
output precision parameter n.

Evolutionary PDEs generalize ODEs: by replacing the right-hand side func-
tion f = f (u,t) with an operator A, commonly involving spatial derivatives.
Solutions u(t) accordingly now take values in some function space, rather than
in Euclidean. The mathematical theory of PDEs is considerably more involved
than that of ODEs [3] regarding existence, uniqueness, and continuous depen-
dence of solutions (=well-posedness in the sense of Hadamard): Recall that one
of the Millennium Prize Problem asks such questions for Navier-Stokes’ Equa-
tion. Computability investigations of PDEs have challenged the Church-Turing
Hypothesis [25133]30]. The present work considers linear evolutionary PDEs with
initial and boundary conditions:

wu=Au, 0<t<1, L€,
), € (1)
(

where 2 = [0,1]¢ is the unit cube (for technical simplicity); 92 is its boundary;
the solution u = (uq,...,u.) = u(t,Z) is an unknown vector function on {2

Definitions of the real-valued counterparts of the complexity classes are given in
Subsection for simplicity we use same notation as for the “discrete” case for them.
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L in the boundary condition is a linear differential operator of order less than
the order of the differential operator A. The coefficients of A = -, By&) -

07 are e x e matrices B, that may depend on &, but not on ¢ (autonomous
case), ' = (j1,---,Jja) denotes a multi-index (|J] = j1 + j2 + ... + ja), &’ =
-+ 3 the induced differential operator (with 87* = 2°) and (&) is the

3xik
initial condition. Note that the equations are linear in the derivatives, but
the matrix coefficients B; can depend on & nonlinearly.

Ezample 1. An important and rich class of PDEs of form (1)) are the (first-order)
symmetric hyperbolic systems

d
Bo(Z) - u; = ijl B, (%) - 0,,u (2)
with B; (%) = Bj(7), j = 0,1,...,d; Bo(Z) > 0. The corresponding differential
operator is A = Z;l:l B, ' ()-B;(%)-0;. This class includes the linear acoustics,
elasticity and Maxwell equations [27]. Also the (second-order) Wave Equation
n
up = Au (= Y, %) and many others can be reduced to such a system by
=1

introducing extra unknown functions.

The Heat Equation u; = Au is not of the form , but still of the form .
Periodic boundary conditions on the unit cube are captured by

‘Cu(tvxh'"7xj—1707$j+1;"'axd) = u(taxla"'axj—laoaxj-‘rla"'7xd)_
ut,zi,...,x5-1, 1, 2541,...,2q) (3)

for first-order systems, and include similar conditions on spacial derivatives up
to | — 1 order for l-order systems.

Under suitable hypotheses, Euler’s method generalizes from ODEs to evolution-
ary PDEs : by discretizing now both physical time and space, the latter with
some grid of sufficiently (=exponentially) small width » < 1. This turns the
initial condition ¢ into a vector of exponentially large dimension O(1/h). The
right-hand side linear operator A may be approximated by a matrix A, often
referred to as difference scheme, see Definition [I} And if the evolution equation
is autonomous, said matrix does not depend on time. In this case repeated time-
stepping u(t) — u(t+7) = A-u(¢) amounts to repeated (M-fold) multiplication
by A, i.e., to (exponential) matrix powering AM.

Now all three, the discretized initial condition u(0) = ¢ and the matrix A and
the resulting approximation to u(1), have dimension K = O(1/h) exponential
in n: leaving no chance for sub-exponential computational cost. More relevant is
therefore the following question:

Question 1. Fir polynomial-time computable initial condition, fiz polynomial-
time computable matrix coefficients B, in the right-hand side of PDE ({f), and
similarly for boundary condition £. Now consider only (¢,%) € [0;1] x £2 as
input: What is the bit-cost (measured w.r.t. the parameter n) of approximating
the solution u(¢, ¥) at time ¢ and point & up to absolute error 1/2"?
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Thus, non-uniformly fixing all data of exponential ‘size’ (formally: from spaces
of exponential entropy [16/32[12]) and restricting to polynomial ‘size’ inputs
(t,Z) € [0;1] x £2 avoids information-theoretic exponential lower complexity
bounds.

Compact domains ensure that one can restrict to complexity considerations
in terms of one parameter n [31, Theorem 7.2.7] and does not need to resort
to second-order complexity [9]. We use n as parameter for producing approx-
imations up to error bound 1/2", not 1/n, following the conventions of Real
Complexity Theory [15, Definition 2.7]; see also Remark [1] below.

