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We study smooth isotopy classes of complex curves in complex surfaces from the per-
spective of the theory of bridge trisections, with a special focus on curves in CP? and
CP! x CP'. We are especially interested in bridge trisections and trisections that are as
simple as possible, which we call efficient. We show that any curve in CP? or CP! x CP!
admits an efficient bridge trisection. Because bridge trisections and trisections are nicely
related via branched covering operations, we are able to give many examples of com-
plex surfaces that admit efficient trisections. Among these are hypersurfaces in CP3,
the elliptic surfaces E(n), the Horikawa surfaces H(n), and complete intersections of
hypersurfaces in CPY. As a corollary, we observe that, in many cases, manifolds that
are homeomorphic but not diffeomorphic have the same trisection genus, which is con-
sistent with the conjecture that trisection genus is additive under connected sum. We
give many trisection diagrams to illustrate our examples.
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1. Introduction

The study of simply-connected, smooth four-manifolds is an area of active research
with a long history. In 1964, Wall proved that simply-connected four-manifolds
with isomorphic quadratic forms are h-cobordant and become diffeomorphic after
connected summing with copies of S? x S? [31]. In his groundbreaking 1982 work,
Freedman showed that such four-manifolds are homeomorphic [§], leaving open
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the possibility that such manifolds could be homeomorphic, but not diffeomorphic.
This possibility was soon shown to be a reality when Donaldson revolutionized
four-manifold topology with the introduction of his gauge theoretic invariants. In
particular, he showed that the degree d hypersurface S in CP? cannot have CP? as
a connected summand for odd d > 5, though it is homeomorphic to a four-manifold
that can, by Donaldson [5]. The subtlety of the situation is further exposed by
a result of Mandelbaum and Moishezon, which shows that these four-manifolds
become diffeomorphic after connected summing with a single copy of CP? [24].

One of the main goals of this paper is to explore how the theory of trisections,
which was introduced by Gay and Kirby in 2016 [13], behaves when applied to
simply-connected four-manifolds, particularly complex surfaces.

A trisection of a smooth four-manifold X is a decomposition X = Z1 U Zy U Z3
such that

(1) Each Z; is a four-dimensional 1-handlebody;
(2) Each intersection H; = Z;_1 N Z; is a three-dimensional handlebody; and
(3) The common intersection ¥ = Z; N Zy N Z3 is a closed surface.

The surface X is called the core of the trisection, and its genus is called the genus
of the trisection. The trisection genus g(X) of a four-manifold X is the minimum
value of g such that X admits a trisection of genus g. See Sec. 2 for more details.

The theory of bridge trisections was introduced as an adaptation of the theory
of trisections to the setting of knotted surfaces in four-manifolds. In this paper,
we will be interested in studying complex curves in complex surfaces using bridge
trisections. Note that throughout we will be studying such objects up to smooth
isotopy and/or diffeomorphism, we think of the complex geometry as a natural
starting point for a more general study of knotted surfaces.

Given a knotted surface I in a four-manifold X and a trisection 7 of X, we say
that IC is in bridge trisected position with respect to 7 if

(1) ¥ N K is a collection of points;
(2) B; NK is a collection of arcs that can be isotoped rel-0 to lie in 0B;; and
(3) Z; N K is a collection of disks that can be isotoped rel-0 to lie in 0Z;.

The induced decomposition of the pair (X, K) is called a bridge trisection. For
now, we assume that the number of disk components of Z; N K is the same for each
i € Z3, and we refer to this number as the patch number of the bridge trisection.
See Sec. 2] for more details.

1.1. Efficient decompositions of simply-connected four-manifolds

There are natural lower bounds on the trisection genus of X coming from the
algebraic topology of X. For example, when X is simply-connected, we have that
g(X) > b2(X). We call a trisection of a simply-connected four-manifold X efficient
if it has genus equal to b2(X). In this case, the pieces Z; of the trisection are all
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four-balls. It follows that X admits a handle-decomposition with neither 1-handles
nor 3-handles. It is an open question (Kirby Problem 4.18 [19]) whether or not
every simply-connected four-manifold can be built without 1-handles. Note that the
existence of an efficient trisection for a simply-connected four-manifold is strictly
stronger than the existence of a handle-decomposition with neither 1-handles nor
3-handles, it says further that there is a such a handle-decomposition in which the
attaching link of the 2-handles has minimal possible tunnel number [25].

In this direction, we have the following theorem, which shows that many exam-
ples of simply-connected complex surfaces admit efficient trisections.

Theorem 1.1. The following four-manifolds admit efficient trisections.

1) The Kummer quartic surface, K3.

) The complex hypersurface Sy of degree d inside CP3.

) The Horikawa surfaces H(n).
4) The elliptic surfaces E(n).

) Every complex surface obtained as a cyclic branched cover of CP? or CP' x CP!
along a smooth, connected complex curve.
(6) The complete intersection Sq inside CP" "2 corresponding to the multi-index
d=(di,...,dn).

Note that Spreer and Tillmann recently determined that K3 admits an efficient
genus 22 trisection as well [29]. Note that the examples in the above theorem were
known to admit handle-decompositions built with no 1-handles nor 3-handles [L,
[L0] 21]. With all this in mind, we offer the following conjecture to motivate further
investigation.

Conjecture 1.2. Every simply-connected, complex four-manifold admits an effi-
cient trisection.

Note that so far we have only discussed efficiency for simply-connected four-
manifolds, though a natural extension of the concept is available. See Sec. 3 for
details.

1.2. Efficient decomposition of surface-links

In contrast to the historical interest in minimizing the complexity of handle-
decompositions of well-known simply-connected four-manifolds, a systematic study
of the complexity of decompositions of knotted surfaces in four-manifolds seems
absent. Bridge trisections provide a natural way to initiate such a systematization.

Suppose that 7 is an efficient trisection of a simply-connected four-manifold X
and /C is in bridge position with respect to 7. We call the induced bridge trisection
efficient if it has patch number one. Since the patch number of a bridge trisection
is bounded below by the meridional rank of the fundamental group of the exterior
of the knotted surface, we will mostly restrict attention to the case when this group
is cyclic. (See Sec. [2 for more general formulations.)
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The foundational result of this paper is that many familiar examples of knotted
surfaces coming from complex topology admit efficient bridge trisections.

Theorem 1.3. Fach of the following complexr curves admits an efficient bridge
trisection.

(1) The curve Cq of degree d in CP?, for all d € Z.
(2) The curve Cqp) of bidegree (a,b) in CP! x CP', for all (a,b) € Z & Z.
(3) The curve Hgy, representing doy times a hyperplane section inside the complete

intersection Sq corresponding to the multi-index d = (dy, ..., d,).
(4) The generic fiber € of the elliptic fibration E(n).

A key ingredient throughout the paper is a detailed understanding of how bridge
trisections change under three common operations: branched covering, resolution of
singular knotted surfaces, and blowing up. We find that efficiency can be preserved
in each case.

Theorem 1.4. Suppose that a surface-link (X, K) admits an efficient bridge trisec-
tion. Then, the following related surface-links all admit efficient bridge trisections.

1) The lift K of K in the n-fold cyclic cover X of X, branched along KC.
Y g
(2) The smooth resolution (X, J) of the singular surface-link (X, mkC) obtained by
taking m parallel copies of K. ) )
(3) The proper transform (X#CP", K#CP").

These results about efficient bridge trisections enable us to obtain the results
about efficient (four-manifold) trisection described in the preceding section, as well
as the results described in the ensuing section.

Conjecture 1.5. Suppose K is a complex curve in a simply-connected, complex
surface X. Suppose that the fundamental group of X\K is cyclic. Then, (X,K)
admits an efficient bridge trisection.

As we noted above, there is no evidence that restrictions to simply-connected
four-manifolds, complex four-manifolds, or knotted surfaces with cyclic group are
required. With the proper generalization of the notion of efficiency, this conjecture
could be massively strengthened. We have formulated it in the present setting for
the sake of simplicity.

1.3. Exotic four-manifolds and additivity of trisection genus

It is a straightforward exercise to verify that a four-manifold X = X;# X5 inherits
a natural trisection 7 from trisections 773 and 73 on X; and X5 such that ¢(7) =
9(T1)+g(72). It follows that g(X1#X2) < g(X1)+¢(X2). An important motivating
conjecture in the theory of trisections is that the converse holds.
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Conjecture 1.6. (Additivity Conjecture) Trisection genus is additive under con-
nected sum: For any two four-manifolds X1 and Xs, we have

9(X1#X2) = g(X1) + g(X2).

In dimension three, the analogous result holds: Heegaard genus of three-
manifolds is additive under connected sum [16]. In addition to being a foundational
question within the theory of trisections, Conjecture [L.6l would have serious impli-
cations in four-manifold topology, should it be shown to be true. Recall that, given
a four-manifold X, an exotic X is a four-manifold X’ that is homeomorphic to X,
but not diffeomorphic to X. In this case, X and X’ are called an exotic pair.

Proposition 1.7. If Conjecture [LG is true, then trisection genus is a homeo-
morphism invariant. Cogsequently, there is no exotic S*, CP?, S1 x §3, §2 x §2,
CP*#CP?, nor CP*#CP .

Proof. Suppose X and X' are an exotic pair. By a theorems of Wall, in the simply-
connected case, and Gompf, in the general case, X#S and X'#S are diffeomorphic,
where S = #7(S5? x §?) 131]. If trisection genus is additive, then since X#S
and X'#S are diffeomorphic, we have that g(X) = g(X’).

The manifolds listed above comprise an exact list of those manifolds admitting
trisections of genus at most two [13] 28], so no exotic version can exist. |

While this proposition illuminates the promise of Conjecture [LL6 it also
describes the most feasible way to disprove this conjecture. Namely, one should
investigate when exotic pairs admit trisections of the same genus. Since complex
surfaces turn out to give many examples of exotic copies of standard manifolds, this
paper provides the first step in this program. For example, when d > 5, the com-
plex hypersurface Sy of degree d in CP? is homeomorphic (but not diffeomorphic)
to either a connected sum of copies of CP? and cP (if d is odd) or a connected
sum of copies of K3 and S? x S? if d is even). The existence of these homeo-
morphisms follows from the topological data of these surfaces (see Proposition [5.3]
below), together with Freedman’s work [§]. For the non-existence of corresponding
diffeomorphisms, see [5, [30].

By Theorem[1.1(1), we know that K3 admits an efficient trisection, so it follows
that all of these standard connected sums admit efficient trisections. (This is of [29]
Theorem 2].) However, by Theorem [L.I)(2), all of the S4 admit efficient trisections.
Thus, we have the following corollary.

Corollary 1.8. There are infinitely many ezotic pairs X and X' such that g(X) =
9(X").

This corollary provides supporting evidence for Conjecture [LLGl It is interesting
to observe that there is a serendipitous convergence of results in the literature. On
one hand, four-manifolds with trisection genus at most two have been classified;
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so the first place to look for infinitely many simply-connected four-manifolds with
the same trisection genus would be at genus three. In particular, this would be
the first place where exotic pairs with the same trisection genus could show up.
On the other hand, as techniques have been refined over the years, experts have
been able to give exotic pairs of simply-connected four-manifolds with smaller and
smaller second Betti number. The limit of present technology is ba = 3 [2,[9]. Thus,
techniques from the theory of trisections and those of exotic manifold theory seem
to have converged.

If experts can push past this bo = 3 limit, it will disprove Conjecture [L.6] (in
addition to being a stunning result in its own right, of course). On the other hand,
if Conjecture [L.Gl is to be true, then there should be some very interesting four-
manifolds that admit genus three trisections. We consider the following problem to
be central to the development of the theory of trisections. (Compare with [22] in
the non-simply connected case.)

Problem 1.9. Classify those simply-connected, four-manifolds admaitting trisec-
tions of genus three.

1.4. Complete reducibility

A smooth four-manifold X smoothly (respectively, topologically) dissolves (or is
completely decomposable) if X is diffeomorphic (respectivley, homeomorphic) to
pCP2#q@2 for some p,q € Ny. A trisection of p(CIP’2#q@2 dissolves (or is com-
pletely reducible) if it is a connected sum of genus one trisections. Little is known
about the space of trisections of a given four-manifold. A good question in this direc-
tion is the following, which has been answered in the affirmative for p + ¢ < 2 [28].

Question 1.10. Is every (p+ q,0) trisection ofp(CIE’Q;ééq@2 completely reducible?

More generally, a four-manifold X is almost completely decomposable if X #CP?
dissolves. Mandelbaum and Moishezon have shown that the class of complex sur-
faces that is almost completely decomposable includes hypersurfaces in CP? [23]
and, more generally, complete intersections [24]. See Sec. 8 below for a discussion of
complete intersections. Note that the blowups Sd#k@2 never dissolve smoothly
for d > 4.

Many of the surfaces discussed in this paper are therefore almost completely
decomposable. We say that a trisection is almost completely reducible if it becomes
completely reducible after connected summing with the genus one trisection for CP?.

Question 1.11. Which of the trisections constructed in this paper are almost com-

pletely reducible?

1.5. Trisections of K3

One consequence of the techniques of this paper is that we are able to construct
efficient (22, 0)-trisections of K3 in 13 different ways.
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Theorem 1.12. The following constructions give efficient (22, 0)-trisections of K3:

(1) the 2-fold branched cover of (S? x S%,Cy4).

