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Abstract—Nitrogen (N) is an essential nutrient for many
crops including corn and soybean. However, its leaching into
groundwater is a serious cause of concern for environmental and
public health. The amount of N leaching is closely linked to soil
water drainage and rainfall. Prediction of N leaching in cropping
systems is critical to the improvement of crop management.
Maize-N is a model for maize yield and N rate recommendation.
However, uncertainties in many parameters, such as weather
predictions, soil properties, and information entered by users
(e.g., applied N fertilizer), can incur uncertainties in N leaching
simulation results. We have developed a platform to assist compre-
hending the relationship between various input parameters and
N leaching. Our platform can reveal N leaching with uncertainty
analysis and visualization of different parameters.

Index Terms—Uncertainty Analysis and Visualization, Multi-
variate Visualization, Nitrogen Leaching

I. INTRODUCTION

Nitrogen (N) is an essential nutrient for many crops including
corn, soybean, and so on. However, its leaching to groundwater
is a cause for serious environmental and public health concerns.
Amount of N leaching is closely linked to N fertilizer
application, soil water drainage, and rainfall. Prediction of N
leaching in crop systems is critical to the improvement of crop
management and the reduction of N leaching. Visualization
can help reduce uncertainty in prediction of N leaching in
soil and water. Testing and validating N leaching predictions
can help enhance the understanding of N leaching and soil
health, and discover ways to improve fertilizer management and
enhance environmental quality. The uncertainty in N leaching
has originated from uncertainty in many parameters such as
weather prediction, soil properties, and information entered by
users (e.g., applied N fertilizer). Here, visualization plays a
significant role to reveal the uncertainty for each parameter.

Recently, a web-based application is being developed to
predict, in real-time, N leaching across the State of Nebraska
in the United States (Nitrogen Leaching Calculator) [17] based
on the Maize-N model [27]. To use the application, a user
enters information including land characteristics, applied seed,
and fertilizer. This application uses the historical and forecast
weather data as well. Our objective is to validate the methods
of visualizing the uncertainty, by monitoring and evaluating
each component of the application. We are interested in
addressing two questions using this web application: “How can
visualization reveal that the farming data could be uncertain?”
and “How we can quantify nitrogen leaching uncertainty?”
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In this work, we measure and visualize uncertainty in N
leaching with the Maize-N model. We have developed a plat-
form to assist comprehending the relationship between various
input parameters and N leaching. Our platform illustrates N
leaching ensembles with analysis of uncertainty using different
visualization methods.

II. RELATED WORK

A. Uncertainty Visualization

Uncertainty visualization demonstrates the uncertain infor-
mation of a dataset and becomes an important approach for
scientists to understand computational sources and magnifiers
of error and uncertainty in their datasets [18]. Different methods
have been used in exploring uncertainties, such as quantitative
visual interaction, parallel coordinates, sketching, projection-
based approaches, scatter plots, incorporating uncertainty
information into PCA projections, and k-means clustering [11],
[12], [16], [26]. Research in the field of perception and
awareness of uncertainty shows that the use of fuzziness can be
a good visual variable for uncertainty. For example, Kumpf et
al. considered the use of color for uncertainty, which can
be used to demonstrate node stress and color labels [13].
Boxplot is another of the most common techniques to illustrate
uncertainty [2], [15], [23].

MacEachren et al. [16] named some challenges in geospatial
uncertainty visualization, expressing the difference between
data quality and uncertainty. They suggested the benefits of
hue, saturation, and intensity for representing uncertainty on
maps. Ehlschlaeger et al. [8] illustrated how animation is useful
to represent uncertainty on elevation data. Wittenbrink et al.
[32] suggested involving multivariate glyphs when it comes
to environmental flow visualizations. Hengl and Toomanian et
al. [28] illustrated color mixing and pixel mixing techniques
to visualize uncertainty in soil science research domain.
Metaphors, such as glyphs, error-bars, and surface-coloring,
can effectively show uncertainty with statistical estimates [6].
Several studies have recognized potential visual characteristics
that can help understand uncertainty visualization. Davis and
Keller et al. [7] illustrated that texture, color, and value are the
features in uncertainty visualization on static maps. Rheingans
and Joshi [21] illustrated the uncertainty in molecules postures.
Some researchers compared various uncertainty visualization
techniques and expressed their theoretical analysis [34], [35].
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B. Ensemble Visualization

