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ABSTRACT

Visual analytics systems enable highly interactive exploratory data
analysis. Across a range of fields, these technologies have been
successfully employed to help users learn from complex data. How-
ever, these same exploratory visualization techniques make it easy
for users to discover spurious findings. This paper proposes new
methods to monitor a user’s analytic focus during visual analysis
of structured datasets and use it to surface relevant articles that
contextualize the visualized findings. Motivated by interactive anal-
yses of electronic health data, this paper introduces a formal model
of analytic focus, a computational approach to dynamically update
the focus model at the time of user interaction, and a prototype
application that leverages this model to surface relevant medical
publications to users during visual analysis of a large corpus of
medical records. Evaluation results with 24 users show that the
modeling approach has high levels of accuracy and is able to surface
highly relevant medical abstracts.
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1 INTRODUCTION

Visual analytics technologies are designed to enable exploratory
analytical thinking via dynamic visual interfaces [40]. These capa-
bilities, coupled with the relatively low technical skills required to
utilize well-designed visualization-based analysis tools (in contrast
to programming-based tools that require knowledge of algorithms
and/or specialized languages) have made them attractive to domain
experts across a wide range of disciplines [39].

The exploratory nature of visual analysis is a key part of its draw
because it provides analysts with the ability to quickly discover
new patterns and develop hypotheses from complex data. Yet along
with this powerful capability comes a critical risk. The more users
explore by altering views, changing filters, or applying other data
transformations, the more likely they are to come across an “inter-
esting” pattern which appears to be potentially meaningful. This is,
of course, part of the draw of visual analytics. However, it is also
true that if an analyst examines the data for long enough, they are
increasingly likely to find false positives that appear valuable—even
statistically significant—eventually [27, 28].

Motivated by this challenge, we envision a new approach to
contextualizing visualized patterns by surfacing relevant articles in-
teractively during a visual analysis. In this vision, the goal is to help
users better see how potentially new insights fit within existing
knowledge structures. Are new discoveries consistent with existing
knowledge? Are observed patterns in conflict with previous obser-
vations? Do relevant articles suggest alternative interpretations or
follow-up questions to explore?

A key step in this vision is to computationally model a user’s
ever-changing analytic focus during exploratory visual analysis.
If an accurate model can be obtained, it can be used to query for
relevant documents which can in turn be surfaced via the system’s
user interface.

For example, consider the medical domain, a common appli-
cation area for visual analytics methods [19]. Imagine a medical
expert analyzing a set of medical records for a cohort of heart
failure patients. Patterns in treatment that associate with worse
outcomes may suggest to the researcher that certain types of care
plans are problematic. However, are these patterns consistent with
the medical literature? As the researcher explores alternative risk
factors within the medical record data, are their articles that provide
context that would improve their interpretation of the visualized
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statistics? Can the literature suggest alternative explanations that
motivate the analyst to look elsewhere in the dataset?

A visual analysis system that could automatically model an ana-
lyst’s analytic focus and surface relevant articles has the potential
to help in all of these ways. However, this vision depends upon
the ability to accurately model analytic focus. This is a challenging
endeavor, however, as users do not typically express an explicit
definition of their focus. Instead, the focus of a user’s analysis is
most often only implicitly expressed through a user’s interaction
behavior.

This paper describes a set of first steps toward realizing this
goal, including a general framework for analytic focus modeling, a
prototype implementation, and results from a user study to evaluate
our approach. More specifically, the major contributions presented
in this paper include:

e Analytic Focus Model and Associated Algorithms. A
formal model designed to represent a user’s analytic focus
is proposed along with the algorithms required to build and
update the focus model over time as a user conducts an
exploratory visual analysis.

o Prototype Application for Medical Data Analysis. The
proposed approach has been prototyped within a pre-
existing visual analysis system [8, 23] designed to discover
longitudinal patterns in large collections of structured elec-
tronic medical record data. The prototype implementation
leverages this focus model capability to regularly search
PubMed abstracts for documents relevant to the user’s un-
folding analysis. The relevant abstracts (i.e., relevant to the
current focus model) are displayed to users to contextualize
the current visualization and to suggest new opportunities
for future exploratory analysis.

e Evaluation via Controlled User Study. Results are re-
ported from a 24-person user study conducted to evaluate
the proposed approach. The qualitative and quantitative re-
sults evaluate the accuracy of the computed focus model
in comparison to manually logged reports of analytic focus
during an exploratory analysis of real-world medical data.
The evaluation also examines the utility of the evolving set
of relevant abstracts surfaced during the users’ analyses.

The remainder of this paper provides an overview of related work
and presents a detailed description of the above-mentioned research
contributions. A discussion about the limitations and potential
benefits of this type of focus-based contextualization approaches
for future interactive systems is also provided.

2 RELATED WORK

We propose computational approaches for modeling a user’s focus
during exploratory visual analysis, and leveraging that model to
search for contextually relevant literature. This approach draws on
prior work from various areas in HCI research.

2.1 Contextual Visualization

While visual analytics techniques are effective in helping analysts
glean insights from large complex data sets, visualized results are
often highlighted out of their contexts (e.g. data selection process)
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which are critical to the validity of analysis. It is therefore impor-
tant to make analysts aware of such contextual information [7].
Techniques to bring back unseen context include showing zoom-
out views for spatial, temporal, and network visualizations [10, 30],
visualizing data provenance [22], surfacing relevant information
within the same document to the current reading focus [1], and
estimating potential cognitive biases during analytic processes [42].

Our work differs from previous works in that it brings relevant in-
formation from external text collection to contextualize structured
data visualization. It saves analysts’ effort in searching for pub-
lished evidence that may support or contradict the current finding.
Besides critical thinking, surfacing contextual information from ex-
ternal data can also provide new perspectives and inspire follow-up
analyses. While the new methods presented in this paper provide
a general framework for analytic focus modeling (see Section 7.3),
they have been prototyped as new additions to a pre-existing visual
analytics system called Cadence [8, 9, 21-23] which includes some
contextual visualization features such as selection bias detection
and mitigation. Because of this connection between prior work on
Cadence and the new methods presented in this paper, a more de-
tailed description of Cadence (both the pre-existing system and the
new additions implemented for this paper) is provided in Section 3.

2.2 Analysis of User Interactions and
Visualization Provenance

Another related area of research is the analysis of user interactions
and visualization provenance. Xu et al’s recent survey [49] char-
acterized this diverse body of work along three dimensions: WHY,
WHAT, and HOW.

The work presented in this paper most directly fits within the
“Understanding the User” category within the WHY dimension. As
defined by Xu et al., this category includes: (1) methods that aim
to “describe the human analytical reasoning proces” (e.g., [15, 24]);
(2) computational approaches to extract analysis patterns and/or
workflows (e.g., [16, 26]); (3) modeling methods to understand user
characteristics or personality traits (e.g., [12, 32]); and (4) techniques
for the modeling of user attention and/or tracking biases during
analysis (e.g., [21, 31, 44, 45]).

