Task Parallel Assembly Language for
Uncompromising Parallelism

Mike Rainey
Carnegie Mellon University
Pittsburgh, PA, USA
me@mike-rainey.site

Nikos Hardavellas
Northwestern University
Chicago, IL, USA
nikos@northwestern.edu

Ryan R. Newton
Facebook
New York, NY, USA
Newton@fb.com

Simone Campanoni
Northwestern University
Chicago, IL, USA
simonec@northwestern.edu

Umut A. Acar

Carnegie Mellon University

Kyle Hale

Illinois Institute of Technology

Chicago, IL, USA
khale@cs.iit.edu

Peter Dinda
Northwestern University
Chicago, IL, USA
pdinda@northwestern.edu

Pittsburgh, PA, USA
umut@cs.cmu.edu

Abstract

Achieving parallel performance and scalability involves mak-
ing compromises between parallel and sequential compu-
tation. If not contained, the overheads of parallelism can
easily outweigh its benefits, sometimes by orders of mag-
nitude. Today, we expect programmers to implement this
compromise by optimizing their code manually. This process
is labor intensive, requires deep expertise, and reduces code
quality. Recent work on heartbeat scheduling shows a promis-
ing approach that manifests the potentially vast amounts of
available, latent parallelism, at a regular rate, based on even
beats in time. The idea is to amortize the overheads of par-
allelism over the useful work performed between the beats.
Heartbeat scheduling is promising in theory, but the reality
is complicated: it has no known practical implementation.
In this paper, we propose a practical approach to heartbeat
scheduling that involves equipping the assembly language
with a small set of primitives. These primitives leverage ex-
isting kernel and hardware support for interrupts to allow
parallelism to remain latent, until a heartbeat, when it can
be manifested with low cost. Our Task Parallel Assembly
Language (TPAL) is a compact, RISC-like assembly language.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI °21, June 20-25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8391-2/21/06...$15.00
https://doi.org/10.1145/3453483.3460969

1064

We specify TPAL through an abstract machine and imple-
ment the abstract machine as compiler transformations for
C/C++ code and a specialized run-time system. We present
an evaluation on both the Linux and the Nautilus kernels,
considering a range of heartbeat interrupt mechanisms. The
evaluation shows that TPAL can dramatically reduce the
overheads of parallelism without compromising scalability.

CCS Concepts: - Software and its engineering — Paral-
lel programming languages.

Keywords: parallel programming languages, granularity con-
trol

ACM Reference Format:

Mike Rainey, Ryan R. Newton, Kyle Hale, Nikos Hardavellas, Si-
mone Campanoni, Peter Dinda, and Umut A. Acar. 2021. Task Par-
allel Assembly Language for Uncompromising Parallelism. In Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI "21), June
20-25, 2021, Virtual, Canada. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3453483.3460969

1 Introduction

A classic problem in parallel computing is to take a high-
level parallel program, written in nested-parallel style, with
fork-join constructs, and derive from it an executable that is
efficient on real machines. Traditionally, solutions involve
optimizing the program to control the amount of parallelism
exposed, thereby limiting the overheads of task creation and
scheduling [3, 7, 30, 60]. Left unchecked, task overheads can
reach two orders of magnitude or more, effectively wiping
out the benefits of parallelism. But when task overheads are
addressed, the associated optimizations involve changing
the code so that the program switches from parallel to se-
quential code, typically at “small” problem sizes. This is a

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3460969
https://doi.org/10.1145/3453483.3460969

PLDI 21, June 20-25, 2021, Virtual, Canada

process called granularity control [3, 7]. In addition to labor-
intensive changes, granularity control requires tuning the
program so that it switches from parallel to serial at appropri-
ate points at run time. Such tuning may cause the program
to lose its performance portability, because the process of
tuning usually overfits to the idiosyncrasies of a particular
machine. In particular, the notion of “small” depends on the
machine architecture and software environment and varies
significantly from one machine to another [60].

Motivated by the limitations of manual code optimizations
and granularity control, recent work proposed an alternative
approach that can, in principle, be completely automated.
This approach, called heartbeat scheduling [5], provably con-
trols the overheads of parallelism without requiring manual
changes to the code. In heartbeat scheduling, a regular heart-
beat event interrupts the program periodically to promote
latent opportunities for parallelism into actual tasks that
can be executed in parallel, e.g., by migrating across cores.
Therefore, rather than making granularity decisions in the
source code of the program, the program exposes the maxi-
mum amount of parallelism, and the heartbeat mechanism
decides how and when to promote latent parallelism into ac-
tual parallelism. Intuitively speaking, because the heartbeat
only fires at certain points in time, the cost of creating and
managing parallelism can be amortized over the useful work
done between heartbeats.

Although the idea of the heartbeat scheduling may appear
quite simple, its realization is far from it. Perhaps the most im-
portant challenge is determining, at each heartbeat, a unit of
work that must be reified as a task, so that it can be executed
in parallel, just like any other task that is created by care-
fully hand-optimized codes. Prior work evaluates heartbeat
scheduling by using a C++ interpreter that runs programs
hand-rolled in a custom format, representing programs as
abstract syntax trees. This structure allows the interpreter
to create tasks by manipulating the abstract syntax tree at a
heartbeat event. But runtime interpretive overhead is imprac-
tical, especially for high-performance parallel programming,
and the interpreter provides only approximate timing of
heartbeats.

In this paper, we propose an execution model for heart-
beat scheduling, formalized by our Task Parallel Assembly
Language (TPAL), and a runtime system that is backed by a
practical heartbeat mechanism, which is implemented on top
of hardware-based interrupts. The core of TPAL resembles a
conventional, RISC assembly language. But unconvention-
ally, TPAL features native support for task parallelism, con-
sisting of a small collection of primitives and annotations on
basic blocks. Because its task parallelism is native, TPAL can
express parallel loops naturally and execute them efficiently.
TPAL can achieve task parallelism as a nearly zero-cost ab-
straction, even with programs involving irregular, and nested

parallel loops.

1065

M. Rainey, R. R. Newton, K. Hale, N. Hardavellas, S. Campanoni, P. Dinda, and U. A. Acar

Because it is specified as an abstract machine, TPAL’s exe-
cution model is low-level and detailed enough to be thought
of as a model for an implementation. To evaluate this exe-
cution model, we present an implementation of TPAL along
with a runtime system supporting the operations needed
for implementing heartbeat events and parallel evaluation.
The runtime system is written in C++, and is optimized to
achieve practical efficiency by using state-of-the-art sched-
uling techniques. To implement the heartbeat events, the
runtime system relies on hardware interrupts, which can
be controlled at greater precision and lower cost than by
using software-based approximations. Because the heartbeat
events are hardware-driven, the runtime system is reason-
ably decoupled from the specific implementations of heart-
beat events, and is quite portable, allowing it to be used on
different hardware and software platforms.

To evaluate the effectiveness of proposed techniques based
on TPAL coupled with hardware interrupts, we consider a
Linux-based system and an experimental kernel framework,
called Nautilus [34]. Nautilus is specifically designed to sup-
port parallel runtime systems, and thus allows tight control
over hardware resources and elides many of the overheads
and abstraction layers that arise from supporting general-
purpose workloads.

For our evaluation, we consider a number of parallel bench-
marks, including those that exhibit high degrees of irreg-
ular parallelism. Our results indicate that TPAL, driven by
hardware-based interrupts, achieves excellent work-efficiency,
incurring small overheads for uniprocessor executions, with-
out sacrificing parallelism, and scaling well as the number
of cores increases. Compared to Cilk, a state-of-the-art task-
parallel system, TPAL is comparable or better, even as it
manages all parallelism automatically, driven by hardware
interrupts. Our results from experimenting with Nautilus
show that there is room for improvement in the efficiency
of Linux-based, software signaling mechanisms.

This paper makes the following contributions:

o TPAL: a Task-Parallel Assembly Language for task-parallel
programming;

o An execution model for TPAL as an abstract machine that
controls creation of parallel tasks automatically using hard-
ware driven interrupts;

o A portable runtime system for TPAL, written in C++, that
can be used to run TPAL programs on modern multicore
hardware;

e An evaluation both on Linux and Nautilus, an experimen-
tal kernel framework for parallel runtimes.

2 Task Parallel Assembly Language

For heartbeat scheduling, we need the ability to interrupt a
running program and examine its runtime state efficiently.
To see how, consider the following simple loop, written in C,

Task Parallel Assembly Language for Uncompromising Parallelism

as a running example. It calculates the product of numbers
passed in a and b (using addition), and leaves the result in c.

int a,b,c; int r = 0;
for (; a!=0; a==) { r +=b; }
c=r;

To parallelize this loop with minimal cost, we ideally do
not want to change anything about how the sequential ver-
sion is compiled and executed. To this end, we propose to
extend the assembly language with instructions that will
allow executing the sequential code without any overheads,
while, at the same time, making it possible to manifest la-
tent parallelism. For example, the loop’s index variable a is
likely kept in a register rather than on the stack, and if we
wish to take a heartbeat at runtime and split the remaining
iterations (for parallelism), then we must find the current
iteration in the appropriate register, rather than relying on
finding that index in memory. This constraint bears resem-
blance to the one faced by a debugger, that is, in terms of
interpreting runtime program state. But we cannot tolerate
anything nearly as expensive as a debugger implementation
(e.g., Linux ptrace).

Figure 2 shows the code for our running example in TPAL.
In this code, if we assign the empty block annotations, %y =
*J00p = *, the first three blocks of the resulting code are iden-
tical to ones produced by a sequential C compiler. Apart
from using jump statements, this code is similar to the C
source code. Once this code executes, it is irrevocably se-
quential. But the unique ability of TPAL, among assembly
languages !, is that we can add parallelism without changing
the sequential behavior, and in fact without changing the
code, except by adding annotations. We mark promotable
program points, where it is possible to switch from the se-
quential loop to a parallel variant, and then join again af-
terwards. More precisely, we derive the parallel version by
assigning *.y;; = jtpptassoc-comm;{r — r2};comb and
*J00p = PTPPt loOp-try-promote.

TPAL captures exactly the essential property of interrupt-
ability, and provides the compiler with building blocks to
construct semantically equivalent parallel and sequential
variants of a function, with the ability to redirect between
them at runtime. Because TPAL is a general-purpose, ab-
stract assembly language, it can be targeted by a wide range
of parallel source languages and can in turn be lowered to
existing ISAs or low-level intermediate representations. (We
target x86-64 in our evaluation, Section 4.)

