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Abstract—Functional electrical stimulation (FES) is a promis-
ing technique for restoring reaching ability to individuals with
tetraplegia. To this point, the complexities of goal-directed reach-
ing motions and the shoulder-arm complex have prevented the
realization of this potential in full-arm 3D reaching tasks. We
trained a Gaussian process regression model to form the basis
of a feedforward-feedback control structure capable of achieving
reaching motions with a paralyzed upper limb. Over a series of
95 reaches of at least 10 cm in length, the controller achieved
an average accuracy (measured by the Euclidean distance of the
wrist to the final target position) of 3.8 cm and an average error
along the path of 3.5 cm. This controller is the first demonstration
of an accurate, complete-arm, FES-driven 3D reaching controller
to be implemented with an individual with tetraplegia.

I. INTRODUCTION

For the approximately 170,000 individuals with some level
of tetraplegia due to spinal cord injuries [1], the restoration
of hand and arm function is their greatest priority to improv-
ing their quality of life [2]. Functional electrical stimulation
(FES) is a promising technique for helping these individuals
complete the reaching motions necessary for daily living.

Many approaches have been attempted for achieving arm
function with FES by first reducing the complexity of the
arm-control problem. For repetitive tasks such as grasping,
the complexity of the system was reduced by using prepro-
grammed, repeated stimulation patterns [3]. The extension of
the repeated stimulation pattern method to full-arm reaching
[4] cannot achieve all daily reaching tasks because the ever
changing, goal-directed nature of reaching motions would
require an infeasible amount of predetermined stimulation
patterns. Any everyday reaching controller must be able to
automatically select the stimulation commands necessary to
achieve any novel, feasible reach.

Another common approach to reducing the complexity of
controlling reaching motions is to control each joint indepen-
dently. FES controllers have demonstrated success in control-
ling individual joints such as elbow extension [5]. Extending
this success to controlling multiple joints (separately), the
MUNDUS program [6] used a lockable exoskeleton to lock
all uncontrolled joints while a single joint was driven with
FES. The current state-of-the-art FES-reaching system, the
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BrainGate2 clinical trials, controls each joint independently
but simultaneously [7]. Based on user intent (read by an
intracortical brain computer interface), the controller selected a
position along a predefined stimulation pattern for each of the
joints. The controller had difficulties with multi-joint motions
because the independent joint control could not account for
joint interactions. The independent joint control method also
does not allow for using the kinematic redundancy of the arm
to complete tasks in different ways. In order to successfully
control reaching motions, it is necessary to treat the arm as a
complete system and not as independent joints.

Various methods of controlling the complete arm have been
attempted. In computer simulations, optimized proportional-
derivative control [8], combined feedforward-feedback control
[9], reinforcement learning [10], and threshold control [11]
have all successfully controlled reaching motions. Practically
implementing these methods is difficult due to the real-world
arm dynamics differing from the simulation.

Model learning, which uses data-driven machine learning
models rather than parameterized physics-based models to
predict the behavior of physical systems, has been used exten-
sively to control robots (see [12] for a review) and is especially
suitable for using FES to control the human arm. We intend to
control multiple joints with multiple muscles — a problem that
grows significantly in complexity as more joints and muscles
are added. Using a physics-based model for FES control as in
[13] may be effective for single joint systems with one or two
muscles. However, as system complexity increases, the number
of parameters needed to accurately model the arm increases.
Further, guaranteeing parameter identifiability (e.g. of joint
inertias) is extremely difficult given the limitations on range of
motion and acceptable movement speeds for people with spinal
cord injuries. Although model learning (with artificial neural
networks) has been used for FES control of planar reaching
in healthy persons [14], it has not been demonstrated for 3D
motions in people with spinal cord injuries.

In our own prior research, we have used model learning
approaches to complete steps towards full-arm reaching. We
have used semiparametric Gaussian process regression (GPR)
to predict joint torques produced by muscles [15]. We built
on this success by using nonparametric GPR models of the
arm to form the basis of a feedforward-feedback controller
to hold static wrist positions [16]. With this controller, we
attempted quasi-static reaches with no intermediate points
(used the model of the final position as the model for the entire
reach) with some success, but there was significant oscillation
and large overshoot in the reaching error [17]. In simulation,
we showed that adding external damping and quasi-static
intermediate points improved the controller performance [18].