Within these subcategories, the research presented in this paper
is perhaps most closely aligned with work on modeling of user
attention. Past work in this area has often aimed to model visual
attention (e.g., predicting which visual mark on the computer screen
a user will next attend). This approach, for example, was followed
in the attention inference method proposed by Ottley et al. [31]
which used a hidden Markov model to predict which mark within a
visualization a user will interact with next. This prediction is based
on a mark space defined as a set of N visual features used within a
visualization (e.g., position or color of a mark). The analytic focus
model presented here is different. Rather than model and predict
the visual marks to which a user attends, this paper aims to model
cognitive attention: the set of semantic concepts that define the focus
of the user’s analytic task independent of how or where they are
represented visually in the interface. This is modeled by observing
semantic user actions (defined using the type of user interaction and
associated parameters, see Section 4.1). In this way, the approach
in this paper also has some similarities to Xu et al.’s “describe the
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human analytical reasoning process” subcategory. However, the
goal of this paper is to model a user’s current analytic focus rather
than understanding analytic strategies or identifying findings from
interaction logs.

This paper’s contributions also relate to the “Adaptive Systems”
category within the WHY dimension. In particular, the analytic
focus model is designed to be leveraged in ways that adaptively
surface relevant information to users during analysis. While for-
mulated differently, this approach has some similarity to past work
exploring was to use observations of user behavior to guide data
pre-fetching (e.g., Battle et al. [3]) or to drive active search during
visual analysis (e.g., Monadjemi et al. [29]). In this characterization,
the ActiveVA approach proposed by Monadjemi et al. is perhaps
most closely related given its focus on surfacing new data to users
that are marked as relevant given an actively updated model of a
user’s latent interests. However, ActiveVA builds this model from
data points that are assigned a binary classification of either rel-
evant or irrelevant based on user input. In contrast, this paper
maintains a semantic concept-based approach with a time-decay
model that is maintained by observing properties of user actions
(rather than labels of data points).

In the WHAT dimension, the approach in this paper fits within
the “Sequence” category of Xu et als framework because it observes
a sequence of high-level user interactions during visual analysis.
One challenge in the analysis of sequences of user interactions
is the need to bridge the semantic gap between high-level user
intents and low-level user interface events, which Ragan et al. call
granularity [33] and Xu et al. refer to as interaction type [49]. The
approach outlined in this paper observes user interactions at the
semantically meaningful action level as defined in [24].

Finally, Xu et al’s HOW dimension characterizes the modeling
approach used by a given method. The methods in this paper are
most closely related to the “probabilistic models/prediction” cate-
gory. This is a broad category ranging from basic statistical models
to more sophisticated prediction methods including neural net-
works (e.g., [25, 37]) and Markov models (e.g., [31, 46]). The method
proposed in this paper uses a time-decay model to computer per-
concept importance scores as predictions of salience to a user’s
analytic focus at a given time point.

With respect to implementation, the methods presented and
evaluated in this paper have been prototyped as new components
within a pre-existing visual analytics system (see Section 3). How-
ever, past work on VisTrails [4] and the recently published Trrack
[14] show that a library-based design can be used to support generic
provenance tracking capabilities. Within the scope described in Sec-
tion 7.3, a similar approach could be used to apply the methods
presented in this paper beyond our prototype environment.

2.3 User Modeling & Recommendation

User modeling is another closely related active research area in
human-computer interaction [6, 17]. The goal of user modeling is
to enable interactive systems to better understand users’ intent and
preferences so as to provide customized support to satisfy users’
specific needs. User modeling techniques often infer user preference
from user behavior logs on interface components. The technique
has been widely adopted in Web search engines [47], digital libraries
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[18], online recommender systems [5], adaptive education systems
[13], and health information systems [50]. In this work, we model
a user’s focus by observing user interactions on structured data
elements and representing user interests using domain-specific
concepts. Such an approach is closely related to ontology-based
user modeling, where users interact with the semantic web and
user profiles are mapped to structural elements in an ontology [38].

3 VISUAL ANALYSIS PLATFORM

This paper introduces a set of techniques designed to model and
leverage a user’s analytic focus during exploratory visual analysis.
These techniques, presented in detail in Section 4, are designed as a
general approach that can be tailored to work across a broad range
of visual analysis applications. However, the design is motivated
in part by challenges faced by analysts in the medical domain
and the techniques have been prototyped for evaluation purposes
within Cadence [8, 9, 21-23], a pre-existing open-source [41] visual
analytic system designed to enable exploratory analysis of large
collections of longitudinal data such as electronic health records.
This section provides a brief overview of the Cadence system and
the user interface extensions added to support the work presented
in this paper.

3.1 Pre-existing Cadence System

Cadence is a visual analytics platform designed to allow users to
discover patterns in structured longitudinal event data, such as
electronic health records. Cadence provides a rich set of interac-
tive features for defining queries, applying filters, exploring the
frequency of different patterns of events over time, and associating
those event patterns with differences in outcome. For example, Ca-
dence has been used to analyze large collections of medical data to
discover risk factors for opiate addiction, identify treatment path-
ways for heart failure patients, and discover patterns of use for
medical devices.

Cadence employs a generic model to represent longitudinal
event data. It consists of a subject information table and an event
sequence collection. The subject information table contains a
subject_id column as the primary key and various named at-
tributes that describe the subject. The event sequence collection
stores (eventtype, timestamp) pairs for each subject. Cadence un-
derstands an eventtype as a nominal value in a fixed vocabulary,
and organizes the types within a hierarchical structure (e.g. “is-
a” relation) to support aggregation of events at different levels of
granularity. A timestamp records the date and time of event. In the
context of electronic health records, the subject table contains pa-
tient attributes (such as age, gender, and race). The event sequence
collection stores medical events over time for each patient, where
the event types are concepts (such as procedures and diagnoses)
from standard medical lexicons such as SNOMED-CT and ICD-10.

The Cadence platform provides a web-based interface shown in
Figure 1(a) which includes a coordinated set of interactive visual-
izations that work together to allow users to explore complex event
data over time. A user starts her/his analytic task by defining a set of
constraints as a scoping query. The query is defined via interaction
with a drag-and-drop query authoring tool as a set of temporal and
attribute constraints. For example, in the medical context, a health
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analyst might query a database of millions of medical records for
data from patients that are male, over age 65, with a diagnosis of
heart failure, and with a hospital discharge later. To conduct an
analysis about readmission risk factors, the analyst might spec-
ify the temporal query to include all medical events for matching
patients occurring from one year prior to heart failure diagnosis
through 90 days after the hospital discharge. Given this type of
query specification, the platform then selects the data satisfying
the query, computes various summary statistics in the backend,
and renders the results as interactive visualizations in the frontend
as dynamically generated interactive visualizations using standard
Javascript libraries (e.g. D3.js). The user interface for Cadence with
some of the available visualizations is shown in Figure 1. We note
that this figure does not show all of the available visualizations
within Cadence as only a subset of visual elements is displayed
at any one time to manage interaction complexity. Moreover, we
note that this figure shows new user interface elements that were
not part of the pre-existing Cadence system but instead as part
of the work reported in this paper as described in Section 3.2. In
particular, the Model Result component (on the bottom left) and
the Abstract Preview panel (highlighted in Figure 1(b)) were not
part of the pre-existing Cadence system.