Ensemble visualization is generated from a series of sim-
ulations using different input parameters, and is a particular
class of uncertainty visualization comprising a set of practical
outputs. Numerical weather prediction ensembles are used for
predictive weather forecasting. Simulation runs contain various
initial conditions from diverse model parameterizations. Sanyal
et al. [25] developed a software tool, Noodles, that enabled
scientists to visualize the ensemble outputs and the uncertainty
of weather data. To prevent dealing with complex topology
and variation of ensemble isocontours, Bo et al. proposed a
framework designed with a high density clustering method to
increase the efficiency spaghetti plots in ensemble uncertainty
visualization [4]. Phadke et al. used sequential animation with
screen space subdivision and saturation tinting [19]. Bensma et
al. proposed a technique to classify high-variance locations [3].
Ensemble visualization has been used to help users study a
large amount of datasets through spatiotemporal analysis [10].
Potter et al. [20] presented an ensemble visualization framework
named Ensemble-Vis to help exploring and generating visual
results of weather data ensembles.

C. Machine Learning based Algorithms

Lakshminarayanan et al. [14] designed a method to calculate
optimal decision tree using Mesh and Stochastic space conver-
gences. This method estimated uncertainty using ensembles,
where they believed that the method was better and well
calibrated for measuring uncertainty compared to Bayesian
Neural Networks. Sanakran et al. [24] introduced a technique
to measure the impact of uncertainty in geometry in specific
models. In their study, they discovered a good predictor
bootstrap aggregated decision tree. Feinberg et al. [9] designed
an open source tool for designing methods of measuring
uncertainty, which is a Python software toolbox through
polynomial chaos expansions and Monte Carlo simulation.

D. N Leaching

Crop producers face the challenge of how to apply sufficient
soil nutrients to gain optimal plant growth and at the same
time reduce nitrate losses to prevent contamination of ground
and surface water. Therefore, it is critical to have an efficient
agricultural management system. N leaching to water is caused
by physical, chemical, and biological processes in soil and
many other factors, such as crop type, soil organic matter levels,
hydrology, temperature, drainage, and so on. Thus, it is very
important to educate the public about the importance of soil
nutrient management to resolve issues of N leaching across
various agricultural landscapes [22].

The timing of applying fertilizer is critical in order to
minimize N loss and increase fertilizer utilization efficiency.
Variability in pre-fertilization conditions will also affect antici-
pated N leaching losses [30]. There is a positive correlation
between applied N rate and its leaching. The most important
part of agricultural management focuses on optimization
of fertilizer application in terms of timing and amount of
fertilizer [27]. Some applications have been developed to
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estimate N leaching in soil. The Maize-N model has been
developed for simulating maize growth and yield in response
to climate and nutrients [27]. The main inputs using the model
include crop information, soil properties, and daily weather
data.

III. PROBLEM

Scientists and researchers have been trying to visualize
uncertainty and error in data. Visualizing a discovered result and
getting important information from that is not a new approach,
and different methods have been used to visualize uncertainty
and identify how different results are related together.

In this study, farmers need critical information to attain
maximum yield from their Fields. Some of important informa-
tion include weather data, soil data, as well as the amount of
Nitrogen fertilizer needed to be applied during planting season.
Some states in the United States, such as Nebraska, Iowa, and
South Dakota, have many farms and agriculture is one of the
major occupations. Therefore, agricultural management plays
an important role in order to increase annual yields. On the
one hand, N fertilizer is needed to apply to the fields. On the
other hand, excessive amount of applied N can leach to the
ground water and cause future problems to human and the
environment.

Some methods have been defined in order to estimate the
correct amount of N fertilizer needed by the crop. However,
there are uncertainties in this prediction and we need to be
aware of the factors causing these uncertainties. We have used a
method to quantify and visualize uncertainty in the prediction
of N leaching. We use the Maize-N model to calculate N
leaching in a yearly and long term bases. Uncertain weather
data, specifically rainfall and temperature, can lead to the
wrong N fertilizer utilization. To prevent or at least reduce this
mistake, we defined a method that identifies the N amount, its
leaching to ground water, and the factors involved.