2.1 Syntax and Execution Model

The syntax of TPAL is presented in Figure 1. It is based on
a subset of the MIPS assembly language, using a familiar

! The ability to elide parallelism annotations and have a semantically equiv-
alent program is a goal shared by spawn/sync annotations in Cilk, or paral-
lelism combinators in Haskell, but at the assembly level it is quite a different
thing.

PLDI ’21, June 20-25, 2021, Virtual, Canada

r € registers, | € labels,

n € integer literals, j € join-record identifiers

v w= r|l|n]|j

op L=+ | - |

1 x= r:=o|r = opro|if-jumpr,ov
| r = jrallocov | fork r,o

I = jumpo || halt| joino

B = [x]I

*x u= | prpptl | jtpptjp;AR;l

jp u= assoc | assoc-comm

AR = {r—>rf, ... ,mm—or}

Figure 1. Grammar of TPAL. Highlighted syntax is specific
to our parallel extensions, whereas the rest represents a
conventional RISC instruction set.

1 prod: [-] // computes ¢ = a * b
2 r = 0; jump loop

3 exit: [kexitl

4 c = r; halt

5 loop: [¥jpepl

6 if -jump a, exit;

7 r:= r +b; a:= a-1;

8 jump loop

9 loop-try-promote: [-]

10 t = a < 2; if-jump t, loop;

1 jr = jralloc exit;

12 jump loop-promote

13 loop-par-try-promote: [-]

14 t == a < 2; if-jump t, loop-par;
15 jump loop-promote

16 loop-promote: [-]

17 m:= a/ 2; n:= a%?2; a:= m;
18 tr = r; r = 0;

19 fork jr, loop-par;

20 a:= m+n; r = tr;

21 jump loop-par

22 loop-par: [prppt loop-par-try-promote]
23 if -jump a, exit-par;

24 r:= r +b; a:= a-1;

25 jump loop-par

26 comb : [-]

27 r= r + r2; join jr

2 exit-par: [-]
29 join jr

Figure 2. The prod program in TPAL. Applying the empty
block annotations, *exir = *jo0p = *, yields a serial program.
Applying *.xir = jtpptassoc-comm; {r — r2};comb and
*100p = PIPpt loop-try-promote, yields a parallel program.

1066

PLDI 21, June 20-25, 2021, Virtual, Canada

notation for instructions for readability. In TPAL, the exe-
cution of a program consists of a set of concurrent tasks,
such that each task has its own private register file and call
stack. Heap memory can be shared. How the tasks them-
selves are scheduled, that is, the order in which tasks run
(up to dependency constraints) and on which core they run,
is up to the load-balancing algorithm. TPAL is agnostic to
load-balancing algorithm: it is compatible with e.g., variants
of work stealing [6, 16, 19] or parallel depth first [46].

We start with the subset of the language that supports
register-based memory, and later address the stack and heap.
Our assembly language assumes a set of registers, r, labels
I, integer literals n, and a special set of values that we call
join records. A join record j is memory that is used by TPAL
programs to synchronize multiple tasks at a join point. An
operand v is either a register, a label, an integer literal, or
a join record. A primitive operation op is one of a number
of primitive operations that can be found on a conventional
RISC machine, such as arithmetic operations for integers.

An instruction 1 is either a move-to-register operation, a
primitive operation, a conditional jump, a join-record alloca-
tion, or a fork instruction. A join-record allocation instruc-
tion allocates (on the heap) and initializes a new join record.
Its argument is a label that is to be the continuation block
of the join point. A fork instruction spawns a new task, in
a fashion resembling that of the UNIX fork() system call.
It takes two arguments: first, a join record, and, second, a
label from which the spawned task is to start executing. We
call the spawned task the child task and the calling task the
parent task. When it executes, the first action of the fork
instruction is to register the dependency edge between the
parent and child task in the join record. After the dependency
is registered, the child task is added to the set of executing
tasks, from which point it starts executing with a copy of the
register file of its parent. The child task starts by executing
the block at the label passed for the second argument of
the fork instruction. After it issues the fork instruction, the
parent task proceeds to issue its next instruction.

An instruction sequence I is a list-based representation
of a sequence of assembly instructions: it is either a jump
instruction, a sequencing operator (semicolon), a halt instruc-
tion, or a join instruction. A jump instruction is an uncon-
ditional jump operation. A semicolon operator specifies a
sequential order between an instruction and an instruction
sequence. A halt instruction terminates the whole machine.
A join instruction initiates synchronization between a parent
and one of its child tasks. Its first argument is a join record.
When it executes this instruction, a task participates in a
Jjoin-resolution policy. A join-resolution policy specifies the
manner in which to combine the results held in the memories
of the parent and child tasks. Upon completion of a join, that
is, after all tasks registered in the join record issue their join
instructions, the program then jumps to the label originally
passed in the allocation of the join record.

1067

M. Rainey, R. R. Newton, K. Hale, N. Hardavellas, S. Campanoni, P. Dinda, and U. A. Acar

A program is represented by a set of (labeled) code blocks.
Each code block consists of an instruction sequence, along
with an annotation. Such annotations, denoted by x, are ei-
ther an empty annotation, a promotion-ready program point,
or a join-target program point. A promotion-ready program
point is the entry point of a block for which there is a special
behavior: when control targets the block, either control can
flow, as usual, into the first instruction of the block, or con-
trol can flow, instead, to the label attached to the annotation.
A join-target program point is the entry point of a code block
that is assigned to be the continuation of the join point of
parallel tasks. The join-target annotation specifies the join-
resolution policy, i.e., the instruction sequence to be executed
upon parent and child tasks meeting at their common join
points. Its first component jp specifies whether the com-
bining operation is only associative or both associative and
commutative. Its second component AR specifies the way
in which joining tasks combine their register files into one
register file, which is to be used by the combining block. Its
third component specifies the label of the combining block.

2.2 Dynamics

We designed TPAL to make it natural and efficient to imple-
ment heartbeat scheduling: parallelism is introduced on a
regular basis, in a two-stage process. The first stage involves
the triggering of an interrupt and the second involves the
manifestation of latent parallelism by the interrupt handler,
which may fork a new task. The triggering of an interrupt is
supported in TPAL by assigning each task a cycle counter,
which increments every time a task issues an instruction.
When the cycle counter of a task exceeds a certain threshold,
that task is ready to trigger an interrupt. The threshold is a
global parameter, written ©, and is determined by a one-time,
per-machine tuning process, which is required by heartbeat
scheduling [5]. The setting of the parameter is picked by
the heartbeat tuner application to be just large enough to
amortize the creation of a new task, but small enough to
avoid pruning away useful amounts of parallelism.

Adding Parallelism. We return to our running example
program, prod. By using the parallel block annotations, the
program will ultimately allow the loop to be parallelized on
demand. The serial-by-default structure in the program is its
main strength: it is the reason we can achieve near zero-cost
abstraction.

Heartbeat interrupts. When the heartbeat threshold is
exceeded by a task, an interrupt is ready to be serviced the
next time the program enters a promotion-ready program
point. In our example, every time a task enters the loop
block and its heartbeat threshold has passed, the task jumps
to its handler block, namely loop-try-promote, instead of
the first instruction of the loop block. The handler block
checks on line 10 if there is any parallelism available in
the remaining iterations of the loop. If there is no latent

Task Parallel Assembly Language for Uncompromising Parallelism

parallelism, then our running task jumps back to the loop
block, where it left off, but if there is, the task manifests the
parallelism.

Promotion. To manifest the parallelism from the loop,
our task performs a promotion, wherein a task creates a
join point and forks a new, child task. Promotion begins in
our running example on line 11, where our task allocates a
join point. By passing to the join-allocation instruction the
exit label, we are instructing our newly parallelized loop
to terminate, with the final result, by jumping to the exit
block. The handler next jumps to the loop-promote block,
where our task creates parallelism from the loop induction
variable a. The parallelism is created by dividing up the
remaining iterations into two parts, with half going to the
child task, and half to its parent. From this point, both parent
and child tasks proceed to work on their respective parts of
the remaining iterations, but now start from a new block,
namely loop-par.

Parallel tasks. Now that they are running in parallel, our
parent and child tasks have to complete their own local com-
putations, and then combine their local parts of the overall
result. To perform their local computations, our parallel tasks
execute the loop-par block, which performs the same steps
as the loop block (except for line 23). While our parallel
tasks execute, additional heartbeat interrupts may trigger
additional promotions, thereby recursively manifesting la-
tent parallelism from the tasks. All heartbeat interrupts from
hereon jump to the loop-par-try-promote handler block,
thereby ensuring that all future tasks share the join record
in jr. After any one of our parallel tasks completes its local
work, the task exits (on line 23) by branching to the exit-par
block. In this block, the task enters the join-resolution pro-
tocol, where all parent and child tasks eventually meet with
their partners to combine their local results (in the register

r).

Join resolution. While the program is executing, the TPAL
runtime keeps a record of the tree induced by the fork in-
structions issued by tasks. This bookkeeping tree is used by
the join instruction to match each task with its parent or
child. When a task issues the join instruction, it stashes its
register file in the join record and removes the dependency
edge on the join point it shares with its partner in the tree.
The first task to complete this step terminates and removes
itself from the set of running tasks, and the second performs
the next step of join resolution. In this step, the runtime sys-
tem seeds the task with a new register file. The new register
file is obtained by taking the register file of the parent task
and extending it with some entries from the register file of
the child task. In our prod example, this merging process
enables the child task to share with its parent the value in
its accumulator register r. The annotation on the exit block

1068

PLDI ’21, June 20-25, 2021, Virtual, Canada

specifies that the contents of register r from the child task
be copied to register r2 in the new register file.

After merging register files, the runtime schedules the
parent task with this new register file, starting from the
combining block, which is specified as comb in the annotation
in our example program. Our combining block takes the
sum of the accumulator variables from the parent and child
tasks, puts the result in register r, and exits by issuing the
join instruction again. This time, the join instruction either
repeats the process one level up in the tree of tasks, or it
reaches the root. If at the root, the join instruction jumps to
the original target of the join record, which in our example
is the exit block. At this point, the parallel program has
completed its work.

