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ABSTRACT 
Visual analytics systems enable highly interactive exploratory data 
analysis. Across a range of felds, these technologies have been 
successfully employed to help users learn from complex data. How-
ever, these same exploratory visualization techniques make it easy 
for users to discover spurious fndings. This paper proposes new 
methods to monitor a user’s analytic focus during visual analysis 
of structured datasets and use it to surface relevant articles that 
contextualize the visualized fndings. Motivated by interactive anal-
yses of electronic health data, this paper introduces a formal model 
of analytic focus, a computational approach to dynamically update 
the focus model at the time of user interaction, and a prototype 
application that leverages this model to surface relevant medical 
publications to users during visual analysis of a large corpus of 
medical records. Evaluation results with 24 users show that the 
modeling approach has high levels of accuracy and is able to surface 
highly relevant medical abstracts. 
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• Human-centered computing → Visual analytics; User mod-
els. 
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1 INTRODUCTION 
Visual analytics technologies are designed to enable exploratory 
analytical thinking via dynamic visual interfaces [40]. These capa-
bilities, coupled with the relatively low technical skills required to 
utilize well-designed visualization-based analysis tools (in contrast 
to programming-based tools that require knowledge of algorithms 
and/or specialized languages) have made them attractive to domain 
experts across a wide range of disciplines [39]. 

The exploratory nature of visual analysis is a key part of its draw 
because it provides analysts with the ability to quickly discover 
new patterns and develop hypotheses from complex data. Yet along 
with this powerful capability comes a critical risk. The more users 
explore by altering views, changing flters, or applying other data 
transformations, the more likely they are to come across an “inter-
esting” pattern which appears to be potentially meaningful. This is, 
of course, part of the draw of visual analytics. However, it is also 
true that if an analyst examines the data for long enough, they are 
increasingly likely to fnd false positives that appear valuable—even 
statistically signifcant—eventually [27, 28]. 

Motivated by this challenge, we envision a new approach to 
contextualizing visualized patterns by surfacing relevant articles in-
teractively during a visual analysis. In this vision, the goal is to help 
users better see how potentially new insights ft within existing 
knowledge structures. Are new discoveries consistent with existing 
knowledge? Are observed patterns in confict with previous obser-
vations? Do relevant articles suggest alternative interpretations or 
follow-up questions to explore? 

A key step in this vision is to computationally model a user’s 
ever-changing analytic focus during exploratory visual analysis. 
If an accurate model can be obtained, it can be used to query for 
relevant documents which can in turn be surfaced via the system’s 
user interface. 

For example, consider the medical domain, a common appli-
cation area for visual analytics methods [19]. Imagine a medical 
expert analyzing a set of medical records for a cohort of heart 
failure patients. Patterns in treatment that associate with worse 
outcomes may suggest to the researcher that certain types of care 
plans are problematic. However, are these patterns consistent with 
the medical literature? As the researcher explores alternative risk 
factors within the medical record data, are their articles that provide 
context that would improve their interpretation of the visualized 
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statistics? Can the literature suggest alternative explanations that 
motivate the analyst to look elsewhere in the dataset? 

A visual analysis system that could automatically model an ana-
lyst’s analytic focus and surface relevant articles has the potential 
to help in all of these ways. However, this vision depends upon 
the ability to accurately model analytic focus. This is a challenging 
endeavor, however, as users do not typically express an explicit 
defnition of their focus. Instead, the focus of a user’s analysis is 
most often only implicitly expressed through a user’s interaction 
behavior. 

This paper describes a set of frst steps toward realizing this 
goal, including a general framework for analytic focus modeling, a 
prototype implementation, and results from a user study to evaluate 
our approach. More specifcally, the major contributions presented 
in this paper include: 

• Analytic Focus Model and Associated Algorithms. A 
formal model designed to represent a user’s analytic focus 
is proposed along with the algorithms required to build and 
update the focus model over time as a user conducts an 
exploratory visual analysis. 
• Prototype Application for Medical Data Analysis. The 
proposed approach has been prototyped within a pre-
existing visual analysis system [8, 23] designed to discover 
longitudinal patterns in large collections of structured elec-
tronic medical record data. The prototype implementation 
leverages this focus model capability to regularly search 
PubMed abstracts for documents relevant to the user’s un-
folding analysis. The relevant abstracts (i.e., relevant to the 
current focus model) are displayed to users to contextualize 
the current visualization and to suggest new opportunities 
for future exploratory analysis. 
• Evaluation via Controlled User Study. Results are re-
ported from a 24-person user study conducted to evaluate 
the proposed approach. The qualitative and quantitative re-
sults evaluate the accuracy of the computed focus model 
in comparison to manually logged reports of analytic focus 
during an exploratory analysis of real-world medical data. 
The evaluation also examines the utility of the evolving set 
of relevant abstracts surfaced during the users’ analyses. 

The remainder of this paper provides an overview of related work 
and presents a detailed description of the above-mentioned research 
contributions. A discussion about the limitations and potential 
benefts of this type of focus-based contextualization approaches 
for future interactive systems is also provided. 

2 RELATED WORK 
We propose computational approaches for modeling a user’s focus 
during exploratory visual analysis, and leveraging that model to 
search for contextually relevant literature. This approach draws on 
prior work from various areas in HCI research. 

2.1 Contextual Visualization 
While visual analytics techniques are efective in helping analysts 
glean insights from large complex data sets, visualized results are 
often highlighted out of their contexts (e.g. data selection process) 

which are critical to the validity of analysis. It is therefore impor-
tant to make analysts aware of such contextual information [7]. 
Techniques to bring back unseen context include showing zoom-
out views for spatial, temporal, and network visualizations [10, 30], 
visualizing data provenance [22], surfacing relevant information 
within the same document to the current reading focus [1], and 
estimating potential cognitive biases during analytic processes [42]. 

Our work difers from previous works in that it brings relevant in-
formation from external text collection to contextualize structured 
data visualization. It saves analysts’ efort in searching for pub-
lished evidence that may support or contradict the current fnding. 
Besides critical thinking, surfacing contextual information from ex-
ternal data can also provide new perspectives and inspire follow-up 
analyses. While the new methods presented in this paper provide 
a general framework for analytic focus modeling (see Section 7.3), 
they have been prototyped as new additions to a pre-existing visual 
analytics system called Cadence [8, 9, 21–23] which includes some 
contextual visualization features such as selection bias detection 
and mitigation. Because of this connection between prior work on 
Cadence and the new methods presented in this paper, a more de-
tailed description of Cadence (both the pre-existing system and the 
new additions implemented for this paper) is provided in Section 3. 

2.2 Analysis of User Interactions and 
Visualization Provenance 

Another related area of research is the analysis of user interactions 
and visualization provenance. Xu et al.’s recent survey [49] char-
acterized this diverse body of work along three dimensions: WHY, 
WHAT, and HOW. 

The work presented in this paper most directly fts within the 
“Understanding the User” category within the WHY dimension. As 
defned by Xu et al., this category includes: (1) methods that aim 
to “describe the human analytical reasoning proces” (e.g., [15, 24]); 
(2) computational approaches to extract analysis patterns and/or 
workfows (e.g., [16, 26]); (3) modeling methods to understand user 
characteristics or personality traits (e.g., [12, 32]); and (4) techniques 
for the modeling of user attention and/or tracking biases during 
analysis (e.g., [21, 31, 44, 45]). 