Note that PSPACE has been proven best possible for solving a certain non-
linear ODE [g]. Poisson’s elliptic (i.e. non-evolutionary) PDE has been estab-
lished to similarly characterize #P; [13]. Computation on grids of size O(N)
have been shown computable in O(log N) parallel runtime [22]. In our terminol-
ogy of grid width h ~ 1/2™ for guaranteed output approximation error 1/2",
this means N = O(1/h¢) and parallel runtime O(nd). That would amount to
complexity class PAR =PSPACE, were it not for the superpolynomial number
O(N/log N) = O(2"/nd) of processors. Our previous work [17] has rigorously
and in the sense of Question |I| established solutions to a large class of linear
first-order evolutionary PDEs computable in PSPACE, and under additional hy-
potheses even in #P#P.

The main result of the present paper, Theorem [2] improves the latter to #P.
It applies, in particular, to the Heat Equation, where we show #P; as optimal.

1.1 Main Result and Overview

The complexity considerations in this work refer to (real counterparts, formalized
in Subsection of) the classical hierarchyE commonly conjectured proper:

NC CPCNP C#PC#P#P C...CPSPACE =PAR CEXP . (4)

The following hypotheses are very natural and hold for many PDEs including
many of the ones mentioned in Example [I} see Example [2] for more detail. For

the notation of (iii) see Subsection , [ellci (@) = sup > |07 (T)).
Fe |71<!

Hypotheses 1 (i) The problem is well-posed (Hadamard) in that the clas-
sical solution u(t, T) to exists, is unique and depends continuously on the
initial data in the following sense:

p(@) € C'(2), u(t, ) €C*([0,1] x 2),  [[ulczouxa) < Colleleia), (6)

for some fized Cy, | > 2.
(i1) The initial functions ¢(Z) and matriz coefficients B;j(Z) as well as their
partial derivatives up to order | are computable in P.

$The reader may forgive us for identifying decision and function complexity classes.
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(iii) The system admits a difference scheme Ap,) (see (6)) below) which is
computable in P, and its solution u'™ converges to the solution u of
w.r.t. the maximum norm on the uniform grid G, with the step h = h(n):

max [u g, —u™| < C-h(n), C does not depend on n.
IEGh(n)

Note that technically a difference scheme is a family Aj(,) of matrices of
dimension growing exponentially in n — oo such as to approximate the operator
A with increasing precision; the approximating solution u(" is a sequence of vec-
tors of dimension growing exponentially in n. See Definitions of Subsection
for adjustment of the complexity classes to this case.

The main results of the present paper are collected in the following

Theorem 2. a) The solution u of under Hypotheses |Z is computable in
PSPACE.

b) If additionally the difference scheme Ay, from (iii) is a sum of tensor prod-
ucts of circulant block matrices of constant bandwidth (as formalized in the
hypothesis of Theorem[]), then evaluating the solution (t, %) — u(t, ) of
is computable in #P.

¢) Ewvaluating the solution u of is computable in P if the matrices B; are
constant and mutually commute for j =0,1,...d.

d) For the Heat Equation u; = Au there exists a polynomial time computable
initial condition ¢ such that the solution u is classical but cannot be computed
in polynomial time unless Py = #P.

Item b) harnesses a particular structure common to difference schemes, formal-
ized in Theorem [4] below. Intuitively, in 1D the locality of the grid discretization
of the differential operator yields a difference scheme Aj,(,,) with constant band-
width, and periodic boundary conditions yield to a circulant structure. Higher-
dimensional Euclidean domains translate to tensor products of such (families of)
matrices.

Example 2. Many evolutionary linear PDEs admit difference schemes that sat-
isfy the hypotheses of Theoremb), and thus can be computed in #P, including:

a) the Heat Equation with periodic boundary conditions and polynomial time
computable initial function: see [19] §2.11] for maximum norm difference
scheme convergence, and e.g. [3] for well-posedness.

b) the Wave Equation with periodic boundary conditions and polynomial time
computable initial functions. Indeed, the wave equation admits a max-norm
convergent difference scheme under additional smoothness assumptions, see
Theorem 3.1 of [20] for the two-dimensional case, given that wu(t,z,y) €
C™5([0,T] x £2). The continuous dependence condition can be veri-
fied combining the well-known continuous dependence w.r.t. Lo-norms, and
Sobolev Embedding Theorem, see e.g. [3, §5.6.3].
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¢) Note that the two-dimensional acoustics system

0 9]
P )

"% &%

P+ 50 =0

8p ou Ov
at—!—poco <a+ay) =0

can be equivalently reduced to the two-dimensional wave equation (e.g. [4]);
see also [5] for other examples of symmetric hyperbolic systems (2) (with
constant coefficients B;), which are equivalent to higher-order wave equa-
tions.

