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Abstract—Functional electrical stimulation (FES) is a promis-
ing technique for restoring reaching ability to individuals with
tetraplegia. To this point, the complexities of goal-directed reach-
ing motions and the shoulder-arm complex have prevented the
realization of this potential in full-arm 3D reaching tasks. We
trained a Gaussian process regression model to form the basis
of a feedforward-feedback control structure capable of achieving
reaching motions with a paralyzed upper limb. Over a series of
95 reaches of at least 10 cm in length, the controller achieved
an average accuracy (measured by the Euclidean distance of the
wrist to the final target position) of 3.8 cm and an average error
along the path of 3.5 cm. This controller is the first demonstration
of an accurate, complete-arm, FES-driven 3D reaching controller
to be implemented with an individual with tetraplegia.

I. INTRODUCTION

For the approximately 170,000 individuals with some level

of tetraplegia due to spinal cord injuries [1], the restoration

of hand and arm function is their greatest priority to improv-

ing their quality of life [2]. Functional electrical stimulation

(FES) is a promising technique for helping these individuals

complete the reaching motions necessary for daily living.

Many approaches have been attempted for achieving arm

function with FES by first reducing the complexity of the

arm-control problem. For repetitive tasks such as grasping,

the complexity of the system was reduced by using prepro-

grammed, repeated stimulation patterns [3]. The extension of

the repeated stimulation pattern method to full-arm reaching

[4] cannot achieve all daily reaching tasks because the ever

changing, goal-directed nature of reaching motions would

require an infeasible amount of predetermined stimulation

patterns. Any everyday reaching controller must be able to

automatically select the stimulation commands necessary to

achieve any novel, feasible reach.

Another common approach to reducing the complexity of

controlling reaching motions is to control each joint indepen-

dently. FES controllers have demonstrated success in control-

ling individual joints such as elbow extension [5]. Extending

this success to controlling multiple joints (separately), the

MUNDUS program [6] used a lockable exoskeleton to lock

all uncontrolled joints while a single joint was driven with

FES. The current state-of-the-art FES-reaching system, the
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BrainGate2 clinical trials, controls each joint independently

but simultaneously [7]. Based on user intent (read by an

intracortical brain computer interface), the controller selected a

position along a predefined stimulation pattern for each of the

joints. The controller had difficulties with multi-joint motions

because the independent joint control could not account for

joint interactions. The independent joint control method also

does not allow for using the kinematic redundancy of the arm

to complete tasks in different ways. In order to successfully

control reaching motions, it is necessary to treat the arm as a

complete system and not as independent joints.

Various methods of controlling the complete arm have been

attempted. In computer simulations, optimized proportional-

derivative control [8], combined feedforward-feedback control

[9], reinforcement learning [10], and threshold control [11]

have all successfully controlled reaching motions. Practically

implementing these methods is difficult due to the real-world

arm dynamics differing from the simulation.

Model learning, which uses data-driven machine learning

models rather than parameterized physics-based models to

predict the behavior of physical systems, has been used exten-

sively to control robots (see [12] for a review) and is especially

suitable for using FES to control the human arm. We intend to

control multiple joints with multiple muscles – a problem that

grows significantly in complexity as more joints and muscles

are added. Using a physics-based model for FES control as in

[13] may be effective for single joint systems with one or two

muscles. However, as system complexity increases, the number

of parameters needed to accurately model the arm increases.

Further, guaranteeing parameter identifiability (e.g. of joint

inertias) is extremely difficult given the limitations on range of

motion and acceptable movement speeds for people with spinal

cord injuries. Although model learning (with artificial neural

networks) has been used for FES control of planar reaching

in healthy persons [14], it has not been demonstrated for 3D

motions in people with spinal cord injuries.

In our own prior research, we have used model learning

approaches to complete steps towards full-arm reaching. We

have used semiparametric Gaussian process regression (GPR)

to predict joint torques produced by muscles [15]. We built

on this success by using nonparametric GPR models of the

arm to form the basis of a feedforward-feedback controller

to hold static wrist positions [16]. With this controller, we

attempted quasi-static reaches with no intermediate points

(used the model of the final position as the model for the entire

reach) with some success, but there was significant oscillation

and large overshoot in the reaching error [17]. In simulation,

we showed that adding external damping and quasi-static

intermediate points improved the controller performance [18].