The pre-existing Cadence system allows users to visually explore
the data returned by the query and to apply filters via the interface
to revise the subset of event data under analysis. A record of data
subsets (which Cadence calls cohorts created by users is maintained
and visualized through the Cohort Overview panel found in the left
sidebar of the interface. This panel shows iconic representations
of the cohorts that summarize basic information (such as how the
subsets were derived, and the number of entities in each subset). In
addition, Cadence uses this area to surface bias statistics calculated
by system features that quantify potential selection bias and support
selection bias mitigation. These features are beyond the scope of
this paper and are reported in prior work [8, 9].

Within the main portion of the pre-existing Cadence user inter-
face (labeled as “Timeline View” in Figure 1), a number of coor-
dinated visualizations are provided to explore the data associated
with a specific cohort and to apply filters to derive new cohorts.
First, interactive histograms allow users to subset data based on
categorical or scalar attributes such as age, race, or gender. Users
can right click on any of the histograms to apply a filter. In response,
the system derives a new cohort by applying the requested filter
and updates the visualization to reflect the updated data subset.
Below the attribute histograms, a histogram of event frequencies
is provided to communicate the most commonly occurring events
within the currently visualized data subset. Leveraging the fact
that event types can be organized within a hierarchy (as described
earlier in this section), this portion of the user interface includes
data at various levels of granularity. Moreover, Cadence includes a
variety of features that allow users to interactively control the level
of aggregation used in the interface to analyze events at various
levels of detail (e.g., to look at all “heart disease” diagnoses as one
type of event, or to look 19 distinct types of heart failure diagnoses
at the lowest level of representation). These features are valuable
analytical tools for managing high-dimensionality, but are beyond
the scope of this paper and reported in prior work [23].
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To the right of the histograms is a milestone-based timeline
visualization [20] which allows users to explore subsets of data
based on temporal constructs between events (e.g., combinations
of before/after relationships). The rectangular blocks in the visu-
alization correspond to specific types of events (e.g., a diagnosis
of some sort of injury due to an accident) or temporal milestones
(e.g., 365 days prior to the subsequent event) of the event sequences
being analyzed. Users can click on individual rectangles to view
details-on-demand about the corresponding event sequences. Most
attribute and temporal constraints in the scoping query are shown
as the initial milestones. Moreover, users can interactively add or re-
move milestones within the timeline to create further subdivisions
(represented visually via the insertion of additional rectangles) via
interactions with the scatter plot described later in this section.
The rectangles themselves are color-coded to represent outcomes.
In the medical context, this allows users, for example, to example
different clinical pathways (e.g., different treatments for a common
condition) and the associated medical outcomes experienced by the
corresponding patients. If desired, users can derive cohorts from
individual rectangles to narrow their analysis to a specific subset.
This filtering action is triggered via a right-click context menu, and
it results in the creation of a new cohort via the introduction of a
new data constraint just like a filtering action performed via the
attribute histograms described earlier.

Selections within the timeline visualization are coordinated with
a scatter-plus-focus plot [23] which allows users to quickly identify
new event types to incorporate into the timeline to help separate
patients with good outcomes from those with bad outcomes. The
plot shows circles that represent individual event types positioned
by frequency on the y axis and correlation to the outcome on the
x axis. Users can click on individual circles to view more details
about individual event types, navigate the event type hierarchy, and
add interesting events found in this visualization to the timeline
visualization as new milestones.

As this description of the pre-existing Cadence system shows,
users can perform various actions through the user interface during
exploratory analysis. This includes the addition of new filters, in-
serting milestone event types into the timeline view, or clicking on
graphical marks that represent subgroups (defined by combinations
of milestones in the timeline) or event types for details-on-demand.
The Cadence system, in response to these actions, computes and
visualizes a number of different types of statistics for the various
data subsets created by users during their exploratory analyses.

The collection of data subsets recorded by the pre-existing Ca-
dence system (representing groups of patients in the medical con-
text) is used to allow users to go back to data sets viewed in prior
stages of analysis, and to support the selection bias detection fea-
tures described above. This is accomplished by comparing the users’
current data subset against a baseline data subset seen earlier in an
analysis. Users can interactively select past data subsets as baselines
for this purpose through interactions with the Cohort Overview
panel. The pre-existing Cadence system had no capabilities for
monitoring user actions during exploratory analysis, constructing
and maintaining a model of user’s analytic focus during analysis,
or leveraging such a focus model in any way. Moreover, no user
interface components existed to support these features which were
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Figure 1: Cadence is a visual analytics platform that allows for exploratory analysis of longitudinal event data such as elec-
tronic health records. (a) This pre-existing system contains a number of visualization features including interactive his-
tograms, an exploratory timeline, and a highly interactive scatterplot showing associations between specific event types and
outcomes (e.g., specific treatment events associated with hospital discharge or death). (b) Cadence has been extended to surface
relevant abstracts from PubMed using the focus model techniques presented in this paper.

introduced to Cadence for the work presented in this paper as
described below.

3.2 New Additions to Cadence to Support the
New Focus Model Capability

Following the new approach we outline in this paper (and therefore
not part of the pre-existing Cadence system), we can in theory
describe each of user analysis actions supported by Cadence as a
combination of both (1) a type of action and (2) one or more event
types (i.e., concepts) that are the focus of that action. For instance,
a user might add a new filter (the type of action) using a diagnosis
of heart failure (the concept of that action) in medical analysis
to focus only on patients with that diagnosis. In this way, we are
able to apply the focus modeling approach presented in this paper
(as formulated in Section 4.1) to the pre-existing Cadence visual
analytics system.

To adopt this model of user actions and to implement the new
focus model capabilities outlined in this paper, a wide range of new
additions were made to the pre-existing Cadence system. In partic-
ular, to support the new focus model capabilities, the techniques
described in Sections 4 and 5 have been prototyped as extensions
to the pre-existing Cadence visual analytics system. The added
features automatically observe a user’s analytic activity during ex-
ploratory analysis of the structured medical data, incorporate those
observed interactions into a model representing the user’s analytic
focus as it evolves during analysis, and leverages that model to
asynchronously retrieve relevant abstracts from PubMed with the

aim of contextualizing the temporal event patterns surfaced in the
pre-existing visualizations.

To support these added capabilities, a new panel has been added
to the Cadence user interface as shown in Figure 1(b). This is visi-
ble as an additional tab located behind the timeline visualization.
The text snippets shown for each abstract include highlights of
any mentioned medical concepts that are related to the current
focus model. Users can switch between tabs at any time to look for
linkages between the medical literature and patterns found in the
structured data visualization.

Beyond the core extensions outlined above, which were designed
to assist users during analysis, an additional focus model panel was
added to the interface in support of the user study protocol outlined
in Section 6. This added panel is not intended for everyday use.
Instead, it externalizes the current focus model for user review
during the study protocol, provides buttons that allow for study
moderators to manually save data during a study session (such as
logs of users’ interactive analysis activity and the current state of
the focus model) to allow for subsequent analysis.