2.3 Nested Parallelism

TPAL can express in a natural way various forms of nested
parallelism, for example, in the form of nested loops and
recursive functions or their combination. For example, we
can implement a “power” function by nesting our running
example, prod, inside an outer for loop. We parallelize the
for loops by using the outer-loop first policy, a policy that
requires that parallelism is created where it is most benefi-
cial first, that is, from the least recent parallel context. This
policy is a necessary condition for any implementation to
be backed by the formal efficiency guarantees proved for
heartbeat scheduling [5]. As we describe in our evaluation
section, TPAL shines in its ability to efficiently execute nested
loops, even when their workloads are irregular. The reason is
that TPAL can always amortize the cost of parallelism, even
across loop boundaries. We present full details of how such a
nested parallel programs (including both loops and recursive
functions) may be expressed in TPAL in the Appendix.

3 Implementation

This section describes the compiler and runtime/OS support
needed to translate and execute high-level programs (e.g.,
Cilk Plus) down to assembly (e.g., x64).

3.1 Compiling from C++ to TPAL

To compile a high-level, parallelized loop down to the level
of our TPAL assembly, we need to generate the sequential
and parallel versions of a loop body, and represent them in
the compiler so that the former can be promoted to the latter
on-demand. We present our technique by returning to our
running prod example, this time starting from a Cilk Plus
version.
void prod_cilk(int a, int b, intx c) {

reducer_opadd<int> r(9);

cilk_for (; a!'=0; a==) { r += b; }

¥ =7r;}

The program uses the syntactic parallel-loop extension pro-
vided by Cilk Plus to compute the result. Its loop body uses
Cilk’s idiomatic pattern for accumulating results, namely

PLDI 21, June 20-25, 2021, Virtual, Canada

reducer variables [29]. There are similar mechanisms in
OpenMP [53] and TBB [41]. The reducer variable enables
tasks to work independently on their own local view of r.
When tasks join their results, they sum their local views to
compute the final result.

In any such linguistic parallelism, there is necessarily
some representation of high-level parallel constructs, e.g.,
cilk_for, reducer, that stays intact for some subset of the
early stages of the compilation pipeline. Then, at some later
stage, the high-level parallel constructs are lowered by that
stage into simpler forms. However, the code resulting from
lowering pass can easily block optimizations in subsequent
passes, such as loop-invariant code motion, loop vectoriza-
tion, etc. As such, there is motivation to keep the high-level
structure and make optimization passes aware of it. This ap-
proach is exemplified by recent work on Tapir, an effort to ex-
tend LLVM’s IR with support for Cilk-style parallelism [56].
Tapir carefully extends LLVM to allow high-level parallel
constructs to propagate late into the compilation pipeline,
thereby unlocking compiler optimizations that were other-
wise inaccessible. Although our TPAL does not yet have
compiler support, we believe that a new implementation
combining Tapir and TPAL is feasible, and can benefit from
the best of both worlds: (1) traditional compiler optimiza-
tion of high-level parallel code for early stages, thanks to
Tapir, and (2) efficient, granularity control, a la TPAL, for
later stages. The idea is to implement a new pass that lowers
high-level parallel constructs into TPAL instructions. We
summarize the lowering steps below.

Code versioning. We show in Figure 4 the fragments
needed for our prod example. The first piece of code is the
prod function, which represents the initial serial-by-default
part of the loop. It corresponds to the first three assembly
blocks shown in Figure 2.

The parallel fragment needs to make use of the TPAL run-
time system. We show its interface in Figure 3. The interface
exports definitions for join-record objects, and fork and join
functions, corresponding to the linguistic forms our TPAL
formalism.

The next code fragment, namely prod_par, corresponds
to the parallel blocks of assembly. It represents one chunk
of work, executing sequentially on one processor, but in the
context of a parallel execution. After finishing its local work,
the function enters the join protocol by calling the join func-
tion. The final fragments of prod are its heartbeat handlers.
For convenience, we changed the conventions relating to the
fork instruction slightly compared to its counterpart in the
formalism. Our fork instruction takes, in addition to the join
record, closures corresponding to the child and parent tasks,
and the combine block. Implicit in this convention is that the
parent task is rematerialized by the handler function (and
correspondingly, the interrupted task exits early to avoid
duplicating work).

M. Rainey, R. R. Newton, K. Hale, N. Hardavellas, S. Campanoni, P. Dinda, and U. A. Acar

class joinrec { ... 3};

template <class Child, class Parent, class Comb>
void fork(joinrec* jr, Child c, Parent p,Comb m);
void join(joinrec* jr);

Figure 3. Scheduling interface used by application code
scheduled by TPAL runtime.

1 void prod(int a, int b, intx ¢) {

2 int r = 9;

3 for (; a!=0; a-=-) { r +=b; }

4 *C =r; }

5 void prod_par(int a, int b, int*x ¢, joinrec* jr) {
6 int r = *c;

7 for (; a!=0; a--) { r +=b; }

8 *C = r;

9 join(jr); 1}

10 bool loop_try_promote(int a, int b, intx c) {
11 if (a < 2)

12 return false;

13 joinrec* jr = mew joinrec;

14 loop_promote(a, b, c, jr);

15 return true; }

16 void loop_promote(int a, int b, intx c,

17 joinrecx jr) {

18 intm=a/ 2;intn=a¥%2;

19 intx rs = new int[2];

20 fork(jr,

21 (=] { //child

22 rs[1] = @; prod_par(m, b, &rs[1], jr);
23 }, [=1 { //parent

24 rs[@] = *c; prod_par(m + n, b, &rs[@], jr);
25 Y}, [=1 { //combine

26 xc = rs[0] + rs[1];

27 delete [] rs; join(jr)

28 DHE

Figure 4. Code fragments of our prod program.
3.2 Safe & Efficient Heartbeat Triggering

Next, we describe the compiler, runtime, and OS support to
enable the serial version of a loop body to be promoted to
our parallel version for the next chunk of iterations.

Rollforward compilation In our formal model of TPAL,
we assume that heartbeat handlers are triggered every time
a task meets two conditions: (1) at least © cycles passed since
the previous handler invocation and (2) the control flow en-
ters a promotion-ready program point. Although we cannot
rely on any ready-made mechanism from the OS, we can
build one on top of OS signaling. There is a challenge, how-
ever: given that an interrupt triggered by an OS signal may
arrive at any step of execution of a task, we somehow need to
satisfy the second condition above. In other words, we need
a mechanism that triggers a heartbeat interrupt downstream
from wherever the interrupted task might currently be exe-
cuting, given just the current program context. Fortunately,
there is a ready-made solution for this problem: we can use

1069

Task Parallel Assembly Language for Uncompromising Parallelism

the classic technique of rollforward compilation [49]. Roll-
forward compilation is a general technique for protecting
sections of code from being interrupted by OS signals. The
idea is to compile a sequence of instructions so that, when
preempted by a signal, the sequence executes to its end, and
then invokes the signal handler. Our insight is that we can
employ rollforward for parallel loops by treating as critical
sections the control paths that exist between promotion-
ready program points.

We implemented a small rollforward compiler for x64 as-
sembly. The output of this compiler consists of two versions
of the input program: original and the rollforward versions.
The original version is a copy of the input assembly, modified
only so that each line is labeled, e.g., 00, 01, and so on. As
such, there is negligible runtime overhead cost the original
program. The rollforward version differs from the original in
two respects. First, it has different line labels, e.g., ro, r1, and
so on. Second, any instruction in the rollforward version that
jumps to a promotion-ready program point jumps instead to
the corresponding handler function. The overall effect is that
the original and rollforward instructions align perfectly up
to instruction labels, the original version behaves such that
it never triggers a heartbeat interrupt, and the rollforward
version such that it always triggers a heartbeat interrupt at
the next promotion-ready program point.

Enabling promotions To enable rollforward at runtime,
we need to assign the TPAL worker threads a (Linux) signal
handler. When it initializes, the TPAL runtime configures
an alarm to invoke this interrupt handler every © microsec-
onds. When it is invoked, the handler uses a table that maps
from labels in the source program to labels in its rollforward
version. e.g., for x64 prod blocks, {00 — ro,...,07 — r7}.
This table is generated by the compiler, and is loaded once, by
the binary load routine, before the TPAL runtime initializes.
When it receives a signal, the handler inspects the program
counter of the OS thread that was interrupted by the signal. If
the program counter matches a key in the table, the handler
replaces that program counter by the corresponding rollfor-
ward entry. As a consequence, the program will continue
executing until it enters the next promotion-ready program
point, at which time it will invoke a handler function.

In general, to make it safe to invoke a handler function,
we need support from the compiler to generate compensa-
tion code. Compensation code is needed because compiler
optimization passes may create drift between the program
variables and the arguments expected by the handler func-
tion. The compensation code materializes the live variables
from the registers and stack at the promotion-ready program
point, and calls the handler function. For example, suppose
we compile a program that iterates over an array, using a pair
of integer indices to point to the next cell of the array and
the length of the array, respectively. A compiler optimization

1070

PLDI ’21, June 20-25, 2021, Virtual, Canada

may change the types of integer indices used in an array tra-
versal to be direct pointers on the array, thereby creating an
incompatibility with a handler function, which may expect
as arguments the integer representation of the indices. This
problem exists in many other contexts, such as debugging
and JIT compilation, and fortunately, there is a general ap-
proach for solving it, namely on-stack replacement (OSR) [23].
Prior work shows that OSR does not significantly degrade
code quality when there are a small number of points in the
code that require replacing the stack [27, 39]. This is our case
where we only have one promotion-ready program point
per parallelized loop.

3.3 Taming Code Bloat

Our compilation technique causes an increase in the size of
the program binary. Overall, the increase is in linear pro-
portion to the size of the parallel regions of code in the
program, i.e., blocks of code containing spawn/sync calls
and parallel-for loops. This increase in code size can increase
instruction-cache misses, but the misses remain under con-
trol, because transfers to the rollforward code are amortized
by the heartbeat.

The potential blowup in code size due to the introduction
of serial, parallel, and handler blocks can be controlled by
compiler support. The handler blocks are likely to impose
only marginal cost, whereas the issue of emitting different
serial and parallel blocks is a bit more subtle, but nevertheless
introduces only a modest tradeoff between the advantage
of having different blocks for serial and parallel loop bodies,
e.g., loop and loop-par, versus using one block that is the
merging of loop and loop-par.

