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The inspiring work of Gorban and coworkers [1] highlights how correlation graphs explain connections among a 
variety of processes from scales of individual organisms to societies. Networks, and correlation graphs in particular, 
capture relationships among the myriad elements of complex systems [2] (e.g., the structure of social networks -
whether digital or not - frames the scale of relevant events in society). The intriguing aspect of networks is their 
ability to describe very different systems, from the life sciences to finance to technology, with a general language.

Being a matter of definition, the elements in a life network (nodes) span scales from regions of molecules to 
whole societies. We focus here on a smaller limit of observation with respect to the kinds of systems that were 
discussed in Ref. [1]: the molecular scale of life, embodied by proteins, a basic element of living systems, albeit one 
with properties of the non-biological world. Protein science lies at the interface of physics, chemistry and biology 
[3]; the functional feature addressing their role as biological elements is allostery, the molecular machinery behind 
homeostatic processes.

The success of structural networks relies on the right choice of scale of interaction they account for. In the case 
of molecular graphs, representing the structural formula of organic molecules, network links represent π orbitals, 
responsible for many molecular properties [4]. As such, Protein Contact Networks (PCNs) represent the intramolecular 
interactions (noncovalent, with a prevalence of hydrophobic interactions) responsible for protein dynamic adaptation 
to its environment. In a sense, PCNs represent a class of causal correlation graphs, since the intramolecular interactions 
are a cause of correlations between elements (residues) in the protein dynamics and function.

Allosteric regulation, the control of protein activity by processes, such as ligand binding, that occur at sites often 
far removed, plays a critical role in cell function. Network analysis has identified regions of proteins and systems of 
biomolecules involved in signaling contributing to allosteric regulation, including “hot spot” residues that mediate the 
signal. How protein function, including allostery, adapts to stress such as mutation is currently a major area of study. 
Recent work [5] suggests that proteins adapt to mutations by developing new allosteric networks satisfying thermo-
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dynamic conditions for allostery. Residues important for structural integrity are highly conserved, while residues that 
appear as allosteric hot spots are not. There thus appears to be evolutionary pressure for structural stability, whereas 
allosteric networks exhibit plasticity; signaling does not require a unique pathway and is adaptable to mutation. Upon 
mutation a “rewiring” of allosteric networks occurs, analogous to adaptation of genetic networks to some diseases [1].

Networks facilitate identifying allosteric regions in protein molecules and complexes through structural and dy-
namic descriptions. They help to pinpoint residues, or hot spots, that contribute to signal transmission and mechanisms 
that underlie allostery. Networks have been defined and analyzed both in terms of structural as well as dynamic prop-
erties.

Dynamic networks indicate signaling pathways in proteins and protein complexes that facilitate energy trans-
port between binding sites [6–11]. For example, energy transport networks of the homodimeric hemoglobin from 
Scapharca inaequivalvis (HbI), identified by molecular dynamics simulations [12], reveal regions of the protein in-
cluding water molecules that mediate allosteric transitions. Those networks are altered by mutation, reconfigured to 
facilitate cooperative ligand binding, albeit by a different mechanism. The dynamic networks obtained in the compu-
tational studies of HbI and mutants [12,13] indicate regions that mediate cooperativity of ligand binding previously 
identified experimentally [14,15].

Those results suggest that allostery adapts to mutation by at least some reorganization of networks, a general picture 
put forth and supported by a recent study involving mutational scanning of a bacterial tetracycline repressor [5], indi-
cating rearrangement of networks for allostery in response to a variety of mutations. The networks that emerge from 
adaptation to mutation have to satisfy the thermodynamic constraints for allostery. Small structural adjustments can 
lead to significant changes in dynamics throughout the protein [16], and corresponding entropy, which can facilitate 
ligand binding and allostery [17].

Protein contact networks (PCNs) are structural networks whose elements are the protein residues and links be-
tween nodes represent the relevant intramolecular interactions (noncovalent) in protein structures [18]. They allow 
to identify residues active in allosteric regulation through partition of the protein molecules in functional domains 
[19,20]. For instance, in enzyme systems, PCNs let emerge functional domains and the border regions as responsible 
for transmission of signals between domains [21].

Recently, we have applied the PCN methodology to verify the presence of allosteric regions in the complex of the 
spike protein of SARS-CoV2 with the human receptor ACE2. We have followed an integrated dynamic/topological 
approach comparing results with those obtained through a method that predicts intersubunit affinity (SEPAS) as well 
as the Elastic Network Model (ENM). There was general agreement between all the methods applied. PCNs have 
identified residues of an allosteric modulation region (AMR) in charge of allosteric communication between the 
binding interface and the rest of the protein molecule [20].

All in all, we can say the PCNs and dynamical networks in protein molecular systems represent the molecular scale 
of (causal) correlation graphs, falling in the same general framework of the work of Gorban [1].
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