The purpose of the current study is to build upon our

previous work and develop a control structure capable of

achieving full-arm, 3D reaching motions driven by FES. This

is an important step towards the use of FES in the home to

restore the full-arm reaching motions critical to completing

many activities of daily living. We present a method of

developing a subject-specific model of an individual with

tetraplegia’s arm and its response to electrical stimulation.

We use this model as the basis of a combined feedforward-

feedback controller capable of automatically determining the

stimulation commands necessary to achieve desired reaching

motions within the subject’s workspace.

We evaluated the performance of the controller for complet-

ing reaching tasks. In particular we quantified the accuracy

of the controller for moving the wrist to a desired final

position and determined if there was a difference in accuracy

based on target location. These results will guide the future

developments of FES-driven reaching controllers.

II. METHODS

In this study, we used a model learning based control

strategy to complete reaching motions with an individual with

high tetraplegia and an implanted FES neuroprosthesis. During

the experiment, we 1) developed a Gaussian process regression

model for the force the muscles produce as a function of the

wrist position, and 2) used the model as the basis of an FES

controller to move the wrist along desired paths.

The experiment took place during a four-hour time block.

Experimental set up and identifying the model of the arm

required approximately 1.5 hours. The participant took a half-

hour break for lunch. The remaining time of the session

was used to attempt randomly selected reaching motions. The

participant was allowed breaks whenever requested.

A. Experimental Setup

We completed the experiments with a single human par-

ticipant who has high tetraplegia and lacks voluntary control

of her right arm. The participant’s abdomen is implanted

with a stimulator-telemeter [19, 20, 21] that can deliver

current to activate nine independent muscle groups: triceps,

deltoids, latissimus dorsi, serratus anterior, biceps/brachialis,

supra/infraspinatus, rhomboids, lower pectoralis, and upper

pectoralis. Muscle stimulation is delivered via bi-phasic,

charge balanced pulses delivered at 13 Hz. The amplitude of

the pulses is constant for each muscle group. The activation

of each muscle group is controlled by varying the pulse-

width (referred to as the stimulation input) from 0-250 µs.

The participant’s wheelchair is equipped with a passive arm

support that assists against the force of gravity to create a

comfortable and achievable workspace. More details can be

found in [22] (Subject 1) and [16]. Protocols used for this

research were approved by the institutional review boards at

Cleveland State University (IRB NO. 30213-SCH-HS) and

MetroHealth Medical Center (IRB NO. 04-00014).

We gathered training data for using a HapticMaster (Moog

FCS) robot with three degrees of freedom. The robot records

the 3D forces and positions of its end-effector. An Optotrak

Certus Motion Capture System (Northern Digital, Inc.) cap-

tured data used to measure the position of the wrist for data

gathering for modeling and feedback during reaching.

Our previous research (and that of others) has demonstrated

that significant oscillations occur with feedback FES control

due to the delays in the FES system (low frequency of stimula-

tion and electrical-muscular activation delays). In simulation,

we were able to improve the controller performance by adding

physical damping to the arm support [18]. Due to this finding,

we used the robot to create a damped environment (20 N-s/m

in each direction) during the reaching experiments.

The control and data collection occurred at 52 Hz, but

stimulation inputs were updated at 13 Hz.

B. Model Learning

Our model learning procedure was previously presented in

[16]. We present a detailed summary here for completeness.

The basis of our controller (shown in Fig. 1) was a model

consisting of three parts: 1. arm statics (predicts the forces

necessary to hold a desired wrist position), 2. muscle force

production (the mapping from wrist position to the maxi-

mum forces produced at the wrist by each muscle), and 3.

recruitment curves (the mapping from muscle group electrical

stimulation to muscle activation). Our controller inverts each

part of the model to determine the muscle group stimulation

commands necessary to achieve a desired wrist position.

To gather the model training data, a robot held the partici-

pant’s wrist at a series of static positions within her comfort-

ably reachable workspace. The connection of the participant’s

wrist to the robot was via a ball-in-socket joint that does

not transmit torque. The robot was equipped with a three-

dimensional force sensor at its end-effector, and the force

needed to hold the wrist stationary, fr ∈ R
3, was recorded.