(2) the 2-fold branched cover of (CIP’2#nCIP’ &) for1<n<8.
(3) the 3-fold branched cover of the (S? x S?,Cs3).

(4) the 2-fold branched cover of (CP?,Cg).

(5) the 4-fold branched cover of (CP?,Cy).

(6) the 2-fold branched cover of (S(2,2), Hz).

The following construction gives an inefficient (25, 1)-trisection of K3
(7) the 2-fold branched cover of (CP2#9@2,52).

It is not immediately clear whether any of these are diffeomorphic as trisections.
We therefore refrain from referring to any of them as ‘standard’. However, we have
no invariant to distinguish them. In particular, the K3 surface is simply-connected
and so we cannot adapt recent work of Islambouli to distinguish them via the
Nielsen equivalence classes of the generators of the fundamental group [17].

Question 1.13. Which of these (22,0)—trisections of K3 are equivalent? Are any
equivalent to the (22,0)—trisection discovered by Spreer and Tillmann [29]7

1.6. Stein trisections

One motivation for this work is to understand the connection between trisections
and complex and symplectic geometry. Some progress has been made by Gay, who
constructed trisections from Lefschetz pencils [L1], it is a well-known result of Don-
aldson that every symplectic 4-manifold admits a Lefschetz pencil [6].

A natural approach to finding such a connection is to try to impose compati-
ble geometric structures on the pieces of a trisection. Recall that a paracompact,
complex manifold is Stein if

(1) it is holomorphically convex;

(2) global holomorphic functions separate points; and

(3) in a neighborhood of each point, there are global holomorphic functions that
form a local coordinate system.

A (g; k1, ko, k3)-Stein trisection of a complex surface X is a collection of three
Stein domains Z1, Z5, Z3 such that

(1) Zy,Zs, Z3 are an open cover of X.

(2) Z, is diffeomorphic to §¥ 5! x B3,

(3) Z;N Z;y1 is diffeomorphic to 595 x B?,
(4) Z1 N ZyN Zg is diffeomorphic to ¥, x D2

The 1-handlebodies 7% (S! x B?) always admit Stein structures, so the key
feature of this definition is that the complex analytic structures on the sectors
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agree on the double and triple intersections. In the case of CPP?, we can find a Stein
trisection explicitly.

Proposition 1.14. CP? admits a (1,0)-Stein trisection.

It is a classical result that if X is Stein and if f: Y — X is a finite holomorphic
map, then Y is also Stein. Furthermore, for every projective surface S we can find
a branched covering map f: S — CP?. Thus, we can pull back the Stein trisection
of CP? to find a covering of S by three Stein manifolds of unknown topology. While
the curves C4 can be put into bridge position via a smooth isotopy, for d > 2 it is
not immediately clear whether this is possible as a complex curve. Thus, we are led
to the following question.

Question 1.15. Let X be a projective complex surface. Does X admit a Stein
trisection?

For symplectic four-manifolds, we also introduce an analogous notion of a Wein-
stein trisection. Recall that a Weinstein structure on an open manifold W is a triple
(w,®,V), where w is a symplectic form, ¢ is an exhausting generalized Morse func-
tion and V is a complete vector field that is Liouville for w and gradient-like for ¢.
A (g; k1, ko, k3)- Weinstein trisection of (X,w) consists of

(1) an open cover X = Z; U Zy U Z3, where Z; is diffeomorphic to ¥ S* x D? and
the double and triple intersections satisfy the same topological conditions as in
a Stein trisection, and

(2) a Weinstein structure (w|z,, ¢;, Vi) on each piece Z;

Again, given a trisection of (X,w) we can choose some Weinstein structures on
the sectors, although not necessarily related to the global symplectic form w.

Auroux has shown that every closed, symplectic 4-manifold is a branched cover
over CP? [3]. Given the extra flexibility to put the branch locus in bridge position,
we conjecture that every closed symplectic four-manifold admits such a trisection.

Conjecture 1.16. Let (X,w) be a symplectic four-manifold. Then (X,w) admits
a Weinstein trisection.

1.7. Geography for (g, 0)-trisections

Trisections provide a restricted domain to explore the geography problem in the
sense that one can ask which intersection forms are realized by smooth 4-manifolds
that admit (g,0)-trisections. (See [7] for a trisection-theoretic discussion of the
intersection form.)

Question 1.17. If Q is the intersection form of some smooth, oriented 4-
manifold X, is there a 4-manifold X' that admits a (g, 0)-trisection and has inter-
section form Q7
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The classification of symmetric bilinear forms implies that if ) is unimodular,
even and indefinite, then it is isomorphic to nEg & mH for some integers n,m
(where negative values are interpreted as summing with the opposite orientation).
If @ is the intersection form of a smooth, closed, oriented and simply-connected 4-
manifold X, then Rokhlin’s Theorem implies that n is even. The well-known 11/8-
Conjecture asserts that by(X) > Lo (X) for such a four-manifold, or equivalently
that 3n < 2m.

Conjecture 1.18. (Trisected 11/8-Conjecture) Suppose that X admits a (g,0)-
trisection and the intersection form of X is even and indefinite. Then

9> —o(X).

All intersection forms permitted by the conjecture can be realized by connected
sums of S? x S? and K3. Thus, we obtain the following theorem as a corollary
of the construction of a (22,0)-trisection of K3. The following theorem has been
obtained by Spreer and Tillmann, as well [29)].

Theorem 1.19. Fvery even and indefinite intersection form consistent with the
11 /8-Conjecture is realized by a smooth four-manifold with a (g,0)-trisection.

Organization. In Sec. 2, we give a detailed overview of the central objects from the
theories of trisections and bridge trisections, introduce the notion of efficiency, and
establish some orientation and positivity conventions. In Sec. 3] we introduce our
main tools regarding branched covers of bridge trisected surfaces. We also discuss a
generalization of the notion of a bridge trisection to the setting of singular surface-
links and describe how to bridge trisect resolutions of such surface-links. It is here
that parts (1) and (2) of Theorem [L4]are proved. Sections [2 and [3] are independent
of the complex topology that features prominently in later sections.

In Sec. 4] we carefully construct the standard trisection and a Stein trisection
on CP?, and give efficient bridge trisections for complex curves in CP?, proving
Theorem[L.3[1). In Sec.[5, we use these bridge trisections to give efficient trisections
for complex hypersurfaces in CP?, proving Theorem[LI[1) and (2), and establishing
Corollary [L.8 In Sec. [l we give a careful analysis of the genus two trisection of
52 x S?, and show that complex curves therein admit efficient bridge trisections,
proving Theorem[I.3(2). In Sec. [T, we use these bridge trisections to produce efficient
trisections of branch covers over S? x S2, thus proving Theorem [[LI(3) and (4), as
well as Theorem [L.3[4).

In Sec. [8, we discuss complete intersections, proving Theorem [LLI[5) and The-
orem [L.3[3). In Sec. [ we discuss the proper transform and describe (even more)
constructions of K3 as a branched cover, proving Theorem [[.4] and establishing the
remaining parts of Theorem [[.12}
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2. Trisections and Bridge Trisections

In this section, we recall the basic objects central to the theories of trisections and
bridge trisections. We also introduce the notion of efficiency for these objects. There
is no reliance on complex topology in this section.

Given an oriented manifold M, we let M denote M, equipped with the opposite
orientation. Given a submanifold N C M, we let v(N) denote an open regular
neighborhood of N in M. Throughout, we consider indices cyclically, i.e. s, 41 = $1
inS=1{s1,82,...,8n}

Let X be a smooth, closed, oriented 4-manifold. We use the term 1-handlebody
of genus g to denote the compact 4-manifold 19(S* x D?) and the term handlebody
of genus g to denote the compact three-manifold §9(S* x D?).

Definition 2.1. A (g;k)-trisection T of X is a decomposition X = Z; U Zy U Z3
such that

(1) Each Z; is a four-dimensional one-handlebody of genus k;, where k =
(b1, ko, k3);

(2) Each H; = Z; N Z;_; is a three-dimensional one-handlebody of genus g; and

(3) ¥ =2Z1NZyN Z3 is a closed, oriented surface of genus g.

The union Hy; U Ho U Hj is called the spine of 7. We let Y1 = 0Z;. As oriented
submanifolds of X, we have Y; = H; Uy H;y1 and ¥ = OH; inside Y;. If ky = ky =
ks =k, we call T balanced and a (g, k)—trisection of X.

Note that Y; = 0Z; is diffeomorphic to #(S! x S?), and X is a genus g
Heegaard surface for Y;. Trisections were introduced by Gay and Kirby in 2012,
in particular, every smooth, oriented, connected, closed 4-manifold admits a trisec-
tion [13]. Importantly, the spine uniquely determines the trisection, by Laudenbach—
Poenaru [20]. We refer the reader to [13] and [25] for complete details regarding
trisections.

Proposition 2.2. If X admits a (g;k)-trisection, then X admits a handle-
decomposition with a single 0-handle, a single 4-handle, k; 1-handles, g — k11
2-handles, and k;+o 3-handles. In particular,

(1) X(X)=2+4g— k1 — kz — ks;
(2) rank(m (X)) < min{k;}; and
(3) rank(H2(X)) < min{g — k;}.

Proof. For the first claim, see |26, Proposition 20] or Proposition 20] for a
more detailed account. For the rest, see Proposition 4.1]. O

In this paper, we will give many examples of trisections of simply-connected
four-manifolds that admit (g,0)-trisections. In this vein, we make the following
definition.
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Definition 2.3. A (g, k)-trisection of a simply-connected four-manifold is efficient
if it is balanced and k = 0.

Note that we might define a more general notion of efficiency in which we simply
ask that the algebraic constraints on g and k given by Proposition [2.2] be sharp.
In the sequel, however, we mostly restrict our attention to simply-connected four-
manifolds.

A cut system for a surface X is a collection of ¢ disjoint, simple closed curves
whose complement in ¥ is a connected, planar surface. Cut systems for ¥ modulo
handleslides correspond to handlebodies H with 0H = X [18]. A trisection diagram
for 7 is a triple (e, 3,7) of cut systems for ¥ such that the union H, U Hg U H,
of handlebodies determined by the cut systems is the spine of the trisection.

A core feature of the theory of trisections is that every trisection (hence, every
4-manifold) can be described by a trisection diagram [13].

We will use Hy, Ho, and Hs interchangeably with H,, Hg, and H,, respectively.
In diagrams, we will always use red, blue, and green for the a-curves, §-curves,
and vy-curves, respectively. Furthermore, we will sometimes refer to these curve as
red curves, blue curves, and green curves, respectively. Similarly, for expositional
efficiency, we will sometimes write a1, o, and ag for «, 3, and -y, respectively.

A collection 7 of b properly embedded arcs in a handlebody H is called a b-
tangle. Such a collection is trivial if it can be isotoped rel-0 to lie in OH. If T = {77}
is trivial, then there exist a collection of disjoint disks A = {A7}, embedded in H,
such that OA7 = 77 U A7 where A7 is an arc in d%. We call each AJ a bridge disk
and the arc A’ the shadow of 77. A bridge splitting of a link L is the three-manifold
Y is a decomposition (Y, L) = (Hy,71) Us (Hz, 72) where the H; are handlebodies
and the 7; are trivial tangles in the H;. Finally, a collection D = {D’} of ¢ properly
embedded disks in a 1-handlebody X is called a c-disk-tangle. A disk-tangle D in
X is trivial if it can be isotoped rel-9 to lie in 0.X.

A knotted surface is a pair (X, K), where X is a smooth, oriented, closed, con-
nected 4-manifold and K is a smoothly embedded, closed surface in X.

Definition 2.4. A (g,k;b,c)-bridge trisection of a knotted surface (X,K) is a
decomposition (X,K) = (Z1,D1) U (Z2,D2) U (Z3,D3) such that

(1) X =Z1UZyU Z3 is a (g, k)-trisection of X,
(2) each D; is a trivial ¢;-disk-tangle in Z;, where ¢ = (¢1, ¢o, ¢3); and
(3) each 7, = D; N D;_1 is a trivial b-tangle.

We say that K is in bridge trisected position with respect to a trisection 7 of X
if the decomposition 7x of (X, K) induced by 7 is a bridge trisection. The union
(Hy,71) U (Ha,72) U (Hs,73) is called the spine of Tx. We let x = X N K, so
(3,x) = 0(H;,Ti); we call x the bridge points. We let L£; = 9D;. If T is balanced
and ¢; = ¢a = ¢35 = ¢, we call T balanced and a (g, k; b, c)-bridge trisection of
(X, K).
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Note that L; is a ¢;-component unlink in Y;, and is in b-bridge position with
respect to the splitting Y; = H; Uy F¢+1- As with trisections, the spine of a bridge
trisection determines (X, K) (|26, Corollary 9]). The main result of [26] is that, for
every knotted surface (X, K), K can be put in bridge trisected position with respect
to any trisection on X.

Theorem 2.5. ([26]) Let 7 be a trisection of a 4-manifold X. Every smoothly
embedded, closed surface K in X can be isotoped to lie in bridge trisected position
with respect to T .

In this paper, we will be particularly interested in bridge trisections of minimal
possible complexity.

Definition 2.6. A bridge trisection 7 is efficient if it is a (g, 0; b, 1)-bridge trisec-
tion. We call 7 an efficient (g, b)-bridge trisection.