Note that without assuming the boundary conditions periodic, the solution w
in the examples a), b), ¢) above can be computed in PSPACE, according to
Theorem |2 a)

Subsection [[.2] collects notational conventions and recalls some basic definitions.
Subsection formalizes computational bit-complexity theory of real vectors
and matrices of exponential dimension. Section [2| presents the proof (sketches)
to our main Theorem [

1.2 Notation

We use n € N to parametrize the absolute output approximation error bound
1/2™; d € N is the dimension of the torus 2 = [0;1)¢ mod 1 as compact spatial
domain of the partial differential equation under consideration and e € N denotes
the dimension of the solution function vector u

Definition 1 (Difference schemes).

a) Consider, for any positive integer N, the uniform rectangular grid Gy on {2
defined by the points
i1— % ia— 3 im — %
9N 7 9N 7777 9N

where 1 < iy,i9,... i, < 2N. Let h = 1/2N be the corresponding spatial
grid step and T be a time step. Denote Gy = Gy x {IT}M,, where M is the
number of time steps. The choice of steps h and T, depending on the output
precision parameter n, is specified below in Subsection[2.3. We consider the
following grid norm: |g")| = max,cay |9™ (z)].

b) For a linear differential operator A, the matriz Ay (with the grid step
h = h(n)) defines the corresponding difference scheme

W 0HDT) A () (h0) () (6)
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under consideration. Its entries are denoted (A(h))LJ, 1<1I,J < K. Here
K ~ 290 s the dimension of the vectors u™™7) approzimating the solution
u(mr, Z,) at time m7 < 1, d.e., for 1l <m < M :=1/7 ~2". 7,h ~ 1/2"
denote the temporal and spatial grid widths, respectively. Generally speaking,
capital letters denote quantities (ranging up to) exponential in n.

¢) The solution u™) of the difference scheme (@ converges to the solution u of
if there is a constant C not depending on h and T such that

lulg; —u™| < ChP . (7)

Due to the Lax Convergence Theorem, a difference scheme @ converges in
the sense of to the solution of the PDEs if and only if it is approzimating
and stable; see e.g. [29]. The latter means that the matrix A, has bounded
powers, see Definition [2[ b) below.

Definition 2 (Matrices).

a) Equip vectors with the mazimum norm, and matrices with the induced oper-
ator norm: ||ul| = max; |u;|, [JA| = max{||A-ul/|[ul}.

b) A square matriz A with entries Ay (0 <I,J < K ) is said to have bounded
powers if its powers are uniformly bounded, i.e., iff there exists some C' € N
such that |AM|| < C holds for all M € N.

Similarly for a family A, of square matrices of possibly varying format,
n € N: Here |AM| must be bounded independently of both M € N and of
n € N.

¢) For a (not necessarily commutative) ring R, let RN*N denote the vector

space of N x N matrices of bandwidth < D:

AcRYN o |I-J>D=A;;=0.

The (one-)norm of an integer multi-index 7 = (j1,...,j1) € ZL is |J] =
j1+ -+ jr. We write “7 > 0” to indicate non-negative (i.e. natural number)
multi-indices. D = max {|7] : Bj # 0} denotes the order of the PDE ([I)).

A main tool in our algorithms translates circulant matrix powering to poly-
nomial powering. Indeed, the above notions have immediate counterparts:

Definition 3 (Polynomials). Fiz a (not necessarily commutative) ring R.

a) A polynomial in L commuting variables of componentwise degree less than
D € N has the form

- - L i
_ _ YT . Je
P(X) = P(Xy.....Xp) = 3 o opiX > sestr I X

Write R5[X1,...,X1] =Rp5 [X] for the vector space of such polynomials.
b) An L-variate Laurent polynomial of componentwise degree < D has the form

P(X) = P(X1,...,X) = > _p X7,
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that is, including negative powers of the variables. Write R 5[X1, Xl_l, o X, XZI]

Rp [)?, X‘l] for the vector space of such Laurent polynomials; and P[)?ﬂ =
py for the coefficient to X7 in P, 7€ 7",

¢) Suppose R is equipped with a norm | - |. Consider the ring R[)?, )_(Ll} of all
(Laurent) polynomials, equipped with the induced norm |[P|| := 3 4 [ps]. A
(Laurent) polynomial P has bounded powers iff | PM || is bounded indepen-
dently of M € N.
Similarly for a family P, of polynomials of possibly varying number of vari-
ables, n € N: Here |PM|| must be bounded independently of both M € N
and of n € N.

Multivariate degree is understood componentwise and w.r.t. strict inequality
< (not = nor <). For example X2 -Y? 4+ X3 .Y? has componentwise degree
< D = (4,4), but not < (3,4) nor < (4,3). An L-variate Laurent polynomial P
of componentwise degree < D can be converted to an ordinary polynomial by
multiplying P with XID1 .- 'XLDL.