Within these subcategories, the research presented in this paper 
is perhaps most closely aligned with work on modeling of user 
attention. Past work in this area has often aimed to model visual 
attention (e.g., predicting which visual mark on the computer screen 
a user will next attend). This approach, for example, was followed 
in the attention inference method proposed by Ottley et al. [31] 
which used a hidden Markov model to predict which mark within a 
visualization a user will interact with next. This prediction is based 
on a mark space defned as a set of N visual features used within a 
visualization (e.g., position or color of a mark). The analytic focus 
model presented here is diferent. Rather than model and predict 
the visual marks to which a user attends, this paper aims to model 
cognitive attention: the set of semantic concepts that defne the focus 
of the user’s analytic task independent of how or where they are 
represented visually in the interface. This is modeled by observing 
semantic user actions (defned using the type of user interaction and 
associated parameters, see Section 4.1). In this way, the approach 
in this paper also has some similarities to Xu et al.’s “describe the 
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human analytical reasoning process” subcategory. However, the 
goal of this paper is to model a user’s current analytic focus rather 
than understanding analytic strategies or identifying fndings from 
interaction logs. 

This paper’s contributions also relate to the “Adaptive Systems” 
category within the WHY dimension. In particular, the analytic 
focus model is designed to be leveraged in ways that adaptively 
surface relevant information to users during analysis. While for-
mulated diferently, this approach has some similarity to past work 
exploring was to use observations of user behavior to guide data 
pre-fetching (e.g., Battle et al. [3]) or to drive active search during 
visual analysis (e.g., Monadjemi et al. [29]). In this characterization, 
the ActiveVA approach proposed by Monadjemi et al. is perhaps 
most closely related given its focus on surfacing new data to users 
that are marked as relevant given an actively updated model of a 
user’s latent interests. However, ActiveVA builds this model from 
data points that are assigned a binary classifcation of either rel-
evant or irrelevant based on user input. In contrast, this paper 
maintains a semantic concept-based approach with a time-decay 
model that is maintained by observing properties of user actions 
(rather than labels of data points). 

In the WHAT dimension, the approach in this paper fts within 
the “Sequence” category of Xu et al.’s framework because it observes 
a sequence of high-level user interactions during visual analysis. 
One challenge in the analysis of sequences of user interactions 
is the need to bridge the semantic gap between high-level user 
intents and low-level user interface events, which Ragan et al. call 
granularity [33] and Xu et al. refer to as interaction type [49]. The 
approach outlined in this paper observes user interactions at the 
semantically meaningful action level as defned in [24]. 

Finally, Xu et al.’s HOW dimension characterizes the modeling 
approach used by a given method. The methods in this paper are 
most closely related to the “probabilistic models/prediction” cate-
gory. This is a broad category ranging from basic statistical models 
to more sophisticated prediction methods including neural net-
works (e.g., [25, 37]) and Markov models (e.g., [31, 46]). The method 
proposed in this paper uses a time-decay model to computer per-
concept importance scores as predictions of salience to a user’s 
analytic focus at a given time point. 

With respect to implementation, the methods presented and 
evaluated in this paper have been prototyped as new components 
within a pre-existing visual analytics system (see Section 3). How-
ever, past work on VisTrails [4] and the recently published Trrack 
[14] show that a library-based design can be used to support generic 
provenance tracking capabilities. Within the scope described in Sec-
tion 7.3, a similar approach could be used to apply the methods 
presented in this paper beyond our prototype environment. 

2.3 User Modeling & Recommendation 
User modeling is another closely related active research area in 
human-computer interaction [6, 17]. The goal of user modeling is 
to enable interactive systems to better understand users’ intent and 
preferences so as to provide customized support to satisfy users’ 
specifc needs. User modeling techniques often infer user preference 
from user behavior logs on interface components. The technique 
has been widely adopted in Web search engines [47], digital libraries 

[18], online recommender systems [5], adaptive education systems 
[13], and health information systems [50]. In this work, we model 
a user’s focus by observing user interactions on structured data 
elements and representing user interests using domain-specifc 
concepts. Such an approach is closely related to ontology-based 
user modeling, where users interact with the semantic web and 
user profles are mapped to structural elements in an ontology [38]. 

3 VISUAL ANALYSIS PLATFORM 
This paper introduces a set of techniques designed to model and 
leverage a user’s analytic focus during exploratory visual analysis. 
These techniques, presented in detail in Section 4, are designed as a 
general approach that can be tailored to work across a broad range 
of visual analysis applications. However, the design is motivated 
in part by challenges faced by analysts in the medical domain 
and the techniques have been prototyped for evaluation purposes 
within Cadence [8, 9, 21–23], a pre-existing open-source [41] visual 
analytic system designed to enable exploratory analysis of large 
collections of longitudinal data such as electronic health records. 
This section provides a brief overview of the Cadence system and 
the user interface extensions added to support the work presented 
in this paper. 

3.1 Pre-existing Cadence System 
Cadence is a visual analytics platform designed to allow users to 
discover patterns in structured longitudinal event data, such as 
electronic health records. Cadence provides a rich set of interac-
tive features for defning queries, applying flters, exploring the 
frequency of diferent patterns of events over time, and associating 
those event patterns with diferences in outcome. For example, Ca-
dence has been used to analyze large collections of medical data to 
discover risk factors for opiate addiction, identify treatment path-
ways for heart failure patients, and discover patterns of use for 
medical devices. 

Cadence employs a generic model to represent longitudinal 
event data. It consists of a subject information table and an event 
sequence collection. The subject information table contains a 
subject_id column as the primary key and various named at-
tributes that describe the subject. The event sequence collection 
stores (eventtype, timestamp) pairs for each subject. Cadence un-
derstands an eventtype as a nominal value in a fxed vocabulary, 
and organizes the types within a hierarchical structure (e.g. “is-
a” relation) to support aggregation of events at diferent levels of 
granularity. A timestamp records the date and time of event . In the 
context of electronic health records, the subject table contains pa-
tient attributes (such as age, gender, and race). The event sequence 
collection stores medical events over time for each patient, where 
the event types are concepts (such as procedures and diagnoses) 
from standard medical lexicons such as SNOMED-CT and ICD-10. 

The Cadence platform provides a web-based interface shown in 
Figure 1(a) which includes a coordinated set of interactive visual-
izations that work together to allow users to explore complex event 
data over time. A user starts her/his analytic task by defning a set of 
constraints as a scoping query. The query is defned via interaction 
with a drag-and-drop query authoring tool as a set of temporal and 
attribute constraints. For example, in the medical context, a health 
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analyst might query a database of millions of medical records for 
data from patients that are male, over age 65, with a diagnosis of 
heart failure, and with a hospital discharge later. To conduct an 
analysis about readmission risk factors, the analyst might spec-
ify the temporal query to include all medical events for matching 
patients occurring from one year prior to heart failure diagnosis 
through 90 days after the hospital discharge. Given this type of 
query specifcation, the platform then selects the data satisfying 
the query, computes various summary statistics in the backend, 
and renders the results as interactive visualizations in the frontend 
as dynamically generated interactive visualizations using standard 
Javascript libraries (e.g. D3.js). The user interface for Cadence with 
some of the available visualizations is shown in Figure 1. We note 
that this fgure does not show all of the available visualizations 
within Cadence as only a subset of visual elements is displayed 
at any one time to manage interaction complexity. Moreover, we 
note that this fgure shows new user interface elements that were 
not part of the pre-existing Cadence system but instead as part 
of the work reported in this paper as described in Section 3.2. In 
particular, the Model Result component (on the bottom left) and 
the Abstract Preview panel (highlighted in Figure 1(b)) were not 
part of the pre-existing Cadence system. 