To determine the arm statics, the robot held the arm in a

position with zero muscle stimulation, and, thus, all muscle

activations, α ∈ R
9, were zero. Therefore,

frstatic = p(x) (1)

where p(x) ∈ R
3 are the forces necessary to hold the wrist

in the static position, x ∈ R
3.

To determine the force production of the jth muscle group,

the muscle group was stimulated at its maximum stimulation

command so that α(j) = 1. The forces required for the robot

to hold the wrist stationary, frstimj, are then defined by the

difference of the forces with zero stimulation (i.e. the required

static forces) and the forces produced by the muscle group,

frstim = p(x)−M(x)α, (2)

where M(x) ∈ R
3×9 is the linear mapping of muscle

activation to forces at the wrist and p(x) are the forces when

stimulating no muscles. Each column of M(x) represents the

forces produced in each Cartesian direction by 100% activation

of the corresponding muscle group. The jth column of M(x)
is determined by subtracting frstimj, the recorded force during

stimulation of muscle group j, from the previously identified

static forces, frstatic ,

M(x)j = frstatic − frstimj. (3)
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Fig. 1. Controller block diagram. The controller determines the muscle
stimulation commands necessary to achieve a desired wrist position.

At a previous experimental session, we gathered training

data by measuring frstatic and frstim for all muscle groups at

27 wrist positions, x, within the participant’s workspace. We

repeated the set of measurements three times with a random

order of wrist positions and muscle group activations. The

data was used to train a set of GPR models with the input

being the wrist position and the output being the force in one

direction measured by the robot. A model was trained for the

force produced in each degree of freedom for each of the

nine muscle groups as well as for the static arm (zero muscle

activation) resulting in 30 total models. The squared expo-

nential covariance function with automatic relevance detection

was used, and the optimal hyperparameters were identified

[23]. Using the GPR models, we can calculate frstatic and

frstim and thus determine p(x) and M(x), via (3), at any

position in the subject’s workspace. In the controller (Fig. 1),

the GPR models form the basis of the “Inverse Arm Statics”

and “Inverse Muscle Force” blocks.

To account for changes in the arm and muscles from the

time of modeling, we gathered new training data from a single

set of 27 wrist positions at the start of the reaching experiments

session. We reused the previously found hyperparameters to

train a new model with less data and thus less time. This

method allows for identifying an accurate model the day of

the experiment which is critical for accurate control.

The recruitment curves, the mapping from stimulation input

to muscle group activation, for each muscle group were

identified using the deconvolved ramp method [24].

C. Controller

The controller automatically determines the muscle stimula-

tion commands necessary to move to a desired wrist position.

The controller (Fig. 1) uses the model presented in section II-B

along with feedback to determine the forces and corresponding

muscle group activations necessary to achieve a desired wrist

position. The stimulation inputs are then determined and

applied to the arm.

The input to the controller is the desired wrist position,

x∗ ∈ R
3. The controller calculates the open-loop forces,

p(x∗), necessary to hold a desired position by using the GPR

models of the inverse arm statics. Feedback is added using

a positional proportional-integral controller which adjusts the

open-loop forces with corrective forces in each Cartesian

direction to get the desired forces, fdes. Next, the controller

uses the GPR models of muscle force production and (3)

to identify the elements of the mapping from muscle group

activations to wrist forces, M(x∗). After determining the

desired forces and the muscle-force mapping, M(x∗), we

calculate the muscle activations, α which will produce the

desired forces.

Determining the desired muscle activations during real-time

feedback control requires overcoming two main problems at

this point: 1) the arm is a redundant system in that there are

more muscle groups than degrees of freedom (i.e. M(x∗)
is not square), and 2) the use of feedback means we have

no control over the forces that the controller calls for and

thus feedback overcompensation, the calling for forces above

the greatest possible force, and muscle activation saturation

can occur. Solving the system redundancy can traditionally

be completed using a constrained optimization routine such

as a quadratic programming routine. However, in the case

of feedback overcompensation (which can happen with little

feedback compensation in an individual with tetraplegia due

to muscle weakness from atrophy), constrained optimizations

are unable to find a feasible solution (one where the muscle

forces are between zero and one) because one does not exist.