4 ANALYTIC FOCUS MODELING

When visually exploring structured data, a user aims to find inter-
esting patterns expressed through domain-specific concepts and
their relations. Because the task is intrinsically exploratory, the
user’s analytic focus will change over time. Some of these concepts
come into the user’s current focus, while others fade away. The
problem of analytic focus modeling can be stated as “to infer a user’s
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Figure 2: As users interact with the visualizations, actions
are reported to the Focus Model Engine which updates the
focus model. The full-text search engine converts the Focus
Model into a query that is used to retrieve relevant PubMed
abstracts.

current analytic focus given the trace of user actions observed on
the system interface” In this section, we formulate this problem
and propose an algorithm that estimates the focus model over time.

4.1 Problem Formulation

Before formulating the problem of analytic focus modeling, we first
define several key terms and notations.

Definition 1 (Interaction): An interaction refers to low-level UL
events, such as clicks, drags, or key-presses. Each interaction usually
carries little semantic meaning by itself. A group of interactions
(e.g. a right-click and then a click on an option in the context menu)
can accomplish higher-level semantics, which we define below.

Definition 2 (Action): An action refers to an atomic semantic
operation at the level where a series of aforementioned interactions
combine to represent a single semantically meaningful event like a
selection or a filter. Each action provides event-based insight prove-
nance that carries richer semantics than an interaction. An action
can be represented as a tuple combining type, intent and parameters.
[24] The type could be a query, a selection, or a filter. Our system
does not use intent, resulting in a simplified action representation
of (type, parameters). We instrument the visual analytics system
such that it will listen to a selected set of actions taken by a user.
The set of all actions A is described in the first column of Table 1.
In what follows, we use a € A to denote an action.

Definition 3 (Concept): A concept refers to a meaningful data
attribute in the problem domain. These can be attributes (fields) of
data records in a structured database schema, index terms appear-
ing in unstructured documents, and entries in a domain-specific
taxonomy. Concepts are action parameters in the action tuple, and
vary by the type. For example, selecting is usually associated with
at least one concept - the selection criteria. Concepts play a central
role in a user’s analytic focus. We use c to denote a generic concept.
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Definition 4 (Persistent Action): A persistent action changes
the visualization interface significantly in the long run, until other
persistent actions are performed and revert the change. For ex-
ample, adding a filter in most visualization tools changes the plot
persistently until the user removes the filter or adds another filter.

Definition 5 (Transient Action): A transient action changes
the visualization interface and those changes revert back quickly,
and sometimes automatically. For example, the user could select a
point in a scatter plot by hovering to check the details of the data
it represents, but these details will fade out after 5 seconds even
the cursor is still hovering and the user does not interact with any
other parts.

We categorize all actions in A into the above two types. The
second column of Table 1 shows the type for each action.

Definition 6 (Time Step): During exploratory data analysis,
the user’s analytic focus will change over time. Although wall clock
time is a natural way to define time, different users may perform the
analysis at different paces, depending on the path of exploration and
the user’s familiarity with the domain. In light of this, we measure
time as the sequential order of actions. That is, each time step t
is a sequence number that corresponds to a discrete action taken
anywhere on the interface. In particular, ¢ = 0 corresponds to the
first action, the initial query issued by the user.

Using the above definitions, we can define the observed sequence
of user actions throughout the data exploration process as S =
{(ai, ti,ci)|0 < t; < T}, where each triple (a;, t;, ¢;) represents an
action a; € A taken place at time step t; that involves a concept
ci. T is the total number of time steps (actions) taken. In principle,
the index i can be different from the time step t;. For instance, an
action may simultaneously involve two concepts, which gives rise
to two triples, each with the same action, the same time step, but
two different concepts. In that case, t; will only increment by 1
while i will increment by 2.

Problem Formulation (Analytic Focus Modeling): At any
time t < T, S; = {(aj, t;,c;)|0 < t; < t} will contain a unique set
of concepts C;. The Analytic Focus Modeling problem is as follows:
given the observed sequence of actions S;, to estimate an impor-
tance score I°(t) > 0 for each concept ¢ € C; at time t. A large
importance score I°(t) indicates a strong analytic focus on concept
c at time ¢; a small importance score indicates a weak focus; a zero
importance score indicates the concept falls out of focus.

4.2 Analytic Focus Modeling Algorithm

Given the above formulation, we describe an algorithm that esti-
mates a dynamic focus model given a user’s actions.

4.2.1  An Additive Model. Each concept c in the focus model is
associated with an importance score I°(t). To estimate I(t), we take
all actions related to concept ¢ up to time t: Sy = {(a;, £)|0 <
t; < t}. In general, these may include not just actions that directly
involve c as an input, but also actions adjacent to concept ¢ on the
interface. For example, if an action involving a different concept
took place in the same panel as concept c, that action is related to c.
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Action a Category 1,(0) Pg; bg
Select (Scatterplot) T 1 2 0
Select (Timeline) T 1 2 0
Add milestone P 1 50 0
Add filter P 2 80 1
Query P 3 100 2
Close (Panel) P -0.1  +oo 0
Reset (Panel) P -0.3 400 0
Show timeline P 1 30 0
Set baseline P 1 100 0
Set focus P 1.5 100 0.5

Table 1: User actions considered in this study, with associ-
ated parameters. P stands for persistent; T stands for tran-
sient. [;(0), P4, and b, are the initial importance score, the
persistence score, and the importance bias score of action a,
respectively.

We estimate I(t) by aggregating partial importance scores con-
tributed by all previous actions involving concept c:

FO= Y lat-t), (1)

(ai,ti)€St,c

where I,(t) represents the importance of a concept as a result of
taking action a on it. For example, creating a filter using a concept
indicates that the concept is in the user’s current focus and will
remain there for some time. Note that I,(t) is action-specific but
concept-agnostic. This is a simplifying assumption that an action
will contribute the same importance regardless of concepts involved.
I, (t — t;) is a time-shifted version of I, (t) because the importance
contribution starts from ¢;, the time when action a; happened.

In principle, it is possible to use other strategies to aggregate per-
action importance scores and produce the overall importance score
I¢(t), e.g., taking maximum instead of sum. We adopt an additive
model in this preliminary study.

4.2.2  Per-Action Importance Score Function. For each action a;
happened at time step t;, we associate a decaying aging function
over time. The basic idea is simple: as time goes by, the importance
of concepts involved in that action will decline. In particular, we
employ the approximate Ebbinghaus forgetting curve [48] as our
aging function:

La(t) = I(0) x e Pa @

where P, refers to the Persistence Score of action a and t refers
to the time step counter indicating the number of actions after
a took place. We utilize the Ebbinghaus forgetting curve as the
aging function because the focus on a certain concept based on one
action shares similarities with the retention of facts in memory. Our
Persistence Score represents the stability of the action influence,
working similarly like the S as stability of memory in the original
Ebbinghaus curve equation R = e, I, will decrease fast at the
beginning and then slowly decrease. When it is below some certain
lower threshold [, the Focus Model will remove this aging function
in the list to improve efficiency.

When ¢t = 0 for an aging function, the initial value I(0) is
assigned based on the type of action a. A larger number for an
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action represents the semantic importance of that action in terms
of a user’s analysis focus. For example, the filter action that changes
the dataset in examination is a much stronger signal of analytic
focus than a transient inspection action; hence a larger 1,(0) will
be assigned to the filter action.