The purpose of the current study is to build upon our
previous work and develop a control structure capable of
achieving full-arm, 3D reaching motions driven by FES. This
is an important step towards the use of FES in the home to
restore the full-arm reaching motions critical to completing
many activities of daily living. We present a method of
developing a subject-specific model of an individual with
tetraplegia’s arm and its response to electrical stimulation.
We use this model as the basis of a combined feedforward-
feedback controller capable of automatically determining the
stimulation commands necessary to achieve desired reaching
motions within the subject’s workspace.

We evaluated the performance of the controller for complet-
ing reaching tasks. In particular we quantified the accuracy
of the controller for moving the wrist to a desired final
position and determined if there was a difference in accuracy
based on target location. These results will guide the future
developments of FES-driven reaching controllers.

II. METHODS

In this study, we used a model learning based control
strategy to complete reaching motions with an individual with
high tetraplegia and an implanted FES neuroprosthesis. During
the experiment, we 1) developed a Gaussian process regression
model for the force the muscles produce as a function of the
wrist position, and 2) used the model as the basis of an FES
controller to move the wrist along desired paths.

The experiment took place during a four-hour time block.
Experimental set up and identifying the model of the arm
required approximately 1.5 hours. The participant took a half-
hour break for lunch. The remaining time of the session
was used to attempt randomly selected reaching motions. The
participant was allowed breaks whenever requested.

A. Experimental Setup

We completed the experiments with a single human par-
ticipant who has high tetraplegia and lacks voluntary control
of her right arm. The participant’s abdomen is implanted
with a stimulator-telemeter [19, 20, 21] that can deliver
current to activate nine independent muscle groups: triceps,
deltoids, latissimus dorsi, serratus anterior, biceps/brachialis,
supra/infraspinatus, rhomboids, lower pectoralis, and upper
pectoralis. Muscle stimulation is delivered via bi-phasic,
charge balanced pulses delivered at 13 Hz. The amplitude of
the pulses is constant for each muscle group. The activation
of each muscle group is controlled by varying the pulse-
width (referred to as the stimulation input) from 0-250 us.
The participant’s wheelchair is equipped with a passive arm
support that assists against the force of gravity to create a
comfortable and achievable workspace. More details can be
found in [22] (Subject 1) and [16]. Protocols used for this
research were approved by the institutional review boards at
Cleveland State University (IRB NO. 30213-SCH-HS) and
MetroHealth Medical Center (IRB NO. 04-00014).

We gathered training data for using a HapticMaster (Moog
FCS) robot with three degrees of freedom. The robot records
the 3D forces and positions of its end-effector. An Optotrak

Certus Motion Capture System (Northern Digital, Inc.) cap-
tured data used to measure the position of the wrist for data
gathering for modeling and feedback during reaching.

Our previous research (and that of others) has demonstrated
that significant oscillations occur with feedback FES control
due to the delays in the FES system (low frequency of stimula-
tion and electrical-muscular activation delays). In simulation,
we were able to improve the controller performance by adding
physical damping to the arm support [18]. Due to this finding,
we used the robot to create a damped environment (20 N-s/m
in each direction) during the reaching experiments.

The control and data collection occurred at 52 Hz, but
stimulation inputs were updated at 13 Hz.

B. Model Learning

Our model learning procedure was previously presented in
[16]. We present a detailed summary here for completeness.
The basis of our controller (shown in Fig. 1) was a model
consisting of three parts: 1. arm statics (predicts the forces
necessary to hold a desired wrist position), 2. muscle force
production (the mapping from wrist position to the maxi-
mum forces produced at the wrist by each muscle), and 3.
recruitment curves (the mapping from muscle group electrical
stimulation to muscle activation). Our controller inverts each
part of the model to determine the muscle group stimulation
commands necessary to achieve a desired wrist position.