The pre-existing Cadence system allows users to visually explore 
the data returned by the query and to apply flters via the interface 
to revise the subset of event data under analysis. A record of data 
subsets (which Cadence calls cohorts created by users is maintained 
and visualized through the Cohort Overview panel found in the left 
sidebar of the interface. This panel shows iconic representations 
of the cohorts that summarize basic information (such as how the 
subsets were derived, and the number of entities in each subset). In 
addition, Cadence uses this area to surface bias statistics calculated 
by system features that quantify potential selection bias and support 
selection bias mitigation. These features are beyond the scope of 
this paper and are reported in prior work [8, 9]. 

Within the main portion of the pre-existing Cadence user inter-
face (labeled as “Timeline View” in Figure 1), a number of coor-
dinated visualizations are provided to explore the data associated 
with a specifc cohort and to apply flters to derive new cohorts. 
First, interactive histograms allow users to subset data based on 
categorical or scalar attributes such as age, race, or gender. Users 
can right click on any of the histograms to apply a flter. In response, 
the system derives a new cohort by applying the requested flter 
and updates the visualization to refect the updated data subset. 
Below the attribute histograms, a histogram of event frequencies 
is provided to communicate the most commonly occurring events 
within the currently visualized data subset. Leveraging the fact 
that event types can be organized within a hierarchy (as described 
earlier in this section), this portion of the user interface includes 
data at various levels of granularity. Moreover, Cadence includes a 
variety of features that allow users to interactively control the level 
of aggregation used in the interface to analyze events at various 
levels of detail (e.g., to look at all “heart disease” diagnoses as one 
type of event, or to look 19 distinct types of heart failure diagnoses 
at the lowest level of representation). These features are valuable 
analytical tools for managing high-dimensionality, but are beyond 
the scope of this paper and reported in prior work [23]. 

To the right of the histograms is a milestone-based timeline 
visualization [20] which allows users to explore subsets of data 
based on temporal constructs between events (e.g., combinations 
of before/after relationships). The rectangular blocks in the visu-
alization correspond to specifc types of events (e.g., a diagnosis 
of some sort of injury due to an accident) or temporal milestones 
(e.g., 365 days prior to the subsequent event) of the event sequences 
being analyzed. Users can click on individual rectangles to view 
details-on-demand about the corresponding event sequences. Most 
attribute and temporal constraints in the scoping query are shown 
as the initial milestones. Moreover, users can interactively add or re-
move milestones within the timeline to create further subdivisions 
(represented visually via the insertion of additional rectangles) via 
interactions with the scatter plot described later in this section. 
The rectangles themselves are color-coded to represent outcomes. 
In the medical context, this allows users, for example, to example 
diferent clinical pathways (e.g., diferent treatments for a common 
condition) and the associated medical outcomes experienced by the 
corresponding patients. If desired, users can derive cohorts from 
individual rectangles to narrow their analysis to a specifc subset. 
This fltering action is triggered via a right-click context menu, and 
it results in the creation of a new cohort via the introduction of a 
new data constraint just like a fltering action performed via the 
attribute histograms described earlier. 

Selections within the timeline visualization are coordinated with 
a scatter-plus-focus plot [23] which allows users to quickly identify 
new event types to incorporate into the timeline to help separate 
patients with good outcomes from those with bad outcomes. The 
plot shows circles that represent individual event types positioned 
by frequency on the y axis and correlation to the outcome on the 
x axis. Users can click on individual circles to view more details 
about individual event types, navigate the event type hierarchy, and 
add interesting events found in this visualization to the timeline 
visualization as new milestones. 

As this description of the pre-existing Cadence system shows, 
users can perform various actions through the user interface during 
exploratory analysis. This includes the addition of new flters, in-
serting milestone event types into the timeline view, or clicking on 
graphical marks that represent subgroups (defned by combinations 
of milestones in the timeline) or event types for details-on-demand. 
The Cadence system, in response to these actions, computes and 
visualizes a number of diferent types of statistics for the various 
data subsets created by users during their exploratory analyses. 

The collection of data subsets recorded by the pre-existing Ca-
dence system (representing groups of patients in the medical con-
text) is used to allow users to go back to data sets viewed in prior 
stages of analysis, and to support the selection bias detection fea-
tures described above. This is accomplished by comparing the users’ 
current data subset against a baseline data subset seen earlier in an 
analysis. Users can interactively select past data subsets as baselines 
for this purpose through interactions with the Cohort Overview 
panel. The pre-existing Cadence system had no capabilities for 
monitoring user actions during exploratory analysis, constructing 
and maintaining a model of user’s analytic focus during analysis, 
or leveraging such a focus model in any way. Moreover, no user 
interface components existed to support these features which were 
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a

b

Figure 1: Cadence is a visual analytics platform that allows for exploratory analysis of longitudinal event data such as elec-
tronic health records. (a) This pre-existing system contains a number of visualization features including interactive his-
tograms, an exploratory timeline, and a highly interactive scatterplot showing associations between specifc event types and 
outcomes (e.g., specifc treatment events associated with hospital discharge or death). (b) Cadence has been extended to surface 
relevant abstracts from PubMed using the focus model techniques presented in this paper. 

introduced to Cadence for the work presented in this paper as 
described below. 

3.2 New Additions to Cadence to Support the 
New Focus Model Capability 

Following the new approach we outline in this paper (and therefore 
not part of the pre-existing Cadence system), we can in theory 
describe each of user analysis actions supported by Cadence as a 
combination of both (1) a type of action and (2) one or more event 
types (i.e., concepts) that are the focus of that action. For instance, 
a user might add a new flter (the type of action) using a diagnosis 
of heart failure (the concept of that action) in medical analysis 
to focus only on patients with that diagnosis. In this way, we are 
able to apply the focus modeling approach presented in this paper 
(as formulated in Section 4.1) to the pre-existing Cadence visual 
analytics system. 

To adopt this model of user actions and to implement the new 
focus model capabilities outlined in this paper, a wide range of new 
additions were made to the pre-existing Cadence system. In partic-
ular, to support the new focus model capabilities, the techniques 
described in Sections 4 and 5 have been prototyped as extensions 
to the pre-existing Cadence visual analytics system. The added 
features automatically observe a user’s analytic activity during ex-
ploratory analysis of the structured medical data, incorporate those 
observed interactions into a model representing the user’s analytic 
focus as it evolves during analysis, and leverages that model to 
asynchronously retrieve relevant abstracts from PubMed with the 

aim of contextualizing the temporal event patterns surfaced in the 
pre-existing visualizations. 

To support these added capabilities, a new panel has been added 
to the Cadence user interface as shown in Figure 1(b). This is visi-
ble as an additional tab located behind the timeline visualization. 
The text snippets shown for each abstract include highlights of 
any mentioned medical concepts that are related to the current 
focus model. Users can switch between tabs at any time to look for 
linkages between the medical literature and patterns found in the 
structured data visualization. 

Beyond the core extensions outlined above, which were designed 
to assist users during analysis, an additional focus model panel was 
added to the interface in support of the user study protocol outlined 
in Section 6. This added panel is not intended for everyday use. 
Instead, it externalizes the current focus model for user review 
during the study protocol, provides buttons that allow for study 
moderators to manually save data during a study session (such as 
logs of users’ interactive analysis activity and the current state of 
the focus model) to allow for subsequent analysis. 

4 ANALYTIC FOCUS MODELING 
When visually exploring structured data, a user aims to fnd inter-
esting patterns expressed through domain-specifc concepts and 
their relations. Because the task is intrinsically exploratory, the 
user’s analytic focus will change over time. Some of these concepts 
come into the user’s current focus, while others fade away. The 
problem of analytic focus modeling can be stated as “to infer a user’s 
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Figure 2: As users interact with the visualizations, actions 
are reported to the Focus Model Engine which updates the 
focus model. The full-text search engine converts the Focus 
Model into a query that is used to retrieve relevant PubMed 
abstracts. 

current analytic focus given the trace of user actions observed on 
the system interface.” In this section, we formulate this problem 
and propose an algorithm that estimates the focus model over time. 