3.4 Benchmark Implementation

For our benchmark implementations, we used a manual ver-
sion of on-stack replacement. We use existing compiler mech-
anisms to generate the compensation code required for each
of our benchmark programs. In Figure 5, we demonstrate
this technique with our prod program. The first step is to
declare a flag, namely heartbeat, to stand in for an inter-
rupt delivery. If the conditional branch at line 5 sees true,
then the program invokes the handler function. However,
we intervene so that this conditional branch is eliminated
and therefore never executes at runtime (so we never need to
allocate memory for the heartbeat global). We simply com-
pile this C++ code to assembly, pass the assembly through
our rollforward compiler, and complete the process by man-
ually editing the assembly code generated by rollforward.
The edits consist of eliminating from the final assembly all
of the conditional branches for the heartbeat global. We
replace each such conditional in the non-rollforward blocks
with nop instructions, and we replace each such conditional
in the rollforward blocks with an unconditional jump to the
handler function. These changes together achieve the desired
behavior: the non-rollforward part of the program skips over

PLDI 21, June 20-25, 2021, Virtual, Canada

1 extern volatile bool heartbeat;
2 void prod(int a, int b, intx c) {

3 int r = 0;

4 for (; a !=0; a--) { r += b;

5 if (heartbeat &&

6 (*c = r; loop_try_promote(a, b, c)))
7 return; }

8 *C =r; }

Figure 5. The instrumented version of our prod program,
using our semi-manual rollfoward compilation technique.

the conditional, whereas the rollforward version jumps to a
certain, compensation block. The compensation block ma-
terializes all the program state from the running program,
e.g., prod, and calls the corresponding handler function, e.g.,
loop_try_promote. This instrumentation has close to zero
cost in the common case, excluding any indirect costs asso-
ciated with the nop instructions, which can be avoided with
compiler support.

Signaling in Linux. In Linux, there are at least two off-
the-shelf mechanisms we can leverage for heartbeat signals.
The first one we call the ping thread because it employs a
dedicated OS thread to send heartbeat signals to the worker
threads. While the approach is simple, the linear signaling
does not scale with large core counts, and unfortunately
the pthreads library does not offer a broadcast/multicast in-
terface. Some modern architectures expose programmable
interrupts based on hardware performance counters. For ex-
ample, the PAPI library [50] allows for interrupts to be raised
on a per-core basis when the cycle counter on the appro-
priate core exceeds some programmer-specified threshold.
Our implementation of TPAL can be configured to use the
simple ping-thread approach or the Linux-based PAPI ap-
proach. Neither of these interfaces is a natural fit for our
needs and neither is particularly optimized for low-latency
delivery. Both software and hardware overheads in signal
delivery have tangible effects on the achievable heartbeat fre-
quency. In Section 4, we mitigate these effects using custom
OS support.

4 Evaluation

We compared our TPAL-based Heartbeat Scheduling imple-
mentation with the state-of-the-art Cilk Plus system using a
common set of benchmarks on a 16 core machine. This com-
parison is complex because, while Cilk’s execution model
performs an initial decomposition when latent parallelism is
encountered, TPAL’s execution model involves recurrent de-
composition on each beat. It is also important to understand
that, beyond the additional overheads incurred by TPAL, the
amount of latent parallelism and whether it makes sense to
manifest it, varies from benchmark to benchmark. Our goal
is to effectively leverage the latent parallelism when it exists
and is useful, while paying no cost when it does not exist or
is not useful.

1071

M. Rainey, R. R. Newton, K. Hale, N. Hardavellas, S. Campanoni, P. Dinda, and U. A. Acar

Our results show that TPAL creates tasks with consider-
ably lower overhead than Cilk (geomean 13.8x lower), and
hence can manage the finer granularity tasks that necessar-
ily result from recurrent decomposition. At the maximum
available scale, TPAL achieves significant speedups over Cilk
(geomean 53%) for benchmarks that are amenable to recur-
rent decomposition, while the others (that do not lend well
to our technique) incur minimal slowdown (geomean 9.8%).

Of course, if TPAL’s overheads were zero, no slowdown
would ever occur, and speedups could be enhanced. We next
consider TPAL’s overheads in detail. TPAL’s compile-time
transformations do not create significant overhead in the
transformed code compared to original sequential code. The
primary sources of overhead are due to the promotion pro-
cess, and the heartbeat interrupt mechanism that triggers
it. This section uses Linux signals as the mechanism. In the
next section, we consider other mechanisms in pursuit of
lower-overhead and finer-granularity heartbeat interrupts.

4.1 Benchmarks

Iterative (loop-based) benchmarks. We ported the kme-
ans and srad benchmarks from the Rodinia benchmark su-
ite [21]. For kmeans, we use an input of 1 million objects, and
for srad an 4k X 4k input matrix. The spmv benchmark is the
classic sparse-matrix by dense-vector product algorithm. Its
sparse-matrix input is represented in the compressed sparse
row (CSR) format, with non-zero elements represented by
double-precision floats. The random matrix is a sparse matrix
with 273 million non-zero elements (and non-empty), and
a maximum column size of 100. The powerlaw matrix is a
random matrix with 186 million non-zero elements, with a
power law characteristic [52]. Its largest column contains 5
million non-zero elements, which is 3% of the total number
of non-zero elements in the matrix. The arrowhead matrix
is a structure that is noted for being particularly challenging
for task scheduling [59]: its diagonal, first column, and first
row are filled with non-zero elements. The floyd-warshall
benchmark is a purely loop-based implementation of the
classic algorithm for finding the shortest path in a weighted
graph. The mandelbrot benchmark computes a square image
representation of the mandelbrot set [22].

Recursive benchmarks. We ported the knapsack and
mergesort benchmarks from the Cilk benchmark suite [44].
The knapsack benchmark is the only one of our benchmarks
that is non-deterministic: the amount of work it performs
depends on the schedule. The mergesort algorithm is the only
benchmark that uses both parallel loops and parallel recur-
sive calls. In particular, the outer sort function and the inner
merge function expose parallelism in a recursive, divide-and-
conquer fashion, but there is also a parallel copy operation
that moves items to and from a temporary buffer, which ex-
poses parallelism via a parallel loop. The inputs of mergesort
are generated from uniform and exponential distributions.

Task Parallel Assembly Language for Uncompromising Parallelism

Cilk/Linux W TPAL 100 ps/Linux
81,16 568,162 ,2.4

TPAL 100 ps/Nautilus
41,2642 5.7~ 2.0

Execution Time
Normalized to Serial/Linux

spmv-random
spmv-powerlaw
spmv-arrowhead
mandelbrot
kmeans

srad
floyd-warshall-1K
floyd-warshall-2K
Geomean
knapsack
mergesort-exp
Geomean

>
o
®
@
S
E]

bS]
e
o

2
S

mergesort-uniform

Iterative Benchmarks Recursive Benchmarks

Figure 6. Task creation overheads for Cilk Plus and TPAL.
In contrast to Cilk Plus, TPAL’s overheads are minimal.

4.2 Experimental Setup

Our primary test bench is a Dell PowerEdge R6415, with a
single-socket, 16-core AMD EPYC 7281 (Naples) processor
running at 2.7GHz with 64KBL1i, 32KBL1d and 512KB L2 per
core, and 32MB of shared L3 cache. It has one NUMA node
and 32GB of DDR4 2400MHz RAM. Our machine runs Fedora
Server 32, with stock Linux Kernel 5.8.13-200. We disabled
SMT (hyperthreading) and we configure the machine’s BIOS
to use the maximum performance profile (thus disabling
DVFS). For our test machine, we assigned the heartbeat rate
to be © = 100us by following the tuning process proposed in
the original heartbeat paper [5]. Our code is compiled with
GCC version 7.5.0 with flags -03 -m64 -march=x86-64. For
load balancing, our TPAL runtime and that of Cilk Plus use
randomized work stealing.

We reserve the first core either to do nothing during the
benchmark or to execute the ping thread, when needed. The
reasons we picked this configuration are (1) we wanted to
avoid the overheads generated by a ping thread from affect-
ing any of the worker threads that executed the benchmark
workload and (2) we can avoid various other sources of over-
head that can, in Linux and Nautilus kernels, slow down the
first core in the system.

The Serial/Linux programs are, in all cases but one, the
versions of the parallel programs with spawns/joins (also
parallel loops) removed. Only in the case of mergesort did
we use a significantly different serial program, i.e., serial
mergesort. We report the average over 30 runs.

4.3 TPAL vs Cilk Plus

TPAL'’s task creation overheads are lower than Cilk’s.
Cilk Plus benefits from significant engineering to make its
parallel function call mechanism efficient, even when the
program runs on a single core [30]. Furthermore, its parallel
loop construct implements an additional form of granularity
control by splitting its parallel loop range into 8P blocks,
where P denotes the number of cores. The single-core execu-
tion of Cilk Plus is nevertheless slowed down noticeably by
task-creation costs in certain cases, whereas in our approach,
there is one uniform mechanism, namely the heartbeat, that
ensures task-related overheads are well amortized for all

1072

PLDI ’21, June 20-25, 2021, Virtual, Canada

3 Cilk/Linux W TPAL 100 ps/Linux

c 7 9.5

< 6 14—

©

2 5 12

& 4

g 3

3 2

o

5 1

® o

£z g 33 8 2T %% 5 ¥ £ 2 §
= = 7} s = - iy] 5]]

< s 2 % £ 3 ¢ " 3 3% E g2 £ L €
o © 2 2 3 c < 15} @ c 5 5]
g & 3 &8 T =x] c 5 g 3
3 > =% = © © s U] =~ & a [C]
3 £ > ? £ H 2 S 20
5 % E 2 s 3 ¢ g
9 a > > iy
=] oy
2 “ g 2 2 g

Iterative Benchmarks Recursive Benchmarks

Figure 7. Speedups over serial execution on Linux, 15 cores.
Overall TPAL outperforms Cilk Plus.

programs and all inputs. Figure 6 compares the single-core
running times of Cilk Plus and TPAL versions of the bench-
marks. In all cases but one, our implementations are as fast
or faster than those of Cilk Plus. The only exception is man-
delbrot, which is 2% slower.

TPAL performs better than Cilk at full scale. To scale
up, both implementations need to create or promote a num-
ber of tasks that is sufficient to keep the cores fed, while also
keeping task overheads low. Figure 7 compares the 15-core
running times of Cilk Plus and TPAL versions of the bench-
marks. The parallel execution times of the TPAL versions are
considerably lower than those of Cilk, with four exceptions.
Of these exceptions, only mandelbrot rises above 10%. When
TPAL’s recurrent decomposition comes into play, speedups
of 53% (geomean) compared to Cilk result, while when re-
current decomposition does not come into play, slowdowns
of only 9.8% (geomean) occur.

