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Abstract: In every cell cycle, billions of nucleotides need to be duplicated within hours, 

with extraordinary precision and accuracy. The molecular mechanism by which cells 

regulate the replication event is very complicated, and the entire process begins way 

before the onset of S phase. During the G1 phase of the cell cycle, cells prepare by 

assembling essential replication factors to establish the pre-replicative complex at origins, 

sites that dictate where replication would initiate during S phase. During S phase, the 

replication process is tightly coupled with the DNA repair system to ensure the fidelity of 

replication. Defects in replication and any error must be recognized by DNA damage 

response and checkpoint signaling pathways in order to halt the cell cycle before cells are 

allowed to divide. The coordination of these processes throughout the cell cycle is 

therefore critical to achieve genomic integrity and prevent diseases. In this review, we 

focus on the current understanding of how the replication initiation events are regulated 

to achieve genome stability. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1. Pre-replication complex and Origin licensing  

Accurate DNA replication is critical for achieving genome integrity and cell 

survival. The assembly of the pre-replication complex (pre-RC), which is the very first 

step required for DNA replication, is a stepwise event that starts with the binding of ORC 

(Origin Recognition Complex) to the origins on the DNA during G1 phase [1, 2]. ORC 

then recruits Cdc6, Cdt1, and finally the MCM (minichromosome maintenance) 2-7 

complex, component of the DNA replicative helicase, to the origin. An origin is 

considered “licensed” once the MCM2-7 double hexamer is loaded, which can later fire 

to initiate replication during S phase (Figure 1) [3-5].  

Origin Recognition Complex (ORC) is a heterohexameric protein complex that 

recognizes DNA replication origins and serves as the initiator of DNA replication [6]. Six 

subunits of ORC were named Orc1 through Orc6 in descending order of their molecular 

mass in S. cerevisiae, where they were first identified. Since their discovery in S. 

cerevisiae, the orthologs of all six subunits have been identified in many other eukaryotic 

organisms, and ORC’s function as the replication initiating factor is highly conserved 

across species [7-15]. Orc1-5 belong to AAA+ (ATPases Associated with diverse cellular 

Activities) family proteins with conserved AAA+ fold, including Walker A and Walker B 

motifs, suggesting their ATP binding ability and ring-shaped protein complex formation 

[16-18]. Orc1-5 also contain winged-helix (WH) domain at their C-termini. Orc6, albeit a 

member of ORC, does not contain such structural features. Structural and sequence 

analysis in Drosophila and human revealed that N-terminus of Orc6 contains two cyclin-

box folds that are homologous to the DNA binding domain of transcription factor TFIIB 

[19-21]. The C-terminus contains a helix region that is required for Orc6 binding to ORC 

complex [22, 23]. 

The role of ORC proteins in establishing preRC at the origins is critical for the 

maintenance of genome integrity, as the distribution and density of origins must be 

sufficient to support the replication of the entire genome so that no region is left un-

replicated. However, the origin selection program, especially in higher eukaryotes, is 

very complicated and remains an active field of research [24]. Early studies in S. 

cerevisiae for replication initiation sites revealed a conserved DNA sequence called 



autonomously replicating sequence (ARS) [25]. The ARS comprises one A element and 

three B elements (B1, B2, B3), which are essential for origin function [26]. The cryo-EM 

structure of ORC binding to ARS explained sequence-specific DNA recognition of ORC 

[27]. It was further revealed that this specificity lies within a 19-amino acids helix of 

Orc4 [28]. However, S. cerevisiae appears to be the only eukaryote with a well-defined 

DNA origin consensus sequence. In S. pombe, origins are AT-rich clustered stretches 

[29-31]. Origins in higher eukaryotes do not show any features at the level of a defined 

DNA sequence. Metazoan ORC binds to DNA promiscuously and replication can initiate 

from random sequences [32-34], suggesting that origins may be defined by 3-dimensional 

structures of DNA, chromatin environments, or interactions with other proteins. Before 

the publication of the first genome-scale study in 2008, only about 20 origins had been 

identified and categorized in the entire human genome [35, 36]. Certain determinants in 

metazoan origin selection have been revealed by genome-wide studies in the past decade 

[37]. Nucleosome positioning is an important factor, as metazoan origins, like in yeast, 

are maintained as nucleosome-free regions [38-41]. In human cells, it was demonstrated 

that origins correlate with DNase I-hypersensitive regions [42]. Similarly, genome-wide 

mapping of origins also discovered that origins are located near transcription start sites 

(TSSs), active promoters, CpG islands, and G-quadruplexes in metazoan [35, 43-49]. 