To gather the model training data, a robot held the partici-
pant’s wrist at a series of static positions within her comfort-
ably reachable workspace. The connection of the participant’s
wrist to the robot was via a ball-in-socket joint that does
not transmit torque. The robot was equipped with a three-
dimensional force sensor at its end-effector, and the force
needed to hold the wrist stationary, f,. € R3, was recorded.

To determine the arm statics, the robot held the arm in a
position with zero muscle stimulation, and, thus, all muscle
activations, o € R?, were zero. Therefore,

f, =p(x) (1)

Tstatic
where p(x) € R3 are the forces necessary to hold the wrist
in the static position, x € R3.

To determine the force production of the j™ muscle group,
the muscle group was stimulated at its maximum stimulation
command so that a(j) = 1. The forces required for the robot
to hold the wrist stationary, f._, ;, are then defined by the
difference of the forces with zero stimulation (i.e. the required
static forces) and the forces produced by the muscle group,

f, =p(x) - M(x)a, (2)

Tstim

where M(x) € R3*% is the linear mapping of muscle
activation to forces at the wrist and p(x) are the forces when
stimulating no muscles. Each column of M(x) represents the
forces produced in each Cartesian direction by 100% activation
of the corresponding muscle group. The 5 column of M(x)
is determined by subtracting f;_,, ;, the recorded force during
stimulation of muscle group j, from the previously identified
static forces, f,

Istatic?

M(X)j =1

Tstatic
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Fig. 1. Controller block diagram. The controller determines the muscle
stimulation commands necessary to achieve a desired wrist position.

At a previous experimental session, we gathered training
data by measuring f,_, ... and f,_,, = for all muscle groups at
27 wrist positions, x, within the participant’s workspace. We
repeated the set of measurements three times with a random
order of wrist positions and muscle group activations. The
data was used to train a set of GPR models with the input
being the wrist position and the output being the force in one
direction measured by the robot. A model was trained for the
force produced in each degree of freedom for each of the
nine muscle groups as well as for the static arm (zero muscle
activation) resulting in 30 total models. The squared expo-
nential covariance function with automatic relevance detection
was used, and the optimal hyperparameters were identified
[23]. Using the GPR models, we can calculate f._ .. and
f..... and thus determine p(x) and M(x), via (3), at any
position in the subject’s workspace. In the controller (Fig. 1),
the GPR models form the basis of the “Inverse Arm Statics”
and “Inverse Muscle Force” blocks.

To account for changes in the arm and muscles from the
time of modeling, we gathered new training data from a single
set of 27 wrist positions at the start of the reaching experiments
session. We reused the previously found hyperparameters to
train a new model with less data and thus less time. This
method allows for identifying an accurate model the day of
the experiment which is critical for accurate control.

The recruitment curves, the mapping from stimulation input
to muscle group activation, for each muscle group were
identified using the deconvolved ramp method [24].

C. Controller

The controller automatically determines the muscle stimula-
tion commands necessary to move to a desired wrist position.
The controller (Fig. 1) uses the model presented in section I1I-B
along with feedback to determine the forces and corresponding
muscle group activations necessary to achieve a desired wrist
position. The stimulation inputs are then determined and
applied to the arm.

The input to the controller is the desired wrist position,
x, € R3. The controller calculates the open-loop forces,
p(x.), necessary to hold a desired position by using the GPR
models of the inverse arm statics. Feedback is added using
a positional proportional-integral controller which adjusts the

open-loop forces with corrective forces in each Cartesian
direction to get the desired forces, fges. Next, the controller
uses the GPR models of muscle force production and (3)
to identify the elements of the mapping from muscle group
activations to wrist forces, M(x,). After determining the
desired forces and the muscle-force mapping, M(x,), we
calculate the muscle activations, a¢ which will produce the
desired forces.