4.1 Problem Formulation 
Before formulating the problem of analytic focus modeling, we frst 
defne several key terms and notations. 

Defnition 1 (Interaction): An interaction refers to low-level UI 
events, such as clicks, drags, or key-presses. Each interaction usually 
carries little semantic meaning by itself. A group of interactions 
(e.g. a right-click and then a click on an option in the context menu) 
can accomplish higher-level semantics, which we defne below. 

Defnition 2 (Action): An action refers to an atomic semantic 
operation at the level where a series of aforementioned interactions 
combine to represent a single semantically meaningful event like a 
selection or a flter. Each action provides event-based insight prove-
nance that carries richer semantics than an interaction. An action 
can be represented as a tuple combining type, intent and parameters. 
[24] The type could be a query, a selection, or a flter. Our system 
does not use intent, resulting in a simplifed action representation 
of (type, parameters). We instrument the visual analytics system 
such that it will listen to a selected set of actions taken by a user. 
The set of all actions A is described in the frst column of Table 1. 
In what follows, we use a ∈ A to denote an action. 

Defnition 3 (Concept): A concept refers to a meaningful data 
attribute in the problem domain. These can be attributes (felds) of 
data records in a structured database schema, index terms appear-
ing in unstructured documents, and entries in a domain-specifc 
taxonomy. Concepts are action parameters in the action tuple, and 
vary by the type. For example, selecting is usually associated with 
at least one concept - the selection criteria. Concepts play a central 
role in a user’s analytic focus. We use c to denote a generic concept. 

Defnition 4 (Persistent Action): A persistent action changes 
the visualization interface signifcantly in the long run, until other 
persistent actions are performed and revert the change. For ex-
ample, adding a flter in most visualization tools changes the plot 
persistently until the user removes the flter or adds another flter. 

Defnition 5 (Transient Action): A transient action changes 
the visualization interface and those changes revert back quickly, 
and sometimes automatically. For example, the user could select a 
point in a scatter plot by hovering to check the details of the data 
it represents, but these details will fade out after 5 seconds even 
the cursor is still hovering and the user does not interact with any 
other parts. 

We categorize all actions in A into the above two types. The 
second column of Table 1 shows the type for each action. 

Defnition 6 (Time Step): During exploratory data analysis, 
the user’s analytic focus will change over time. Although wall clock 
time is a natural way to defne time, diferent users may perform the 
analysis at diferent paces, depending on the path of exploration and 
the user’s familiarity with the domain. In light of this, we measure 
time as the sequential order of actions. That is, each time step t 
is a sequence number that corresponds to a discrete action taken 
anywhere on the interface. In particular, t = 0 corresponds to the 
frst action, the initial query issued by the user. 

Using the above defnitions, we can defne the observed sequence 
of user actions throughout the data exploration process as S = 
{(ai , ti , ci )|0 ≤ ti ≤ T }, where each triple (ai , ti , ci ) represents an 
action ai ∈ A taken place at time step ti that involves a concept 
ci . T is the total number of time steps (actions) taken. In principle, 
the index i can be diferent from the time step ti . For instance, an 
action may simultaneously involve two concepts, which gives rise 
to two triples, each with the same action, the same time step, but 
two diferent concepts. In that case, ti will only increment by 1 
while i will increment by 2. 

Problem Formulation (Analytic Focus Modeling): At any 
time t ≤ T , St = {(ai , ti , ci )|0 ≤ ti ≤ t } will contain a unique set 
of concepts Ct . The Analytic Focus Modeling problem is as follows: 
given the observed sequence of actions St , to estimate an impor-
tance score Ic (t) ≥ 0 for each concept c ∈ Ct at time t . A large 
importance score Ic (t) indicates a strong analytic focus on concept 
c at time t ; a small importance score indicates a weak focus; a zero 
importance score indicates the concept falls out of focus. 

4.2 Analytic Focus Modeling Algorithm 
Given the above formulation, we describe an algorithm that esti-
mates a dynamic focus model given a user’s actions. 

4.2.1 An Additive Model. Each concept c in the focus model is 
associated with an importance score Ic (t). To estimate Ic (t), we take 
all actions related to concept c up to time t : St,c = {(ai , ti )|0 ≤ 
ti ≤ t }. In general, these may include not just actions that directly 
involve c as an input, but also actions adjacent to concept c on the 
interface. For example, if an action involving a diferent concept 
took place in the same panel as concept c , that action is related to c . 
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Action a Category Ia (0) Pa ba 

Select (Scatterplot) 
Select (Timeline) 
Add milestone 
Add flter 
Query 
Close (Panel) 
Reset (Panel) 
Show timeline 
Set baseline 
Set focus 

T 
T 
P 
P 
P 
P 
P 
P 
P 
P 

1 
1 
1 
2 
3

-0.1 
-0.3 

1 
1 

1.5 

2 
2 
50 
80 
100 
+∞ 
+∞ 
80 
100 
100 

0 
0 
0 
1 
2 
0 
0 
0 
0 

0.5 

Table 1: User actions considered in this study, with associ-
ated parameters. P stands for persistent; T stands for tran-
sient. Ia (0), Pa , and ba are the initial importance score, the 
persistence score, and the importance bias score of action a, 
respectively. 

We estimate Ic (t) by aggregating partial importance scores con-
tributed by all previous actions involving concept c:Õ 

Ic (t) = Iai (t − ti ) , (1) 
(ai ,ti )∈St,c 

where Ia (t) represents the importance of a concept as a result of 
taking action a on it. For example, creating a flter using a concept 
indicates that the concept is in the user’s current focus and will 
remain there for some time. Note that Ia (t) is action-specifc but 
concept-agnostic. This is a simplifying assumption that an action 
will contribute the same importance regardless of concepts involved. 
Iai (t − ti ) is a time-shifted version of Iai (t) because the importance 
contribution starts from ti , the time when action ai happened. 

In principle, it is possible to use other strategies to aggregate per-
action importance scores and produce the overall importance score 
Ic (t), e.g., taking maximum instead of sum. We adopt an additive 
model in this preliminary study. 

4.2.2 Per-Action Importance Score Function. For each action ai 
happened at time step ti , we associate a decaying aging function 
over time. The basic idea is simple: as time goes by, the importance 
of concepts involved in that action will decline. In particular, we 
employ the approximate Ebbinghaus forgetting curve [48] as our 
aging function: 

−Ia (t) = Ia (0) × e P
t
a , (2) 

where Pa refers to the Persistence Score of action a and t refers 
to the time step counter indicating the number of actions after 
a took place. We utilize the Ebbinghaus forgetting curve as the 
aging function because the focus on a certain concept based on one 
action shares similarities with the retention of facts in memory. Our 
Persistence Score represents the stability of the action infuence, 
working similarly like the S as stability of memory in the original 
Ebbinghaus curve equation R = e − S

t 
. Ia will decrease fast at the 

beginning and then slowly decrease. When it is below some certain 
lower threshold l , the Focus Model will remove this aging function 
in the list to improve efciency. 

When t = 0 for an aging function, the initial value Ia (0) is 
assigned based on the type of action a. A larger number for an 
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action represents the semantic importance of that action in terms 
of a user’s analysis focus. For example, the flter action that changes 
the dataset in examination is a much stronger signal of analytic 
focus than a transient inspection action; hence a larger Ia (0) will 
be assigned to the flter action. 