The Persistence Score P, implies how stable an action influences
the user interface determined by its type. A higher persistence score
implies that the action makes more stable changes on the interface.
We use such a standard based on the observation that users tend to
modify the visualization interface to help their analysis. So when
an action adds certain components on the interface stably, the
values corresponding to the components are more important in the
user’s focus. Thus, the persistent actions are assigned with higher
persistence scores than the transient actions.

Some actions like “reset” or “undo” will remove components
on the interface, they are persistent actions with negative initial
importance. We set their persistence score to +co as we assume
negative effects do not change over time. That is, I;(t) = I5(0) isa
negative constant function for these actions.

4.2.3 Updating the Focus Model. Each time the algorithm receives
a new action (aj, t;), it needs to update the Focus Model. It mainly
adds new aging functions to relative concepts of the action inputs
and updates importance scores. This updating process is comprised
of two parts: independent decay of each aging function and sum
of all aging functions, including the newly added ones for those
concepts that are close enough with the action inputs.

We consider the updating process of the overall importance
score as an incremental operation. When time is at ¢ + 1, concept
¢’s importance score is updated as follows:

IC(t+1) < I°(t) + %At + 1,4(0), (3)

where I,(0) is the initial importance score of an action a happened
at time t + 1. Since the time steps are discrete, At = 1.

4.3 Implementation

The focus model system is designed to work generically without any
dependence on a specific visual analysis system. It is self-contained
with a defined API and works with any arbitrary set of concepts.
To utilize the focus model, developers would need to perform three
steps: (1) enumerate action types and parameters, (2) instrument the
visual analysis to report the occurrence of actions (and associated
parameters) via the APL, and (3) tune action parameters to account
for application-specific differences in the salience of specific action
types.

Following this approach, we developed a Focus Model Engine
(FME) as a JavaScript module. The FME then connects with the
previously existing Cadence visual analytic system (described in
Section 3) through callbacks. Cadence notifies the FME when user
actions occur and in response updates the focus model dynamically.
Cadence can then request the current focus model at any time via
API to support focus-aware features (e.g., see Section 5).

In the context of the Cadence system, we considered 10 unique
Cadence actions as shown in Table 1. The concepts are medical
terms from both ICD-10 and SNOMED-CT coding systems. Action
parameters were assigned based on their action categories and
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heuristics. We also validated these parameters in pilot runs within
the authors.

We use an additional importance bias score b, (see values in
Table 1) in the per-action importance score function I,(t) to encode
the intrinsic importance given by an action to an involved concept:

Ta(t) = To(0) X € Pa + by . (4)

In principle, we expect that different parameters are needed for
different visual analysis platforms, since they may contain differ-
ent actions and similar actions may represent different semantic
meanings in specific environments. We refer the reader to previ-
ous works on classifications of actions and abstract visualization
tasks [11, 35, 36, 43].

5 LEVERAGING ANALYTIC FOCUS

In this work, we leverage the focus model as a succinct representa-
tion of the user’s information need and use it to retrieve relevant
documents from a large text collection. Specifically, we implement
a full-text search engine. A PubMed snapshot from late 2019 is used
as our collection of medical articles. It contains 29,137,784 published
articles, including each article’s title, abstract, authors, subject head-
ings, among other information. We use Apache Lucene/Solr to build
a full-text index for the title and abstract of each article. Clinical
concepts mentioned in an article’s title and abstract are recognized
using the SNOMED-CT lexicon.

An analytic focus model is translated into a fielded free-text
search query run against the above Solr index. Specifically, the list of
(concept, importance score) pairs in the focus model is transformed
into a Lucene query. Concept descriptions are used as query terms,
and the associated importance scores are used as per-term boost
scores defined in Lucene’s query syntax. As a preprocessing step,
ontology codes (such as “F43”, “V00-X59”) and stop words (such as
“of”, “t0”) in concept descriptions are removed from the query. Both
title and abstract fields are searched. For example, given the list of
importance-weighted concepts as follows:

[(F43 Reaction to severe stress, 7.3), (VO0-X59 Accident, 4.5),
(S00-T14 Injury, 2.5)]

The list is translated into the following Lucene query, which is
sent to the Solr search service:

title:reaction"7.3 abstract:reaction®7.3 title:severe"7.3

abstract:severe®7.3 title:stress"7.3 abstract:stress®7.3
title:accident”4.5

abstract:injury®2.5

abstract:accident”4.5 title:injury”2.5

Upon receiving such a query, the Solr index returns a ranked
list of relevant articles. Articles are ranked using the BM25 scoring
function, which is a standard document retrieval function that
estimates the degree of relevance between a document and a query
[34]. 100 top-ranked documents are returned to the frontend of
Cadence system.

As shown in Figure 1 (b), the search results are rendered as a
paginated ranked list in a separate “Abstract Preview” tab beside
the main visual exploration tab. Clinical concepts mentioned in
the result snippets are highlighted. To summarize clinical concepts
mentioned in the search results, 10 most frequently mentioned
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concepts in the result set are shown in a drop-down menu, which
can be used to filter search results.

As the focus model keeps updating during exploratory visual
analysis, new search queries are continuously formulated and new
results are updated in the “Abstract Preview” tab. Because all clinical
concepts are pre-extracted at index time (instead of search time),
the text search and rendering process is fairly responsive. Using
a 32GB RAM, 120 GB SSD server in AWS cloud, the Solr index
achieves a response time within 1-2 seconds per query.

6 USER STUDY

We conducted a user study with 24 participants to test the accuracy
of our Focus Model and the helpfulness of the related abstracts
returned from PubMed. This section describes the study’s design,
data processing methods, and results.

6.1 Study Design

Our study asked participants to independently perform an analysis
using Cadence for a specific task that we provided. Participants
were trained to use Cadence prior to the experimental task, and data
was collected from both the participant and the system while the
task was completed. Post-task information was gathered via a ques-
tionnaire and semi-structured interviews. The details of this study
design, which we conducted with the approval of our institutional
review board, are provided in the remainder of this section.

6.1.1  Participants. To ensure that the participants could perform
the analysis smoothly, besides the training, we require the partic-
ipants to have data analysis experience previously. We recruited
24 current or former graduate students whose graduate studies
are/were in a STEM field. Although we ask participants to analyze
medical data, we do not expect them with a professional medical
background. Instead, we provide analysis tasks that can be analyzed
using common sense. Each participant is rewarded with a 15 dollar
Amazon gift card.

6.1.2  Procedures. Since Cadence is a complex platform, we provide
the participants with a tutorial video on using Cadence with the
EHR data before the session. We also provide background stories
to explain the tasks they are going to analyze during the study
session. For example, one of the tasks is to explore what diagnoses
or procedures have a strong correlation with a final diagnosis of
reaction to severe stress (ICD-10 code: F43). We set a specific patient
cohort who had an accident (ICD-10 code: V00-X59) followed by
an injury (ICD-10 code: S00-T14) to help start the analysis. We also
explain further the relationships among these diagnoses to help
those without a medical background. We ask the participants to
further explore what other diagnoses or procedures may increase
the chance of developing a reaction to severe stress among these
patients.