Determining the desired muscle activations during real-time
feedback control requires overcoming two main problems at
this point: 1) the arm is a redundant system in that there are
more muscle groups than degrees of freedom (i.e. M(x.)
is not square), and 2) the use of feedback means we have
no control over the forces that the controller calls for and
thus feedback overcompensation, the calling for forces above
the greatest possible force, and muscle activation saturation
can occur. Solving the system redundancy can traditionally
be completed using a constrained optimization routine such
as a quadratic programming routine. However, in the case
of feedback overcompensation (which can happen with little
feedback compensation in an individual with tetraplegia due
to muscle weakness from atrophy), constrained optimizations
are unable to find a feasible solution (one where the muscle
forces are between zero and one) because one does not exist.

Our solution to these problems is to use the quasi-Newton
method to find the ¢ that minimizes the penalty function,

o3 + 1 M(x.)a — faeall3 + 2K + 5T
a?ifa; <0

(a-1)2ifa; >1 , (4
0if0<a; <1

K =" Fk; where k; =

T = fges X M(x:)x

where  ||c||3 minimizes the muscle activations,
IM(x.)ox — fges||2 penalizes activations that do not
produce the desired force, K penalizes activations which do
not belong to a; € [0,1], and T penalizes activations that
produce forces in an incorrect direction. The penalty weights
were chosen to be ¢; = 100, ¢ = 10,000 and c3 = 1,000
because they produced feasible muscle activations with the
forces in the right direction during offline testing.

When feedback overcompensation occurs, our controller
aims to produce the most possible force in the direction of
the desired force. The T term of the objective function works
to make this happen by penalizing forces not in the desired
direction. When the forces become significantly larger than the
maximum possible forces in a given wrist position, the penalty
function solution breaks down and can lead to solutions which
do not make sense (activations greater than one or less than
zero) or to an inability to find a solution.

To improve these solutions, we developed a method to re-
strict the forces to within a rectangular prism of the maximum
forces that can be produced in each direction. The maximum
force that can be produced in each of the Cartesian directions
(positive and negative directions) is determined and recorded
offline. In the force space, a rectangular prism is drawn with
faces at each of the maximum forces. If the desired force is
greater than the maximum force that can be produced in any
of the Cartesian directions, the intersection of the force vector



and the rectangular prism is found, and this point becomes
the new desired force. This scales the desired force back to a
position closer to the feasible force space while maintaining
the desired direction. While this point is not guaranteed to be
feasible, this scaling resulted in more reasonable activations
as a solution to (4).

Once the activations are found, the inverse recruitment
curves block calculates the stimulation inputs.

D. Reaching Experiments and Data Analysis

To evaluate our controller’s ability to control reaching
motions, we quantified the accuracy of the controller over
a series of reaches throughout the participant’s workspace.
Each reaching trial lasted for five seconds and consisted of
a one-second hold at the starting position, a two-second ramp
from the starting position to the target position, and a two-
second hold at the target position. The straight-line ramp
between positions was selected because previous quasi-static
experiments showed that planning a defined path of closely
spaced points between the target and goal would improve the
performance (speed, smoothness, and accuracy of movement)
[17, 18], and a ramp is the limit of lowest spacing and time
between each quasi-static point (we use the term quasi-static
because the controller is based on a static model but is used to
create reaching movement). An example of a desired trajectory
can be seen in Fig. 2.

Prior to completing the reaching experiments, the PI con-
troller was tuned. The controller was tuned using a series of
3 random reaching motions. The gains were manually tuned
to improve the final accuracy without increasing oscillations.
The values of the proportional and integral gains were selected
to be 10 N/mm and 0.3 N/mm-s respectively.

During the reaching trials, the subject’s wrist was connected
to a robot which moved the subject’s wrist to the starting
position for each trial and created a damped environment
during the reach. At the start of each trial, to limit the effects
of the transient muscle dynamics and guarantee the controller
starts at the correct point, the wrist was held stationary for
the first 0.5 seconds. For the rest of the reach, the wrist was
allowed to move as driven by the muscle stimulation.

To select the target reaching motions, we created a grid of
wrist positions with 1 cm spacing within the convex hull of the
27 positions visited during the gathering of the model training
data. Start and target positions were randomly selected from
this wrist position grid to create reaches of at least 10 cm in
length. The average reach length was 13 cm. Once the start and
target positions were selected, the complete desired reaching
path was determined. For each wrist position along the path,
X., the open-loop muscle forces, p(x. ), and the muscle force
production matrix, M(x,) were determined offline before the
trials. At each time step, the controller used p(x.) and M(x,)
for the current desired position.