Again, we choose, for simplicity, to define efficiency in a more narrow way than
is strictly necessary. In general, we might ask that the bound on ¢ coming from
the algebraic topology of the exterior be sharp. For example, we have the following
analogue of Proposition [2.2] which is a restatement of |26, Proposition 20].

Proposition 2.7. If K C X is in (b; c)-bridge trisected position with respect to a
(g;k)-trisection T of X, then

(1) K can be built with ¢; cups, b—ci+1 bands, and c;yo caps inside X . In particular,
X(K)=c14+ca+c3—b.

(2) If ki = 0, then m (X\(K) has rank at most ¢;. In particular, if (X,K) admits
an efficient trisection, then X is simply-connected and w1 (X\K) is cyclic.

With this in mind, our notion of efficiency is only achievable for surface-links
whose exterior has cyclic fundamental group.

A curve-and-arc system (o, A) for a trivial tangle (H,T) consists of a cut sys-
tem « for H and a collection A of shadows for the strands of 7. A shadow diagram
is a triple ©® = (e, A), (8, B), (7,C)) of cut-and-arc systems such that the union
(Hy,71) U (Ha,72),(Hs, T3) is the spine of a bridge trisection. Again, for exposi-
tional efficiency, we will often write A;, Az, and As for A, B, and C, respectively.
In keeping with standard color conventions, we will refer to the shadows A, B, and
C as red arcs, blue arcs, and green arcs, respectively. In diagrams, we will also use
these color conventions. To clarify our diagrams, we will often use lighter shades
for the arcs than for the curves. For certain trisection diagrams that are closely
associated to shadow diagrams (e.g. via a branched covering), we will sometimes
use lighter shades for the curves in the trisection diagram corresponding to arcs in
the shadow diagram.

As with trisections, every bridge trisection (hence, every knotted surface) can
be encoded by a shadow diagram.
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Lo LT

Fig. 1. (Left) A positive and negative bridge point in the shadow diagram. (Right) A positively
twisted, untwisted, and negatively twisted band in the shadow diagram.

Remark 2.8. In a shadow diagram for a trivial b-tangle, it is only necessary to
record b — 1 of the shadows, because the placement of the last arc is determined by
the others. At times, for simplicity, we will not draw this last shadow (henceforth,
a lost shadow). Other times, for completeness or symmetry, we will draw all arcs.

Remark 2.9. If £ is oriented, we adopt the convention that £; = 9D; = 7;UxTiy1.
Thus, the orientation on C restricts to an orientation on D; = Z;NK, which induces
an orientation on the unlink £;. We assign orientations to the bridge points so that
each strand of 7; points from a positive point to a negative point. Note that each
collection of shadow arcs is oriented from positive points to negative points. For
example, the boundary of the bridge disks A; for 71 is 9A; = 71 Uy A.

For a bridge point x € x, let o(x) € {£1} denote its sign. This determines a
partition x = x4 Ux_ into positive and negative bridge points. In addition, we use
the shadow diagram to define a second sign e(x) on each bridge point z. Recall that
the orientation on X induces an orientation on the central surface X. If the three
incoming arcs of A, B, and C at = are positively cyclically ordered, we set e(x) = 1,
otherwise we set e(z) = —1. See Fig. [[{Left).

3. Bridge Trisecting Branched Coverings and Resolutions
of Push-Offs

In this section, we discuss how bridge trisections transform under the taking of
branched covers, the taking of multiple push-offs, and the resolution of singularities.
For the latter two transformations, we discuss a notion of singular bridge trisections.
We point out that a notion of singular bridge trisections was introduced by Cahn
and Kjuchukova for studying branched covers of singular surface-knots in S* [4].
This section is independent of the complex topology that features prominently in
later sections. In this section, we prove parts (1) and (2) of Theorem [L.4] from the
introduction.

3.1. Diagrams for cyclic branched covers

Let (X,K) be an oriented® kn0t~ted surface, and let X be an n-fold, cyclic cover
of X, branched along K. Let K denote the lift of K under this covering. Let

aThe restriction to oriented knotted surfaces is not strictly necessary, see Remarks [3.6| and [3.7)
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p: 1 (X\K) = Z,, denote the surjection from 71 (X \K) corresponding to this cover,
which factors though a surjection Hy(X\K) — Z,, that we also denote by p. The
following proposition illustrates how nicely behaved trisection structures are with
respect to branched covers.

Proposition 3.1. (Proposition 13 of [26]) Suppose that (X, K) admits a (g,k; b, c)-
bridge trisection T. Then, (X,K) admits a (¢',K'; b, c)-bridge trisection T, where

g =ng+n—-1)>b-1) and k'=nk+ (n—1)(c—1).
Moreover, the pieces of’f are given as the branched covers of the pieces of T .

In particular, efficiency is preserved under cyclic branched coverings. This gives
Theorem [L.4(1).

Corollary 3.2. If (X,K) admits an efficient (g;b)-bridge trisection, then ()N(,IE)
admits an efficient (¢';b)-trisection, with ¢ =ng+ (n — 1)(b — 1).

The proof of Proposition Bl is straightforward, and given in [26]. Our present
task is to understand how a shadow diagram © corresponding to T gives rise to a
shadow diagram D corresponding to 7. Let D be a shadow diagram corresponding
to 7 that satisfies the following specifications.

(1) For each i, the cut system «; is disjoint from the shadow arcs A;.
(2) For each i, a shadow arc has been discarded from A;; cf. Remark 2.8
(3) Each bridge point 2 € x has been assigned a sign o(x) as per Remark [2.9]

Note that none of these specifications provides a meaningful restriction on ®; for
example, the curves of a; can always be isotoped off of the arcs of A;.

A pairing of ® is a collection w of b oriented arcs in ¥ with oriented boundary
Ow = x (i.e. each arc of w connects points in x with opposite sign). A pairing is
admissible if the count of algebraic intersections of each curve of a U 8 U~y with w
is divisible by n. We will now describe how, given an admissible pairing w for D,
we can construct a shadow diagram D corresponding to the trisection 7.

Let 3“ denote the compact surface with b boundary components obtained by
slicing ¥ open along w. The boundary of ¥ decomposes as the union w¥ U, @™,
where each of w* is an oriented copy of w. (We think of w™ as being the left side
of w, while w™ is thought of as the right side.) Define

n
S=Jzy.
j=1
where each X7 is a copy of ¥, with boundary denoted by w Ux; W, , and where

the union is taken by identifying w and w; ;. We think of Z as a parking garage
someone driving around on the jth deck (Z‘]”) transfers to the (j+ 1)st deck (2 ]H)
by “entering” an arc of w;r, the “exit” of which is the corresponding arc of w4
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The cut system a; on X induces a collection of arcs and curves o’ on X“. Let

denote the corresponding collection of curves on the surface 3. A collection of curves
on a surface is called a sub-cut system if the result of surgering the surface along
the curves is connected.

Lemma 3.3. For each 1, &; 18 a sub-cut system of ng curves for 3. Moreover, &;
bounds a collection D) of disjoint disks in H;.

Proof. Each curve of «; intersects the arcs of an admissible pairing algebraically
a multiple of n times, so it lifts to n curves on 3. Since each such curve bounds a
disk in H; that is disjoint from the branch locus, the disk lifts to n disjoint disks
extending the lifts of the curve. The result of surgering D along the curves of &, is
the n-fold cover of the result of surgering 3. along the curves of «;, branched along
the bridge points x. It follows that the former surgery space is connected, since the
latter is. |

Next, let the b — 1 shadows of A; induce a collection of arcs A¥ on 3“. Let
(A¥)* denote a pair of push-offs of A%, so each of (A¥)¥ is properly embedded in
¥¢ and co-bounds with Ay and 0X¢ a collection of rectangles that comprise the
trace of the push-off to that side. Let

A= JnE
j=1

denote the corresponding collection of curves on 3.

— ~
Lemma 3.4. For each i, A; is a collection of n(b— 1) curves on X that separate

~ —~/
Y into b — 1 n-punctured spheres and a connected component. Moreover each A;
bounds a collection Da, of n(b— 1) disjoint disks in H;.

Proof. Consider the collection A; of bridge disks for 7;. Let 6 C A; be a bridge
disk for a strand ¢t C 7;, and let ¢, C X denote the corresponding shadow of ¢. The
lift 4 is an arrangement of n semi-disks {57};%:1 which meet along the strand ¢t C 7;
so that (') = tUEL, where {1} are the n lifts of the shadow .. In other words, the
union Eu;gl Slis a bouquet of n disks whose common (and pairwise) intersection
is ¢, an arc in the boundary of each. This bouquet is properly embedded in ITIZ

Let Ns denote a regular neighborhood of S in fli, and let Dy = BN\i —i.e. the
portion of ON that consists of n properly embedded disks in 1"712 Since each disk of
Ds is parallel into the bouquet g, we can assume that 0Dy is contained in push-offs
of 86 —i.e. contained in ;l;,. Let Da, denote the union over § C A; of the Dj.
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Thus, Dy, is a collection of n(b—1) disjointly embedded disks in H; with dDa, C
:Zl;/. (Note that now, we have discarded the redundant shadow arc.) Moreover, each
of the b — 1 copies of Ds separates off a ball chose boundary intersects Y in an
n-punctured sphere. The fact that 0Da, = :Zl: follows from the fact that each Ns
contains the lifts of the bridge disk §. O

Let D! denote a sub-collection of (n — 1)(b— 1) disks of Dj, so that &, = 9D
is a sub-cut system for H;. (Equivalently, throw away one of the n disks coming
from each of the (b — 1) neighborhoods Ns.) Let a; = o, Ua). Let A; denote a
single lift of A; to Y e A consists of b — 1 arcs in 3 which connect the lift X of
the bridge points x.

Let

L] "
§€Ai
and let t; = &1 N Y. In other words, &i consists of one petal from each of the
bouquets that cover the bridge disks of A;, and A; is the corresponding shadows.

Proposition 3.5. The tuple D= (E al,ag,ag,Al,Ag,Ag) is a shadow diagram
for the bridge trisection T of (X,K).

Proof. The pieces of the trisection T are precisely the lifts of the pieces of 7
under the n-fold branched covering. We have already seen that S is the cover of
Y. It remains to see that the &; are cut systems for the H and that the .A are
shadows for the 7.

By Lemmas[3.3land[3.4] each «; bounds a collection of disks in I;TZ-, which can be
assumed to be disjoint by a standard inner-most disk and outer-most arc argument,
since the curves of @; are disjoint. Moreover, the result of surgering H; along a; is
connected. Since e consists of ¢’ = ng+ (n — 1)(b — 1) curves, it is a cut system
for ﬁz

By Lemma [3.4] the lift of the bridge disks A; is a bouquet of semi-disks, the
petals of which are bridge disks for the lift 7; of the bridges 7,;. Choosing A,
consists of one petal in each bouquet gives a collection of bridge disks for 7; with
corresponding shadows ;. Note that different choices of petals are related by slides
of bridge disks over the compression disks of Dx,. O

To illustrate the methods of this section, consider the shadow diagram given as
the left-most frame of Fig. 2l (We will see later that this shadow diagram corre-
sponds to a bridge trisection of the cubic curve (CP?,C3).) The second frame of this
figure shows the same shadow diagram without a redundant arc of each color and
with an admissible pairing w for the bridge points. Note first that, in this case, we
have chosen the original blue arcs to give the pairing, this will not always be the
case in this paper, but such a choice will always give a (possibly non-admissible)
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Fig. 2. (Left to Right) A shadow diagram for a (1,0;3, 1)-bridge trisection; the same diagram, less
an arc of each color, together with an admissible pairing (shown in black and oriented upward);
the third frame shows the result of slicing the diagram open along the pairing; the fourth frame
is equivalent to the third, when considered inside the union of three copies, as in Fig. 3]

pairing. Note second that this pairing is admissible because the green curve hits the
pairing (with coherent orientation) a total of three times, while the red curve and
blue curve miss it entirely. Note lastly that if the red curve, say, were isotoped to
pass the center of the square vertically, it would intersect the pairing exactly once
thus, the pairing would cease to be admissible.

The third frame of Fig. 2lshows a copy of X%, together with the induced properly
embedded arcs ¥, (A¥)*, as well as a copy of the original shadows. The fourth
frame is identical, except that the colors of both types of induced arcs have been
darkened, foreshadowing their role as curves on i and the dark-blue arcs have been
isotoped to lie entirely on X¢. (This last isotopy is not strictly allowed on X¢, but
will be once three copies of ¥ are glued together to give §~])

Figure [B] shows the shadow diagram corresponding to the three-fold branched
cover for this example, which is built with three copies of X* and the induced
curves and arc thereon. Note that some arcs and curves have been discarded, since
including all of them would be redundant. Similarly, only one lift of each shadow
has been included. Note that because we started with a shadow diagram of type

Fig. 3. A shadow diagram for a (7,0;3, 1)-bridge trisection arising from the shadow diagram and
associated objects of Fig.[2] To interpret the underlying surface, note that each square becomes a
torus once opposite edges are identified and that the southeastern edge of each black oval in each
square is identified with the northwestern edge of the corresponding oval in the square directly to
the right (considered cyclically).
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(1,0;3,1), the corresponding shadow diagram for the three-fold branched cover has
type (7,0;3,1).