IV. BACKGROUND
A. Maize-N Model

The Maize-N model is an existing robust crop simulation
platform. This model has been developed to estimate the
required amount of N fertilizer by maize crop. The inputs
of this model include daily weather variables, planting date,
crop maturity, grain price, population, yield history, cropping
methods, and the time of fertilizer application. This model then
predicts possible yield, N uptake from soil, N supplies from
soil sources, and N fertilizer requirement. Its yield prediction is
based on the Hybrid-Maize model [33]. The study also suggests
that although climate and amount of available water are the
key factors in estimating the attainable yields in different fields,
management practices also influence the amount of N uptake.
The prediction of N fertilizer is always uncertain because the
weather data is not completely accurate and different types
of N fertilizer have different efficiencies that causes different
levels of losses [27].

The Maize-N model uses the following formula to calculate
a required amount of fertilizer F from the Economically
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Fig. 1. The framework of the Maize-N model.
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o Weather data: contains the weather data for the closest
weather station for the intended point or filed;

« Maize crop: contains two options of irrigated and rained
with relative maturity, date of planting, plant population,
price of maize, and average yield of last 5 years;

« Last crop: contains type of crop, economic yield, total N
applied, date of maturity, amount of crop residue left in
field, and root-zone soil moisture at crop maturity;

o N fertilizer: contains N fertilizer already applied, type of
fertilizer, fertilizer to be applied, N amount from irrigation
water, and applied slow release N;

« Tillage: contains type of tillage, date of operation;

« Soil: contains top-soil organic mater content, bulk density,
average root-zone texture, soil pH, and root zone depth;

o Measured root zone soil nitrate: contains amount and date
of sampling;

e Manuring: contains type of manure, organic N content,
inorganic N content, moister content, fresh weight, and
date of application (actual of scheduled).

required inputs of the simulation include:

The Maize-N model simulates, on a daily basis, the dynamics
of soil organic matter mineralization, crop N uptake demand,
soil N balance, soil water balance, and N leaching beyond crop
rooting depth. Figure 1 shows the framework of the model
including inputs and outputs.

In our study, we use the Maize-N model to calculate N
leaching with the required inputs. According to former studies
summarized in related work section, variability in weather
and the susceptibility of inorganic N from soil and fertilizer
causes various N loss processes. The accuracy of N fertilizer
requirements before planting nearly always have a degree of
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uncertainty. Maize-N is a useful tool for scenario analysis to
evaluate the impact of different crop and soil management
options, and the associated influences on N fertilizer efficiency
in a specific cropping system defined by its environment,
which includes soil type, climate, crop rotation, and agricultural
systems.

B. Inverse-Distance Weighting Spatial Interpolation

Inverse Distance Weighting (IDW) [1] is a popular interpo-
lation technique in spatial interpolation, as it is ease to use and
straightforward to compute. The attribute value of an unknown
point z, is the weighted average of its known neighboring
points. The calculated weights are related to the distances
between the unknown point and the known points. To tune
the diminishing strength while distance increases, IDW can be
modified by a constant power ¢g. The IDW interpolation can
be expressed as:

n Zi
i=1 ((Tq )
n 1
i=1 (,Tq )

1

Zp:

where n is the number of known neighboring points, z; is the
attribute value of the ith known point, and d; is the distance
between the unknown point and the ith known point.

IDW weights the points closer to the intended point more
than those further away. To use the IDW method, a certain
points or all points in a certain radius from the intended point
can be used to define the value for each location. The IDW
method is a moving average interpolator that is usually applied
to highly variable data. In some situations, it is possible to go
back and record a new value if the result value is statistically
different compare to values in that area. The IDW method
has an assumption that points close to each other have similar
values compare to those farther away. The IDW function is
used when some locations are close enough to capture the
extent of local surface variation needed for analysis. IDW
determines cell values using a linear-weighted combination set
of sample points. Some or all of the data points can be used
in the interpolation process. The node value is calculated by
averaging the weighted sum of all the points.

C. Weather Data

Weather data includes two type of daily data: historical
weather data and forecast weather data. The historical weather
data is obtained from High Plains Regional Climate Center
(HPRCC) [31] weather data center and includes historical
weather variables of maximum and minimum temperature,
solar radiation, wind speed, relative humidity, ET (Evapotran-
spiration), and precipitation for about 200 weather stations in
the high plains region. Based on the geographical coordinates
of a location (i.e., latitude and longitude), the forecast weather
data is retrieved using APIXU API [29], and stored on the
database for the purpose of N leaching prediction.