However, none of these factors is strictly required for origin selection. A recent study 

also defined “core origins” in human and mouse genomes and showed that they shared a 

G-rich sequence signature [50]. The licensing of origins in different chromatin regions, 

especially heterochromatin, has been an important area of investigation, as cells must be 

able to license origins across the entire genome regardless of the chromatin status. It is 

known that some of the ORC subunits localize to specific heterochromatin regions such 

as centromere and telomere [51, 52]. In terms of origin licensing, other proteins may also 

be required in facilitating the licensing in certain heterochromatin regions. TRF2 

(telomeric repeat-binding factor 2) is known for protecting telomere as one of the 

shelterin complex subunits. TRF2 also recruits ORC to telomeric regions for facilitating 

licensing through the interaction with Orc2 [53]. Another well-known example is ORCA 

(ORC-associated, also known as LRWD1), which can recruit ORC to chromatin [54]. 

ORCA facilitates the licensing in certain heterochromatin regions [55]. Moreover, ORCA 



is also critical for heterochromatin organization as well as homologous recombination at 

telomeric regions [56, 57]. Thus, ORC and its associated proteins are equally important 

for the maintenance of genome integrity. 

In recent years, a debate about whether ORC is an essential factor for origin 

licensing has been brought up by a study showing that human cells remain viable with no 

dramatic defect in replication after the depletion of Orc1 or Orc2 by CRISPR-mediated 

knockout [58]. This study challenged the long-standing view that ORC is the essential 

initiator of DNA replication. It is possible that partial ORC rings are still functional and 

able to load MCMs for proper replication; it is also possible that there exists an ORC-

independent licensing system, but there is no evidence supporting this idea [59]. A 

follow-up study depleting another ORC subunit Orc5 or co-depleting Orc2/Orc5 showed 

that ORC is dispensable for replication [60]. However, other studies continue to suggest 

the essentiality of ORC using genome-wide or ORC-specific CRISPR screens [61-63]. It 

is also important to note that these different studies used different approaches and 

experimental systems to deplete and examine ORC’s role. Future studies are necessary to 

address this critical question. 

After ORC binds to the origin, Cdc6 is the next factor to associate with ORC. 

Cdc6 is part of the pre-RC, that functions downstream of ORC and is important for the 

loading of MCM onto the chromatin [64-68]. Like Orc1-5, Cdc6 belongs to the AAA+ 

family and has ATPase activity [16, 69]. Evidence from yeast to human, all point that 

Cdc6’s ATPase activity is critical for the regulation of its pre-RC function [70-73]. It has 

the most extensive sequence similarity with Orc1 and they are suggested to be paralogs 

[18, 74]. Cdc6 directly interacts with ORC in vivo and in vitro [75, 76]. Cdc6 associates 

with chromatin-bound ORC in an ATP-dependent manner [71, 77, 78]. After ORC binds 

to the DNA, Cdc6 is recruited and docks into the Orc1/Orc2 gap, forming the ORC-Cdc6 

complex and closing the ring to encircle DNA [79-81]. Therefore, Cdc6 provides the 

sixth AAA+ fold protein to the pentameric ORC1-5, establishing the classic hexameric 

AAA+ complex toroid configuration. 

After the formation of the ORC-Cdc6 complex on origin DNA, MCM2-7 

(Minichromosome maintenance 2-7) hexamer can then be loaded with the help of Cdt1 

(Cdc10-dependent transcript 1), which acts as a molecular chaperone for MCM [82]. 



Cdt1 was recognized as an initiator of replication due to its ability to induce re-replication 

[83]. Cdt1 is conserved in eukaryotes from yeast to human and is required for MCM2-7 

loading in all eukaryotes tested [84-87]. Cdt1 forms a stable complex with MCM2-7, 

primarily by interacting with MCM6 subunit [88-91], and helps maintain the integrity of 

MCM2-7 [91-95]. Moreover, structural studies in S. cerevisiae suggested that the binding 

of Cdt1 to MCM2-7 prevents MCM2/5 gate closure [96-98] which in turn allows the 

DNA to pass and enter the central channel. In S. cerevisiae, Cdt1 has also been reported 

to be critical for MCM loading to ORC-Cdc6 through its interaction with Orc6 [99-102]. 