Our solution to these problems is to use the quasi-Newton

method to find the α that minimizes the penalty function,

||α||2
2
+ c1‖M(x∗)α− fdes‖

2
2 + c2K+ c3T

K =
∑

ki where ki =







α
2

i
if αi < 0

(α− 1)2 if αi > 1
0 if 0 ≤ αi ≤ 1

T = fdes ×M(x∗)α

, (4)

where ||α||2
2

minimizes the muscle activations,

‖M(x∗)α− fdes‖
2
2 penalizes activations that do not

produce the desired force, K penalizes activations which do

not belong to αi ∈ [0, 1], and T penalizes activations that

produce forces in an incorrect direction. The penalty weights

were chosen to be c1 = 100, c2 = 10, 000 and c3 = 1, 000
because they produced feasible muscle activations with the

forces in the right direction during offline testing.

When feedback overcompensation occurs, our controller

aims to produce the most possible force in the direction of

the desired force. The T term of the objective function works

to make this happen by penalizing forces not in the desired

direction. When the forces become significantly larger than the

maximum possible forces in a given wrist position, the penalty

function solution breaks down and can lead to solutions which

do not make sense (activations greater than one or less than

zero) or to an inability to find a solution.

To improve these solutions, we developed a method to re-

strict the forces to within a rectangular prism of the maximum

forces that can be produced in each direction. The maximum

force that can be produced in each of the Cartesian directions

(positive and negative directions) is determined and recorded

offline. In the force space, a rectangular prism is drawn with

faces at each of the maximum forces. If the desired force is

greater than the maximum force that can be produced in any

of the Cartesian directions, the intersection of the force vector



and the rectangular prism is found, and this point becomes

the new desired force. This scales the desired force back to a

position closer to the feasible force space while maintaining

the desired direction. While this point is not guaranteed to be

feasible, this scaling resulted in more reasonable activations

as a solution to (4).

Once the activations are found, the inverse recruitment

curves block calculates the stimulation inputs.

D. Reaching Experiments and Data Analysis

To evaluate our controller’s ability to control reaching

motions, we quantified the accuracy of the controller over

a series of reaches throughout the participant’s workspace.

Each reaching trial lasted for five seconds and consisted of

a one-second hold at the starting position, a two-second ramp

from the starting position to the target position, and a two-

second hold at the target position. The straight-line ramp

between positions was selected because previous quasi-static

experiments showed that planning a defined path of closely

spaced points between the target and goal would improve the

performance (speed, smoothness, and accuracy of movement)

[17, 18], and a ramp is the limit of lowest spacing and time

between each quasi-static point (we use the term quasi-static

because the controller is based on a static model but is used to

create reaching movement). An example of a desired trajectory

can be seen in Fig. 2.

Prior to completing the reaching experiments, the PI con-

troller was tuned. The controller was tuned using a series of

3 random reaching motions. The gains were manually tuned

to improve the final accuracy without increasing oscillations.

The values of the proportional and integral gains were selected

to be 10 N/mm and 0.3 N/mm-s respectively.

During the reaching trials, the subject’s wrist was connected

to a robot which moved the subject’s wrist to the starting

position for each trial and created a damped environment

during the reach. At the start of each trial, to limit the effects

of the transient muscle dynamics and guarantee the controller

starts at the correct point, the wrist was held stationary for

the first 0.5 seconds. For the rest of the reach, the wrist was

allowed to move as driven by the muscle stimulation.

To select the target reaching motions, we created a grid of

wrist positions with 1 cm spacing within the convex hull of the

27 positions visited during the gathering of the model training

data. Start and target positions were randomly selected from

this wrist position grid to create reaches of at least 10 cm in

length. The average reach length was 13 cm. Once the start and

target positions were selected, the complete desired reaching

path was determined. For each wrist position along the path,

x∗, the open-loop muscle forces, p(x∗), and the muscle force

production matrix, M(x∗) were determined offline before the

trials. At each time step, the controller used p(x∗) and M(x∗)
for the current desired position.