Remark 3.6. The construction outlined above is made significantly easier in the
case where n = 2 — i.e. when considering a double-branched cover. The reason this
case is simpler is that it is not necessary to take the push-offs (A“)* of the induced
arcs AY in X“. This is because the lift of the collection of bridge disks A; is a
bouquet with two petals, which is simply a disk. So, for each shadow ¢, the union
t. of the two lifts under the double-branched covering is already a compression disk
for ﬁi. Additionally, since the parking garage only has two levels, it is not necessary
to remember whether one is going up or down when crossing the lifts of the cut
arcs, only that one is changing level.

Remark 3.7. In the construction outlined above, we made the simplifying assump-
tion that the knotted surface was oriented. If K is non-orientable, then each meridian
of K has order two in Hy(0(v(K))). It follows that each meridian of K has order
two in H1(X\K), and the only cyclic branched covering that (X, K) admits is a
two-fold one. This observation, together with Remark B.6] allows us to conclude
that the construction described above holds in the case that I is non-orientable,
provided n = 2.

3.2. Diagrams for resolutions of push-offs

We will now introduce a generalization of the notion of a bridge trisection to the
setting of singular surfaces. A knotted surface (X,K) is singular if it smoothly
embedded away from finitely many points, near each of which the pair (X, K) looks
like the cone on a link in S3. In this paper, all singularities encountered will be
transverse intersections — i.e. cones on Hopf links. Singular bridge trisections were
first studied by Cahn and Kjuchikova [4].

Let L be a c-component link in #%(S' x $2) that is contained in a three-ball.
A collection D of disks in §¥(S' x B3) with 9D = L is a c-cone-tangle for L if
each component of D is an embedded cone on its boundary. (If the boundary of a
component of D is unknotted, then we can consider that component as smoothly
embedded by smoothing the cone point.) Note that two types of singularities can
arise in a cone-tangle. If a component of L is knotted, then the disk bounding that
component will be a singular at the cone point, with the link of the singularity
given by the boundary knot. If two components of L are unknotted, but linked,
then the disk components they bound will be individually smoothly embedded, but
they will intersect transversely. These singularities look locally like the cone on a
Hopf link. Only this latter type of singularity will be considered in this paper, the
components of the boundary of a cone-tangle will always be unknotted, but may
be linked.

Definition 3.8. A (b;c)-singular bridge trisection of a singular knotted surface
(X, K) is a decomposition (X, K) = (X1,D1) U (X2,Ds2) U (X3,D3) such that
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(1) X = X;UX,U X3 is a trisection of X,
(2) each D; is a trivial ¢;—cone-tangle in X;, where ¢ = (c1, 2, ¢3) and
(3) each 7;, = D; N D41 is a trivial b-tangle.

We say that K is in singular bridge trisected position with respect to a trisection 7°
of X if the decomposition 7 of (X, K) induced by 7 is a singular bridge trisection.
The union (Hy,71)U(Hz, T2)U(Hs, T3) is called the spine of Txc. We let x = XNK,
so (X,x) = 0(H;,T;), we call x the bridge points.

Let (X, K) be a knotted surface, and let Nx = v(K) be a closed, regular neigh-
borhood of I in X. We say that K has self-intersection e if the normal disk-bundle
D? — N — K has Euler number e, the quantity e is also called the normal Euler
number of I and denoted e(K). Denote by mK the union of m copies of K inside
Ny, considered as a (possibly) singular knotted surface in X.

Proposition 3.9. Suppose that a knotted surface K with self-intersection e can
be put in (b,c)-bridge trisected position with respect to a trisection T of X. Let
m > 1. Then, the singular knotted surface miC can be put in (mb, mc)-singular
bridge trisected position with respect to T such that Lo and L3 are unlinks and L
is the split union of a m(c; — 1)-component unlink and a (m,me)-torus link. In
particular, all three cone-tangles are smooth.

Given a shadow diagram for Tic that has been locally trivialized so that a com-
ponent of 0Dy appears as in the first frame of Fig. W a shadow diagram for Tpx
is obtained by modifying this local picture as indicated by last frame of Fig. 4, and
taking parallel push-offs elsewhere.

Proof. Consider a disk D of the trivial c-disk-tangle D; = K N X7 in the bridge
trisection 7x. Without loss of generality, we can assume that any non-triviality of
the bundle N is localized near this disk. In other words, the e(m — 1) intersection
points of e/C occur in a neighborhood Np of D.

Let D} = eK N X;. Tt follows that Dy and D3 are both trivial disk-tangles (of
cardinality mecy and mecs, respectively) and that the disk components of D; other
than D together give rise to a trivial m(c; — 1)-disk-tangle, while D gives rise to m
disks intersecting pairwise in e points. It follows that the boundary links Lo and Ls
are both unlinks, while Ly is the disjoint union of a m(¢; — 1)-component unlink
with a (m, me)-torus link J. This last fact follows, as this torus link is the boundary
of the union m sections of the disk bundle D? < Np — D2 of Euler number e.

Lastly, because the links L; were in b-bridge position inside the Y; = 0X;, we
have that the L) = 0D; are in mb-bridge position. Collections of bridge disks for the
latter tangles are given by m push-offs of collections of bridge disks for the former
tangles. |

Remark 3.10. If the normal Euler number of K is 0, then we can assume the
singular knotted surface guaranteed by Proposition [3.9is embedded as well.
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Fig. 4. (Left) A localized view of shadow diagram for the knotted surface (X, K) with e(K) = e
that has been locally standardized so that a disk D C D; is isotopic into X, with 9D in by-bridge
position. (Right) The singular shadow diagram for the singular union (X, mK) of push-offs of IC,
displaying the local picture around the (m, me)-torus link J. Here, by =2, m = 3, and e = 2.

The local transformation from the disk D to m intersecting disks bounded by
the torus link is shown in Fig. 4l In this figure, the bridge index of 9D is b = 2,
while e = 2 and m = 3. If 9D had bridge number by in 7, then J is in mb;-bridge
position inside Y7 = Hy Uy Hs.

Note that in bridge trisection 7,k for (X, mK), the mci-cone-tangle D} con-
tains exactly em(m — 1)/2 intersection points among m of its disks and that these
intersection points will be coherently oriented, according to the sign of e, which we
assume to be positive for simplicity.

We resolve the singular points of D} by removing a neighborhood of each and
replacing it with an annulus, which can be thought of as the Seifert surface for the
Hopf link arising as the link of the singularity. Let J denote the knotted surface
obtained by resolving all of the singularities of e/C. Note that the effect of this is
to change the union of disks containing the singularities in D} to a smooth surface
F bounded by the (m,me)-torus link J in X;. See Fig. 5. Note that F has Euler
characteristic me — m2e + m, which is maximal, given this particular torus link.
Note also that, with respect to the standard radial Morse function on Xi, F is
ribbon, with me minima and m(me — 1) saddles.

Proposition 3.11. Suppose that a knotted surface K with self-intersection e # 0
can be put in (b, c)-bridge trisected position with respect to a trisection T of X.

Ji

Fig. 5. (Left) The minimal genus surface F for the torus link J = T'(m, me), viewed as a ribbon
surface for J; (Right) The same surface viewed as the result of attaching m(me — 1) bands to the
me-component unlink. Here, m = 3 and e = 2.
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Let m > 1. Then, the smooth resolution (X,J) of the singular knotted surface
mIC can be put in (b, mc)-bridge trisected position with respect to T, where b =
mb + m(me — 1).

Given a shadow diagram for Tic that has been locally trivialized so that a com-
ponent of 0Dy appears as in the first frame of Fig. W a shadow diagram for Ty is
obtained by modifying this local picture as indicated by first frame of Fig. [T, and
taking parallel push-offs elsewhere.

Proof. The smooth resolution [J is almost in bridge trisected position with respect
to 7, except that the intersection F' C J N X7 is a connected ribbon surface, not a
trivial disk-tangle. We will isotope the trisection 7 so that J is in bridge trisected
position.

First, we isotope 7 so that the bands v of F lie in Hy. Note that (Y7,Lq) =
(Hy,71)U(Hz,T2) is currently a m(c; — 1)-component unlink split union a (m, me)-
torus link J. The former link will be irrelevant for our consideration, so we focus
only on J, to which all the bands of F' are attached once they lie in Hs. Suppose
the torus link is in m-bridge position. A local picture of this set-up is shown in the
right frame of Fig. [4.

We can perturb 7 to increase the complexity of the bridge splitting of the torus
link from mb; to mby +m(me — 1). Doing so, we can arrange that the bands v of F'
are level in ¥ and dualized by bridge disks for 75 C Hs. See the left frame of Fig. [6,
which shows J, unperturbed, but with the bands v.

Before perturbing the bridge splitting of Ly = 0D;, we have that Dy C X5 is
a trivial mco-disk-tangle. The disks of Dy can be thought of as the trace of the
bridges 72 as some collection of bands for [J are resolved. (Here, we refer to bands
coming from a handle decomposition of J\ F.) See [27, Lemma 3.1] for details. After
perturbing the bridge splitting of Ly to increase the bridge index of the torus link
J, we have created new bridge arcs in 7o, each of which contributes a new trivial
disk to Dg, which now must be a trivial (mce + m(me — 1))-disk-tangle.

However, because we have leveled and dualized the bands of F' inside Hs, we
can include them into the band system for J\F. Each band of F' is dualized by

== t‘@\)
)

Fig. 6. (Left) A shadow diagram for the (m, me)-torus link J, together with the me(m — 1) bands
v of its ribbon spanning surface F', which have been pushed to lie in Y7. (Right) The dual picture:
A shadow diagram for the unlink U that bounds the minima of F', together with the dual bands
v*, giving a local banded bridge splitting. Here, m = 3 and e = 2.

LA\
=)
l-lwwy

e

L —FL =R
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one of the new arcs of 7, so the new trivial disk that was just described as being
created in Dy will no longer exist.

This process can be thought of as pushing the saddles of F' from X; to Xs,
through Hs. The bands v are thought of as being attached to J, and their resolution
gives the unlink U bounding the m minima of F. We switch perspectives and
consider the dual bands v*, which we think of as being attached to the unlink
bounding the minima of F'. If we push the saddles of F' up through Hs, into X5, as
described above, the link L; changes precisely by the resolution of v. Now we see a
unlink of me; —m+me components as Ly, and Dj is a trivial (me; —m +me)-disk-
tangle. Since the bands v were dualized by bridge disks in Ha, the same is true for
vk. It follows from all that has been said that Ds is still a trivial mcs-disk-tangle.
This dual picture is shown in the right frame of Fig.[6l The transition in this figure
from the left frame to the right frame encapsulate the process of perturbing the
bridge splitting of J, and switching our perspective from the torus link with bands
(J,v) to the bridge banded link diagram (U, v*).

Having locally arranged that (U, v*) is a bridge banded link diagram compatible
with the original bridge trisection, we can interpret the bands of v* as new green
arc shadows of the trivial tangle 73. The final result is shown in the first frame of
Fig. [@ O

The next proposition shows that the increase in the parameters of the bridge
trisection resulting from the taking of copies and the ensuing resolution can be
undone via deperturbations.

Proposition 3.12. Suppose that a knotted surface K with self-intersection e # 0
can be put in (b, c)-bridge trisected position with respect to a trisection T of X.
Let m > 1. Then, the smooth resolution (X,J) of the singular knotted surface
mk can be put in (b”,c)-bridge trisected position with respect to T, where b =
mb+ me(m — 1) —3(m —1).

Given a shadow diagram for Tic that has been locally trivialized so that a com-
ponent of Dy appears as in the first frame of Fig. W a shadow diagram for T;

N[ [ —F
77/
~_/ /L —F7

Fig. 7. The process of destabilizing the bridge trisection of the (X, J). (Left) The shadow diagram
resulting from incorporating the bands of the torus link .J into the trisection, as in Proposition[3.11
and Fig. |6l Asterisks mark bridges that can be destabilized to produce the shadow diagram in the
right frame.
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is obtained by modifying this local picture as indicated by last frame of Fig. [, and
taking parallel push-offs elsewhere.

Proof. Given the bridge trisection 77 produced in Proposition [B.11] it suffices to
destabilize the disk-tangle D; a total of 3(m — 1) times. To do this, one must find
m — 1 arcs of each color in the shadow diagram for 77 whose interior does not
intersect the arcs of the other two colors and whose endpoints span distinct pairs
of connected components in the other two colors.

An example of this is shown in the left frame of Fig. [[. The arcs marked with
asterisks have the desired property. It is easily seen, for example, that the two
marked green arcs connect distinct pairs of red—blue curves. By referring to the
combinatorics of the first frame of Fig. [4] it can be verified that the red arcs and
the blue arcs span distinct pairs of connected components in the other two colors,
as well.

The reader might be concerned that there are arcs or curves complicating this
local picture that are not shown. Any other arcs and curves that are red or blue have
been assumed to fall outside the local picture. Indeed, though, there may be green
arcs and green curves crashing through this picture that are not shown. However,
these can be assumed to be supported away from the red/blue intersection of the
right frame of Fig. 4] and, hence, away from the region supporting the bands in
Fig. [6] and the destabilization arcs in Fig.