During the session, Cadence provides participants with access to
interactive data visualizations of aggregate statistics from electronic
medical data, and a list of abstracts from related PubMed articles.
The Cadence system is instrumented to interactions the participants
performed in the system, and compute based on those interactions
a Focus Model in real-time.
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Participants are asked to pause their analysis approximately ev-
ery 6 min. Since each participant has a different speed to get familiar
with the system, the actual time duration varies among participants.
During that pause, they are asked to describe their current analysis
focus via a Focus Description Questionnaire. We then show them
our computed Focus Model and ask them to compare that model to
their own description of their analytic focus. They may modify the
questionnaire like adding concepts they forget.

At the beginning of the sessions, we encourage the participants
to check the Abstract List during their analysis, but that is not
required. If the participants do not check the Abstract List, we let
them explore it for about 2 minutes before they fill in the post-task
questionnaire.

Whether the participants finish the task or not, they are asked
to stop working on their analysis after about 40 minutes. We then
provide participants with a post-task questionnaire and conduct a
semi-structured interview to collect additional subjective feedback
on the Focus Model and related abstracts.

6.2 Results

In this subsection, we present our study results in three parts: the
comparison between participants’ self-reported concept list and our
Focus Model result; the aggregated data collected from the post-task
questionnaire; and the common answers from the interview.

6.2.1 Computed accuracy of the Focus Model. To compute the accu-
racy, we calculate the recall of our Focus Model, the Jaccard distance
and the edited distance between the self-reported concept list and
the Focus Model result for each participant and each pause. In
our Focus Description Questionnaire, we ask participants to report
any concepts which are important in their focus, thus participants
may provide certain medical terms within the SNOMED or ICD-10
system, or other related terms. Hence we need to standardize the
questionnaires and the Focus Model results first before the com-
parison. We use both the participants’ lists before and after their
modification during each pause and compare them separately.

First, we need to standardize the concepts in the participant’s
descriptions of their focus and find the mappings in our Focus
Model result. For concepts that are just a shorthand of a specific
code, we directly map the concept to the corresponding code: if
a participant wrote “lead ECG” in the focus description, we map
it to “268400002: 12 lead ECG”. However, participants may provide
general medical terms rather than a specific diagnosis like obesity.
For such general concepts, we need to map them to the codes used
in our focus model. We adopt the following two rules when we do
the mapping:

e Mapping down in the hierarchy. We only map a general
concept to its child concepts in ICD-10 or SNOMED but we
don’t do the opposite. For example, if a participant men-
tions “procedure”, we map this concept to the code “59108006:
Injection” in Focus Model result given the SNOMED cate-
gorization. However, if another participant mentions “eye
injury”, we don’t map the concept to code “S00-T14: XIX.1.
Injury” as the eye injury is a child to Injury.

e Combining codes. We map a concept to one or multiple
codes if all the codes are proper. For example, if a participant
mentioned “long term drug use” in the focus description,
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and we have “Z79.82: Long term (current) use of aspirin”,
“Z79.84: Long term (current) use of oral hypoglycemic drugs”
and “Z79.8: Other long term (current) drug therapy”, we could
map this concept to all the three codes. Note that although
Z79.8 is the parent of both Z79.82 and Z79.84, we count them
as independent concepts because our prototype also treats
these three concepts independently.

In some rare cases, participants may also provide concepts like
“the outcome scatterplot” which are in their analytic focus but not
medical related terms at all. We exclude these concepts in compar-
ison as these concepts do not participate in the actual reasoning
process in data analysis.

Using such a mapping strategy, we could always get one-to-
one or one-to-multiple mappings from participants’ self-reported
concept list to our Focus Model result in practice.

Second, we calculate the importance score for each concept after
the standardization. If a concept is mapped to only one code in
the Focus Model, we assign the Important Score of that code to
this concept. If a concept is mapped to multiple codes in the Focus
Model, we assign the sum of the Important Scores of all codes to it.

Third, we compute the ordered list of both concepts described
by participants and in the Focus Model result for each pause. For
the concept set V,, described by each participant in each pause, we
sort all the concepts based on their scores from large to small and
get an ordered list L,,. For the concept set in the Focus Model, we
combine those concepts if a one-to-multiple mapping described
previously happens.

The new concept set is V;,. Then we sort the new concept set
based on each concept’s score from large to small, and ignore con-
cepts whose scores are below the last concept mapped in the list.
Thus we get the final ordered list Ly,.

We use the following metrics to measure the match between
user-provided focus and the focus model:

(1) Recall: the fraction of user-provided concepts covered by the
focus model. Recall = |V,,, N V| /| V4.

(2) Jaccard distance between two sets V, and V;;,. Jaccard dis-
tance = 1 — Vi NV, |/|Vin U V.

(3) Edit distance between two ordered lists L, and Ly,.

The distribution of these three measurements are shown in Fig-
ure 3 and Table 2 for both results before or after the modifications.

Mean Median

Before 0.898 1
After 0.902 1
Before 0.645 0.667
After 0.627 0.667
Before 6.384 5
After 6.397 5

Recall
Jaccard distance

Edit distance

Table 2: Mean and median value of recall, Jaccard distance,
and edit distance between user-provided focus and system-
estimated focus model. See the caption of Figure 3 for de-
tails.
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Figure 3: Distributions of recall, Jaccard distance, and edit distance between user-provided focus and system-estimated focus
model. Participants are allowed to modify their self-reported concepts list after checking our Focus Model result. We separate
the scores before and after the modification if it happens. Recall: the larger the better; Jaccard distance and edit distance: the

smaller the better.

The mean of recall is around 0.9 and the median of recall is 1.
This means that our Focus Model could capture almost all the con-
cepts described by participants. We find three reasons for those
uncaptured concepts. First, the participant just hovers over the con-
cept, so even if they focus on this concept, our model can’t capture
it. We discuss this issue and its solution in §7 later in the paper.
Second, the participant gets inspiration from the Abstract List, but
they can’t find these concepts in the visualization interface espe-
cially the outcome scatterplot. This actually means the participant
gets new findings from existing literature beyond the information
provided by the data set. §6.2.3 talks on the responses we received
from these participants during the interview time. Finally, the par-
ticipant considers related attributes beyond the medical naming
system used in the Focus Model. This usually implies that the partic-
ipant has prior knowledge to do more reasoning in the analysis. For
example, a participant mentions “physical pain” in the self-reported
concept list, and in our Focus Model we have diagnosis “M86.10:
Other acute osteomyelitis, unspecified site” as wells as “09: Other and
unspecified injuries of head”. Both osteomyelitis (an infection of the
bone) and head injury are accompanied by some kind of physical
pain. However, as concepts are from different perspectives we do
not map “physical pain” to the two codes.

We analyze the Jaccard distance and edit distance of the com-
parison to show the accuracy of our Focus Model. Although we do
not obtain any baseline due to the novelty of representing analytic
focus, our result could provide references to future studies.

We then measure how our Focus Model’s performance change
with time. In all of the 24 participants, 7 have 4 pauses, 15 have 3
pauses and 2 have 2 pauses. We leave out the 2 participants who
only have 2 pauses and split the other participants into two groups.
We calculate the average scores of all three measurements for each
round separately for each cohort. The data are shown in Table 3.