In the sequel, ezponential growth is to be understood as bounded by 2P(*)
k — oo, for some polynomial p.

1.3 Real Complexity Theory

In [15], major classical complexity classes have been adapted from the discrete
case to the setting of real numbers and (continuous) real functions. There the
integer parameter n governing the output approximation error 1/2™ replaces
the role of the binary input length. Let us recall the definitions of polyno-
mial /exponential time/space computability of real numbers, (fixed-dimensional)
real vectors, sequences of real numbers, and partial real functions [15].

Definition 4. a) Computing a real number r € R means to output, given
n € N, some numerators a, € 7 in binary with |r — a, /2P| < 1/2" for
some polynomial p € N[N]. Such a computation runs in polynomial time
(P) if said a, is output within a number of steps bounded by a polynomial
in n. It runs in exponential time (EXP) if the number of steps is bounded
exponentially in n. The computation runs in polynomial space (PSPACE) if
the amount of memory is bounded polynomially in n.

b) Computing o (finite-dimensional) real vector (in P, EXP, PSPACE)
means to compute each of its entries separately (in P, EXP, PSPACE).

¢) Computing a sequence 7 = (r;) € R of real numbers means to output,
given n and k, some a, , € Z in binary with |r, — anyk/Qp(”+k)| < 1/2™ for
some polynomial p € N[N]. Such a computation runs in polynomial time (P)
if said ay, i, is output within a number of steps bounded by a polynomial in n+
k. Similarly for exponential time (EXP) and polynomial space (PSPACE).

d) Computing o partial real function f:C R — R (w.r.t. some polynomials
¢,p € N[N]) means, given n € N and any numerator a € Z with |z —
a/29®)| < 1/2°0) in binary for some x € dom(f), to output some b =
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bo(a) € Z in binary with |f(x) — b, /2P| < 1/2". The computation may
behave arbitrarily on inputs a that do not satisfy the hypothesis.

Remark 1. In addition to following the conventions of Real Complexity Theory
[15) Definition 2.7], we prefer error bound 1/2™ (as opposed to 1/n) for four
reasons:

a) It corresponds to measuring computational cost of discrete problems, such
as of integer factorization, in dependence of the binary (as opposed to unary)
length n.

b) It reflects that (for instance Chudnovsky’s or Borwein’s) algorithms can ap-
proximate 7 in time polynomial in n up to error 1/2" (while error bound
1/n is trivial to achieve).

c) It gives rise to the aforementioned and subsequent and many more [15] nu-
merical characterizations of discrete complexity classes.

d) The first-order theory of the two-sorted structure (Z, 0,1, +,>) U (R, 0,1, +, x,>)
with ‘error embedding’ 2 : Z 3 n — 27" € R (capturing Ezact Real Compu-
tation) is decidable, while that with N; 3 n — 1/n € R is not |24, Theorem
4.4].

For real vectors of exponential (in some integer parameter k) dimension Dy,
our notions of (time/space) complexity are more subtle and we adapt them to
the computation of any desired entry rather than of the entire matrix. The
complexity of computing said dimension Dj itself must be taken into account
as well (see details in the Appendix). Defining real counterparts to #P is subtle
and discussed in detail, since most of our major results refer to it.

When speaking of complexity of computation for matrices, we identify a
D x E-dimensional matrix B = (by ;) with the D x E-dimensional vector By, s
for the pairing function (I, J) =J + I+ J)- (I +J+1)/2.

Definition 5. a) Computing a sequence 7, = (r4.)j<p, € RP* of Dj-
dimensional real vectors means to output, given n,k € N (in unary)
and J < dim(7) = Dy in binary, some an,; € Z in binary with |ry; —
U .7 /2PHR)| < 1/27 for some polynomial p € N[NJ.

Such a computation runs in polynomial time (P) if said ay ,; is output
within a number of steps bounded by a polynomial in n+k but independently
of J. Similarly for exponential time (EXP) and polynomial space (PSPACE).

b) More generally, computing a sequence f;; :C R? — RP* of partial vector

functions (w.r.t. some polynomials q,p € N[N]) means, given n,k,J € N
and any numerator @ € Z with |T — @/29PM+RI+TR)| < 1 /2P FR) for some
Z € dom(f) and J < Dy, = dim f, to output some b = by, s(a) € Z with
| g (&) — b/2P+R) | < 1/2%. Here ||§f|| = max{|yi],...,|ya|} denotes the
mazrimum norm.
Such a computation runs in polynomial time (P) if said b = by s(a) is
output within a number of steps bounded by a polynomial in n + k but inde-
pendently of J and a. Similarly for exponential time (EXP) and polynomial
space (PSPACE).
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¢) A sequence (Dy) of natural numbers is computable in unary polynomial time
(Pone) if the mapping 0% + bin(Dy) € {0,1}* is computable in time poly-
nomial in the input length.