The floyd_warshall benchmark makes for an interesting
point of comparison, because it shows a situation where
Cilk’s granularity-control heuristic for cilk_for loops fails.
For the input size of 1k vertices, there is not enough paral-
lelism to keep all 15 cores fed. The Cilk heuristic generates
for this input a much larger number of tasks than our tech-
nique (23X more). As a consequence Cilk Plus achieves a
higher utilization than TPAL (82% vs. 54%, respectively), and
yet is 67% slower (Figure 7), owing to high task overheads. In
effect, the Cilk version keeps processors fed doing the busy
work of creating and destroying an overabundance of tasks,
and ultimately performs worse for it. Our approach finds
the right balance for this input, creating just enough tasks
to keep cores fed with useful work, but not wasting time
sharing too-small tasks. Moreover, as the input increases to
2K vertices, thereby favoring Cilk’s granularity heuristic, our
approach scales as well as Cilk does, taking advantage of an
amount of parallelism that is closer to keeping all cores fed
and reaches comparable utilization levels (89% for Cilk Plus
vs. 84% for TPAL). We redirect the interested reader to the
Appendix for more details.

PLDI 21, June 20-25, 2021, Virtual, Canada

Overall, these results show that our approach achieves
excellent performance both on parallel as well as sequential
runs, i.e., scaling up and down.

4.4 TPAL Approaches Near-Zero Cost

We now consider the sources of overhead that could limit
the performance of TPAL. If these overheads were zero, we
would expect the recurrent decomposition of TPAL to always
perform strictly better than the initial decomposition of Cilk.

TPAL’s compilation-related performance overhead is
low. Thanks to its serial-as-the-default scheduling policy,
our compilation technique produces binaries whose perfor-
mance is close to that of corresponding serial programs,
because they are very close to the serial programs. Figure 8
compares the execution time of the serial baseline programs
of our benchmarks with those of our TPAL binaries. Here, the
heartbeat interrupt mechanism is turned off, so pure sequen-
tial execution occurs. Our programs are at most 6% slower
than their serial baseline programs, except for floyd-warshall,
kmeans, and knapsack. The performance of floyd-warshall
may be related to our manual compilation technique having
to slightly modify the innermost loop which is very fine
grained, causing a perturbation. In an integrated compiler-
based implementation of TPAL (Section 7), that would be
easily avoided. The kmeans benchmark is slower by 17% be-
cause the TPAL version uses an auxiliary data structure to
accumulate centroid values, whereas the serial program does
not. This situation is the same in the original Rodinia imple-
mentations, and as such is not a limitation of our compilation
technique.

The 51% slowdown of knapsack is the most concerning.
It happens for a simple reason: although this benchmark
performs almost no computation besides recursive calls, our
implementation still pays a cost for pushing and popping
promotion-ready stack marks. This cost is visible in knap-
sack, because there is little other computation. In contrast, al-
though it also incurs the costs of maintaining the promotion-
ready stack marks, mergesort shows only 4-6% overhead,
suggesting the bookkeeping costs are less significant. Addi-
tional optimizations (e.g., 32-bit pointers) may reduce this
overhead but are outside the scope of this work.

Signal overhead is low, but could be improved. To pro-
mote latent parallelism in Heartbeat Scheduling, signals must
interrupt each core on a regular basis. These interrupts need
to arrive often enough to create sufficient parallelism, but
far enough apart to keep overheads low. Figure 9 isolates
and presents the overheads on a single core due to the in-
terrupt mechanism only (i.e., without any promotions), as
well as when interrupts generate parallel tasks. The bars la-
beled Serial represent runs of the serial baseline program (not
TPAL), and therefore help to isolate the cost of interrupts.
The figure presents results only for the INT-PingThread ap-
proach of producing the beat, as described in Section 3.2. We

M. Rainey, R. R.

1073

Newton, K. Hale, N. Hardavellas, S. Campanoni, P. Dinda, and U. A. Acar

Execution Time
Normalized to Serial/Linux

spmv-random
spmv-powerlaw
spmv-arrowhead
mandelbrot
kmeans

srad
floyd-warshall-1K
floyd-warshall-2K
Geomean
knapsack
mergesort-exp
Geomean

>
Y
£
P
@
g
S

°
g
o
5
S

mergesort-uniform

Iterative Benchmarks Recursive Benchmarks
Figure 8. Normalized execution time of TPAL sans heart-
beat interrupts and concomitant promotions, on Linux, sin-
gle core. The compilation-related performance overhead of

TPAL is minimal compared to sequential code.

3 Serial, 100 ps interrupts B TPAL 100 us, interrupts+promotions
.5 16 Serial, 20 us interrupts B TPAL 20 us, interrupts+promotions
o=y 1.8
£.8
=T 12
(]
cwn 1
S g 08
33 o4
E % 02
0
£ <
o I
4 @

plus-reduce-array
spmv-random
spmv-powerlaw
spmv-arrowhead
mandelbrot
kmeans
floyd-warshall-1K
floyd-warshall-2K
Geomean
knapsack
mergesort-uniform
mergesort-exp
Geomean

Iterative Renchmarks Recursive Benchmarks

Figure 9. TPAL overheads including interrupts only, and
interrupts plus promotions, on Linux, single core.

do not present the INT-Papi approach as it always incurs
much higher overheads and does not provide any additional
benefits.

Interrupt-only overheads at © = 100 ps are generally low,
with a geomean of 3%. At © = 20 s, however, interrupt-only
overheads approach 20% on several occasions, leading to a
geomean as high as 16%. As we describe in more detail in
Section 5.1, these overheads have a considerably higher and
compounding effect at larger scales. However, it is possible
to mitigate them through the direct use of timer and IPI
hardware as enabled in Nautilus.

Promotion overhead is low but could be improved. Fig-
ure 9 also depicts the total overhead of promotions by taking
the running times of our TPAL programs on a single core
when allowing not only signals, but also promotions, to hap-
pen. At © = 100 ps, all benchmarks except one input of spmv,
kmeans, and knapsack, incur a low overhead at or below 11%.
The overheads of kmeans and knapsack are already explained
by the compilation-related overheads, which are not specific
to TPAL. Although we cannot fully explain the cause of the
18% overhead of spmv with the powerlaw input, we have
found that on our other test machines the overhead is closer
to 10%. For © = 20 pus, however, the overhead of promotions
becomes unacceptable and reaches a geomean of 34%.

Task Parallel Assembly Language for Uncompromising Parallelism

=@ -Target Heartbeat Rate 20 us —e—TPAL 20 us/Linux TPAL 20 ps/Nautilus

8 10,000,000
5 750,000
21,000,000 @ e e e m e m)
@ &
3
£ 100000 —— T T,
5 83,245 281,005
I 10,000
=p-Target Heartbeat Rate 100 us —&—TPAL 100 us/Linux TPAL 100 ps/Nautilus
o
g 250,000
2 200,000 150,000
o
() £ 150000 — fr==k———k——mp———ge
©
@ 100,000
g 50,000 82,362
£ 0
«@\\ bo& NG e@b S &0 @b \"\:\L \7”% & &R
& & & P ¢ TR
& & N & S F & L
1 R & 9 @ @ D A
& 2 & A N 9 I\
& SIS & &
Q\\\' S Y PN @z&

Figure 10. Achieved and target heartbeat rate in Linux and
Nautilus, 15 cores.

Linux misses its target heartbeat rate. An even bigger
problem in Linux is that, owing to high signaling overheads,
it largely misses its target heartbeat rate. Figure 10 shows
that Linux struggles to keep up with its target rate of 150K
heartbeats/s across all 15 cores, even at a leisurely © = 100us.
While it gets close to desired rate in 3 out of 12 benchmarks in
our suite, in all other cases it misses its target, and most often
by a lot. It is important to note that we present results for
the best Linux mechanism (INT-PingThread); the INT-Papi
mechanism performs even worse. The best Linux mechanism
cannot even sustain heartbeat signals at a consistent rate for
all benchmarks: for some it is as low as 82K/s, significantly
lower than the desired rate of 150K/s.

We do not understand in detail why Linux signaling per-
forms so poorly, but our results are in line with other obser-
vations of Linux behavior, as described earlier. Conceivably,
a suitable Linux kernel mechanism could be designed to
improve the situation, and this is a subject for future work.

The situation is aggravated for © = 20us (Figure 10). Here
Linux always misses its mark by a factor of 2.7-9x: while the
target heartbeat rate is a rapid 750K heartbeats/s across all
cores, Linux delivers at most 281K, and as low as 83K. Failure
to achieve the target rate corresponds to potentially missed
opportunities to extract parallelism from the application. We
set out to mitigate this shortcoming by exploring alternate
mechanisms to deliver interrupts reliably and at low cost.

Performance at scale. In Figure 11, we present speedup
curves for all benchmarks. Overall, the curves suggest that
TPAL and Cilk Plus achieve scaling as cores are added. How-
ever, the curves of TPAL usually show low overhead at small
core counts, and highest performance at scale. There is one
significant exception: mandelbrot. In mandelbrot, there is a
need to spawn a large number of tasks, in order to keep the 15
cores fed, but the speedup curve of Cilk suggests that TPAL
is not generating a sufficient number of tasks. The reason

1074

PLDI ’21, June 20-25, 2021, Virtual, Canada

for insufficient tasks is that the signaling mechanism pro-
vided by Linux does not support a high enough throughput
to meet the needs. In Nautilus, where the signaling mech-
anism shows better performance at scale, our mandelbrot
benchmark scales very well, outperforming the Cilk Plus
version.

5 OS Support for Heartbeat Scheduling

The signaling mechanisms available in Linux were not de-
signed for the purpose of driving heartbeat interrupts at
fine granularity, such as © = 20ps—100us. As shown shown
by others [33], existing software mechanisms in Linux are
unable to achieve predictably low latencies for out-of-band
event signaling. While the performance of such signaling
mechanisms ultimately depends on hardware capabilities,
software overheads, a high degree of abstraction, and mis-
matched interfaces can introduce barriers to signaling per-
formance. To understand the extent of these issues as they
pertain to heartbeat signals, we implemented a prototype in
a lightweight OS kernel framework called Nautilus that al-
lows us to precisely control the software overheads of event
signaling without significant effort.

5.1 Nautilus and the TPAL HRT

Nautilus is a lightweight kernel framework intended to sup-
port hybrid runtime systems (HRTs), i.e. language runtimes
that have the full power of the OS kernel [34-36]. It is a
publicly available open-source codebase? that currently runs
directly on x64 NUMA hardware and Intel Xeon Phi, as well
as in a unikernel configuration atop various virtualization
platforms. Applications in Nautilus run in a single shared
address space, in kernel-mode, with fully privileged access
to the machine.