D. Soil Texture Data

Soil texture data is one of the most important parameters in
the calculation of N leaching prediction. To define soil texture
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Fig. 2. (a) Our research area. (b) N leaching uncertainty distribution in our
research area.

in a filed, there are eight different categories including loamy
sand, sandy loam, silt loam, loam, sandy clay loam, silt clay
loam, clay loam, clay, and silt clay. As a field can be divided
into several sections based on the soil texture polygons, to have
an accurate visualization for N leaching the intersection of the
soil texture polygons and field polygons needs to be stored in
the database appropriately. Therefore, it is practical to store
this dataset in a format of TopoJSON, GeoJSON, or ShapeFile.
The primary source of soil data is obtained from USDA [5]
that provides soil texture polygons in the ShapeFile format.
The GeoJSON format facilities us to add more properties (such
as clay, sand, and silt percentages of a soil) to each GeoJSON
object.

V. APPROACH

The possible uncertainties that we need to consider include N
leaching engine input uncertainty, engine uncertainty, weather
data uncertainty, and soil texture data uncertainty. In this study,
we only consider weather data uncertainty. We first explore the
effect of weather data uncertainty on N leaching uncertainty for
one weather station. Second, we employ the IDW interpolation
method to get the interpolated weather data for calculating N
leaching at a location. Third, we compute simulated N leaching
data using weather data with uncertainty as an input parameter.
Then, we compare the difference between simulation data and
measured data. Finally, we visualize the spatial distribution of
each parameter on the map. We can explore the relationship
across the uncertainty in the input weather data, the output N
leaching data and its uncertainty, and other parameters.

A. Effect of Weather Data Uncertainty on N Leaching Uncer-
tainty for a Weather Station

At the first phase of our work, we explore the effect of
weather data uncertainty on N leaching uncertainty. We choose
one weather station located in Nebraska with 41.15, 96.48, 366
as latitude (deg), longitude (deg), and elevation (m). We take
one year of weather data for this location and use the N leaching
engine to calculate N leaching at this spot. We also calculate N
leaching for all the locations with distance of 50 miles in radius
from this location by assuming that there are uncertainties in
precipitation in locations farther away from our weather station.
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Fig. 3. Research area triangulation.

We assume that each 10 miles from that point the precipitation
might increase or decrease based on different parameters such
as elevation. By decreasing and increasing precipitation, we
compute N leaching. Our purpose is to compute uncertainty in
N leaching while there is uncertainty in precipitation at those
locations. Primarily, We have a square with 50 by 50 miles in
size with about 4200 grids that we study.

Figure 2(a) shows the research area, and Figure 2(b)
visualizes N leaching uncertainties. Visualization shows that N
leaching uncertainty increases if the distance from the weather
station increases as we have uncertainty in those points weather
data. Green color shows that uncertainty is almost zero at
weather station point and when we depart from that point
uncertainty increases and we see orange color when we have
50% uncertainty in weather data.

To make sure that N leaching calculator is accurate enough,
we have used a ground truth data of soil moisture content
from our previous study, and compared with the corresponding
simulated results. The main points of these ground-truth data
are as follow:

First, the experiment was conducted at two fields (Site 1
and Site 2) close to each other at Mead, Nebraska (30 miles
from Lincoln, Nebraska). The crop planted at these sites is
maize. Site 1 is irrigated while Site 2 is not irrigated (also called
rainfed). Beside the difference in irrigation, Site 1 is continuous
maize from 2001 to 2005, whereas Site 2 is maize and soybean
rotation, meaning one year of maize, and next year for soybean.
Thus, for Site 2 we have data of 2001, 2003 and 2005 as 2002
and 2004 was soybean and we do not use the data to calculate N
leaching for soybean because of different plant types behavior
[33]. N leaching from continuous corn averaged 24 mg, while
that from the corn-soybean rotation averaged 42 mg. Total
yearly nitrate leaching loss averaged 52 kg for continuous corn
and 91 kg for the rotation. This represents the equivalent of
27% and 105% of the amount of N fertilizer applied over the
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Fig. 4. N leaching output (a) before and (b) after completing the data.

six years of study. Soybean in Nebraska receives no or very
little N fertilizer. N leaching, however, can still be very strong,
because part of the N leaching comes from soil organic matter
mineralization, which is the same for corn crop and soybean.
When calculating the percentage of N leaching, we can easily
get a high value because of the small value of denominator.