In general, our Focus Model’s performance is accurate and stable
over time. We notice that the edit distance has an increasing trend
in both the 3-round test and 4-round test. While the recall rate is
stable, this indicates that the order accuracy decreases over time. A
few participants mention this in the interview that they also notice
the same issue (§6.2.3). There are multiple reasons to explain this,
for example, parameters are not adapted to any individuals, and we
discuss solutions in §7. In addition, there is an abrupt drop-down
for recall between the third round and fourth round in the 4-round
test. We found that 20 minutes usually let the participants wrap up
a conclusion for the task, with the extra time, they might start a
new sub-task from the start. Our Focus Model could not capture
and divide sub-tasks in analysis, and we provide possible methods
to solve this problem in §7. Participants who have 4 round data-
collecting opportunities get familiar with Cadence and the data
set more quickly than the other group. They are better at utilizing
the functionalities we provide. The three people we mention in
§6.2.3 who use terms inspired by the abstracts to search in the data
set are all belong to this 4-round group. Hence we get the abrupt
drop-down for recall in the fourth round.
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Roundl Round2 Round3 ‘ Roundl Round2 Round3 Round4

Recall Before 0.985 0.894 0.986 0.833 0.834 0.869 0.670
After 0.987 0.906 0.986 0.833 0.849 0.869 0.670

Jaccard distance Before 0.627 0.642 0.638 0.554 0.543 0.625 0.830
After 0.578 0.635 0.630 0.523 0.527 0.625 0.830

Edit distance Before 4.308 5.000 7.000 4.000 7.000 8.714 12.714
After 4.000 5.286 7.071 4.140 7.000 8.714 12.714

Table 3: The average recall, Jaccard distance, and edit distance in each pause round. Columns on the left side of the dividing line
are for participants with 3 pauses; columns on the right side of the dividing line are for participants with 4 pauses. We separate
the scores before and after the participant’s modification. Recall: the larger the better; Jaccard distance and edit distance: the

smaller the better.

6.2.2 Post-task Questionnaire. In the post-task questionnaire, we
ask 6 questions for ratings based on a scale from 1 to 10 with 1
as the most negative rating and 10 as the most positive rating. Q1
is on the accuracy of the Focus Model; Q2 and Q2.1 are on the
display preferences of the Focus Model, visible along with all the
other visualizations or hidden by default; Q3 is on the relevance of
surfaced abstracts; Q4 and Q4.1 are on the display preferences of
the Abstract List, visible along with all the other visualizations or
hidden by default. Figure 4 shows the result including averages of
scores for all six questions from all 24 participants.

Overall, participants think that our Focus Model is relatively
accurate with an average score of 7.6 and a medium score of 8 for Q1.
For the general helpfulness of the Focus Model, 21 participants give
a score larger than or equal to 5, indicating that most participants
find the Focus Model helpful to their analyses. The average scores
of Q2 and Q2.1 are 6.13 and 6.38. For the individual preference of
displaying or hiding the Focus Model by default to maximize its
helpfulness, 9 people prefer displaying, 12 people prefer hiding, and
3 people think both are of equivalent helpfulness.

For the Abstract List relevance, participants think it is relevant
but with more improving space, with an average score of 6.6 and
a medium score of 7 for Q3. As of the general helpfulness of the
Abstract List, 20 participants give a score larger than or equal to
5, meaning that most participants find the Abstract List helpful to
their analyses. The average scores of Q4 and Q4.1 are 4.4 and 7.2.
This also indicates that more participants prefer the Abstract List
under a separate tab by default. For the individual preference of
displaying or hiding the Abstract List by default to maximize its
helpfulness, 7 people prefer displaying, 16 people prefer hiding, and
only 1 person thinks both are of equivalent helpfulness.

6.2.3 Common answers from the interview. After the post-task ques-
tionnaire, we also conduct a short semi-structured interview for
each participant. In the interview, we ask the reasons for the scores
they give in the questionnaire, and based on their answers we may
follow-up with personalized questions. We conclude the reasons
that have commonalities to explain the scores in this section. We
talk about other interesting or inspiring findings from our inter-
views in §7.

First, we ask all participants how accurate they think our
Focus Model is and why. Most people express that the accuracy
in terms of medical concept capture is high enough to capture all
or most of their analytic focus and the order of these concepts is

similar to their subjective ranking order. Three mention that the
Importance Scores were not sensitive enough to capture recent
concepts but putting too many weights on earlier, stale concepts.
We consider this as a combination of focus switch detection problem
and parameter tuning problem (see more in §7).

Second, we ask how helpful they think the Focus Model
is for the data analysis. In addition, we also let them provide
reasons for their display preferences based on the scores to Q2 and
Q2.1. Overall, almost all participants believe that the current Focus
Model could be a great log reference for their analysis, and as a
possible supplement or replacement for tedious note-taking. As
of the usage of this log reference, participants diverge into two
groups: (1) those that feel it is most useful to review the focus live
during their analysis as well as after completing their work, and
(2) those who feel it is most useful to view the focus model after
the analysis has been completed. Interestingly, the participants that
are professional analysts identified most with the second group,
suggesting that their analysis should be driven by data and their
own knowledge. They suggest that a manual review of the focus
model is useful after the analysis has been completed as a way to
assess their work. We note that the design of the model to decay
the importance of concepts over time suggests that this approach
would be most beneficial at the scale of relatively small units of
work where the focus persists at the end of a task.

This also reflects the diverge of display preferences. The common
reason for checking the Focus Model during the analysis is that
it can remind them of concepts they once explored but forgot.
About five people point out that this is valuable especially when
they analyze an unfamiliar topic since the concepts explored can
be forgotten more quickly. The main reason to check the Focus
Model after the analysis is that they can retrospectively check
the Focus Model after the analysis to see if anything is omitted
in the conclusion, even after several months for some additional
analysis. People also express their worries about putting the Focus
Model besides other graphs and checking it during the analysis:
the information in the Focus Model is circulatory to the things
in mind so this may strengthen possible biases; the user interface
may be too crowded and the Focus Model may distract the user.
One participant also mentions that such logs can be leveraged in
collaborative works, that others could check the log to pick up
things missed in the analysis, or even continue the analysis if the
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Figure 4: Box plots for all six questions in the post-task questionnaire. Green triangles mark the average; vertical orange bars
mark the median; two ends of each box mark the 25% and 75% percentiles; two ends of each whisker mark the maximum and

minimum values.

system could read the Focus Model and recover the graphs where
left.

Third, we ask participants who have modified their Focus
Description Questionnaires after checking the Focus Model
result at least one time why they have modified the question-
naire. In total 15 participants have modified the questionnaire. All
of them explain that they forget the concepts and the Focus Model
reminds them. This proves that our Focus Model could capture
things beyond people’s memory and help remind the user.