Note that a polynomial-time computable real sequence rj according to ) can
grow at most exponentially (in k); similarly for both the entries and the dimen-
sion Dy of a polynomial-time computable vector sequence according to (4{d),
and for vector functions according to (bp): in agreement with a sequence Dy
computable in unary polynomial time according to ) growing at most expo-
nentially in k. Memory-bounded computation here is understood to charge for
all, input and working and output tape; hence sequences of reals and real vec-
tors computable in polynomial space also satisfy exponential bounds of growth
of value and dimension.

In this way our real counterparts of P and PSPACE above agree with both
the conception of real numbers as ‘streams’ of approximations [31I32] as well as
with the oracle-based approach [15]9].

Recall that the discrete complexity class #P consists of all total functions 1 :
{0,1}* — N such that some non-deterministic polynomial-time Turing machine
on input Z € {0, 1}* has precisely ¥(Z) accepting computations.

Definition 6. Fiz 1 :{0,1}* — N.

a) We say that 1) counts the real number r € R if it holds a, = p(1™) — (0™)
according to Definition[{a. If ¢ € #P, call r computable in #P.

b) Say that v counts the real sequence ¥ = ry if an i = (1" 0F) — (0™ 1F)
according to Definition[fc. If 1 € #P, call ¥ computable in #P.

As in Definitions |4} the case of vectors of exponential dimension is more subtle:

Definition 7. a) Suppose log(Dy) grows at most polynomially. We say that v
counts the sequence 7y of Dy-dimensional real vectors if

ks = (10" 1 bin(J)) — ¥ (0™ 1% 0 bin(J))

according to Definition|5a. If 1) € #P, call ¥, computable in #P.
b) Say that 1 counts the partial function f:C R — R if

bn(a) = (170 bin(a)) — (0™ 1 bin(a))

according to Definition[{d. If ¢ € #P, call f computable in #P.
¢) Suppose log(Dy) grows at most polynomially. We say that v counts the se-
quence of partial vector functions fi, :C RY — RPx 4f

bpk,s(a) = ¥(1™0" bin(J), bin(a)) — (0™ 1* bin(J), bin(a))

according to Definition Eb. If ¢ € #P, call f;; computable in #P.
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It is unknown under which arithmetic operations #P is closed; for instance
GapP has been introduced as the closure of #P under subtraction [6]. The
above real counterparts could thus perhaps more accurately be called “GapP-
computability”, rather than #P-computability. Since it holds P#F = P%%P the
difference between #P and GapP seems minor, if any, from the perspective of
computational cost. For notational convenience, we define real counting complex-
ity neglecting such subtleties. Also Definition k) actually refers to P; rather
than P. Similarly, Definition |§|a) could perhaps better (but more awkwardly)
refer to “#P,-computability”, since it employs restrictions |1« of ¥ € #P to
unary arguments. This might cause our notions to slightly deviate from [15]
p.184].

Polynomial-time computability implies computability in #P, which in turn
implies computability in PSPACE: Note that, since @ € #P grows in value at
most exponentially in the input length, any real sequence r; computable in #P
according to c) also has |rg| growing at most exponentially in .

2 Techniques and Proof Ideas

For the difference scheme approach (@, taking into account Hypotheses [1] (ii),
(iii), the computational problem is equivalent to: first raise a matrix A (or,
rather, any desired one from a sequence of matrices Aj () of exponential di-
mension K ~ 29" to an exponential power M ~ 2°(); then multiply the
intermediate result to a K-dimensional sample vector ¢ of the initial condi-
tion ; and finally return an approximation to any desired entry with given index
#J of the result vector (A%ﬁg) -go(h(")))t] up to error 1/2", 0 < J < K. Naively
the intermediate result matrices and vectors have exponential dimension, hence
leading to complexity class EXP.

On the other hand, according to Question [} only one entry #.J of the re-
sult is required; and both the difference-scheme matrix Aj,(,) and the sampled
initial vector ¢*(™) do not need to be stored, but by hypothesis any desired
of its entries can be (re-)computed on-the-fly in P, whenever and however often
required: only J € {0,1,..., K —1} and M are part of the input, given in binary
with a linear number O(n) of bits.