For each reach, the average wrist position over the final 0.5
seconds was recorded. The final accuracy of the reach was
determined by the Euclidean distance between this average
final wrist position and the desired target position. We also
measured the accuracy over a complete reaching motion which

we refer to as the path accuracy. The path accuracy for a
single trial is defined as the average Euclidean distance from
the wrist position to the desired target position over all time
steps. As part of the analysis, a few factors were compared
to determine their effect on the controller performance. These
factors included the position of the target and whether the
selected path had a feasible target position. Feasible target
positions are defined as a position where the model can select
muscle activations capable of achieving the predicted open-
loop forces. In an attempt to complete more possible reaches,
non-feasible and feasible target positions were selected. We
completed as many unique reaches as possible in the allotted
time (95 total reaches). A 2-sample t-test was used to deter-
mine if these factors had an effect on the controller.

III. RESULTS

Over 95 trials, our controller achieved reaching motions
with an average final accuracy of 3.8 cm (standard devia-
tion of 2.2 cm) and an average path accuracy of 3.5 cm
(standard deviation of 1.5 cm). Figures 2(a) and (b) show a
representative reach with a final accuracy of 2.1 cm and a
path accuracy of 1.9 cm. As seen, the wrist position is able
to track the desired reaching path and finish near the desired
position. Figure 2(c) shows the muscle group activations that
the controller calculated during the trial. The activation of the
deltoids muscle group (bold) shows a clear example of the
feedback controller correctly adjusting the muscle activation.
The deltoids muscle group produces a force at the wrist to
the subject’s right (positive y direction). As seen, when the
wrist position is to the left of the desired position (lesser
y position), the activation of the deltoids increases to drive
the wrist to the right. The deltoids activation decreases when
the wrist moves to the right of the desired position. This
example and the overall accuracy results demonstrate that
the controller successfully calculated the muscle stimulation
commands required to achieve the desired reaching motions.

Figure 2 also shows that though there were some oscilla-
tions, the amount was limited and generally low frequency
which could be tolerated by the subject and would still be
useful in a functional task. This experimentally demonstrates
the efficacy of using a proportional-integral controller to
produce reaching motions within a damped environment.

There was a significant difference (p < 0.001) in the
final accuracy of reaching motions with feasible final target
positions (4 = 2.1 cm, N=22) and the accuracy of reaches
with infeasible final target positions (¢ = 4.3 cm, N=73).
There was also a significant difference (p < 0.01) in the
final accuracy of reaching motions to the extreme right of the
subject’s workspace, defined by the target being greater than
5 cm to the right of the center of the subject’s thorax (u =4.9
cm, N=25) and the rest of the workspace (u =3.4 cm, N=70).
This difference in accuracy based on position can be seen in
Fig. 3.

IV. DISCUSSION

We have used model learning to develop a controller ca-
pable of achieving arbitrary reaching motions with an FES-
controlled paralyzed arm. Our controller accurately moves the
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Fig. 2. This figure shows the details of an example 10 cm reach with final
accuracy of 2.1 cm and path accuracy of 1.9 cm. (a) shows the overhead view
in the x-y plane. (b) shows the time history of the reach in each Cartesian
direction (dashed lines). As seen, the wrist was able to track the desired wrist
position (solid lines). (c¢) shows the muscle activations which are automatically
selected by the controller to track the desired path. As an example, the deltoids
muscle group (highlighted) is activated to move the arm to the right (positive
y) when necessary and turned off when the wrist needed to move left.

wrist along a desired path while accounting for the issues of
a redundant system and feedback overcompensation/muscle
activation saturation due to muscle weakness in individuals
with spinal cord injuries. To our knowledge, this is the
first demonstration of autonomously-selected electrical muscle
stimulation for integrated shoulder and elbow control to pro-
duce 3D reaching movements in an individual with tetraplegia.