The Persistence Score Pa implies how stable an action infuences 
the user interface determined by its type. A higher persistence score 
implies that the action makes more stable changes on the interface. 
We use such a standard based on the observation that users tend to 
modify the visualization interface to help their analysis. So when 
an action adds certain components on the interface stably, the 
values corresponding to the components are more important in the 
user’s focus. Thus, the persistent actions are assigned with higher 
persistence scores than the transient actions. 

Some actions like “reset” or “undo” will remove components 
on the interface, they are persistent actions with negative initial 
importance. We set their persistence score to +∞ as we assume 
negative efects do not change over time. That is, Ia (t) = Ia (0) is a 
negative constant function for these actions. 

4.2.3 Updating the Focus Model. Each time the algorithm receives 
a new action (ai , ti ), it needs to update the Focus Model. It mainly 
adds new aging functions to relative concepts of the action inputs 
and updates importance scores. This updating process is comprised 
of two parts: independent decay of each aging function and sum 
of all aging functions, including the newly added ones for those 
concepts that are close enough with the action inputs. 

We consider the updating process of the overall importance 
score as an incremental operation. When time is at t + 1, concept 
c’s importance score is updated as follows: 

dIc (t)
Ic (t + 1) ← Ic (t) + ∆t + Ia (0) , (3)

dt 
where Ia (0) is the initial importance score of an action a happened 
at time t + 1. Since the time steps are discrete, ∆t = 1. 

4.3 Implementation 
The focus model system is designed to work generically without any 
dependence on a specifc visual analysis system. It is self-contained 
with a defned API and works with any arbitrary set of concepts. 
To utilize the focus model, developers would need to perform three 
steps: (1) enumerate action types and parameters, (2) instrument the 
visual analysis to report the occurrence of actions (and associated 
parameters) via the API, and (3) tune action parameters to account 
for application-specifc diferences in the salience of specifc action 
types. 

Following this approach, we developed a Focus Model Engine 
(FME) as a JavaScript module. The FME then connects with the 
previously existing Cadence visual analytic system (described in 
Section 3) through callbacks. Cadence notifes the FME when user 
actions occur and in response updates the focus model dynamically. 
Cadence can then request the current focus model at any time via 
API to support focus-aware features (e.g., see Section 5). 

In the context of the Cadence system, we considered 10 unique 
Cadence actions as shown in Table 1. The concepts are medical 
terms from both ICD-10 and SNOMED-CT coding systems. Action 
parameters were assigned based on their action categories and 
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heuristics. We also validated these parameters in pilot runs within 
the authors. 

We use an additional importance bias score ba (see values in 
Table 1) in the per-action importance score function Ia (t) to encode 
the intrinsic importance given by an action to an involved concept: 

−Ia (t) = Ia (0) × e P
t
a + ba . (4) 

In principle, we expect that diferent parameters are needed for 
diferent visual analysis platforms, since they may contain difer-
ent actions and similar actions may represent diferent semantic 
meanings in specifc environments. We refer the reader to previ-
ous works on classifcations of actions and abstract visualization 
tasks [11, 35, 36, 43]. 

5 LEVERAGING ANALYTIC FOCUS 
In this work, we leverage the focus model as a succinct representa-
tion of the user’s information need and use it to retrieve relevant 
documents from a large text collection. Specifcally, we implement 
a full-text search engine. A PubMed snapshot from late 2019 is used 
as our collection of medical articles. It contains 29,137,784 published 
articles, including each article’s title, abstract, authors, subject head-
ings, among other information. We use Apache Lucene/Solr to build 
a full-text index for the title and abstract of each article. Clinical 
concepts mentioned in an article’s title and abstract are recognized 
using the SNOMED-CT lexicon. 

An analytic focus model is translated into a felded free-text 
search query run against the above Solr index. Specifcally, the list of 
(concept, importance score) pairs in the focus model is transformed 
into a Lucene query. Concept descriptions are used as query terms, 
and the associated importance scores are used as per-term boost 
scores defned in Lucene’s query syntax. As a preprocessing step, 
ontology codes (such as “F43”, “V00-X59”) and stop words (such as 
“of”, “to”) in concept descriptions are removed from the query. Both 
title and abstract felds are searched. For example, given the list of 
importance-weighted concepts as follows: 
[(F43 Reaction to severe stress, 7.3), (V00-X59 Accident, 4.5), 
(S00-T14 Injury, 2.5)] 

The list is translated into the following Lucene query, which is 
sent to the Solr search service: 
title:reactionˆ7.3 abstract:reactionˆ7.3 title:severeˆ7.3 
abstract:severeˆ7.3 title:stressˆ7.3 abstract:stressˆ7.3 
title:accidentˆ4.5 abstract:accidentˆ4.5 title:injuryˆ2.5 
abstract:injuryˆ2.5 

Upon receiving such a query, the Solr index returns a ranked 
list of relevant articles. Articles are ranked using the BM25 scoring 
function, which is a standard document retrieval function that 
estimates the degree of relevance between a document and a query 
[34]. 100 top-ranked documents are returned to the frontend of 
Cadence system. 

As shown in Figure 1 (b), the search results are rendered as a 
paginated ranked list in a separate “Abstract Preview” tab beside 
the main visual exploration tab. Clinical concepts mentioned in 
the result snippets are highlighted. To summarize clinical concepts 
mentioned in the search results, 10 most frequently mentioned 

concepts in the result set are shown in a drop-down menu, which 
can be used to flter search results. 

As the focus model keeps updating during exploratory visual 
analysis, new search queries are continuously formulated and new 
results are updated in the “Abstract Preview” tab. Because all clinical 
concepts are pre-extracted at index time (instead of search time), 
the text search and rendering process is fairly responsive. Using 
a 32GB RAM, 120 GB SSD server in AWS cloud, the Solr index 
achieves a response time within 1-2 seconds per query. 

6 USER STUDY 
We conducted a user study with 24 participants to test the accuracy 
of our Focus Model and the helpfulness of the related abstracts 
returned from PubMed. This section describes the study’s design, 
data processing methods, and results. 

6.1 Study Design 
Our study asked participants to independently perform an analysis 
using Cadence for a specifc task that we provided. Participants 
were trained to use Cadence prior to the experimental task, and data 
was collected from both the participant and the system while the 
task was completed. Post-task information was gathered via a ques-
tionnaire and semi-structured interviews. The details of this study 
design, which we conducted with the approval of our institutional 
review board, are provided in the remainder of this section. 

6.1.1 Participants. To ensure that the participants could perform 
the analysis smoothly, besides the training, we require the partic-
ipants to have data analysis experience previously. We recruited 
24 current or former graduate students whose graduate studies 
are/were in a STEM feld. Although we ask participants to analyze 
medical data, we do not expect them with a professional medical 
background. Instead, we provide analysis tasks that can be analyzed 
using common sense. Each participant is rewarded with a 15 dollar 
Amazon gift card. 

6.1.2 Procedures. Since Cadence is a complex platform, we provide 
the participants with a tutorial video on using Cadence with the 
EHR data before the session. We also provide background stories 
to explain the tasks they are going to analyze during the study 
session. For example, one of the tasks is to explore what diagnoses 
or procedures have a strong correlation with a fnal diagnosis of 
reaction to severe stress (ICD-10 code: F43). We set a specifc patient 
cohort who had an accident (ICD-10 code: V00-X59) followed by 
an injury (ICD-10 code: S00-T14) to help start the analysis. We also 
explain further the relationships among these diagnoses to help 
those without a medical background. We ask the participants to 
further explore what other diagnoses or procedures may increase 
the chance of developing a reaction to severe stress among these 
patients. 