We created a prototype TPAL Hybrid Runtime (TPAL HRT)
that runs in Nautilus. It is important to note that TPAL HRT
uses application code that is identical to the Linux user-level
implementation. The TPAL compiler transformations are no
different. The TPAL runtime is also almost entirely identical.
What is different is that everything runs within the kernel,
and heartbeat signaling is accomplished directly using the
x64 timer and interrupt hardware. Arguably, a representation
that captures task parallelism, such as TPAL, makes such a
radically different implementation feasible for the end-user.

Nautilus includes a lightweight, inter-core signaling frame-
work called Nemo, which reduces signaling latency and jitter
significantly [33]. Nemo is essentially a thin veneer around
the standard hardware mechanisms for signaling between
CPU cores, namely inter-processor interrupts (IPIs). In most
architectures, IPIs represent the lower limit on architected,
out-of-band event signaling. Their cost is typically within a
few thousand cycles, most of which is consumed by interrupt
handling overhead on the receive side CPU. OSes typically
use IPIs for internal synchronization events, but Nautilus

Zhttps://github.com/HExSA-Lab/nautilus

https://github.com/HExSA-Lab/nautilus

PLDI 21, June 20-25, 2021, Virtual, Canada

plus-reduce-array, 100 million 64-bit doubles spmvy, random

0

15

71 x Cilk/Linux
e TPAL 100 us/Linux

7| x Cilk/Linux
e TPAL 100 us/Linux

10
10

mandelbrot, 4k by 4k pixels kmeans, 1 million objects

15
15

7| % Cilk/Linux
® TPAL 100 us/Linux

7| x Cilk/Linux
® TPAL 100 us/Linux

10
10

floyd-warshall, 2k vertices knapsack, 36 items

15

7] x Cilk/Linux
e TPAL 100 us/Linux

7| x Cilk/Linux
e TPAL 100 us/Linux

10

M. Rainey, R. R.

Newton, K. Hale, N. Hardavellas, S. Campanoni, P. Dinda, and U. A. Acar

spmvy, powerlaw spmv, arrowhead

15
15

7| x Cilk/Linux
e TPAL 100 us/Linux

7| x Cilk/Linux
e TPAL 100 us/Linux

10
10

srad, 4k items floyd-warshall, 1k vertices

15
15

7| x Cilk/Linux
® TPAL 100 us/Linux

7| x Cilk/Linux
® TPAL 100 us/Linux

10
10

mergesort, 20 million ints (uniform) mergesort, 20 million ints (exponential)

15
15

7| x Cilk/Linux
@ TPAL 100 us/Linux

7| x Cilk/Linux
e TPAL 100 us/Linux

10
10

Figure 11. Speedup over Serial/Linux for Cilk Plus and TPAL/Linux, varying the number of cores.

®:
® () | (()
U=~ vo o OO
(\ i
= \.{,\\/ 1| User mode T T
U/ Nt ! !
I
TPAL
1
T T | T TPAL worker | | TPAL worker
T T |
1
TPAL TPAL |
runtime worker Mkermelmode] | @l |
: Z Y {unsteady
e R | Linux kernel , rates
| | signals
____________ H
‘/ I : ‘/'7'\ 7 N\ 7 N\
' \ \
! CPU O ‘ ‘ CPU 1 ‘ CPUN ‘
1
: \ N
| Hardware

Figure 12. Heartbeat signaling mechanisms in Nautilus (left)
and Linux (right).

exposes this capability to parallel runtimes through Nemo,
allowing programmers to multiplex a fixed set of software
events and their handler functions atop IPIs. Thus, Nemo is
a natural fit for heartbeat signals.

We built our TPAL HRT directly atop Nemo and the hard-
ware timer interrupts that Nautilus also exposes, as depicted
in Figure 12. The first TPAL worker on CPU 0 registers a
Nautilus timer handler that will be invoked at the speci-
fied heartbeat interval (¥)/rate. This builds upon the CPU’s

1075

local APIC timer, which can (typically) be programmed to
interrupt at intervals down to 10 ns. The timer interrupt
directly triggers the heartbeat timer handler. The timer han-
dler in turn uses Nemo to distribute a heartbeat signal to
every other core, which Nemo does using IPIs (1). On the
destinations, these IPIs trigger (2), via the Nemo framework,
the TPAL workers (3), which have more opportunities to
unleash parallelism in the form of task promotions (4) due
to the consistently achieved heartbeat rate. This approach
brings the limit on ¢ closer to the hardware limit.

5.2 Signaling Performance in TPAL HRT

Recall that Figure 9 showed the impact of the heartbeat
signaling mechanism on Linux for 20 and 100 ps heartbeats.
These single-core results were discussed in Section 4.4.
Figure 13 shows the corresponding results for TPAL HRT.
The overheads for © = 100 ps corresponding to signaling
alone are completely masked, whereas in the best-case Linux
implementation they were typically around 3-4% and as high
as 7%. At 20 us, while the Linux overheads are on the order of
13-22%, the TPAL HRT overheads are at most 4.9%, and are
usually much lower. These gains cascade when promotions
are also enabled. Clearly, it is Linux that imposes noticeable

Task Parallel Assembly Language for Uncompromising Parallelism

Serial, 100 ps interrupts W TPAL 100 ps, interrupts+promotions
Serial, 20 us interrupts TPAL 20 ps, interrupts+promotions
14 1 1.9 118

Execution Time
Normalized to Serial/Nautilus
o
%

spmv-random
mandelbrot
kmeans
Geomean
knapsack
mergesort-exp
Geomean

floyd-warshall-1K ~Se—
floyd-warshall-2K Se——

plus-reduce-array
spmv-powerlaw
spmv-arrowhead
mergesort-uniform

Iterative Benchmarks Recursive Benchmarks

Figure 13. TPAL overheads including interrupts only, and
interrupts plus promotions, on Nautilus, single core.

3 ; Cilk/Linux B TPAL 100 us/Linux TPAL 100 ps/Nautilus
c

S 6 10"

8 5

[}

& 4

3 3

3 2

g1

T o

& B
wv 7

spmv-random
spmv-powerlaw
spmv-arrowhead
mandelbrot
kmeans
floyd-warshall-1K
floyd-warshall-2K
Geomean
knapsack
mergesort-exp
Geomean

>
o
®
@
5]
E

°
19
o

=2
S

mergesort-uniform

Iterative Benchmarks Recursive Benchmarks

Figure 14. Speedups over serial execution on Linux of 15-
core runs of Cilk Plus, TPAL/Linux and TPAL/Nautilus. TPAL
outperforms serial/Linux and Cilk Plus on all benchmarks.

costs, even when © is a leisurely 100 ps, as current hardware
can indeed support lower-cost signaling.

As Nautilus is capable of exploiting the fast interrupt de-
livery mechanisms of modern hardware, it also achieves
its target heartbeat rate. Figures 10 and 13 show that Nau-
tilus practically always achieves the heartbeat rate that it
is requested to deliver for both © = 100 ys and © = 20 ps.
While the best Linux mechanism cannot even sustain heart-
beat signals at a consistent rate for all benchmarks, even at
© =100 s, Nautilus not only hits the target, but it also de-
livers a much more consistent rate for both 100 ys and 20 ps.
There is clearly a scaling issue that may affect performance
in Linux at higher core counts, but does not affect Nautilus.

5.3 Putting It Together: Performance at Scale

Figure 14 compares the overall speedups achieved by Cilk
and TPAL on Linux and Nautilus at scale (16 total cores)
normalized over the serial execution on Linux. Here © = 100
us, which is generous to Linux.

Cilk Plus achieves speedups on two thirds of our work-
loads but incurs slowdowns on the remaining third. While
some speedups are high (e.g., 14X for mandelbrot) often per-
formance improvements are limited, leading to a respectable
but less-than-desired speedup geomean of 1.9x for iterative
benchmarks and 2.4X for recursive ones on 15 cores.

TPAL on Linux attains higher performance than Cilk Plus
in most cases, or performs comparably well, leading to a

PLDI ’21, June 20-25, 2021, Virtual, Canada

geomean of 4x speedup for iterative benchmarks and 3.2x
for recursive ones. Similarly, TPAL on Nautilus achieves
speedup geomeans of 4.4x and 3.6X respectively for iterative
and recursive workloads, outperforming both Cilk Plus and
TPAL/Linux in aggregate. Looking at the individual work-
loads we observe that TPAL on Nautilus achieves the lowest
wall-clock execution times than any other system (Cilk plus
or TPAL/Linux) for all benchmarks except one: kmeans, in
which TPAL/Linux narrowly beats TPAL/Nautilus by 12%. It
appears that achieving the desired heartbeat interval/rate is a
double-edged sword. On the one hand, TPAL HRT can signif-
icantly outperform the Linux implementations at scale—for
example, in srad and mandelbrot. Here, the correct and stable
heartbeats trigger useful promotions that manifest useful
parallelism that contributes to performance, allowing, for
example, TPAL to overcome the obstacles it was facing with
mandelbrot on Linux, as noted in Section 4.3. On the other
hand, when Linux fails to achieve the target heartbeat rate,
this failure benefits benchmarks in which promotions are not
desirable by the simple fact that there are fewer promotion
opportunities due to this failure.

Overall, TPAL on Linux achieves significant speedups over
Cilk (geomean 53%) for benchmarks that are amenable to
recurrent decomposition, while the others (that do not lend
well to our technique) incur minimal slowdown (geomean
9.8%). It is important to also note that if we consider both
Linux and Nautilus implementations, TPAL strictly outper-
forms Cilk Plus: in all cases, at least one of our TPAL im-
plementations achieves higher speedup than Cilk Plus, and
more often both do.

6 Related Work

Many task-parallel programming languages have been de-
veloped, going back to the 1980s, including multiLisp [37],
NESL [12, 14], Cilk (extending C) [30], several extensions of
Java [17, 40, 42], parallel Haskell [45, 48, 54], several forms
of parallel ML [10, 28, 32, 55, 57, 58, 61], and X10 [20]. All of
these task-parallel languages rely on task-scheduling tech-
niques that go back to Brent’s seminal work [18], which has
been extended in many directions [4, 8, 11, 13, 15, 16, 24, 43,
51]. These techniques primarily focus on reducing schedul-
ing overheads of tasks that are already created. Task-creation
overheads have also proved to be significant, and there has
been work on reducing them [6, 25, 30, 38, 41, 60, 63], going
back to Cilk-5’s clone optimization. Our TPAL takes inspi-
ration from prior work but takes a different tack: instead of
reducing the cost of task creation—which can only be done
up to a point—TPAL amortizes the cost against the abundant
useful work that a program naturally performs.