The controller accurately completed reaches throughout the
participant’s workspace. The final accuracy of 3.8 cm is suffi-
cient to complete many daily reaching tasks such as grabbing a
cup to drink. For points that our model predicted were feasible,
the accuracy of 2.1 cm is, to our knowledge, the best reported
3D reaching accuracy achieved by FES. The improvement in
accuracy for feasible points over the accuracy of infeasible

8 cm

6 cm

4 cm

2 cm

Fig. 3. This figure shows the target position and relative accuracy (represented
by the size and color of each point) for all completed reaches. As seen, for
targets to the right of the subject’s workspace the accuracy is on average,
worse than for the other target positions.

points is promising moving forward as the predicted feasible
points can be used to select reaching paths that will have
better overall accuracy (i.e. only traveling through/to predicted
feasible points). The good overall accuracy for all points is
also important as it is difficult to only choose paths that cross
only feasible positions because of the limited workspace for
individuals with tetraplegia.

The achieved path accuracy of 3.5 cm shows that the
controller is able to accurately track a desired wrist path.
This is important because when completing reaching tasks it is
necessary to be able to reach a desired final hand position via
differing paths. For example, when reaching out to pick up a
fork off a table, the person may need to avoid bumping a cup
of water with the hand. With the achieved path accuracy, our
controller has the potential to achieve desired target positions
while traveling along different paths.

Our accuracy was similar to the accuracy found in [14] of
approximately 2 cm for planar reaching motions with healthy
subjects as well as to our previous work with holding static
wrist positions with an accuracy of 2.9 cm. This is encouraging
because maintaining a similar accuracy while expanding to
3D reaching motions, controlling more muscles, and working
with an individual with tetraplegia is critical if our controller
is to restore everyday reaching motions outside of a laboratory
environment.

Reaches to the extreme right hand side of the subject’s
workspace were less accurate than those towards the middle
of the workspace. It was observed during trials to the right
positions that the wrist would seem to reach a “sticking point”
when trying to move out to the right. Reaching these targets
often involved moving near the boundary of the workspace
and sometimes a straight line to the target (as would be
called for by the feedback controller) could pass through
an unreachable space. Therefore, more advanced trajectory
selection that guides the wrist through only reachable points
may improve the performance to these extreme targets.

One major issue with any model-based FES controller is
the changing muscle dynamics due to fatigue and atrophy.
It is difficult to ensure that the model remains accurate over
time. The performance of our controller demonstrates that our
new, faster modeling procedure of developing new training
data while maintaining the hyperparameters from a previously
trained model is a way to update the model to maintain accu-



racy. The complete modelling procedure takes approximately
three hours to gather the data and train the models. The day-of
experiment update only requires 35 minutes. This increase in
model learning efficiency will allow the model to be updated
more frequently and the controller to maintain it’s performance
over time. Additionally, the performance seen during this
experiment validated our previously simulated result that a
damped environment can improve the performance of an FES
controller [18]. It is relatively simple to create a damped
environment by adding physical damping to the arm support
that individuals with tetraplegia often, due to muscular atrophy,
require to assist against the force of gravity and create a
functional workspace.

The performance of this controller is a positive step to
using an FES-controlled arm to restore everyday reaching
tasks to individuals with high tetraplegia. To complete the goal
of completing all possible reaching tasks, the accuracy must
be improved throughout the workspace. This could be done
through better path planning or through robotic assistance.
Robotic exoskeletons have been shown to work cooperatively
with FES to improve the accuracy of control for walking [25]
and elbow flexion movements [26]. The robotic exoskeleton
could be also used to replace the subject’s arm support and pro-
duce the necessary damped environment. Additionally, with an
accurate low-level FES controller, a brain control interface (or
other input device), such as that used in the BrainGate2 study
[7], could be used to determine the desired reaching target. Our
controller could then automatically complete the desired reach.
The subject’s intent during the BrainGate2 study was able to
be decoded, but controlling each joint independently made
the reaching motions difficult. Our controller could replace
this low level independent joint control with a complete arm
controller. Combined with these possible solutions, an accurate
FES-reaching controller is a critical step to restoring the
reaching ability to individuals with tetraplegia in the home.
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