Second, the soil moisture was monitored continuously in
each field during the cropping season at four depths of 10, 25,
50, and 100 cm. The model output for soil moisture is for
the layers of 0-30, 30-60, and >60 cm (60 -100). In order to
match the depth of measurement and simulation, the mean of
10 and 25 cm for 0-30cm, the mean of 25 and 50 cm for 30-60
cm, and the mean of 50 and 100 cm for 60-100 cm was taken.

Third, we used the calculated total amount of water in the
entire depth of 0-100 cm for both measured and simulated
results.

Finally, for the uncertainty, we used the total amount of
water in the 0-100 cm in depth. Uncertainty of the simulation
comes from two sources: the error of rainfall in the weather
data, and the error in the equations in the model. The weather
data that we have has some missing data in some days. We
first needed to fix the errors and fill those missing data. To do
that we filled out the missing data using available data from
the Automated Weather Data Network (AWDN) of HPRCC.

B. Interpolating Weather Data using IDW

Inverse Distance Weighting (IDW) predicts values at each
point by averaging the amount of sample data points in the
neighborhood of each processing point. The closer a point is
to the location being predicted, the more weight it has in the
averaging process. After visualizing N leaching in a specific
point explained in previous section, we used interpolation
methods to study how we can decrease uncertainties in weather
data and visualize in a more accurate way. There were a number
of weather stations in neighboring area of the studied location.
We developed a python script to make triangles from every
three weather stations, use the IDW interpolation method to
get the interpolated weather data for each grid point, and then
calculate N leaching in that area. Figure 3 shows how triangles
are generated with the surrounding stations.

The result of this study at this point is shown in Figure 4(a).
However, we did not have perfect weather data. There were
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Fig. 5. Weather data estimation by the IDW method.

some missing weather data or soil texture data that we needed
to find and fill out in our database. After completing the data,
we repeated this step and result is shown in Figure 4(b). The
visualization illustrates that in the area that there are rivers or
creeks there is almost 100% chance of N leaching. The darker
color line means that there is a creek or river. Lighter colors
show less leaching. According to our findings, if the area is
with more rain and the soil texture type is silt clay loam, there
are more chance of N leaching to the ground water compared
to other soil textures.

C. Collecting More Data

With the precipitation from weather data, soil type, applied
N, and the amount of irrigation at a certain location, we can
get the value of possible N leaching using the Maize-N model.
In order to obtain more accurate results and conclude our study,
we need to have more data. To do this and based on different
studies on IDW accuracy, we decided to use the IDW method
and make data to feed in our platform. In our database, we have
420 weather stations that are located mostly in the Midwest of
the U.S.. We studied 8 different sites in the states of Nebraska,
Towa, Kansas, and Colorado, and named these sites from 1 to
8. We chose 32 weather stations in these states.

We have developed another script to select one point at each
time and use this point to create a triangle around this point.
The steps of choosing the points and applying the IDW method
have been shown in Figure 5. Given a set of weather stations
(the blue points in Figure 5), we process the location of each
station. For a weather station location (the yellow point in
Figure 5), we choose three closest weather stations around this
location point and create a triangle in our platform. After that,
we use the triangular interpolation method to measure weather
data (e.g., rainfall). The results of running this script give us
420 files (.wth files) of interpolated weather data.

As we need ground truth data to compare our results, we
cannot randomly select points on the map and get interpolated
weather data and calculate N leaching. This is because we
do not have any way of proving our method and compute
uncertainty on the weather data and at the end get N leaching
uncertainty. To address this, we used the Maize-N engine to
calculate the amount of N leaching. Figure 6 shows an example
of the engine outputs. The outputs include total nitrogen in
soil (green), nitrogen from soil organic matter (red), nitrogen
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Fig. 6. Maize-N model soil mineral N and crop N uptake in a weather station
location in Nebraska.

from root (dark green), nitrogen uptake by plant (light blue),
and rainfall (dark blue) with mineral uptake and temperature
as the x and y axes.

D. Quantifying Uncertainty Error

After having the option of calculating N leaching using the
IDW method, we need to calculate the amount of uncertainty
for this method for our selected points and get the error of the
results. We select a weather station location as a study point.
We choose 3 closest weather stations around this location point
and creates a triangle in our platform. After that, we used the
triangular interpolation method to measure rainfall. We know
the accurate amount of rainfall for this point because this point
has a weather stations and our goal is to measure the amount of
estimated rainfall using the interpolation method and compare
both data together. As this point is the weather station location,
we assume the precipitation data at this location is accurate.