The discrete counterpart to our real problem would ask for any desired en-
try of a P-computable Boolean matrix of exponential dimension to exponential
power; and this can be solved in PSPACE by Savitch’s Algorithm. When applying
the same approach to the integer or to the present real case, the hypothesis of A
having bounded powers (Definition ) becomes crucial: to guarantee that the
resulting entries do not blow up, nor do they require excessive initial precision
in order to keep the rounding error propagation in check (details omitted). We
thus have an improved, namely PSPACE algorithm, and establish Theorem )

Regarding Theorem )7 Subsection reduces the problem of (recovering
any desired entry of a) circulant matrix raised to an exponential power to that
of (recovering any desired coefficient of a) polynomials raised to such power; in a



12 1. Koswara et al.

way that relates bandwidth to degrees. Subsection[2.1]solves the latter problem in
#P by reduction to Riemann integration via Cauchy’s Differentiation Theorem.
Linear polynomials can even be raised to exponential powers in P according to
Proposition

Subsection concludes the proof of Theorem [2| a), b) by treating both
grid and nongrid points to compute the solution of ; this proof makes use of
Hypotheses [1] (i). Subsections establish Theorem [2| ), d), respectively.

2.1 Raising Polynomials to Exponential Powers

Consider the problem of raising a fixed P-computable univariate polynomial P
of ‘small’ degree to an exponential M-th power, and read off the J-th coefficient
P[X7] with J, M € N in binary as only actual input. Of course having bounded
powers (Definition ) is again a crucial hypothesis to prevent coefficient explo-
sion and numerical instability. Note that already for the quadratic polynomial
P(X) = (1+ X + X?)/3, naive evaluation of the ‘explicit’ formula

1,1 1 v\ K1y J) _ o-K K!
(3+3X+3X°)7 X7 =37F. 3 Wl (K— =)
0<p,v<K
pn+2v=M

(®)

involves terms like K! of value, and the sum with a number of terms, doubly
exponential in k: not at all obvious to compute in #P.

However, thanks to Cauchy’s Integral Theorem, we can express any single
desired coefficient of PM as loop integral over P (2)/zM*! for |z| = 1 run-
ning over the complex unit circle. And due to P having bounded powers, the
values of PM(z)/zM*! are bounded, can be computed with repeated squaring
on real numbers, and their dependence on z is sufficiently well-behaved: Such
Riemann integrals are known computable in #P [15, §5.4]. This generalizes to
the multivariate case:

—

Theorem 3. Fiz a sequence Py(X) of L-variate polynomials of componentwise
degree < D and bounded powers. Let Ky, denote a sequence of natural numbers
with binary representation computable in time polynomial (and thus of value
exponentially bounded) in k.

Then each coefficient PkK’c [)?j] of P,CK’“, 0<7< l_j, formalized as mapping
bin(lk,bin(f)) — PkK’c [Xj], s computable in #P.

Note that P,f{ * has componentwise degree < D K* , increased at most expo-
nentially in k; hence the binary length of 7'is polynomial in &, the binary length
of 1*. Recall Definition |§| for the formal notion of a (sequence/family of) real
vectors/matrices/polynomials to be computable in #P. Theorem 3| extends im-
mediately to Laurent polynomials.

Raising linear polynomials is feasible in P: Note that (%)pK gV K is the
coefficient of XX of the polynomial (pX + ¢)".

Proposition 1. Fiz P-computable ¢ € (0;1) and k € N. Abbreviate p :=1 — q.
Given K < N € N, one can approximate (%)quN_K to absolute error N=F in
time polynomial in log N.
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2.2 Circulant Matrices as Polynomials

Consider an N x N circulant matrix A4 with parameters ag,...,an_1,
N-1
_ _ J
A - (aI*JmOdN)O§I7J<N - ZJ:O aJ.CN (9)
for the ‘generator’ circulant matrix Cy with parameters (0,1,0,0,...,0). Let

Py(X) = Z;V:*Ol a; X7 denote the associated polynomial to circulant matrix A:
so AM = PM(Cy), and the entry with indices (I, J) of AM is

M . M K
(A )I,J - ZKE([ﬂ]) modNP'A [X ]

in the terminology of Definition [3] The associated polynomial is a well-known
concept [18]. We will primarily consider circulant matrices A with small band-
width D. These correspond to the images of Laurent polynomials with small
degrees D: linear combinations of monomials X7 of possibly negative exponents
j ranging from —D to +D. More generally, we treat matrices that can be de-
composed into components combined by Kronecker product as in Equation .