However, it is unknown if this interaction occurs in metazoans. Other reports suggest that 

in S. cerevisiae MCM2-7 itself directly engages with ORC-Cdc6 [95, 103], but Cdt1 

helps to overcome an MCM6-dependent autoinhibitory mechanism which would 

otherwise sterically hinder the MCM docking to ORC-Cdc6 [103]. Together, these 

studies demonstrated the critical role of Cdt1 in origin licensing. 

MCM2-7 hexamer loading marks the final step of the pre-RC assembly on the 

chromatin [104]. MCM2-7 loading requires the coordinated function of ORC, Cdc6, and 

Cdt1. MCM proteins were first identified in genetic screens designed to uncover genes 

that are required for replication in S. cerevisiae [105]. The orthologs were subsequently 

identified in other eukaryotes and shown to have an essential function in replication [106-

108]. Biochemical characterization soon revealed that MCM2-7 assemble into a 

hexameric complex in vivo and in vitro [109-111]. Similar to Orc1-5 and Cdc6, MCM2-7 

belongs to AAA+ family [112]. MCM hexamer is formed in the order of MCM5-MCM3-

MCM7-MCM4-MCM6-MCM2, with an open gate between MCM2 and 5 to allow the 

passage of DNA [113, 114]. As discussed above, Cdt1 helps to stabilize MCM integrity 

and prevent gate closure. The interaction of Cdc6 to the C-terminus of MCM3 has also 

been reported to be critical for MCM loading [95]. Following the loading of MCM, both 

Cdc6 and Cdt1 are ejected in an ATP hydrolysis-dependent manner. An ORC-Cdc6-

Cdt1-MCM (OCCM) intermediate can be stabilized by using a nonhydrolyzable ATP 

analog [81], in a state prior to the loading of the next MCM2-7 hexamer.  

The defining step of origin licensing is the formation of stable head-to-head 

MCM2-7 double hexamer around DNA [93, 115]. The formation of double hexamer has 

been extensively examined using S. cerevisiae proteins [116]. However, there were 



conflicting results observed using different methods regarding how the loading of the 

second MCM is achieved. Biochemical studies suggested that two hexamers are loaded 

independently on two inverted ORC binding sites near each other [95, 117]. In contrast, 

single molecular experiments showed that two single hexamers are loaded in a sequential 

way [78], and the loading of the second MCM requires a distinct Cdc6 molecule [96]. 

The latest cryo-EM experiments identified a key intermediate after OCCM, called MCM-

ORC (MO), demonstrating that double hexamer loading is indeed coupled and sequential 

[118]. In OCCM, the MCM C-terminal domains are in contact with ORC. In the newly 

observed MO structure, however, ORC binds in an inverted configuration with N-

terminal sides of MCM through Orc6 N-terminus. Therefore, it was concluded that the 

first MCM hexamer loading, coupled with the release of the first set ORC-Cdc6 and 

Cdt1, creates a distinct binding site and allows the second ORC binding in an inverted 

orientation. This configuration then recruits the second Cdc6 and allows for the loading 

of the second Cdt1-MCM2-7 using the same mechanism.  

 

2. Pre-initiation complex and origin firing 

Origins are licensed in G1 phase and that makes them ready to fire in S phase. At 

the onset of S phase, a wave of protein modifications and sequential recruitment regulate 

the conversion of inactive MCM2-7 complex to active CMG (Cdc45, MCM2-7, GINS) 

helicase. The CMG helicase, together with polymerases, PCNA, RPA (Replication 

Protein A), and other essential proteins, initiates DNA unwinding and replication fork 

establishment (Figure 1). The activation of helicase, like pre-RC assembly, is regulated 

by a series of events that is highly conserved in eukaryotes.  