There has been recent interest in improving the quality
of code generated by high-level parallel languages, such as
Cilk Plus. Tapir [56] extends LLVM to support Cilk Plus,
bringing to parallel function calls and loops the benefits of
LLVM'’s existing serial code-optimization passes. Although it

PLDI 21, June 20-25, 2021, Virtual, Canada

addresses compiler optimization of parallel code, Tapir does
not address granularity control, a major challenge in paral-
lelizing codes efficiently, whereas TPAL does. Furthermore,
by design, Tapir does not address compiler optimization in
the stages following the lowering of Tapir’s high-level paral-
lel instructions, whereas TPAL does. We believe that there
is now a feasible path to combine Tapir and TPAL, as we
outlined in Section 3.1, which will feature the benefits of
each approach in one system.

For our implementation of TPAL, we used the signaling
mechanism provided by the OS, in our case, Linux, to drive
heartbeats. The performance issues related to the Linux sig-
nal mechanism are relatively well known, and are explicitly
noted in the source code. In particular, the perf sample rate is
limited to 10usec for this reason [2] (lines 418 and 492). There
is also some discussion of it in the research literature [62].

Alternatively, the heartbeats can be driven by software
polling [26]. In software polling, there is typically some
sophisticated compiler support that inserts into programs
the branch instructions needed to drive heartbeats. This ap-
proach has some advantages, especially in the context of
managed languages, where there may be preexisting sup-
port for software polling. However, there are two challenges
facing any implementation of software polling. First, it can
block compiler optimizations if not implemented carefully.
Second, an implementation needs to ensure there is enough
space between polling events to keep polling overheads low,
but close enough to consistently meet the target hartbeat
rate. These challenges have been addressed by advanced Java
runtimes, where there is evidence showing that the overhead
cost of the polling is close to 2% [47]. To achieve this result, it
is crucial to use a single load/cmp/branch sequence to ensure
that the branch would staticalliy be predicted as not taken,
and that the register allocation was not affected by the un-
likely branch and call [1, 9]. Also, in non-managed languages,
such as C++, it can be appropriate to use software polling,
and there has been work on bringing compiler support to
LLVM [31]. We plan to experiment with such alternative
mechanisms in future implementations of TPAL.

7 Conclusion

When it comes to performance, it takes two to tango: parallel
and sequential computation. Today, we expect the program-
mer to choreograph carefully, when exactly each will take
a step. If parallel goes too far, performance will suffer be-
cause of the overheads associated with realizing it in practice,
such as task creation, scheduling, etc. If sequential goes too
far, scalability will suffer. This choreography involves diffi-
cult compromises and requires carefully optimizing code to
make sure that each gets their “fair” share by considering
everything from lower level concerns such as architectural
constant factors, to compiler optimizations, and finally to
algorithms.

1077

M. Rainey, R. R. Newton, K. Hale, N. Hardavellas, S. Campanoni, P. Dinda, and U. A. Acar

With widespread availability of multicore hardware, we
want languages that encourage and enable writing high-
level parallel programs without all of these compromises.
To this end, we proposed TPAL as a foundation for writ-
ing task-parallel programs. TPAL delivers the right level of
parallelism by construction, always and consistently, and ap-
plies to irregular, nested, and loop-based parallel codes. We
implemented and evaluated TPAL, considering important
implementation tradeoffs at the runtime/OS level, on a chal-
lenging suite of benchmarks, featuring irregular, fine-grain
parallelism. We showed that TPAL achieves consistent effi-
ciency and an ability to find the right amount of parallelism
regardless of workload.

Acknowledgments

U. Acar and M. Rainey. This work was partially sup-
ported by the National Science Foundation under grant num-
bers CCF-1901381 and 2028921.

R. Newton. This work was made possible by support from
the National Science Foundation via awards CCF-2127277
and SPX-1725679.

P. Dinda and N. Hardavellas. This work was made pos-
sible by support from the National Science Foundation via
awards CCF-1533560, CNS-1763743, and CCF-2028851.

S. Campanoni. This work was made possible by sup-
port from the National Science Foundation via award CCF-
1908488 (also, CNS-1763743, and CCF-2028851).

K. Hale. This work was made possible by support from
the National Science Foundation via awards CNS-1763612,
CNS-1718252, and CCF-2028958.

References

[1] [n.d.]. Architecture and Policy for Adaptive Optimization in Vir-
tual Machines. https://researcher.watson.ibm.com/researcher/files/us-
groved/RC23429.pdf. Accessed: 2021-04-1.

[n.d.]. The Linux source code file core.c. https://github.com/torvalds/
linux/blob/master/kernel/events/core.c. Accessed: 2021-04-1.

Umut A. Acar, Vitaly Aksenov, Arthur Charguéraud, and Mike Rainey.
2019. Provably and Practically Efficient Granularity Control. In Pro-
ceedings of the 24th Symposium on Principles and Practice of Parallel
Programming (Washington, District of Columbia) (PPoPP ’19). 214-228.

Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2002. The data
locality of work stealing. Theory of Computing Systems (TOCS) 35, 3
(2002), 321-347.

Umut A. Acar, Arthur Charguéraud, Adrien Guatto, Mike Rainey, and
Filip Sieczkowski. 2018. Heartbeat Scheduling: Provable Efficiency for
Nested Parallelism. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Philadelphia,
PA, USA) (PLDI 2018). 769-782.

Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2013. Scheduling
Parallel Programs by Work Stealing with Private Deques. In Proceedings
of the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’13).

Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2016. Oracle-
guided scheduling for controlling granularity in implicitly parallel
languages. Journal of Functional Programming (JFP) 26 (2016), e23.

[2

—

E

—

[4

flan)

[5

—

G

—

[7

—

https://researcher.watson.ibm.com/researcher/files/us-groved/RC23429.pdf
https://researcher.watson.ibm.com/researcher/files/us-groved/RC23429.pdf
https://github.com/torvalds/linux/blob/master/kernel/events/core.c
https://github.com/torvalds/linux/blob/master/kernel/events/core.c

Task Parallel Assembly Language for Uncompromising Parallelism

(8]

Shivali Agarwal, Rajkishore Barik, Dan Bonachea, Vivek Sarkar, R. K.
Shyamasundar, and Katherine A. Yelick. 2007. Deadlock-free sched-
uling of X10 computations with bounded resources. In SPAA 2007:
Proceedings of the 19th Annual ACM Symposium on Parallelism in Al-
gorithms and Architectures, San Diego, California, USA, June 9-11, 2007.
229-240.

Matthew Arnold and David Grove. 2005. Collecting and Exploiting
High-Accuracy Call Graph Profiles in Virtual Machines. In Proceedings
of the International Symposium on Code Generation and Optimization
(CGO °05). IEEE Computer Society, USA, 51-62. https://doi.org/10.
1109/CG0.2005.9

[10] Jatin Arora, Sam Westrick, and Umut A. Acar. 2021. Provably Space

(11]

[12

—

[13

[t

(14]

(15

—

[16

—

(17]

[18

[t

(19]

[20

—

[21]

[22]

(23]

(24]

Efficient Parallel Functional Programming. In Proceedings of the 48th
Annual ACM Symposium on Principles of Programming Languages
(POPL)".

Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 2001. Thread
Scheduling for Multiprogrammed Multiprocessors. Theory of Comput-
ing Systems 34, 2 (2001), 115-144.

Guy E. Blelloch. 1996. Programming Parallel Algorithms. Commun.
ACM 39, 3 (1996), 85-97.

Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. 1999. Provably
efficient scheduling for languages with fine-grained parallelism. J.
ACM 46 (March 1999), 281-321. Issue 2.

Guy E. Blelloch, Jonathan C. Hardwick, Jay Sipelstein, Marco Zagha,
and Siddhartha Chatterjee. 1994. Implementation of a Portable Nested
Data-Parallel Language. J. Parallel Distrib. Comput. 21, 1 (1994), 4-14.
Robert D. Blumofe and Charles E. Leiserson. 1998. Space-Efficient
Scheduling of Multithreaded Computations. SIAM J. Comput. 27, 1
(1998), 202-229.

Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling mul-
tithreaded computations by work stealing. 7. ACM 46 (Sept. 1999),
720-748. Issue 5.

Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve,
Stephen Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Sim-
mons, Hyojin Sung, and Mohsen Vakilian. 2009. A type and effect
system for deterministic parallel Java. In Proceedings of the 24th ACM
SIGPLAN conference on Object oriented programming systems languages
and applications (Orlando, Florida, USA) (OOPSLA °09). 97-116.
Richard P. Brent. 1974. The parallel evaluation of general arithmetic
expressions. J. ACM 21, 2 (1974), 201-206.

F. Warren Burton and M. Ronan Sleep. 1981. Executing functional
programs on a virtual tree of processors. In Functional Programming
Languages and Computer Architecture (FPCA 81). ACM Press, 187-194.
Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek
Sarkar. 2005. X10: an object-oriented approach to non-uniform cluster
computing. In Proceedings of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications
(San Diego, CA, USA) (OOPSLA *05). ACM, 519-538.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark
Suite for Heterogeneous Computing. In Proceedings of the 2009 IEEE
International Symposium on Workload Characterization (ISWC) (IISWC
’09). IEEE Computer Society, USA, 44-54. https://doi.org/10.1109/
1ISWC.2009.5306797

Intel Corporation. 2014. Intel C++ Compiler Code Samples.
https://software.intel.com/en-us/code-samples/intel-compiler/intel-
compiler-features/IntelCilkPlus

Daniele Cono D’Elia and Camil Demetrescu. 2018. On-stack replace-
ment, distilled. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 166—180.

Derek L. Eager, John Zahorjan, and Edward D. Lazowska. 1989.
Speedup versus efficiency in parallel systems. IEEE Transactions on
Computing 38, 3 (1989), 408-423.

1078

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

PLDI ’21, June 20-25, 2021, Virtual, Canada

Karl-Filip Faxén. 2009. Wool-A Work Stealing Library. SIGARCH
Comput. Archit. News 36, 5 (June 2009), 93-100. https://doi.org/10.
1145/1556444.1556457

Marc Feeley. 1993. Polling efficiently on stock hardware. In Proceedings
of the conference on Functional programming languages and computer
architecture (Copenhagen, Denmark) (FPCA ’93). 179-187.