Although we have only provided a recipe for destabilizing in the example shown
in which b; = 2, m = 3, and e = 2, it should be clear that the combinatorics of
the torus links are simple enough that similar destabilizations could be performed
for any bi-bridge positioning of any (m,me)-torus link. In general, the grid-like
arrangement of hexagons that contains the asterisks in the left frame of Fig. [T will
be me — 2 hexagons wide and m — 1 hexagons tall. In order to destabilize, one needs
to only find a collection of disjoint arcs (disjoint even at their end points) of the
following sort:

(1) there are m — 1 blue arcs, one in each row of hexagons;

(2) there are me — 1 green arcs, one in each column of hexagons (including the
columns to the left and right of the grid); and

(3) there are m — 1 red arcs, which lie in distinct northwest-southeast-running
diagonals when these diagonals are considered modulo m.

These conditions ensure that each arc connects a pair of distinct components of the
disk-tangle corresponding to the arcs of the other two colors and that no chain of
arcs of one color connects the same two components as any other chain of arcs in
that color. For example, in the grid in the left frame of Fig.[7 the red arcs have been
chosen to lie in diagonals three and seven, if we treat the bottom left hexagon as
lying in the second diagonal. The effect of this is that this pair of red arcs spans the
three shades of blue arcs, each shade of blue corresponds to a distinct component
of the blue/green unlink Lo.
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Since the bridge number before destabilizing was b’ = mb+ m(me — 1) and we
destabilized 2m + me — 3 times, the final bridge number is b” = mb + m2?e — m —
2m —me + 3 = mb+ me(m — 1) — 3(m — 1), as desired. O

Finally, we conclude that efficiency can be preserved under the process of tak-
ing smooth resolutions of parallel push-offs a given knotted surface. This proves
Theorem [1.4}2).

Theorem 3.13. Suppose that a knotted surface K with self-intersection e # 0 can
be put in efficient b-bridge trisected position with respect to a trisection T of X.
Let m > 1. Then, the smooth resolution (X,J) of the singular knotted surface
mK can be put in efficient b”-bridge trisected position with respect to T, where
b" = mb+me(m —1) —3(m — 1).

Proof. This is restating of Proposition [3.12]in the case of ¢ = 1. O

We will use this result in Sec. [8 to deduce that complex surfaces obtained as
complete intersections of collections of hypersurfaces in CP" admit efficient bridge
trisections.

4. Complex Curves in CP?

In this section, we discuss complex curves in CP?, showing that they admit complex
bridge trisections and, when considered only up to smooth isotopy, efficient bridge
trisections. We prove Theorem [[.3[1) and Proposition [L.I4] from the introduction.

4.1. Toric model of CP?

The toric geometry of CP? yields a trisection 7 as follows. Define the moment map
w: CP? — R? by the formula
3|z1[? 3|20/ )

o225 = (o o o e o
The image of y is the convex hull of the points {(0,0),(3,0), (0,3)}. The fiber of
1 over an interior point is a torus (Lagrangian with respect to the Fubini-Study
Kahler form), the fiber over an interior point of a face of the polytope is S*, and
the fiber over a vertex is a point. The preimage of an entire face of the polytope is

a complex line
L ={[z1:22:23]: 2, =0}
for some ¢ = 1,2, 3.

We can use the barycentric subdivision of the simplex ;(CP?) to construct a
trisection A of CPP?. The preimage of the barycenter (1,1) is the torus

Y= {[21 1220 23] : |Zl| = |22| = |23| = 1}

that is the core of A. The barycentric subdivision consists of six triangles grouping
these in pairs determines three subsets of u((C]P’Q) whose preimages are the three
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Fig. 8. The moment polytope of CP?, with the trisection decomposition described.

pieces of the trisection decomposition. Define subsets
Xi ={lz1: 221 23] ¢ |z, [2iga]| < [2igal}
H; = {[z1: 221 23] : |2i] < |zig1] = |zigal}

In the coordinate chart ¢y(x1,z2) = [z1 : @2 : 1] on CP?, the handlebody X; is
exactly the polydisk cut out by the inequalities |z1| < 1 and |z2| < 1. Its boundary
is clearly the union of two solid tori H; and Hos.

Proposition 4.1. The decomposition CP* = X1 U X, U X3 is a (1,0)-trisection.

We will refer to 7 as the standard trisection of CP?. There is trisection diagram
(e, B,7) for A where each cut system consists of a single simple closed curve. The
central surface ¥ = X1 N Xo N X3 is the torus {[e? : €™ : 1] : 0,4 € [0,27]} and we
can choose attaching circles

a={[?:1:1]} B={1:e¥:1]} y={le?:e ¥ 1]}

Note that {[a], [3]} is an oriented basis for H;(T?) and [y] = —[a]—[f] in homology.
Next, we will show that CP? admits a Stein trisection. Choose some N > 0 and
for i = 1,2, 3, define functions

2l N2zl VY
Ji([z1 1 220 23]) = <|z_1|> + (|Z—1|> ’

where the index 7 is defined mod 3. Choose some ¢ > 0 and set

X; = f1((~00,2 4 0)).

7

Proposition 4.2. The triple )~(1, )N(g, )23 is a (1,0)-Stein trisection of CP?.

Proof. In the affine chart z;_; = 1, we have f; = |2|*" + |z;11]*" and its Levi
form is positive definite along the boundary of X;. Thus, X, is strictly Levi convex
and therefore a Stein domain. Moreover, it follows easily that each X; is a subset
of )~(i, so that the union )21 U )22 U )~(3 is CP2.

Each function f; is constant along fibers of the moment map p, so that each X;
and each double and triple intersection is a union of fibers of u. It is easy to see
that )?l is an open neighborhood of X; and diffeomorphic to B* that )?i m)?m isa
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neighborhood of H; 1 and diffeomorphic to S* x B? and that the triple intersection
X1 N X3 N X3 is a neighborhood of the core and diffeomorphic to T2 x D2. Thus,
we have obtained a Stein trisection of CP?. O

This proves Proposition [1.14] from the introduction. Note that the pieces of
the Stein trisection of CP? are collar neighborhoods of the pieces of the standard
trisection of CP?.

4.2. Complex line

In this section and the sequel, we will use V,; to denote the algebraic variety obtained
as the zero-set of the homogeneous polynomial zd + z¢ + 2¢ in CP?, while using
(CP?,Cy4) to denote the smooth isotopy class of V.

Proposition 4.3. The projective line Vy is in efficient bridge position.

Proof. In homogeneous coordinates, the intersections of V; with the handlebodies
and central surface are

- - (27 47
Vlﬂlele{[—l—e‘”:eszzl]:se o }

) . 21 4]
VlﬁHQTQ{[lsle“:e“]:se oo }

- . (27 47
Vlﬁngg{[eﬁslsle“]:se %,?ﬂ }

VlﬂXlﬂXgﬂng{[ezgi 26_%11]7[6% :e¥:1:|}

In particular, V; intersects the central surface in two points and intersects each
handlebody in a single arc. Since the construction is triply-symmetric and V) is
homeomorphic to S?, we have that

2=xWV1) =2-3+x(D1) + x(D2) + x(D3) = 3x(D1) — 1.

It follows that each D; is a topological disk.
To prove that V) is in bridge position, we must show that each disk D; and each
arc T; is boundary parallel. Consider the family of projective lines

Vl,t = {ZO -+ tZl + zo = 0}

for t € [0,1]. For each t < 1, the above analysis continues to hold: V; ; intersects
the central surface in two points, intersects each handlebody in a single arc, and
intersects each four-dimensional piece in a topological disk. However, at t = 1, the
line V; 1 intersects the central surface along the simple closed curve a = {[—1: z; :
1] : |z1| = 1}, intersects the handlebody H; along the disk {[—1: 21 : 1] : |z1| < 1},
and is disjoint from the interiors of X; and X3. Thus, the family D; ;, = V1 : N X is
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Fig. 9. The standard trisection diagram of CP? together with a shadow diagram for C;.

an isotopy of the disk D; into the boundary of X; and the family 7, = Vi N Hs
is an isotopy of the tangle 72 into the boundary of Hs.

By the three-fold cyclic symmetry, this implies that each disk D; and each arc
T; is boundary parallel. O

Corollary 4.4. The pair (CP?,C1) admits an efficient (1,1)-bridge trisection, with
shadow diagram as depicted in Fig. [9.

Proof. Define ¢(s,t) = t(1 + € + ¢~**) for (s,t) € [Z, &] x [0,1]. The family of

3
arcs
T{’t =[-1- e’ + o(s,t) : e’ 1]
gives an isotopy of the arc 71 to the segment 7{ ; = [e7* : €* : 1] on the central
torus. This is depicted in Fig. [ as the arc A. Repeating this cyclically, we obtain
arcs B=7j; =[l:e ™ e =[e®:e? :1Jand C =714, = e :1:e ] =
[e?%s : €% : 1] on the central surface. O

4.3. Complex curves

We now describe bridge trisections of complex curves of arbitrary degree in CP?.
We first state and prove a well-known result, that the smooth isotopy class of a
nonsingular curve in CP? is determined by its degree.

Proposition 4.5. Let C,C’ be nonsingular complex curves in CP%. IfC and C' are
homologous, then they are ambient isotopic in CP?. In particular, every nonsingular,
degree d complex curve is isotopic to Vy.

Proof. Since C and C’ are linearly equivalent, we can find a family C, of curves,
parametrized by A € CP', such that C = Cy and €’ = Co. This pencil of curves
gives a ‘straight-line’ isotopy between C and C’. The set of A € CP' such that Cy
is singular has complex codimension 1, hence real codimension 2, in CP'. Conse-
quently, we can choose a path \(t) € CP' for ¢ € [0,1] such that A(0) = 0 and
A(1) = oo and Cy) is a nonsingular complex curve for all ¢. This family of curves is
an isotopy. O
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- b

+1

Fig. 10. An example of the banded link diagram corresponding to the (1,0;d?, d)-bridge splitting
of the degree d complex curve in CP2. Shown is the instance of d = 3.

To construct a bridge trisection of C4, we can follow the method of Sec.B.2] tak-
ing d parallel copies of the bridge trisection for C; and then resolving crossings. This
yields the shadow diagrams in Fig. [I1l Presently, we give a different construction.

Proposition 4.6. The pair (CP? Cq) admits a (1,0;d?,d)-bridge trisection, a
shadow diagram for which cuts ¥ into hexagons, as shown with examples in Fig. 11l

Proof. To describe complex curves in CP?, we mimic [15, Example 6.2.7], which is
based on [1]. To obtain the curve Cg4, take a generic collection of d complex lines in
CP?. These lines pairwise intersect in a single point. Resolving the %d(d —1) double
points yields Cq. A banded link presentation for the pair (CP? C4) can be obtained
as follows. Consider the torus link L = T'(d, d), obtained as the closure of the d-
strand braid (oy---04_1)% with braid axis v. See Fig. [LQ for the case of d = 3.
As the closure of a positive braid, L has a canonical Seifert surface F' obtained
by taking disks bounded by the d Seifert circles and attaching 1-handles for each
crossing coming from the braid word. This yields a surface F' with d boundary
components, X(F) = d — (d — 1)? = 3d — d*> — d, and g(F) = 1(d — 1)(d — 2).
Attach a 2-handle to B* along the braid axis with framing +1 and cap off with
a 4-handle to obtain CP?. The link L becomes the d-component unlink after the
2-handle attachment and each component can be capped off with a disk in the
boundary of the four-dimensional 4-handle. (These disks can be thought of as cores
of the four-dimensional 2-handle.) Capping off F' thusly yields C,4 [L, [L5]. The right
side of Fig. [0l shows a banded link diagram corresponding to this description of Cg.

We will show that shadow diagrams of the form illustrated in Fig. [I1] correspond
to the handle decompositions for C4 described above.

The trisection of CP? determines a handle decomposition as follows: the 4-
ball X7 is the 0-handle; the v curve is dual to the compressing disk bounded by
B3, therefore we push the v curve into the handlebody Hg and attach a 2-handle
along v with its surface framing, which is +1, finally, the 4-ball X3 is the 4-handle
[13| Lemma 13].
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Fig. 11. Examples of the (1,0;d?,d)-bridge trisections for the complex curves of degree d in CP2.
Shown are the cases d = 1,2, 3,6.

The union of the red arcs and the blue arcs is a d-component unlink, braided
around the core of the handlebody Hg. Therefore, the link £; bounds a collection
of trivial disks D; in 0X; that each intersect the core of Hz geometrically once.
These disks are Seifert disks for the trivial d-strand braid. Next, each component
of the unlink £5 given as the union of the blue arcs and the green arcs is an unknot
in d-bridge position. Consequently, each disk of Dy contributes d — 1 bands to the
surface. (See [27, Lemma 3.3].) We can choose the cores of these bands to be the
green arcs C and the surface framing implies that these are positive bands. As a
result, we see that the union L3 of the green arcs and the red arcs, considered as a
link in 0X71, is the torus link 7'(d, d) bounding its canonical Seifert surface. Viewing
L3 as a link in 0X3, however, it is the d-component unlink as each component is
isotopic to v in the central surface and therefore bounds a compressing disk in H,.
These disks comprise D3. It is now clear from the above discussion that we have
constructed a bridge trisection of C4. Figure [LO] illustrates this correspondence for
the cubic curve Cs. O

Remark 4.7. A third approach to construct a shadow diagram of Cy4 is by
explicit computation in homogeneous coordinates. Define a finite, holomorphic map
7: CP? — CP? in homogeneous coordinates by setting

ma([z1: 22t 23)) = [ @ 28 2 2]
Clearly, Vg = wgl(Vl). Away from the variety W = {z12023 = 0}, the map my is
an unbranched covering of degree d2. In particular, it restricts to a d?-fold covering
map m: T2 — T2 along the central surface. Pulling back the shadow diagram for
C1 by my is exactly the shadow diagram of Cyq depicted in Fig. 1}
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Fig. 12. When each edge of a hexagon of shadow arcs connects distinct components of a one of the
boundary links L; = dD;, the entire hexagon can be removed in a balanced type of deperturbation
of the bridge trisection.