During the session, Cadence provides participants with access to 
interactive data visualizations of aggregate statistics from electronic 
medical data, and a list of abstracts from related PubMed articles. 
The Cadence system is instrumented to interactions the participants 
performed in the system, and compute based on those interactions 
a Focus Model in real-time. 
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Participants are asked to pause their analysis approximately ev-
ery 6 min. Since each participant has a diferent speed to get familiar 
with the system, the actual time duration varies among participants. 
During that pause, they are asked to describe their current analysis 
focus via a Focus Description Questionnaire. We then show them 
our computed Focus Model and ask them to compare that model to 
their own description of their analytic focus. They may modify the 
questionnaire like adding concepts they forget. 

At the beginning of the sessions, we encourage the participants 
to check the Abstract List during their analysis, but that is not 
required. If the participants do not check the Abstract List, we let 
them explore it for about 2 minutes before they fll in the post-task 
questionnaire. 

Whether the participants fnish the task or not, they are asked 
to stop working on their analysis after about 40 minutes. We then 
provide participants with a post-task questionnaire and conduct a 
semi-structured interview to collect additional subjective feedback 
on the Focus Model and related abstracts. 

6.2 Results 
In this subsection, we present our study results in three parts: the 
comparison between participants’ self-reported concept list and our 
Focus Model result; the aggregated data collected from the post-task 
questionnaire; and the common answers from the interview. 

6.2.1 Computed accuracy of the Focus Model. To compute the accu-
racy, we calculate the recall of our Focus Model, the Jaccard distance 
and the edited distance between the self-reported concept list and 
the Focus Model result for each participant and each pause. In 
our Focus Description Questionnaire, we ask participants to report 
any concepts which are important in their focus, thus participants 
may provide certain medical terms within the SNOMED or ICD-10 
system, or other related terms. Hence we need to standardize the 
questionnaires and the Focus Model results frst before the com-
parison. We use both the participants’ lists before and after their 
modifcation during each pause and compare them separately. 

First, we need to standardize the concepts in the participant’s 
descriptions of their focus and fnd the mappings in our Focus 
Model result. For concepts that are just a shorthand of a specifc 
code, we directly map the concept to the corresponding code: if 
a participant wrote “lead ECG” in the focus description, we map 
it to “268400002: 12 lead ECG”. However, participants may provide 
general medical terms rather than a specifc diagnosis like obesity. 
For such general concepts, we need to map them to the codes used 
in our focus model. We adopt the following two rules when we do 
the mapping: 
• Mapping down in the hierarchy. We only map a general 
concept to its child concepts in ICD-10 or SNOMED but we 
don’t do the opposite. For example, if a participant men-
tions “procedure”, we map this concept to the code “59108006: 
Injection” in Focus Model result given the SNOMED cate-
gorization. However, if another participant mentions “eye 
injury”, we don’t map the concept to code “S00-T14: XIX.1. 
Injury” as the eye injury is a child to Injury. 
• Combining codes. We map a concept to one or multiple 
codes if all the codes are proper. For example, if a participant 
mentioned “long term drug use” in the focus description, 

and we have “Z79.82: Long term (current) use of aspirin”, 
“Z79.84: Long term (current) use of oral hypoglycemic drugs” 
and “Z79.8: Other long term (current) drug therapy”, we could 
map this concept to all the three codes. Note that although 
Z79.8 is the parent of both Z79.82 and Z79.84, we count them 
as independent concepts because our prototype also treats 
these three concepts independently. 

In some rare cases, participants may also provide concepts like 
“the outcome scatterplot” which are in their analytic focus but not 
medical related terms at all. We exclude these concepts in compar-
ison as these concepts do not participate in the actual reasoning 
process in data analysis. 

Using such a mapping strategy, we could always get one-to-
one or one-to-multiple mappings from participants’ self-reported 
concept list to our Focus Model result in practice. 

Second, we calculate the importance score for each concept after 
the standardization. If a concept is mapped to only one code in 
the Focus Model, we assign the Important Score of that code to 
this concept. If a concept is mapped to multiple codes in the Focus 
Model, we assign the sum of the Important Scores of all codes to it. 

Third, we compute the ordered list of both concepts described 
by participants and in the Focus Model result for each pause. For 
the concept set Vu described by each participant in each pause, we 
sort all the concepts based on their scores from large to small and 
get an ordered list Lu . For the concept set in the Focus Model, we 
combine those concepts if a one-to-multiple mapping described 
previously happens. 

The new concept set is Vm . Then we sort the new concept set 
based on each concept’s score from large to small, and ignore con-
cepts whose scores are below the last concept mapped in the list. 
Thus we get the fnal ordered list Lv . 

We use the following metrics to measure the match between 
user-provided focus and the focus model: 

(1) Recall: the fraction of user-provided concepts covered by the 
focus model. Recall = |Vm ∩ Vu |/|Vu |. 

(2) Jaccard distance between two sets Vu and Vm . Jaccard dis-
tance = 1 − |Vm ∩ Vu |/|Vm ∪ Vu |. 

(3) Edit distance between two ordered lists Lm and Lm . 

The distribution of these three measurements are shown in Fig-
ure 3 and Table 2 for both results before or after the modifcations. 

Mean Median 

Recall Before 
After 

0.898 
0.902 

1 
1 

Jaccard distance Before 
After 

0.645 
0.627 

0.667 
0.667 

Edit distance Before 
After 

6.384 
6.397 

5 
5 

Table 2: Mean and median value of recall, Jaccard distance, 
and edit distance between user-provided focus and system-
estimated focus model. See the caption of Figure 3 for de-
tails. 
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Figure 3: Distributions of recall, Jaccard distance, and edit distance between user-provided focus and system-estimated focus 
model. Participants are allowed to modify their self-reported concepts list after checking our Focus Model result. We separate 
the scores before and after the modifcation if it happens. Recall: the larger the better; Jaccard distance and edit distance: the 
smaller the better. 

The mean of recall is around 0.9 and the median of recall is 1. 
This means that our Focus Model could capture almost all the con-
cepts described by participants. We fnd three reasons for those 
uncaptured concepts. First, the participant just hovers over the con-
cept, so even if they focus on this concept, our model can’t capture 
it. We discuss this issue and its solution in §7 later in the paper. 
Second, the participant gets inspiration from the Abstract List, but 
they can’t fnd these concepts in the visualization interface espe-
cially the outcome scatterplot. This actually means the participant 
gets new fndings from existing literature beyond the information 
provided by the data set. §6.2.3 talks on the responses we received 
from these participants during the interview time. Finally, the par-
ticipant considers related attributes beyond the medical naming 
system used in the Focus Model. This usually implies that the partic-
ipant has prior knowledge to do more reasoning in the analysis. For 
example, a participant mentions “physical pain” in the self-reported 
concept list, and in our Focus Model we have diagnosis “M86.10: 
Other acute osteomyelitis, unspecifed site” as wells as “09: Other and 
unspecifed injuries of head”. Both osteomyelitis (an infection of the 
bone) and head injury are accompanied by some kind of physical 
pain. However, as concepts are from diferent perspectives we do 
not map “physical pain” to the two codes. 

We analyze the Jaccard distance and edit distance of the com-
parison to show the accuracy of our Focus Model. Although we do 
not obtain any baseline due to the novelty of representing analytic 
focus, our result could provide references to future studies. 

We then measure how our Focus Model’s performance change 
with time. In all of the 24 participants, 7 have 4 pauses, 15 have 3 
pauses and 2 have 2 pauses. We leave out the 2 participants who 
only have 2 pauses and split the other participants into two groups. 
We calculate the average scores of all three measurements for each 
round separately for each cohort. The data are shown in Table 3. 