Stephen J Fink and Feng Qian. 2003. Design, implementation and
evaluation of adaptive recompilation with on-stack replacement. In
International Symposium on Code Generation and Optimization, 2003.
CGO 2003. IEEE, 241-252.

Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. 2011. Im-
plicitly threaded parallelism in Manticore. Journal of Functional Pro-
gramming 20, 5-6 (2011), 1-40.

Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-
Berlin. 2009. Reducers and Other Cilk++ Hyperobjects. In Proceedings
of the Twenty-First Annual Symposium on Parallelism in Algorithms
and Architectures (Calgary, AB, Canada) (SPAA ’09). Association for
Computing Machinery, New York, NY, USA, 79-90. https://doi.org/
10.1145/1583991.1584017

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The
Implementation of the Cilk-5 Multithreaded Language. In PLDI. 212-
223.

Souradip Ghosh, Michael Cuevas, Simone Campanoni, and Peter Dinda.
2020. Compiler-based timing for extremely fine-grain preemptive
parallelism. In 2020 SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE Computer
Society, 736-750.

Adrien Guatto, Sam Westrick, Ram Raghunathan, Umut A. Acar, and
Matthew Fluet. 2018. Hierarchical memory management for mutable
state. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2018, Vienna, Austria,
February 24-28, 2018. 81-93.

Kyle Hale and Peter Dinda. 2018. An Evaluation of Asynchronous
Software Events on Modern Hardware. In 2018 IEEE 26th International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE, 355-368.

Kyle C. Hale and Peter A. Dinda. 2015. A Case for Transforming
Parallel Runtimes Into Operating System Kernels. In Proceedings of the
24" ACM Symposium on High-performance Parallel and Distributed
Computing (HPDC ’15).

Kyle C. Hale and Peter A. Dinda. 2016. Enabling Hybrid Parallel
Runtimes Through Kernel and Virtualization Support. In Proceedings
of the 12" ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE’16). 161-175.

Kyle C. Hale, Conor Hetland, and Peter A. Dinda. 2016. Automatic
Hybridization of Runtime Systems. In Proceedings of the 25" ACM
International Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’16). 137-140.

Robert H. Halstead, Jr. 1984. Implementation of Multilisp: Lisp on a
Multiprocessor. In Proceedings of the 1984 ACM Symposium on LISP
and functional programming (Austin, Texas, United States) (LFP ’84).
ACM, 9-17.

Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani, and Taiichi Yuasa.
2009. Backtracking-based load balancing. Proceedings of the 2009 ACM
SIGPLAN Symposium on Principles & Practice of Parallel Programming
44, 4 (February 2009), 55-64.

Urs Holzle, Craig Chambers, and David Ungar. 1992. Debugging
optimized code with dynamic deoptimization. In Proceedings of the
ACM SIGPLAN 1992 conference on Programming language design and
implementation. 32-43.

Shams Mahmood Imam and Vivek Sarkar. 2014. Habanero-Java library:
a Java 8 framework for multicore programming. In 2014 International
Conference on Principles and Practices of Programming on the Java
Platform Virtual Machines, Languages and Tools, PPP¥ ’14. 75-86.

https://doi.org/10.1109/CGO.2005.9
https://doi.org/10.1109/CGO.2005.9
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/IntelCilkPlus
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/IntelCilkPlus
https://doi.org/10.1145/1556444.1556457
https://doi.org/10.1145/1556444.1556457
https://doi.org/10.1145/1583991.1584017
https://doi.org/10.1145/1583991.1584017

PLDI 21, June 20-25, 2021, Virtual, Canada

[41] Intel. 2011. Intel Threading Building Blocks.

—

[t

—

https://www.
threadingbuildingblocks.org/.

Doug Lea. 2000. A Java fork/join framework. In Proceedings of the
ACM 2000 conference on Java Grande (San Francisco, California, USA)
(JAVA °00). 36-43.

I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Zhunping
Zhang, and Jim Sukha. 2015. On-the-Fly Pipeline Parallelism. TOPC 2,
3 (2015), 17:1-17:42.

Charles Leiserson and Aske Plaat. 1998. Programming parallel appli-
cations in Cilk. SINEWS: SIAM News 31, 4 (1998), 6—7.

Peng Li, Simon Marlow, Simon L. Peyton Jones, and Andrew P. Tol-
mach. 2007. Lightweight concurrency primitives for GHC. In Proceed-
ings of the ACM SIGPLAN Workshop on Haskell, Haskell 2007, Freiburg,
Germany, September 30, 2007. 107-118.

Vasileios Liaskovitis, Shimin Chen, Phillip B. Gibbons, Anastassia
Ailamaki, Guy E. Blelloch, Babak Falsafi, Limor Fix, Nikos Hardavellas,
Michael Kozuch, Todd C. Mowry, and Chris Wilkerson. 2006. Parallel
Depth First vs. Work Stealing Schedulers on CMP Architectures. In
Proceedings of the Eighteenth Annual ACM Symposium on Parallelism in
Algorithms and Architectures (Cambridge, Massachusetts, USA) (SPAA
’06). Association for Computing Machinery, New York, NY, USA, 330.
https://doi.org/10.1145/1148109.1148167

Yi Lin, Kunshan Wang, Stephen M. Blackburn, Antony L. Hosk-
ing, and Michael Norrish. 2015. Stop and Go: Understanding Yield-
point Behavior. In Proceedings of the 2015 International Symposium
on Memory Management (Portland, OR, USA) (ISMM ’15). Associa-
tion for Computing Machinery, New York, NY, USA, 70-80. https:
//doi.org/10.1145/2754169.2754187

Simon Marlow and Simon L. Peyton Jones. 2011. Multicore garbage
collection with local heaps. In Proceedings of the 10th International
Symposium on Memory Management, ISMM 2011, San Jose, CA, USA,
June 04 - 05, 2011, Hans-Juergen Boehm and David F. Bacon (Eds.).
ACM, 21-32.

David Mosberger, Peter Druschel, and Larry L Peterson. 1996. Imple-
menting atomic sequences on uniprocessors using rollforward. Soft-
ware: Practice and Experience 26, 1 (1996), 1-23.

Philip] Mucci, Shirley Browne, Christine Deane, and George Ho. 1999.
PAPI: A portable interface to hardware performance counters. In Pro-
ceedings of the department of defense HPCMP users group conference,
Vol. 710.

Girija J. Narlikar and Guy E. Blelloch. 1999. Space-Efficient Scheduling
of Nested Parallelism. ACM Transactions on Programming Languages
and Systems 21 (1999).

M. Rainey, R. R. Newton, K. Hale, N. Hardavellas, S. Campanoni, P. Dinda, and U. A. Acar

[52] MEJ Newman. 2005. Power laws, Pareto distributions and Zipf’s law.

Contemporary Physics 46, 5 (Sep 2005), 323-351. https://doi.org/10.
1080/00107510500052444

OpenMP Architecture Review Board. [n.d.]. OpenMP Application
Program Interface. http://www.openmp.org/

Simon L. Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and
Manuel M. T. Chakravarty. 2008. Harnessing the Multicores: Nested
Data Parallelism in Haskell. In FSTTCS. 383-414.

Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy Blelloch.
2016. Hierarchical Memory Management for Parallel Programs. In
Proceedings of the 21st ACM SIGPLAN International Conference on Func-
tional Programming (Nara, Japan) (ICFP 2016). ACM, New York, NY,
USA, 392-406.

Tao B. Schardl, William S. Moses, and Charles E. Leiserson. 2017.
Tapir: Embedding Fork-Join Parallelism into LLVM’s Intermediate
Representation. In Proceedings of the 22nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (Austin, Texas, USA)
(PPoPP ’17). Association for Computing Machinery, New York, NY,
USA, 249-265. https://doi.org/10.1145/3018743.3018758

K. C. Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. 2014.

MultiMLton: A multicore-aware runtime for standard ML. Journal of
Functional Programming FirstView (6 2014), 1-62.

Daniel Spoonhower. 2009. Scheduling Deterministic Parallel Programs.
Ph.D. Dissertation. Carnegie Mellon University. https://www.cs.cmu.
edu/~rwh/theses/spoonhower.pdf

Torbjern Johnsen Tessem. 2013. Improving parallel sparse matrix-vector
multiplication. Master’s thesis. The University of Bergen.
Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev
Barua. 2014. Lazy Scheduling: A Runtime Adaptive Scheduler for
Declarative Parallelism. TOPLAS 36, 3, Article 10 (Sept. 2014), 51 pages.
Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. 2020.
Disentanglement in Nested-Parallel Programs. In Proceedings of the
47th Annual ACM Symposium on Principles of Programming Languages
(POPL)".

Xi Yang, Stephen M. Blackburn, and Kathryn S. McKinley. 2015. Com-
puter Performance Microscopy with Shim. SIGARCH Comput. Archit.
News 43, 3S (June 2015), 170-184. https://doi.org/10.1145/2872887.
2750401

Christopher S Zakian, Timothy AK Zakian, Abhishek Kulkarni, Bud-
dhika Chamith, and Ryan R Newton. 2015. Concurrent Cilk: Lazy
Promotion from Tasks to Threads in C/C++. In International Work-
shop on Languages and Compilers for Parallel Computing. Springer
International Publishing, 73-90.

https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://doi.org/10.1145/1148109.1148167
https://doi.org/10.1145/2754169.2754187
https://doi.org/10.1145/2754169.2754187
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1080/00107510500052444
http://www.openmp.org/
https://doi.org/10.1145/3018743.3018758
https://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf
https://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf
https://doi.org/10.1145/2872887.2750401
https://doi.org/10.1145/2872887.2750401

	Abstract
	1 Introduction
	2 Task Parallel Assembly Language
	2.1 Syntax and Execution Model
	2.2 Dynamics
	2.3 Nested Parallelism

	3 Implementation
	3.1 Compiling from C++ to TPAL
	3.2 Safe & Efficient Heartbeat Triggering
	3.3 Taming Code Bloat
	3.4 Benchmark Implementation

	4 Evaluation
	4.1 Benchmarks
	4.2 Experimental Setup
	4.3 TPAL vs Cilk Plus
	4.4 TPAL Approaches Near-Zero Cost

	5 OS Support for Heartbeat Scheduling
	5.1 Nautilus and the TPAL HRT
	5.2 Signaling Performance in TPAL HRT
	5.3 Putting It Together: Performance at Scale

	6 Related Work
	7 Conclusion
	References