For each reach, the average wrist position over the final 0.5

seconds was recorded. The final accuracy of the reach was

determined by the Euclidean distance between this average

final wrist position and the desired target position. We also

measured the accuracy over a complete reaching motion which

we refer to as the path accuracy. The path accuracy for a

single trial is defined as the average Euclidean distance from

the wrist position to the desired target position over all time

steps. As part of the analysis, a few factors were compared

to determine their effect on the controller performance. These

factors included the position of the target and whether the

selected path had a feasible target position. Feasible target

positions are defined as a position where the model can select

muscle activations capable of achieving the predicted open-

loop forces. In an attempt to complete more possible reaches,

non-feasible and feasible target positions were selected. We

completed as many unique reaches as possible in the allotted

time (95 total reaches). A 2-sample t-test was used to deter-

mine if these factors had an effect on the controller.

III. RESULTS

Over 95 trials, our controller achieved reaching motions

with an average final accuracy of 3.8 cm (standard devia-

tion of 2.2 cm) and an average path accuracy of 3.5 cm

(standard deviation of 1.5 cm). Figures 2(a) and (b) show a

representative reach with a final accuracy of 2.1 cm and a

path accuracy of 1.9 cm. As seen, the wrist position is able

to track the desired reaching path and finish near the desired

position. Figure 2(c) shows the muscle group activations that

the controller calculated during the trial. The activation of the

deltoids muscle group (bold) shows a clear example of the

feedback controller correctly adjusting the muscle activation.

The deltoids muscle group produces a force at the wrist to

the subject’s right (positive y direction). As seen, when the

wrist position is to the left of the desired position (lesser

y position), the activation of the deltoids increases to drive

the wrist to the right. The deltoids activation decreases when

the wrist moves to the right of the desired position. This

example and the overall accuracy results demonstrate that

the controller successfully calculated the muscle stimulation

commands required to achieve the desired reaching motions.

Figure 2 also shows that though there were some oscilla-

tions, the amount was limited and generally low frequency

which could be tolerated by the subject and would still be

useful in a functional task. This experimentally demonstrates

the efficacy of using a proportional-integral controller to

produce reaching motions within a damped environment.

There was a significant difference (p < 0.001) in the

final accuracy of reaching motions with feasible final target

positions (µ = 2.1 cm, N=22) and the accuracy of reaches

with infeasible final target positions (µ = 4.3 cm, N=73).

There was also a significant difference (p < 0.01) in the

final accuracy of reaching motions to the extreme right of the

subject’s workspace, defined by the target being greater than

5 cm to the right of the center of the subject’s thorax (µ =4.9

cm, N=25) and the rest of the workspace (µ =3.4 cm, N=70).

This difference in accuracy based on position can be seen in

Fig. 3.

IV. DISCUSSION

We have used model learning to develop a controller ca-

pable of achieving arbitrary reaching motions with an FES-

controlled paralyzed arm. Our controller accurately moves the





racy. The complete modelling procedure takes approximately

three hours to gather the data and train the models. The day-of

experiment update only requires 35 minutes. This increase in

model learning efficiency will allow the model to be updated

more frequently and the controller to maintain it’s performance

over time. Additionally, the performance seen during this

experiment validated our previously simulated result that a

damped environment can improve the performance of an FES

controller [18]. It is relatively simple to create a damped

environment by adding physical damping to the arm support

that individuals with tetraplegia often, due to muscular atrophy,

require to assist against the force of gravity and create a

functional workspace.

The performance of this controller is a positive step to

using an FES-controlled arm to restore everyday reaching

tasks to individuals with high tetraplegia. To complete the goal

of completing all possible reaching tasks, the accuracy must

be improved throughout the workspace. This could be done

through better path planning or through robotic assistance.

Robotic exoskeletons have been shown to work cooperatively

with FES to improve the accuracy of control for walking [25]

and elbow flexion movements [26]. The robotic exoskeleton

could be also used to replace the subject’s arm support and pro-

duce the necessary damped environment. Additionally, with an

accurate low-level FES controller, a brain control interface (or

other input device), such as that used in the BrainGate2 study

[7], could be used to determine the desired reaching target. Our

controller could then automatically complete the desired reach.

The subject’s intent during the BrainGate2 study was able to

be decoded, but controlling each joint independently made

the reaching motions difficult. Our controller could replace

this low level independent joint control with a complete arm

controller. Combined with these possible solutions, an accurate

FES-reaching controller is a critical step to restoring the

reaching ability to individuals with tetraplegia in the home.
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