We use this data and calculate N leaching at this point with
the Maize-N model. Next, we presume there is no weather
station at this location and use the interpolation method to get
precipitation data. Then, we calculate N leaching again. Last,
we compute the error between these two N leaching results
and get the amount of uncertainty.

We use the IDW interpolation method and Equation 3 to
calculate the error:

(i — He) ¥ 100
He

where y; is the result of N leaching from the interpolated
method at point i and p, is the result of N leaching from
the estimated data from weather stations. As shown in Figure
7, we also use RMSE to assess the error of uncertainty with

Equation 4:
1
RMSE = | - E(1i — He)

where 7 is the number of data points.

3)

error(%) =

“4)

E. Uncertainty Visualization

We design a visualization approach with multiple compo-
nents, as shown in Figure 8.
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Fig. 7. The process to compute RMSE.

Fig. 8. Main components of our visualization approach.

First, we visualize each parameter as an individual layer
that can be superimposed on the map layer. For each layer,
our approach supports different visualization methods, such as
heat map and contour map, to show the different properties
of the corresponding parameters, as shown in Figure 8(a). For
example, Figure 9 (a) illustrates an N leaching heat map that
has been made using Python and QGIS. We also visualize soil
drainage values through heat map in Figure 9(b).

Second, we use parallel coordinates to visualize the relation-
ship among the parameters, as shown in Figure 8(b). More
importantly, a user can brush the parallel coordinates plot to
select certain interesting portion of parameters and get more
detailed relationship among them.

Third, apart from their relationships, the parameter ranges
selected by a user can be also examined on the map, as shown
in Figure 8(c). In this way, we cannot only see the possible
relationship between values of different parameters, but also
explore their spatial distributions. For example, a higher weather
uncertainty value may cause a higher N leaching uncertainty
for a location with a certain soil type; however, this would not
be held for different soil types at other locations.

Through these main components, our visualization approach
allows users to display different parameters with different
visualization styles. A user can interactively brush parallel
coordinates to examine the relationship among the parameters.
The corresponding selected data ranges can be updated on the
map. Our visualization can make it easy and intuitive for a
user to explore the effects of parameter uncertainties across
different geolocations.

VI. RESULTS AND DISCUSSIONS

To experiment our system, we consider 80 sites from the
database. Using the IDW method, we calculate N leaching using
the N leaching engine. Therefore, we have 80 weather-stations
with available weather data, 80 values of N leaching for these
sites, and 80 interpolated values of weather and N leaching data.
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Fig. 10. Our platform showing N leaching and visualization parameters.

Since we have all of the required data to compare the results
and calculate uncertainty, we use Equation 3 to compute the
value of the error at each location and Equation 4 to calculate
RMSE. The calculated results are shown in Table (I).

% of Error Range in Entire Study Area

Error Range IDW
-10% to 10% 11.25
-20% to 20% 10
-50% to 50% 38.75
else 40
RMSE 3.69

TABLE I
ROOT MEAN SQUARE ERROR RESULTS.

We compare our results from the interpolation method with
the N leaching engine results to quantify uncertainty. The
difference between the estimated data and the interpolated data
gives us the uncertainty. We visualize this uncertainty for the

region that we select and use in all of our visualization steps.

We use different visualization methods including heat map and
contour map. Our visualization approach can illustrate different
parameters on top of the map. Figure 10 shows an example
view of our platform for N leaching.

Figure 11(a) shows the contour map of N leaching visualized
using our approach. We also visualize the elevation of the
research area to study the effect of elevation in N leaching,
as shown in Figure 11(b). Blue means lower elevation while
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Fig. 11. (a) N leaching contour map. (b) Research area elevation. (c) Soil
drainage classification contour map.

(a) (b)

Fig. 12. N leaching comparison chart (a) and uncertainty error bar chart (b)
for different weather stations.

red means higher elevation. Based on this visualization, in
our N leaching results we should see higher N leaching in
red areas. Figure 11(c) classifies different soil types in the
research location based on water drainage into the soil. Different
soil type has different ability to hold or drain water. The
drainage value has a direct effect on N leaching. This layer of
visualization can be merged with other layers of data to create
powerful results.