Last, we also ask how helpful the Abstract List is to the anal-
ysis. Overall, participants agree that the Abstract List is helpful to
capture new ideas and strengthen their current analysis, although a
few of them also state that some of the retrieved abstracts sometimes
appear to lack relevance with their focus. Three people mention
that these abstracts bring out new relative concepts that inform
subsequent search back in the original data set. One searches for
Myocardial Infraction, hinted from the Frequently used terms, in the
outcome scatterplot. This literature can also provide background
information of the field to help understand the data, and affirm
more complicated relationships like published evidence for causal
relationships among concepts that align with simple correlations
found in the data visualization. Although one analyst mentions that
the Abstract List result could potentially be biased compared to
a full literature review, another former data analyst who worked
in the medical consulting field expresses a lot of appreciation for
the approach. This analyst reports regularly using dual monitors
to display Tableau and PubMed separately while doing analysis.
The participant suggests that the approach in our study would
save time and increase the efficiency of the work. A future study
could directly compare the approach outlined in this paper with
this analyst’s typical siloed analysis environment.

7 DISCUSSION

In this section, we will talk about the limitations and potential
benefits of the Focus Model and Abstract List according to our
observations and results of the user study.

7.1 Calculating the Importance Score

The prototype of the Focus Model shows relatively high accuracy
in the user study, however, there exist limitations for our current
implementation and we propose methods to improve it. We do not

capture the mouse hover as a semantic action. However, given the
feedback from several participants, hover over certain seconds may
indicate that the user is currently interested in this object. We could
assign a lower Persistence Score and Importance Score to such
action.

Some participants find that in later rounds, concepts of their
previous focus might still maintain a high Importance Score and
the latest concepts are lower in the rank. We observe that this
usually happens when the user starts to clear out components,
indicating that the user is switching to another part of the task. We
could adopt such a “sub-task” conception in our model to reflect
the analysis process better. In data analysis, it is common to break
a task into multiple sub-tasks and combine the conclusions to solve
a problem. Each sub-task corresponds to a Focus Model. We could
introduce a task-switching mechanism in the current Focus Model
Engine, however, it will be challenging to determine where to split
sub-tasks given a series of actions. A first-step idea is binding a
sub-task Focus Model to a cohort panel. Psychology studies [2]
on task-switching working memory spans may help develop the
model to recognize sub-tasks in data analysis.

We also receive feedback on leveraging the existing hierarchies in
computing the scores and presenting concepts in the Focus Model
in Cadence. ICD-10 provides a systematic method to categorize
any diagnosis in a hierarchy. If the concepts in the Focus Model
have overlaps in definition, treating them as independent concepts
and assign scores separately might extra emphasize these related
concepts. We can also embed such a hierarchy in presenting the
Focus Model to users.

During the user study, we observe that a few participants use
the functions provided by Cadence differently from how they are
designed. For example, one participant adds a series of nested mile-
stones in a single timeline rather than using the filter. The person
will reset the timeline and add some of the milestones back to re-
move some milestones. As a result, those concepts added multiple
times have a higher importance score than the newly added one
which is usually the most important in the person’s focus. This
inspires us that we could develop a self-adapted parameter assign-
ment system based on the user’s habit. This also enables a more
personalized Focus Model in the future.
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7.2 Concept Granularity

The feedback received via the Focus Description Questionnaire
provided several interesting subjective observations related to con-
cept granularity which provide useful insights for improving our
proposed modeling approach in the future. More specifically, while
the Focus Model itself represents concepts as a specific diagnosis or
procedure (or category of diagnosis/procedure) based on the formal
coding system used by the system (e.g., ICD-10), people often focus
on things in a less rigid way.

First, relationships between concepts, reflected in the question-
naires as words like “after” or “containing,” were an important piece
of how users verbalized their own analytic focus. In particular, given
the focus in Cadence on time-sequenced analysis, about half of the
participants use temporal relationship words to constrain their fo-
cus. This suggests future extensions for temporal and relational
modifiers within the Focus Model would be beneficial.

Second, we found that the same concept could mean different
things to different people. For example, two participants reported
the concept “physical pain”. One user was referencing the specific
ICD-10 concepts indicating pain, while the other used the same
term to capture a broader range of diagnoses from the respiratory
system to the circulatory system. Similarly, the concepts reported
in the questionnaire were not always used consistently. Several
participants mentioned “injury” as a concept. However, after letting
them explain if they meant the formal Injury (S00-T14) category in
ICD-10, some agreed while others did not. Those who disagreed
usually explained that they meant a more specific concept of injury,
such as shoulder injury or joint injury. Sometimes, this difference
in granularity can be captured using the existing ICD-10 hierarchy,
but other times (especially when a user has strong knowledge of
the subject) the user may think about concepts according to other
types of relationships beyond those formally present in the data
representation.

7.3 Assumption and Limitation of Focus
Modeling Algorithm

The proposed approach to modeling analytic focus provides a gen-
eral framework. Its core assumption is that a system can represent
users’ visual analytic activity in the form of discrete actions repre-
sented in the form of (type, parameters) tuples as defined earlier
in this paper. The set of actions is system-specific — determined
by the views and controls that a system supports. The parameters
for each action include concepts which are application-specific —
determined by the data schema of a specific problem. Key parame-
ters in the algorithm also need system-specific tuning, reflecting
that the salience of individual actions each system implements is
not universal. Therefore, configuring the persistence scores, im-
portance scores, and importance bias scores is important during
implementation to produce the best possible results.

The algorithm can be instantiated in many analytics systems
beyond Cadence. For instance, a geovisualization system can use it
to model a user’s focus when exploring environmental data. Actions
may include zooming in/out, panning, adding/removing a layer, and
selecting individual items on the map. In another example, a text
search engine can use the proposed approach to model a user’s
focus during exploratory text search. Actions may include launching
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a query, revising a query, clicking on a result, and clicking on a
recommended query. In this direction, our lab is currently in the
early stages of designing a search-based experiment that leverages
the methods proposed in this paper.

Although the (action, concept, timestep) abstraction is general,
it is not universally applicable. As previously described, it assumes
that a discrete sequence of actions will be reported and that the
model should be updated after each new report is received. The dis-
crete nature of these actions is not compatible with some continuous
interaction models such as those that might be used in continu-
ously evolving visualizations of live streaming data. Conversely,
visualization systems that don’t support exploratory interactions
(such as static dashboards that are passively consumed) are not
compatible. Finally, while data dimensions can often map directly
to concepts in the proposed model, it may be difficult in some sys-
tems to directly map user focus to different concepts. For example,
low-dimensional data visualizations with very few dimensions may
support interactions that largely center around changes in-range
values for the same small number of dimensions rather than differ-
ences in concepts. The model could be extended to support values
in addition to concepts as action parameters, but it has not been
the focus in the work presented in this paper.

8 CONCLUSION

In this paper, we studied the problem of modeling a user’s analytic
focus in an interactive exploratory data analysis. We designed com-
putational approaches to representing and updating such a Focus
Model, and implemented these approaches in an existing visual
analytics platform for structured health data. As a direct applica-
tion of the focus model, we leveraged it to bring relevant medical
articles to the user’s focus and complement the visualized findings
in structured data. We evaluated the prototype implementation
in a user study. The results suggest that our proposed algorithm
was able to capture most of the concepts in the participant’s focus.
The vast majority of participants also find the retrieved medical
articles are helpful in their analysis tasks. Through qualitative data
analysis, we identified many concrete directions for our research in
the next step. Overall, our study shows the feasibility of modeling
users’ focus during exploratory visual analysis and leveraging it to
broaden the exploration into other relevant data sources.
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