Theorem 4.8. The pair (CP?,Cy) admits an efficient (1,b)-bridge trisection with
b=(d—1)(d—-2)+1.

Proof. As shown above, ((C]P’Q, Cq) admits a (1,0; d?, d)-bridge trisection. To prove
the theorem, it suffices to show that these bridge trisections can be maximally
destabilized, i.e. that we can destabilize along d — 1 arcs of each color. In fact, we
will perform d — 1 balanced destabilization using hexagons of the form shown in
Fig. 121

Whenever we see a hexagon that is embedded in the complement of the arcs
and curves of the shadow diagram, we can destabilize along three non-adjacent
arcs of its boundary, which will necessarily be of distinct colors, if the following
three conditions holds: We require that arcs of A; in the boundary of the hexagon
correspond to arcs of 7; that are contained in distinct components of L;. If the
hexagon is of this sort, then we can destabilize, as described by [26, Fig. 5] and the
surrounding text.

Returning to the special case of shadow diagrams of the sort illustrated in
Fig. [L1] it is easy to see that we can find d — 1 such hexagons such that no two
hexagons are in the same row, column, or diagonal. Figure [[3] shows two examples
of such choices, which illustrate the general process. Note that there is a slight
distinction of cases imposed by the parity of d: When d is odd, we choose the green
curve to be the off-diagonal of the square, but when d is even, we choose a slightly
different representation for the green curve. This is done to make the selection of
hexagons easier.

Note that each destabilization decreases the bridge trisection value b by one. It
follows that we end up with a (1,0;d? — 3(d — 1), 1)-bridge trisection. Observing
that d? —3d + 3 = (d — 1)(d — 2) + 1 completes the proof. |

Up to this point, we have represented the toroidal trisection surface for CP?
as a square with opposite edges identified. This surface can also be represented
as a hexagon with opposite edges identified. In Sec. [0, Fig. 23] shows how the
destabilization process described above can be modified and applied under this
rendering, and Fig. 4] shows efficient shadow diagrams for Cy, Ca, C3, and Cg under
this rendering.
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Fig. 13. Illustrative examples of the destabilization process used to turn the (1,0;d?, d)-bridge
trisections for the complex curves of degree d in CP? into efficient bridge trisections with bridge
number b = d? — 3d + 3. Shown are the instances of (Left) d = 3 and (Right) d = 6.

5. Branched Covers of CP?

In this section, we describe trisections of the four-manifolds obtained as cyclic
branched covers over complex curves in CP?.

5.1. Branched covers

Let Y be a complex surface, let L be a holomorphic line bundle on Y, and let
L,, = L®" be its nth tensor power. Consider the holomorphic map of line bundles

CGn:L — Ly

modeled as z — z" on each fiber. The map (, is a n-fold branched covering of L over

L,, with branch set Y, viewed as the 0-locus of the line bundle. Take a holomorphic

section s of L,, with 0-set B = s71(0). Define X = ¢, *(s(Y)). The restriction of ¢,

to X determines a n-fold branched cover of s(Y) 2 Y over the branch locus B.
The following is well known (see [15]).

Proposition 5.1. Let ¢ : X — Y be a n-fold branched cover of complex surfaces
along the complex curve B. Then we have

(1 (X) = ¢ (cm - [B]) ex(X) = n-ea(Y) — (n—1) - x(B)

n—1

n

[B]>2 J(X):n~U(Y)+n;1 (”_1 —2) B

n

5.2. Hypersurfaces in CP3.
Define the projective variety
Sy = {w? + 2% 4+ y? + 22 =0}

in CP?. We note that all nonsingular hypersurfaces of degree d in CP? are linearly
equivalent, hence diffeomorphic, to Sy. Identify CP*\{[1:0: 0 : 0]} with the total
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space of the holomorphic line bundle £ over the hyperplane H := {w = 0} with

¢1(L) Poincare dual to the projective line in CP?. We can define a projection map
mlwiziy: ][0z y: 2]

for this bundle onto the 0O-section H. The restriction to Sy is one-to-one along the

curve {z? + y¢ + 2? = 0} in H and is d-to-1 over the complement of this curve.
Therefore, we get a d-fold branched cover over CP? with branch locus Cj.

Example 5.2. The hypersurfaces Sy are given as follows:

1) Sy is diffeomorphic to S? x S2.

9) Ss is diffeomorphic to CP2#6CP .

3) Sy is diffeomorphic to K3.

4) For odd d > 5, the manifold S, is homeomorphic, but not diffeomorphic, to a

—~ T~~~

connected sum of copies of CP? and @2.
(5) For even d > 6, the manifold Sy is homeomorphic, but not diffeomorphic, to a
connected sum of copies of K3 and S? x S2.

The last two results are highly nontrivial, relying on work of Freedman [8], Donald-
son [5], and Taubes [30]. The particular nature of the connected sums is described
in Proposition [5.3]

The topology of a complex hypersurface Sy is well-understood.
Proposition 5.3. ([15]) Let Sy be the degree d hypersurface in CP?.

(1) The surface Sq is simply-connected with total Chern class
c(Sq) =1+ (4 —d)¢ + (d* — 4d + 6)¢?

where ¢ is the pullback of the generator o of H*((C]P’S;Z) under the inclusion

map i : Sq — CP*. Moreover, (¢?,[S4]) = d.
(2) The surface Sq satisfies

X(Sq) = d(d® —4d+6) ¢3(Sq) = d(4 — d)?
1
o(d) = 5(d(4 —d)? —2d(d® — 4d +6)) ba(Sy) = d® — 4d?* + 6d — 2.
(3) If d is odd, then Qg = \g(1) & pa(—1), where
1

1
Ay = §(d3 —6d2+11d—2) pg= §(d_ 1)(2d* — 4d + 3).

Consequently, Sq is homeomorphic to ()\d(C]PQ)#(,ud@Q).
(4) If d is even, then Qq = lq(—Es) ® mqH, where
_ L n _ Ll 2
o= yd(d —4)  ma = 5(d* ~ 64>+ 11d - 2)
Consequently, Sq is homeomorphic to (kqK3)#(nsCP' x CP'), where

Rqg = §ld Na = Mq — §ld
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Taking branched covers of bridge trisections of the complex curves (CP?, Cy),
we can construct trisections of the hypersurfaces Sy.

Theorem 5.4. The hypersurface Sy admits an efficient (g, 0)-trisection, where
g=d®—4d* +6d — 2.

Proof. By Theorem [.8] the pair (CP?,C,;) admits an (efficient) (1,0;b,1)-bridge
trisection with b = d? — 3d + 3. By Corollary[B.2] the d-fold cover of CP? branched
along Cp admits a (¢’, 0)-trisection, with

d=d+([d-1)(d*>-3d+2)=(d—-1)*d—-2)+d=d*>—4d* +6d—2. O

For d = 2 and d = 3, we have Sy = 52 x S? and S5 =2 CIPQ#G@Q. Each of these
manifolds admits a trisection that is the connected sum of genus one and genus two
trisections. (Recall that such trisections are called standard.) In the case of Ss, it
is straightforward to see that the trisection corresponding to the branched covering
described above is, in fact, the standard one. (Note that this is also implied by the
fact that there is a unique irreducible genus two trisection [28]). On the other hand,
it is not clear whether or not the genus seven trisection of S3 corresponding to the
branched covering is standard, or even reducible. This diagram is given in Fig. [3,
the marked points and lighter-shaded arcs encode the lift of C3, and can be ignored,
presently.

Question 5.5. Is the trisection of S3 arising as the three-fold branched cover of
the efficient bridge trisection of (CIP’27C3) standard? Is it even reducible?

A trisection diagram for Sy is given in Fig. [I4l In Sec. [1Q] we give trisection
diagrams for S5 and Sg in Figs. 28] and 26

5.3. More branched covers of complex curves in CP?

Above, we considered the d-fold cover of CP?, branched along the curve C4, which
resulted in the hypersurface S;. More generally, we can take the n-fold cover of CP?,
branched along the curve C4, provided that n divides d. We denote the resulting
complex surface by Qg .

Proposition 5.6. Let ¢ : Qq,, — CP? be a n-fold branched cover along Cq. Then
we have

¢1(Qan) = (B3 —m(n—1))¢*(a) ¢2(Qan) =3n— (n—1)(3d —d*)

¢1(Qun)? = (3 —m(n —1))* 0(Qan) =n+ " ; 1 (n; - - 2> >

where d =m -n and o = ¢;(CP?).
Theorem 5.7. The complex surface Qq,n, admits an efficient (g, 0)-trisection where

g=(mn-1)(d-1)(d—2)+n.
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Fig. 14. A (22, 0)-trisection of K3, thought of as the four-fold cover S of CP? branched along the
quartic C4. Each square corresponds to a torus once opposite edges are identified. The northwestern
edge of each ellipse is identified with the southeastern edge of the corresponding ellipse in the
clockwise-adjacent square.

Proof. By Theorem L8 the pair (CP?,C4) admits an (efficient) (1,0;b, 1)-bridge
trisection with b = d? — 3d + 3. By Corollary B.2] the n-fold cover of CP? branched
along Cp admits a (¢’, 0)-trisection, with

gd=n+mn—-1)(d*-3d+2)=(n—-1)(d—-1)(d—2)+n. ]

Example 5.8. For small values of n and d with n dividing d, the manifolds Qg
are standard:

(1) Qu» is diffeomorphic to CP247CP. (see [12) pp. 545-546]).
(2) Qg2 is diffeomorphic to K3 (see [12, p. 593]).

For larger values, we get exotic copies of standard manifolds.
(3) Qg,3 is homeomorphic, but not diffeomorphic, to 7((3]1’2#36@2.

(See the comments of Example [5.2])
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Fig. 15. An (8, 0)-trisection of CP2#7@2, thought of as the two-fold cover Q4 2 of CP? branched
along the quartic C4. Each square corresponds to a torus once opposite edges are identified. Each
ellipse in the left square is identified with the corresponding ellipse in the right square via a
reflection across its major axis.

Fig. 16. A (22, 0)-trisection of K3, thought of as the two-fold cover Qg 2 of CP? branched along
the sextic Cg. Each square corresponds to a torus once opposite edges are identified. Each ellipse
in the left square is identified with the corresponding ellipse in the right square via a reflection
across its major axis.

Trisection diagrams for Q4 9, Qg.2, and Qg 3 are shown in Figs. [15] [L6] 271 28
Again, we can ask whether the trisections produced in this way are standard.

Question 5.9. Is the trisection of Q49 = CP2#7@2 standard?

Question 5.10. Are the trisections of K3 arising from its descriptions as Sy and
as Qg2 equivalent?

6. Complex Curves in CP' x CP*

In this section, we construct efficient bridge trisections of complex curves of CP' x
CP' and prove Theorem [L.3(2).
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6.1. S? x S? as a branched cover of (CP?,C3)

As mentioned in Example[5.2} the complex surface CP! x CP! 2 §2x $? is the double
branched cover of the conic curve Cy in CP?. Following the method of Sec. B.1] we
can obtain an explicit (2,0)-trisection diagram of S% x S? as follows.

Starting from the (4,2)-bridge trisection of Cs, we can destabilize using the
hexagon in the center to get a (minimal) (1,1)-bridge trisection of the quadratic.
We choose a branch cut along the B-arc and then glue two copies of the torus
together. See Fig. [[7 Note that we obtain a (1,1)-bridge trisection of the branch

aq

Fig. 17. A trisection of S? x S2, viewed as the two-fold branched cover of the quadric. Diagram I
is a shadow diagram of the (1, 0; 4, 2)-bridge trisection and Diagram II depicts the efficient bridge
trisection obtained by contracting a balanced hexagon. The branch cut is identified in Diagrams
III and IV is a trisection diagram of the double branched cover. Diagram V is equivalent to
Diagram IV.
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locus in S? x S2, which is a sphere of bidegree (1,1). We use the canonical orienta-

tion on the branch locus coming from the complex structure to orient the class in
Hy(S? x S%,7).

6.2. Homology class computations

In this section, we describe how to compute the homology class of a surface (X, K)
in bridge position from a shadow diagram. For simplicity, we assume that Hy(X;7Z)
is torsion-free.