Lemma 1. Fiz a not necessarily commutative ring R of characteristic zero. Let
CIRCN(R) C RY*N denote the subspace of N x N circulant matrices of band-
width < D. Recall that Cn € CIR%V(R) denotes the N x N cyclic permutation

matriz from @ and (Definition |2

we write P[)Z'j] € R for the coefficient to

X7 =X ... XI* in an L-variate Laurent polynomial P € R[X,X 1], e Z~.

a)

b)

For any P € Rp[X, X' it holds P(Cx) € CIRCY(R). More precisely

P(CN)LJ = Z P[XJ71+HN] € R,

nez

and the sum is finite. The mapping R[X,X 1] 3 P — P(Cy) € CIRCY(R)
is a homomorphism of non-commutative algebras. For D < N/2 and normed
R, the restriction Rp[X, X '] 3 P — P(Cx) € CIRCY(R) is an isometry
of vector spaces with respect to the induced norms from Definitions[3 and[2.
Generalizing a), fit m, L, N1,...,Np € N and consider ring homomorphism

5 R™MX XL X, X 9 P R RV g L RN
R™™ 3B BeDy, ® - @Dy, Xi—=D,Dy ® - ®Cy, @ @Dy,

Then it holds (é""vﬁ(P))Illeyuvyan]L =

Znez Pxhaml X e et N e gmxm, (10)

For Dy < N¢/2, @, 5 restricted to Rgxm[f,f_l] maps isometrically and
surjectively onto the vector space of matrices of the form . ad
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The following Theorem [4| now is a corollary to Theorem |3} Translate the ma-
trix A = Aj into normal form according to Lemma ); then further on into
a multivariate Laurent polynomial P according to the inverse isometry from
Lemma ); raise P,i‘/[ to the desired power following Theorem |3} and finally
recover the desired coefficient of AM according to Equation .

Theorem 4. Fiz J,L € N and, for k=1,2,..., let

— K = K(k,j,£) € N with binary representation computable in time polynomial
(and thus of value exponentially bounded) ink, 1 <j<J, 1<{L<L

— C,j,¢ polynomial-time computable circulant matrices of bandwidth < D and
dimensions K = K(k,0), £ < L

— @ polynomial time computable real matrices of constant dimension d, 1 <
j<J

— M = M(k) natural numbers with binary representations computable in time
polynomial in k.

Consider the following (sequence of) Kronecker/tensor products:
J
Ay = ZFl Q) ®Crj1 ®Cpj2®@ - Cpjr (11)

If that matriz sequence has bounded powers, then the sequence Ay(k) of matrix
powers is computable in #P. a

Replacing Theorem [3| with Proposition[I} we obtain the following corollary which
may be of independent interest:

Corollary 1. If the circulant matrices Cy, ;¢ in Theoremz have bandwidth two,
M (k)

then the sequence A of matrix powers is computable in polynomial time.

Difference schemes of bandwidth two correspond to simple transport equations,
which admit explicit solutions in Subsection Also, fast exponentiation AM
of a difference scheme A by itself is insufficient: It remains to apply the inner
product with the initial condition, which still incurs cost #P [17], Proposition 6e].

2.3 Complexity of Solutions of Evolutionary PDEs

Proof (Theorem|2a,b). To compute the solution u at a fixed point (¢, z) with the
prescribed precision 27" and estimate the bit-cost of the computation, consider
the following computation steps.

1. Choose the space and time grid steps, h and 7, in the following way:

e h is any binary-rational number of the form h = 27, where N = O(n),
satisfying the Inequality below;

e 7 is any binary-rational number meeting the Courant inequality 7 < vh,
where v is the Courant number guaranteeing convergence property of the
considered difference scheme which can be computed from the coefficients of

the system .
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2. For a grid point (¢, %) put [ = £ (note that | < M = [1] = O(2")) and
calculate the matrix powers and vector products Ailw(fg) - (Mm)  Note that we

use matrix powering instead of step-by-step iterations initially suggested by the
difference scheme @

3. For non-grid points take (e.g.) a multilinear interpolation u(® of u(,
which can be computed in polynomial time from the (constant number of)
“neighbor” grid points. Due to well-known properties of multilinear interpo-
lations,

sup [ul® (¢, &) < Csup [u™];  sup [u(t, #)—u o, (£, )| < Csup|d®u(t, 7)|-h?,
Gy

t,@ t,@ t,3
(12)
where C' and C are absolute constants.
Based on and on the continuous dependence property, as well as on
linearity of the interpolation operator, infer

sup [u(t, &) ~u( (1, 7)] < sup (Ju(t,) - u |og, (1, 7)] + [u|a (t,7) - u® (¢, 7))
t,7

t,7

< CCollglloraph® +CC-h < 27
Thus choosing a grid step h = 2~V such that
h<Cp-27", Oy ZCCO||@||01(Q)+C’C, (13)

will guarantee the computed function u(%) approximate the solution u with the
prescribed precision 27" (here C}, depends only on the fixed P-computable func-
tions ¢, B; and therefore is a fixed constant. Hence it remains to estimate com-
plexity of matrix powering (which turns out to be in PSPACE or #P in items
a) or b) of Theorem [2| respectively) and inner product (which turns out to be
in #P), see comments in the beginning of this Section and Theorem