In general, our Focus Model’s performance is accurate and stable 
over time. We notice that the edit distance has an increasing trend 
in both the 3-round test and 4-round test. While the recall rate is 
stable, this indicates that the order accuracy decreases over time. A 
few participants mention this in the interview that they also notice 
the same issue (§6.2.3). There are multiple reasons to explain this, 
for example, parameters are not adapted to any individuals, and we 
discuss solutions in §7. In addition, there is an abrupt drop-down 
for recall between the third round and fourth round in the 4-round 
test. We found that 20 minutes usually let the participants wrap up 
a conclusion for the task, with the extra time, they might start a 
new sub-task from the start. Our Focus Model could not capture 
and divide sub-tasks in analysis, and we provide possible methods 
to solve this problem in §7. Participants who have 4 round data-
collecting opportunities get familiar with Cadence and the data 
set more quickly than the other group. They are better at utilizing 
the functionalities we provide. The three people we mention in 
§6.2.3 who use terms inspired by the abstracts to search in the data 
set are all belong to this 4-round group. Hence we get the abrupt 
drop-down for recall in the fourth round. 
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Round1 Round2 Round3 Round1 Round2 Round3 Round4 

Before 0.985 0.894 0.986 0.833 0.834 0.869 0.670 Recall After 0.987 0.906 0.986 0.833 0.849 0.869 0.670 
Before 0.627 0.642 0.638 0.554 0.543 0.625 0.830 Jaccard distance After 0.578 0.635 0.630 0.523 0.527 0.625 0.830 
Before 4.308 5.000 7.000 4.000 7.000 8.714 12.714 Edit distance After 4.000 5.286 7.071 4.140 7.000 8.714 12.714 

Table 3: The average recall, Jaccard distance, and edit distance in each pause round. Columns on the left side of the dividing line 
are for participants with 3 pauses; columns on the right side of the dividing line are for participants with 4 pauses. We separate 
the scores before and after the participant’s modifcation. Recall: the larger the better; Jaccard distance and edit distance: the 
smaller the better. 

6.2.2 Post-task Qestionnaire. In the post-task questionnaire, we 
ask 6 questions for ratings based on a scale from 1 to 10 with 1 
as the most negative rating and 10 as the most positive rating. Q1 
is on the accuracy of the Focus Model; Q2 and Q2.1 are on the 
display preferences of the Focus Model, visible along with all the 
other visualizations or hidden by default; Q3 is on the relevance of 
surfaced abstracts; Q4 and Q4.1 are on the display preferences of 
the Abstract List, visible along with all the other visualizations or 
hidden by default. Figure 4 shows the result including averages of 
scores for all six questions from all 24 participants. 

Overall, participants think that our Focus Model is relatively 
accurate with an average score of 7.6 and a medium score of 8 for Q1. 
For the general helpfulness of the Focus Model, 21 participants give 
a score larger than or equal to 5, indicating that most participants 
fnd the Focus Model helpful to their analyses. The average scores 
of Q2 and Q2.1 are 6.13 and 6.38. For the individual preference of 
displaying or hiding the Focus Model by default to maximize its 
helpfulness, 9 people prefer displaying, 12 people prefer hiding, and 
3 people think both are of equivalent helpfulness. 

For the Abstract List relevance, participants think it is relevant 
but with more improving space, with an average score of 6.6 and 
a medium score of 7 for Q3. As of the general helpfulness of the 
Abstract List, 20 participants give a score larger than or equal to 
5, meaning that most participants fnd the Abstract List helpful to 
their analyses. The average scores of Q4 and Q4.1 are 4.4 and 7.2. 
This also indicates that more participants prefer the Abstract List 
under a separate tab by default. For the individual preference of 
displaying or hiding the Abstract List by default to maximize its 
helpfulness, 7 people prefer displaying, 16 people prefer hiding, and 
only 1 person thinks both are of equivalent helpfulness. 

6.2.3 Common answers from the interview. After the post-task ques-
tionnaire, we also conduct a short semi-structured interview for 
each participant. In the interview, we ask the reasons for the scores 
they give in the questionnaire, and based on their answers we may 
follow-up with personalized questions. We conclude the reasons 
that have commonalities to explain the scores in this section. We 
talk about other interesting or inspiring fndings from our inter-
views in §7. 

First, we ask all participants how accurate they think our 
Focus Model is and why. Most people express that the accuracy 
in terms of medical concept capture is high enough to capture all 
or most of their analytic focus and the order of these concepts is 

similar to their subjective ranking order. Three mention that the 
Importance Scores were not sensitive enough to capture recent 
concepts but putting too many weights on earlier, stale concepts. 
We consider this as a combination of focus switch detection problem 
and parameter tuning problem (see more in §7). 

Second, we ask how helpful they think the Focus Model 
is for the data analysis. In addition, we also let them provide 
reasons for their display preferences based on the scores to Q2 and 
Q2.1. Overall, almost all participants believe that the current Focus 
Model could be a great log reference for their analysis, and as a 
possible supplement or replacement for tedious note-taking. As 
of the usage of this log reference, participants diverge into two 
groups: (1) those that feel it is most useful to review the focus live 
during their analysis as well as after completing their work, and 
(2) those who feel it is most useful to view the focus model after 
the analysis has been completed. Interestingly, the participants that 
are professional analysts identifed most with the second group, 
suggesting that their analysis should be driven by data and their 
own knowledge. They suggest that a manual review of the focus 
model is useful after the analysis has been completed as a way to 
assess their work. We note that the design of the model to decay 
the importance of concepts over time suggests that this approach 
would be most benefcial at the scale of relatively small units of 
work where the focus persists at the end of a task. 

This also refects the diverge of display preferences. The common 
reason for checking the Focus Model during the analysis is that 
it can remind them of concepts they once explored but forgot. 
About fve people point out that this is valuable especially when 
they analyze an unfamiliar topic since the concepts explored can 
be forgotten more quickly. The main reason to check the Focus 
Model after the analysis is that they can retrospectively check 
the Focus Model after the analysis to see if anything is omitted 
in the conclusion, even after several months for some additional 
analysis. People also express their worries about putting the Focus 
Model besides other graphs and checking it during the analysis: 
the information in the Focus Model is circulatory to the things 
in mind so this may strengthen possible biases; the user interface 
may be too crowded and the Focus Model may distract the user. 
One participant also mentions that such logs can be leveraged in 
collaborative works, that others could check the log to pick up 
things missed in the analysis, or even continue the analysis if the 
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Q4.1:Display abstracts under a seperate tab

Q4:Display abstracts with other visualization

Q3:Relevance

Q2.1:Focus Model hidden by default

Q2:Focus model displayed by default

Q1:Accuracy

Figure 4: Box plots for all six questions in the post-task questionnaire. Green triangles mark the average; vertical orange bars 
mark the median; two ends of each box mark the 25% and 75% percentiles; two ends of each whisker mark the maximum and 
minimum values. 

system could read the Focus Model and recover the graphs where 
left. 

Third, we ask participants who have modifed their Focus 
Description Questionnaires after checking the Focus Model 
result at least one time why they have modifed the question-
naire. In total 15 participants have modifed the questionnaire. All 
of them explain that they forget the concepts and the Focus Model 
reminds them. This proves that our Focus Model could capture 
things beyond people’s memory and help remind the user. 