Let (X, e, 3,7} be a trisection diagram for X. The cut systems {a, 3,~} span
subspaces Ly, Lg, L, C H1(X;Z) that are Lagrangian with respect to the homology
intersection pairing (—, —)x, on H;(X%;Z). According to [7], the homology of X can
be computed via the chain complex

0—= 2 (LaLy) @ (L1 L) 2= L, 2 Hom(La 1 Ly, 2) = 2 —=0
where
O3(z,y) =z +y
Oa(z) = (—, 2)s
In particular,

ker(ds) = (Lo N Lg)™ = Lo + Ly,

Ly N (Lo + L)

Hy(X) = (LyNLa) + (LyN Lg)

For any class A € Hy(X), we can find coefficients {¢;} such that 3 ¢;[;] represent-
ing A is the above chain complex. Furthermore, we can also find coefficients such
that

> el = (ajley] +b;18;]).

As a result, there is a 2-chain ¢ in 3 that is locally constant on ¥\ (aUB U~) and
satisfying

3q§ = Z(ajozj + bj/Bj) - ch’}/l
Given a point p € £\(awU U ), let ny(¢) denote the local multiplicity of ¢ at p.

Proposition 6.1. Let ® = (e, A), (8, B), (v,C)) be a shadow diagram for (X, K).
Let A be a class in Hy(X,Z) and ¢4 a corresponding 2-chain. Then

[A]-[K] = Y np(da) = Y ng(da).

pEX 4 qgeEX
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Proof. We can represent the homology class A by a two-chain consisting of the
union of a; copies of the compressing disk D, ;, b; copies of the compressing disk
Dg j, ¢; copies of the compressing disk D, ; and ¢ 4. The two-chain representing A
lives completely in the spine of the trisection. The intersection of IC with the spine
consists of the tangles 7,73, 7y, which are disjoint from the compressing disks
bounded by the cut systems a, 3,-. Thus, the only intersection points between A
and K occur at the bridge points and the algebraic intersection number at each
bridge point is exactly the local multiplicity of ¢ at that bridge point, counted with
sign. O

Proposition 6.2. The siz (1,1)-bridge presentations in Fig. I8 all depict the holo-
morphic sphere in bidegree (1,0).

Proof. These are six equivalent bridge presentations of the bidegree (1,0) sphere,
related by handlesliding the bridge arcs over the compressing disks and isotop-
ing the bridge points. Specifically, (a) Diagram II is obtained from Diagram I by
handlesliding A across «q; (b) Diagram IV is obtained from Diagram II by handles-
liding C across 71; (¢) Diagram III is obtained from Diagram IV by handlesliding
B across (92; (d) Diagram V is obtained from diagram III by handlesliding .4 across
aq; (e) Diagram VI is obtained from Diagram V by handlesliding C across v1. O

Fig. 18. Six bridge presentations of the bidegree (1,0) holomorphic sphere in CP! x CP'.



J. Topol. Anal. Downloaded from www.worldscientific.com
by Jeffrey Meier on 02/19/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

Bridge trisections in rational surfaces 39

Remark 6.3. It is useful to think of the shadow diagrams in Fig. [[8 as ‘attaching
circles of the wrong color.” In particular, in Diagram I the shadow diagram is a
‘blue «1’, in Diagram II it is a ‘green «;’, etc.

6.3. Curves of bidegree (p, q)

Theorem 6.4. The complex curve (CP' x (CIP’I,Cp,q) has an efficient b-bridge
trisection, where

b=1+2(p—1)(¢g—1).

Proof. Up to isotopy, the surface C, , can be obtained by taking p copies of the
bidegree (1,0) sphere and ¢ copies of the bidegree (0,1) sphere and resolving the
pq nodes to obtain a surface of genus (p — 1)(¢ — 1). We will follow this strategy,
starting with a shadow diagram for p copies of the (1,0) sphere and ¢ copies of
the (0,1) sphere, then resolving crossings. We will then show how to destabilize
to get an efficient bridge trisection. For concreteness, Fig. [19 depicts the steps for
obtaining the curve Cg 4.

First, take p copies of a ‘blue 1’ and ¢ copies of a ‘red 3;’. This gives a bridge
trisection of the immersed collection of spheres.

Second, resolve the pq intersections of A and B. The resolution is determined
by orienting the arcs as follows: orient the A arcs from the (—)-bridge points to the
(4)-bridge points and orient the B arcs from the (4)-bridge points to the (—)-bridge
points. The resolution is then the standard oriented resolution.

Third, handleslide all but one of the A arcs in the bottom row across «y. This
creates p(¢— 1) new intersection points between .4 and B. Now resolve (p—1)(¢—1)
of these, leaving out the final collection on the right. Destabilize along the starred
edges in Diagram IV to get Diagram V and then isotope the bridge points to obtain
Diagram VI.

Claim. The result is a (2,0;pq+ (p — 1)(¢ — 1); 1, p, q)-bridge trisection for Cp 4.

It is clear that AU—B is a diagram for the unknot in Y7 = H,, Uﬁg. Furthermore,
B U —C is isotopic to p surface-framed pushoffs of §;. These all bound compressing
disks in Hg and therefore this is a diagram for the unlink in Y5. Finally, we can
handleslide the bottom row of A arcs in Diagram VI (not depicted) to see that
C U —A is also isotopic to g surface-framed pushoffs. Note that these do not bound
compressing disks in Y3 = H., UH,. However, the surface framing of 3;, considered
as a knot in Y3, is 0. To see this, note that the trisection diagram for S? x S? is
triple-symmetric. It is clear from Fig. [I8§] say, that the surface framing of the curves
Y1, Y2, considered as knots in Y; = H, U Hg, is 0. By symmetry, this also holds for
/81 in Yg.

Now, to obtain an efficient trisection, we can destabilize along the starred edges
in Diagram VI to obtain Diagram VII. |
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| IR
YRR

VII

Fig. 19. A sequence of shadow diagrams of surfaces in bidegree (6,4) on a genus 2 trisection of
CP! x CP'. In particular, these diagrams depict a punctured torus, comprising one half of the genus
2 trisections in Figs. [17] and [18] Diagram I depicts a collection of immersed spheres, obtained by
taking the standard bridge trisection of the component spheres. Diagram VII is shadow diagram
for an efficient trisection of Cs 4. In addition, a shadow diagram for a stabilized bidegree (1,0)
sphere is depicted in Diagram VII, this lifts to a torus fiber in E(2).
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7. Branched Covers of S% x S?

In this section, we recall some standard families of complex surfaces that can be
constructed as branched covers of complex curves in CP' x CP'. Combining the
results of the previous section with Corollary B.2] we obtain efficient trisections of
all of these complex surfaces. In particular, this proves Theorems[L.1}(3) and [L.1}(4).

Throughout, we will let &, ;, denote the n-fold branched cover of the curve
Cpq in CP' x CP'. We will also use the shorthand X, , to denote the two-fold
branched cover &}, ;2. The topology of these surfaces is described by the following
proposition.

Proposition 7.1. Let ¢ : X, 4 — CP' x CP! be an n-fold branched cover along
Cp.q. Then we have
c2(Xpgn) =4n—6+6(p—1)(g — 1)

2n% —2

U(Xp,q,n) = - 3n

pq

In particular, if n = 2, then

c2(Xpq) = =2+6(p—1)(g—-1) o(Aq) = —pg

The main result of this section, obtained by combining Theorem [6.4] with Corol-
lary [3.2] is the following theorem.

Theorem 7.2. The complex surface X, q, admits an efficient (g,0)-trisection,
where

g=4n—-8+6(p—1)(¢ —1).
In particular, if n = 2 then X, , admits an efficient (g, 0)-trisection where
g="6(p—1)(¢—1).

The remainder of this section is devoted to expanding on this theorem for some
well-known families of complex surfaces.

For the sake of exposition, we state the following well-known result, that double
branched covers over complex curves can be interpreted as Lefschetz fibrations.

Theorem 7.3. The composition

[ ™
Xopi2,2¢ — CP! x CP' —— CP!

where ¢ is the double branched cover over Copy2 o4 and m denotes projection onto
the second factor, is a genus p Lefschetz fibration.
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7.1. Rational surfaces

The double branched covers X, 54 of the pairs (S?%x S?, Ca,24) for g > 0 are rational
surfaces.

Proposition 7.4. There is a diffeomorphism

Xynq =2 S% x S24(4q)CP° = CP*#(dq + 1)CP-.

Proof. According to Theorem [(.3] the surfaces Xs o, are Lefschetz fibrations of
genus 0. Consequently, the vanishing cycles are contractible in the fiber. Each sin-
gular fiber consists of a pair of spheres, each of self-intersection —1, intersecting
positively transversely in a single point. Equivalently, each singular fiber is the
total transform of a generic fiber after blowing up at some point in that fiber. As
a result, the surface A 54 is obtained by blowing up some number of points in the
trivial genus 0 fibration S? x S2. The exact number of blowups can be calculated
from the Euler characteristic. The branch curve Cs 24 has genus ¢g(Ca 24) = 2¢ — 1,
Euler characteristic x(Ca,24) = 4 — 4¢, and self-intersection Cz 94 - C2,24 = 8¢. There-
fore, according to Proposition [5.1] the surface &3 o4 has

X(XQ,Q(]) =4 + 4q and O'(X272q) = 74(]

It is now clear that X» 9, is obtained by blowing up S? x S? exactly 4¢ times. O

Applying CorollaryB.2] we obtain efficient (4q + 2, 0)-trisections of the surfaces
X 54 = CP24(4q + 1)TP".

However, these surfaces admit standard, efficient trisections that ar26 obtained as
the connected sum of the standard genus 1 trisections of CP? and CP . It is unclear
whether these efficient trisections are equivalent.

Question 7.5. Are the trisections of X o4 =2 (CIE”Q#(Zlq + 1)@2 obtained via the
branched cover construction standard?

7.2. FElliptic surfaces

The double branched covers Xy o, of the pairs (S? x S?,Cy 2,) for ¢ > 0 are elliptic
surfaces.

Proposition 7.6. There is a diffeomorphism

X4,2q = E(Q)

Proof. By the obvious symmetry and Proposition [7.4] there is a diffeomorphism
Xyo = Xy = CP2#9TP = E(1).

We can choose the curve C44 to be the resolution of 4 horizontal lines and four
vertical lines. We can choose the vertical lines such that two are fibers over the
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northern hemisphere of CP' and the other are fibers over the southern hemisphere.
The double branched cover Xy 4 is therefore the fiber sum of two copies of Xy
along a torus fiber F' of the Lefschetz fibration. In other words

Xyy =2 Xyo Up Xyo = E(1) Up E(1) = E(2).

Repeating this inductively, we can see that X} o, is the fiber sum of X 9,2 and
X, 2 along a torus fiber F' and therefore

Xyog = Xyoq—oUp Xao = E(qg—1)Up E(1) 2 E(q). o

Applying Corollary [3.2] we obtain efficient trisections of elliptic surfaces.
Theorem 7.7. The elliptic surface E(q) admits an efficient (g,0)-trisection with
g=12q — 2.

In addition, we can also locate the torus fiber of the elliptic surface E(q).

Theorem 7.8. The torus fiber of the elliptic surface E(q) admits an efficient (12q—
2; 3)-bridge trisection.

Proof. Consider the secondary shadow diagram of a bidegree (1,0) sphere in
Fig. [[9 (Diagram VII). It is a stabilization of the standard ‘green’ «; shadow
diagram and can be destabilized by contracting the marked green arc. Each unknot
component of this sphere links the branch locus algebraically once and we isotope
each disk component of the sphere to intersect the branch locus geometrically once.

Lifting to the double branched cover, the bridge index doubles but each disk
component lifts to a single disk. The resulting surface has Euler characteristic 0
and therefore is a torus. Furthermore, the destabilization arc lifts to two potential
destabilization arcs. We can always contract one and obtain an efficient bridge
trisection. O

7.3. Horikawa surfaces

The double branched covers Xg 2, of the pairs (S? x 5%, Cg,24) for ¢ > 2 are known
as Horikawa surfaces. We will let H(q) = X 24+2 denote the gth Horikawa surface.

Proposition 7.9. The Horikawa surface H(q) has characteristic numbers
ci(H(q)) =4¢—4 c2(H(q)) =20g + 16
o(H(q)) = —12¢— 12 xn(H(q)) =2¢ + L.

The intersection form of H(q) is odd for all ¢ > 1.

In particular, the Horikawa surfaces lie along the Noether line ¢? = 2y — 6.
Applying Corollary 3.2] we obtain efficient trisections of this family.
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Theorem 7.10. For all ¢ > 1, the Horikawa surface H(q) admits an efficient
(g,0)-trisection with

g =20q — 6.

7.4. Ruled surfaces

A geometrically ruled surface is a CP'-bundle over a Riemann surface ¥, of genus
h. Up to diffeomorphism, there are two surfaces for each fixed h.

Theorem 7.11. Let X be a S?-bundle over a surface ¥y of genus h. Then X
admits a (5 + 2h,2h + 1)-trisection.

Proof. We can view X as the two-fold branched cover of 2h 4+ 2 disjoint copies of
the S2-fiber in S2 x S2 or S2xS? = (C]P’Q#@Q. This branch set admits a bridge
trisection with bridge index 2h + 2. Thus taking the branched cover, we obtain a
trisection of X whose central surface has genus 5 + 2h. O

Remark 7.12. The trisection obtained in this way is not efficient. However, Marla
Williams has shown that the sphere-bundles over ¥ do, indeed, admit efficient
(2h + 2, 2h)-trisections.

8. Complete Intersections

In this section, we review the construction of complete intersections in CPV as
iterated branched covers of complex curves. Applying the results of previous sections
to this construction, we prove Theorems [L.1(5) and [L.3(3).