2.4 Symmetric Hyperbolic PDEs with Commuting Coeflicients

Towards proving Theorem ), first consider the following scalar linear PDE
with constant coefficients and its explicit solution

Aoy = Zj )\jﬁju, u(@,t) = wo (t Zj Aj+ Ao Zj J?j) (14)

which is obviously computable in P, provided that Ag, A1,...,Aq € R are.
Theorem ) considers vector systems of such PDEs, with constant sym-
metric mutually commuting matrix coefficients By These hypotheses assert a
simultaneous diagonalization, that is, a basis of joint eigenvectors: which ‘decou-
ples’ the system into e independent scalar equations . It remains to prove
that such a joint spectral decomposition can be computed in P: which is wrong
in case (even a single symmetric) matrix By is given as input [34]. Fortunately,
in agreement with Question [l these matrices are not part of the input but fixed
computable in P. And for this case we have and apply the following
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Theorem 5. Fiz symmetric and mutually commuting matrices By = B’ of fixed
dimension e € N with fized real polynomial-time computable entries. Then a joint
spectral decomposition By = TT - Dy - T can be computed in time polynomial in
the output precision parameter n (and unspecified dependence on the dimension
e as well as on the ‘input’ matriz entries). Here Dy is a diagonal matriz with
the eigenvalues of B; and T is an orthonormal matriz consisting of a joint basis
of eigenvectors of all By.

Proof. Let k denote the dimension of B. By [21], the d-tuple of eigenvalues with
multiplicity (i.e. the sought diagonal matrix D) can be approximated up to ab-
solute error 1/2™ in time polynomial in n. Note that the (integer) multiplicities
themselves depend discontinuously on the entries of B and therefore cannot be
computed; but, since the matrix is fixed, they can be hardcoded into the thus
non-uniform computation. It then remains to compute, for each eigenvalue A
with correct multiplicity & = k()), an orthonormal basis of the k-dimensional
kernel of B— X-id [23]. Naive Gaussian Elimination does not suffice for this pur-
pose since the tests for in/equality during pivot search are undecidable. Bareiss
Algorithm avoids the divisions; but cannot avoid tests either. On the other hand
Bareiss performs (more than Gauss, but still) only a number of test polyno-
mially bounded in the dimension d, which is constant in our setting, namely
independent of the output precision parameter n. Hence, again, the outcomes
of these tests can be hardcoded in this non-uniform computation. The remain-
ing operations of Bareiss are arithmetic, and can performed on approximations.
More precisely consider the d x d matrix Bm, » of integer numerators such that
dyadic BW A/2™ approximates B — X - id ‘sufficiently’ well: Since the number of
arithmetic operations is polynomial in d, it suffices to choose m polynomially
larger than n in order to guarantee that the output of Bareiss is still within
absolute error 1/2™ from the hypothetical exact result. The bit-cost of Bareiss
is well-known polynomial in (d and) m.

2.5 #P, is Optimal for the Heat Equation

#P is known optimal for indefinite Riemann Integration [I5] Theorem 5.33],
while #P; is optimal for definite Riemann Integration [15, Theorem 5.32] in the
following sense:

Fact 6 a) There is a P-computable (hence continuous) h : [0;1] — [—1;1] such
that fol h(zx) dz is not computable in Py unless FP1 = #P;.

b) For every P-computable analytic function g : [0;1] = R, fol g(x)dz is com-
putable in Py [15, bottom of page 208].

¢) Let u = u(z,t) solve the 1D Heat Equation us = Uz, on [0;1] with periodic
boundary conditions u(0,t) = u(1,t) and u,(0,t) = ux(1,t) such that ug =
u(z,0) is in C2[0;1]. Then u(x,t) is analytic in x for each fived t > 0, and
the ‘overall heat’ fol u(z,t) dx does not depend on t; see e.g. [T]. O

In order to establish Theorem )7 consider ugy := h from Fact @a) W.lo.g.
h(0) = h(1): otherwise consider [0;1/2] > = — h(2z)/2 and [1/2;1] > z —
h(2 — 2z)/2. Then apply Fact [6p) to g(z) := u(x,t) according to Fact [6f).
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Conclusion and Perspective

We have extended previous rigorous bit-cost investigations of PDEs [13] from
elliptic to hyperbolic and parabolic linear PDEs, improving upper complexity
bounds PSPACE and #P#F [17] to #P. #P, (not #P, as claimed in [13, §6])
turned out as necessary for both Poisson and Heat equation. Current (limited)
evidence suggests that differential equations might exhibit a dichotomy [26]:
either P (Subsection of the present paper, Theorem 3 of [17] for the case of
linear evolutionary systems of PDEs with analytic initial functions and matrix
coefficients, and [1] for analytic ODEs) or #P/#P;-hard.
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