Last, we also ask how helpful the Abstract List is to the anal-
ysis. Overall, participants agree that the Abstract List is helpful to 
capture new ideas and strengthen their current analysis, although a 
few of them also state that some of the retrieved abstracts sometimes 
appear to lack relevance with their focus. Three people mention 
that these abstracts bring out new relative concepts that inform 
subsequent search back in the original data set. One searches for 
Myocardial Infraction, hinted from the Frequently used terms, in the 
outcome scatterplot. This literature can also provide background 
information of the feld to help understand the data, and afrm 
more complicated relationships like published evidence for causal 
relationships among concepts that align with simple correlations 
found in the data visualization. Although one analyst mentions that 
the Abstract List result could potentially be biased compared to 
a full literature review, another former data analyst who worked 
in the medical consulting feld expresses a lot of appreciation for 
the approach. This analyst reports regularly using dual monitors 
to display Tableau and PubMed separately while doing analysis. 
The participant suggests that the approach in our study would 
save time and increase the efciency of the work. A future study 
could directly compare the approach outlined in this paper with 
this analyst’s typical siloed analysis environment. 

7 DISCUSSION 
In this section, we will talk about the limitations and potential 
benefts of the Focus Model and Abstract List according to our 
observations and results of the user study. 

7.1 Calculating the Importance Score 
The prototype of the Focus Model shows relatively high accuracy 
in the user study, however, there exist limitations for our current 
implementation and we propose methods to improve it. We do not 

capture the mouse hover as a semantic action. However, given the 
feedback from several participants, hover over certain seconds may 
indicate that the user is currently interested in this object. We could 
assign a lower Persistence Score and Importance Score to such 
action. 

Some participants fnd that in later rounds, concepts of their 
previous focus might still maintain a high Importance Score and 
the latest concepts are lower in the rank. We observe that this 
usually happens when the user starts to clear out components, 
indicating that the user is switching to another part of the task. We 
could adopt such a “sub-task” conception in our model to refect 
the analysis process better. In data analysis, it is common to break 
a task into multiple sub-tasks and combine the conclusions to solve 
a problem. Each sub-task corresponds to a Focus Model. We could 
introduce a task-switching mechanism in the current Focus Model 
Engine, however, it will be challenging to determine where to split 
sub-tasks given a series of actions. A frst-step idea is binding a 
sub-task Focus Model to a cohort panel. Psychology studies [2] 
on task-switching working memory spans may help develop the 
model to recognize sub-tasks in data analysis. 

We also receive feedback on leveraging the existing hierarchies in 
computing the scores and presenting concepts in the Focus Model 
in Cadence. ICD-10 provides a systematic method to categorize 
any diagnosis in a hierarchy. If the concepts in the Focus Model 
have overlaps in defnition, treating them as independent concepts 
and assign scores separately might extra emphasize these related 
concepts. We can also embed such a hierarchy in presenting the 
Focus Model to users. 

During the user study, we observe that a few participants use 
the functions provided by Cadence diferently from how they are 
designed. For example, one participant adds a series of nested mile-
stones in a single timeline rather than using the flter. The person 
will reset the timeline and add some of the milestones back to re-
move some milestones. As a result, those concepts added multiple 
times have a higher importance score than the newly added one 
which is usually the most important in the person’s focus. This 
inspires us that we could develop a self-adapted parameter assign-
ment system based on the user’s habit. This also enables a more 
personalized Focus Model in the future. 
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7.2 Concept Granularity 
The feedback received via the Focus Description Questionnaire 
provided several interesting subjective observations related to con-
cept granularity which provide useful insights for improving our 
proposed modeling approach in the future. More specifcally, while 
the Focus Model itself represents concepts as a specifc diagnosis or 
procedure (or category of diagnosis/procedure) based on the formal 
coding system used by the system (e.g., ICD-10), people often focus 
on things in a less rigid way. 

First, relationships between concepts, refected in the question-
naires as words like “after” or “containing,” were an important piece 
of how users verbalized their own analytic focus. In particular, given 
the focus in Cadence on time-sequenced analysis, about half of the 
participants use temporal relationship words to constrain their fo-
cus. This suggests future extensions for temporal and relational 
modifers within the Focus Model would be benefcial. 

Second, we found that the same concept could mean diferent 
things to diferent people. For example, two participants reported 
the concept “physical pain”. One user was referencing the specifc 
ICD-10 concepts indicating pain, while the other used the same 
term to capture a broader range of diagnoses from the respiratory 
system to the circulatory system. Similarly, the concepts reported 
in the questionnaire were not always used consistently. Several 
participants mentioned “injury” as a concept. However, after letting 
them explain if they meant the formal Injury (S00-T14) category in 
ICD-10, some agreed while others did not. Those who disagreed 
usually explained that they meant a more specifc concept of injury, 
such as shoulder injury or joint injury. Sometimes, this diference 
in granularity can be captured using the existing ICD-10 hierarchy, 
but other times (especially when a user has strong knowledge of 
the subject) the user may think about concepts according to other 
types of relationships beyond those formally present in the data 
representation. 

7.3 Assumption and Limitation of Focus 
Modeling Algorithm 

The proposed approach to modeling analytic focus provides a gen-
eral framework. Its core assumption is that a system can represent 
users’ visual analytic activity in the form of discrete actions repre-
sented in the form of (type, parameters) tuples as defned earlier 
in this paper. The set of actions is system-specifc — determined 
by the views and controls that a system supports. The parameters 
for each action include concepts which are application-specifc — 
determined by the data schema of a specifc problem. Key parame-
ters in the algorithm also need system-specifc tuning, refecting 
that the salience of individual actions each system implements is 
not universal. Therefore, confguring the persistence scores, im-
portance scores, and importance bias scores is important during 
implementation to produce the best possible results. 

The algorithm can be instantiated in many analytics systems 
beyond Cadence. For instance, a geovisualization system can use it 
to model a user’s focus when exploring environmental data. Actions 
may include zooming in/out, panning, adding/removing a layer, and 
selecting individual items on the map. In another example, a text 
search engine can use the proposed approach to model a user’s 
focus during exploratory text search. Actions may include launching 

a query, revising a query, clicking on a result, and clicking on a 
recommended query. In this direction, our lab is currently in the 
early stages of designing a search-based experiment that leverages 
the methods proposed in this paper. 

Although the (action, concept , timestep) abstraction is general, 
it is not universally applicable. As previously described, it assumes 
that a discrete sequence of actions will be reported and that the 
model should be updated after each new report is received. The dis-
crete nature of these actions is not compatible with some continuous 
interaction models such as those that might be used in continu-
ously evolving visualizations of live streaming data. Conversely, 
visualization systems that don’t support exploratory interactions 
(such as static dashboards that are passively consumed) are not 
compatible. Finally, while data dimensions can often map directly 
to concepts in the proposed model, it may be difcult in some sys-
tems to directly map user focus to diferent concepts. For example, 
low-dimensional data visualizations with very few dimensions may 
support interactions that largely center around changes in-range 
values for the same small number of dimensions rather than difer-
ences in concepts. The model could be extended to support values 
in addition to concepts as action parameters, but it has not been 
the focus in the work presented in this paper. 

8 CONCLUSION 
In this paper, we studied the problem of modeling a user’s analytic 
focus in an interactive exploratory data analysis. We designed com-
putational approaches to representing and updating such a Focus 
Model, and implemented these approaches in an existing visual 
analytics platform for structured health data. As a direct applica-
tion of the focus model, we leveraged it to bring relevant medical 
articles to the user’s focus and complement the visualized fndings 
in structured data. We evaluated the prototype implementation 
in a user study. The results suggest that our proposed algorithm 
was able to capture most of the concepts in the participant’s focus. 
The vast majority of participants also fnd the retrieved medical 
articles are helpful in their analysis tasks. Through qualitative data 
analysis, we identifed many concrete directions for our research in 
the next step. Overall, our study shows the feasibility of modeling 
users’ focus during exploratory visual analysis and leveraging it to 
broaden the exploration into other relevant data sources. 
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