Fix a multi-index d = (dy, ..., d,) € N™. Recall that a projective surface Y is a
complete intersection Sq in CP™ "2 if it is cut out as the transverse intersection of
n hypersurfaces { X4, , ..., X4, }, where X, is a nonsingular hypersurface of degree
d;. A hyperplane section H of projective surface Y in CPY is a complex curve in Y’
of the form H = V NY where V is a hyperplane. We will let H4, denote a complex
curve in the class do[H] in Y, it is a complete intersection of n + 1 hypersurfaces
in CP""2,

Proposition 8.1. Fiz a multi-index d = (dy,...,d,) € N". Let H denote a hyper-
plane section of Sq.

(1) The diffeomorphism type of a complete intersection Sq depends only on the
multi-index d.

(2) The smooth isotopy class of H in Sq is well-defined.

(8) The smooth isotopy class of Hq in Sa is well-defined.

Proof. The proofs of all three are analogous to the proof of Propositiond.5l We can
always find a one-parameter family interpolating between two of these surfaces or
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curves. Moreover, the set of singular surfaces or curves has complex codimension 1.
Thus, its complement is connected and we can assume the one-parameter family is
actually an isotopy. O

Proposition 8.2. Fiz multi-indices d = (di...,d,) € N and d' =
(do,di,...,dn) € N1, The complete intersection Sq: is the do-fold cyclic branched
cover of the pair (Sa, Ha, ). In addition, the preimage of Ha, is a hyperplane section
m Sd/.

Proof. Let F = {fi,..., fr} be a collection of polynomials such that f; is homo-
geneous of degree d; in C[xzg,...,Zn2]. For each i = 1,...,n, define the variety

Vi = {x € CP"" : fi(x) = 0}.

For a generic choice of F, the intersection Vin---NV, is a complete intersection
Sq. Furthermore, set g := z0° + - - + :z:n+2 and W := {x € CP""? : g(x) = 0}. For
a generic choice of F', the intersection W NV N---NV, is a curve Hgy,.-

We can view each f; as a homogeneous polynomial in the ring
Clzo, .-, Tnt2, Tnts). Define Vi to be the variety cut out by f; in CP"™3. It is
the cone on VZ, viewed as a variety in the hyperplane {xn+3 = 0}, with a singular
point at [0:---:0: 1]. Define g := g+ :z:n+3 and let W be the hypersurface cut out
by ¢ in CIP’"+3 The surface Sq/ := wn V1 =N V is a complete intersection.

Consider the projection map from the point [0 : ... : 0 : 1] onto the hyper-
plane {z,,+3 = 0}. The variety SW is disjoint from the point 0:...:0:1] and
consequently so it the surface Sq:. Thus, the projection map restricts to a map on
Sa/. Moreover, since each ‘71 is a cone on V;, the image of Sy under the projection
map is contained in Sq. The projection map is 1 : 1 along W and dj : 1 over the
complement of W. Thus, this defined a dy-fold cyclic branched covering of S4: over
Sq, ramified over the curve Hgy, in Sq.

Moreover, the curve Hy, is clearly a hyperplane section of Sq- as it is the inter-
section of Sq/ with the hyperplane {z, 3 = 0}. O

Using the branched covering construction of complete intersections in Proposi-
tion[8.2] we can inductively apply Proposition[5.1]to obtain the following topological
data (see also [13]).

Proposition 8.3. Fiz d = (dy,...,d,) € N", let Sq be a complete intersection in
CP""2 of multidegree d and let H a hyperplane section of Sq.

(1) The surface Sq is a simply-connected surface of degree d = []d; with charac-
teristic numbers

(Sa) = % nt3). Zd +Zd2+ S dd; ~ﬁdi

1<i<j<n
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where ¢ = i*(a) is the pullback of the generator o of H*(CP"'?7Z) =
Z[a]/ (a3 under the inclusion i : Sq < CP"*2,

(2) The hyperplane section H C Sq is a connected curve Poincare dual to ¢ = i*(«),
satisfying

i=1 i=1

i=1
Starting with Theorem[4.8] we can apply Corollary[3.2]and Theorem [3.13] induc-
tively using the branched cover construction to obtain the following result.

Pn+2

Theorem 8.4. Let Sq be a complete intersection in C and 'H a hyperplane

section.

(1) The surface Sa admits an efficient (g,0)-trisection, with

g=—-2+ Mﬂ—(nJr?))-ZdﬁZd?Jr > didy | -]
=1 =1

1<i<j<n i=1

(2) The pair (Sa, H) admits an efficient (g;b)-bridge trisection, with
b=1+ <Zdi—n> ]
i=1 i=1

9. Proper Transform and Variously Trisecting K3

In the section, we describe several well-known constructions of K3 as a branched
cover over a rational complex surface. By taking branched covers of a bridge trisec-
tion of the branch locus, we obtain several trisections of K3. All but one of these
constructions give an efficient (22, 0)-trisection of K3. This proves Theorem [L.12]
In addition, we discuss blowing up and proper transform of a surface from the
perspective of trisections.

9.1. Blowing up

In this section, we describe how to blow up a bridge trisection to obtain a bridge
trisection of the proper transform. First, we recall the definition of the oriented
connected sum of pairs, which we extend to the setting of bridge trisections.
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Definition 9.1. Let (X, K) and (Y, J) be oriented knotted surfaces. Choose points
x € K and y € £ and tubular neighborhoods vx (), vy (y). We also obtain tubular
neighborhoods vi(z) = vx(z) N K and vz (y) = vy (y) N L. Choose an orientation-
reversing diffeomorphism ®: dvx(x) — Jvy(y) that restricts to an orientation-
reversing diffeomorphism ¢: dvi(x) — Ove(y).

The oriented connected sum of (X,K) and (Y, J) is the pair

(X, K)#(Y, T) = (X4Y,K#L) = (X Up Y, K Uy J).

Suppose (X, K), and (Y, J) are equipped with bridge trisections 7x and 77,
respectively. We can assume that z € X7, N\ with o(z) = 1 and y € X7, NJ) with
o(y) = —1. Then, we naturally obtain a bridge trisection T4 7 for (X#Y,K#J),
called the oriented connect sum, whose central surface is ¥ = X x # Xy.

a=y

A special case of the oriented connected sum operation is the proper trans-

form. The proper transform of a knotted surface (X,K), is the knotted surface

(X, K)#(CP",Cy).

Proposition 9.2. Suppose that the knotted surface (X,K) has a (g,k;b, c)-bridge
trisection Tic. We can construct a (g + 1,k; b, ¢)-bridge trisection for the proper
transform (X#@2, KC#C1), by performing the local modification shown in Fig. [20
at a point x € Lx N K with e(x) = 1.

Proof. We form the connected sum of the trisection for (X,K) with that of

(@2, C1) by puncturing each at a point where the knotted surface meets the trisec-
tion surface. In the former bridge trisection, we choose a point  with e(x) = 1, asin
the first two frames of Fig. 20l In the latter bridge trisection, we choose the unique
point z with e(z) = —1, as in Fig. 21l The bridge trisection for the proper transform

=0

Fig. 20. The local modification at a point z € Yx N K with e¢(z) = 1 representing the proper
transform of (X, K) at z.

& -&- &

Fig. 21. The process of puncturing the shadow diagram for ((C]P C1) at the point y € ¥ NCy with
e(y) = -1
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is the union of these two punctured bridge trisections along the punctures, as shown
in the third frame of Fig. 20l O

9.2. K3 as branched cover of a rational surface

Let 0 < n <9, and let EcC (C]P’Q#n@2 be a nonsingular complex curve dual
to the anticanonical class K*. Up to isotopy, we can choose it to be the proper
transform of a degree 3 elliptic curve & = C3 in CP?. Note that by Proposition [0.2]
the knotted surface ((CIPQ#n@2) admits an efficient (n+ 1; 3)-bridge trisection and
has self-intersection 9 — n.

Let gg denote a nonsingular complex curve dual to 2K *. This curve is obtained
by resolving the transverse intersections of the union of two copies of &. For example,
in CP?, gg is the sextic.

Lemma 3.3. Let gg denote a mnonsingular compler curve dual to 2K* in
CP*#nCP".
(1) For 0 <n <8, the curve gg s connected with genus g = 10 — n.
(2) Forn =9, the curve E consists of two disjoint copies of £.
Proof. The self-intersection number of & is
£-E= Cl((CIPQ#n@Q)Q =9—n.
Thus, to obtain a curve 52, we can take two copies of £ intersecting transversely in

9 — n points. Resolving these intersection points we obtain a complex curve of the
required genus. When n = 9, the curves do not intersect. O

Theorem 9.4. The knotted surface ((C]P’Q#n@2, gg) admits an efficient (n+1;21—
2n)-bridge trisection.

Proof. Since (CP2#n@2,é~') admits an efficient (n + 1;3)-bridge trisection, the
result follows from Theorem [3.13] and the fact that £ has self-intersection 9 — n. O

Proposition 9.5. The double branched cover of the pair (C]P’2#n@27§2) 15 K3.

Proof. Let X be the double branched cover of the pair ((CIE’Q#n@Q, gg) According
to Proposition 5.1}, the anticanonical class is the pullback of the class

. 1 ~
¢1(CP2#nCP’) — SPD(E) =0

by the branched covering map. Therefore, ¢;(X) = 0. It is well known that K3 is
the only simply-connected complex surface with trivial canonical class. Therefore,
X is diffeomorphic to K3. O

Each of these nine branched coverings give efficient trisections of K3, which may
or may not be isotopic. Moreover, the lift of the branch locus is in efficient bridge
trisected position in each of the nine examples.
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9.3. Elliptic surfaces

Take a pair of nonsingular elliptic curves C7,C5 in CP?. The resulting Lefschetz
pencil of cubics has nine basepoints, consisting of points of intersection between
Cy and Cs. Blowing up at these nine points yields an elliptic surface E(1) :=

CP2#9@2 with a genus 1 Lefschetz fibration 7 : E(1) — CP.

Theorem 9.6. Let £ denote a generic fiber of the elliptic fibration E(1) and let &
denote k disjoint, parallel copies of £.

(1) The pair (E(1),
(2) The pair (E(1),

&) admits an efficient (10; 3)-bridge trisection.

Er) admits a (10, 0; 3k, k)-bridge trisection.

Proof. The process of blowing up the cubic C3 in CP? at nine points is shown in
Fig. 22l By Theorem [0.4] we have part (1). Since £ has self-intersection zero, the k
copies of £ in & are disjoint, and automatically bridge trisected as a k-component
surface-link. |

We can now construct the elliptic surface E(n) by pulling back the fibration 7
by the map 2" : CP! — CP' of the base:

E(n) — E(1)

Fig. 22. The process of blowing up CP? along nine points on the cubic curve to obtain E(1).
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Fig. 23. Examples of destabilizations of the (1, 0; dz,d)—bridge trisections for the complex curves
of degree d in CP? into efficient bridge trisections with bridge number b = d2 — 3d + 3 with the
convention that the central trisection surface (a torus) is represented by a hexagon with opposite
sides identified. Shown are the instances of (Left) d = 2, (Center) d = 3, and (Right) d = 6.

Fig. 24. Examples of efficient bridge trisections for complex curves in CP? with the central trisection
surfaces (a torus) represented as a hexagon with opposite edges identified. Shown are the instances
of (Top-Left) d = 1, (Bottom-Left) d = 2, (Center) d = 3, and (Right) d = 6.

A generic fiber is a nonsingular elliptic curve with self-intersection number 0. By
construction, the fibers of 7 over [1 : 0] and [0 : 1] are the proper transforms of C;
and C5. The following proposition is clear from the construction.

Proposition 9.7. The elliptic surface E(n) is the n-fold cyclic branched cover
of E(1) = CP2#9@2 over a disjoint pair of generic torus fibers of the fibration
7 E(1) — CP'.

For n > 2, this allows us to obtain new trisections of E(n), which are inefficient
since the branch locus is disconnected.

10. Menagerie of Diagrams

We have gathered a handful of figures referenced in the text into this final section
for expositional clarity.
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Fig. 25. A (53, 0)-trisection of S5, thought of as the five-fold cover of CP? branched along the quintic
Cs. Each square corresponds to a torus once opposite edges are identified. The northwestern edge
of each ellipse is identified with the southeastern edge of the corresponding ellipse in the clockwise-
adjacent square.

Fig. 26. A (106, 0)-trisection of Sg, thought of as the six-fold cover of CP? branched along the
sextic Cg. Each square corresponds to a torus once opposite edges are identified. The northwestern
edge of each ellipse is identified with the southeastern edge of the corresponding ellipse in the
clockwise-adjacent square.
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Fig. 27. A (43, 0)-trisection of the three-fold cover Qg 3 of CP? branched along the sextic Cg. Each
square corresponds to a torus once opposite edges are identified. The northwestern edge of each
ellipse is identified with the southeastern edge of the corresponding ellipse in the clockwise-adjacent
square.

Fig. 28. A (22, 0)-trisection of K3, thought of as the two-fold cover Qg 2 of CP? branched along
the sextic Cg. Each hexagon corresponds to a torus once opposite edges are identified. Each ellipse
in the left hexagon is identified with the corresponding ellipse in the right hexagon via a reflection
across its major axis.
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