Figure 12(a) shows the comparison among the data that we
gathered for estimated, interpolated, and error of N leaching.
Figure 12(b) shows the estimated N leaching values with the
error bars that we calculated from N leaching of the interpolated
results. For both plots, the horizontal axis presents the weather
stations and the vertical axis represents the N leaching values.
As a result, the N leaching value varies in different locations
with diffident uncertainties, which are dependant on different
parameters including weather data, elevation, and soil data.

To get a better understanding of the relation between the
parameters and the N leaching, we use parallel coordinates plots.
We have implemented these plots in JavaScript. The vertical
axes are corresponding to estimated precipitation, interpolated
precipitation, estimated leaching, interpolated leaching, soil
drainage value, precipitation error, N leaching error, and
elevation data. Each vertical axis contains different values
for an individual parameter.

The results show that there are different leaching values
for different values of measured precipitation, and there might
be different amount of leaching for interpolated precipitation
values. By closely examining the plots, we can see this is
because there are other parameters influencing these values.
These parameters include soil drainage value and elevation.
As shown in Figure 13, if we select the high leaching values,
they are highly correlated to a specific soil drainage value and
relatively lower elevation values.

Another observation that we can obtain is that the highest
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Fig. 13. Relationship between high N leaching values,
elevation.
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Fig. 14.
parameters .

Relationship between highest level of precipitation and other

level of precipitation may not necessarily cause highest N
leaching. As shown in Figure 14(a) and (b), the highest value
of estimated precipitation that is 125 and results different N
leaching values, where one value is 7 and is low. However, if
we continue looking at the values of the plot parameters in
Figure 14(b), we can see that the soil drainage is also very low
for these low leaching amounts. Moreover, we can see that the
interpolation values for precipitation that we calculated have
high errors.

Figure 15 shows the relationship between the high N leaching
errors and other parameters. We can see that they are highly
correlated to lower elevation values and negative precipitation
errors, and have associated with different estimated precipita-
tion values.

Finally, we add a user interaction feature in our system for
visualizing N leaching. On the map, a user can draw a polygon
region, and a parallel coordinates plot will appear based on the
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Fig. 16. A parallel coordinates plot is displayed for a user selected region
(a). A user can brush different axes of the parallel coordinates plot to explore
their spatial distributions (b)-(d).

calculations of the parameters (i.e., N leaching, precipitation,
error, elevation, etc.) in the selected region. Colors on a plot
represent the values for each parameter (i.e., red for higher
and blue for lower values). The user can brush different axes
of the parallel coordinates plot, and the spatial distribution of
the selected data ranges of parameters can be displayed on the
map, as shown in Figure 16.

VII. CONCLUSION

It is important and helpful for scientists and farmers to
understand N leaching to the soil and to ground water. We
have developed a platform that demonstrates N leaching using
different visualization methods. We have created a database
for weather data within the regions including Nebraska, Iowa,
Colorado, and Kansas. We use the Maize-N engine to calculate
N leaching. Some input parameters are set according to the
common ranges used by the farmers, such as the amount of
applied fertilizer, the date of planting, and so on. We have
selected 300 weather stations inside of these states and fed the
weather data into our database. We have used the Maize-N
model to calculate N leaching for year 2017 for all of these
stations. As we do not have enough weather stations in those
area that are close together, we can have uncertainty in weather
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data. Therefore, we gain uncertain N leaching values for the
points far from weather stations locations.

To compute uncertainty at these locations, we have used the
IDW interpolation method, and compared the estimated values
and interpolated values to calculate the uncertainty. We assume
that the result of N leaching in the location of a weather station
is accurate because the precipitation is more accurate than other
points. We also assume that the data for soil texture and the
input data that we use to calculate N leaching is certain. We first
calculate N leaching using these data, and then use the same
data except for precipitation that we use interpolated value
to calculate nitrogen leaching. Afterwards, we compute the
differences between these two values to determine uncertainty.
The results show that the uncertainty in locations that are not
very close to weather stations varied based on distance of
the studied points from other weather stations. The calculated
RMSE for theses studied points is 3.69. We visualized the
results of uncertainty to have a better understanding of N loss
in different areas with different elevation, soil type, and weather
datasets. Our visualization includes parallel coordinates plots
with interactive operations on a map.

For future work, we would like to use Markov Chain Monte
Carlo (MCMC) and Bayesian Inference to calculate uncertainty
and compare those results with our current result. We plan to
visualize uncertainty in various methods. We will compare them
and expand this nitrogen leaching uncertainty visualization in
more extensive area such as illustrating the leaching for all
states in the United States.
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