MCM2-7 hexamer itself has very limited helicase activity. It was later identified 

that the full helicase activity requires the assembly of Cdc45 and GINS (from the 

Japanese go-ichi-ni-san that stands for 5-1-2-3, representing Sld5, Psf1, Psf2, and Psf3 

subunits) complex with MCM2-7, forming CMG helicase [119-122]. CMG contains a 

copy of MCM2-7, a single Cdc45, and one GINS tetramer forming a stable 11 subunits 

helicase. The assembly begins at the G1 to S transition, where MCM double hexamer 

serves as a platform to recruit DDK (Dbf4-dependent Cdc7 kinase) via interaction by 

MCM2 and MCM4 [123, 124]. DDK is a cell cycle regulated kinase [125, 126]. Together 



with S-phase CDK, they are two essential kinases that regulate the assembly of other 

initiation factors to MCM2-7. DDK phosphorylates multiple MCM subunits including 

MCM2, 4 and 6 [127-131]. Notably, DDK only targets chromatin bound MCM in the 

context of a double hexamer but not a single hexamer [132-136], suggesting only the 

double hexamer configuration is allowed to initiate productive replication. The 

phosphorylated MCMs then recruit Cdc45 [128]. The recruitment process is facilitated by 

Sld3 and Sld7 in S. cerevisiae, or their functional homologs Treslin and MTBP in humans 

[137-139]. In addition to Cdc45, GINS is also associated with MCM2-7. The assembly of 

GINS complex into MCM requires CDK activity and several chaperone proteins. Sld3 

and Dpb11 (TopBP1 in vertebrates) facilitate a complex containing GINS, Sld2 (RecQ4 

in vertebrates), and Polɛ to bind to MCM [140-142]. In this process, CDK phosphorylates 

Cdc45, Sld2, Sld3 and Sld7 to facilitate protein interaction [142, 143]. The protein 

complex formed at this point is defined as a pre-initiation complex (pre-IC) [144]. In the 

pre-IC, MCM double hexamer splits into two single hexamers, suggesting they are ready 

to form bi-directional replication forks [145]. MCM10 is also a critical protein required 

for origin firing. Although tightly coupled, the pre-IC formation can be separated from 

the subsequent firing event in vivo in cells lacking MCM10 [145], or when MCM10 is 

omitted in the in vitro reconstitution reactions [146]. 

After the pre-IC formation, MCM10 is recruited by interacting with CMG [147-

149]. MCM10 is essential for origin firing not only for activating CMG but also 

stabilizing the replisome [150-152]. Meanwhile, the single strand DNA binding ability of 

budding yeast MCM10 is important for stabilizing the origin melting reaction [153]. A 

recent study further suggested that MCM10 is required for CMG to transit between 

dsDNA and ssDNA [154]. Importantly, in addition to its role in helicase activation, 

MCM10 also travels along at the replication fork and stimulates replication elongation 

[155, 156]. On the other hand, extensive structural and single-molecule studies have 

elucidated that active CMG translocates on DNA with its N-terminal domain in front and 

C-terminal motor domain pushing from behind, and ssDNA passing through the middle 

channel making contact with several MCM subunits [157-160]. 

 

3. Dormant origins 



An important concept of DNA replication regarding the maintenance of genome 

stability is that in each G1 phase, there are way more origins that are licensed than the 

ones that actually fire in the subsequent S phase [161]. These origins, which are inactive 

during normal replication, are called “dormant origins”. It has been known for a long 

time that MCM is loaded in excess onto chromatin. Studies from yeast to human pointed 

out that MCM can be loaded up to 20-fold in excess over the numbers of loaded ORC or 

replication origins [162-164]. Indeed, it has been shown that DNA replication can occur 

normally with significantly reduced levels of MCM proteins in the cells [162, 165, 166]. 

Meanwhile, it was also found that though the replication efficiency is maintained in these 

MCM-depleted cells, they showed defects in the S-phase checkpoint. Critically, the 

MCM-depleted cells became hypersensitive to low levels of replication stress that would 

otherwise be tolerated by normal cells [163, 167]. Thus, the role of these excess licensed 

dormant origins was demonstrated as a safeguard system when cells are facing replication 

stress, and the dormant origins only fire when other replication forks fail to finish 

replication. The amount of dormant origins, or level of origin licensing, is not only 

correlated to the tolerability of cells to replication stress, but also shown to be critical for 

the maintenance of stem cell pluripotency [168].  

Although the importance of dormant origins is well appreciated, the selection 

mechanism regarding which subset of licensed origins should be activated while others 

should stay dormant is poorly understood. It was suggested that a fraction of pre-RC is 

multi-mono-ubiquitinated on Orc3/Orc5 by an E3 ligase OBI1, which in turn marks those 

pre-RCs (out of all available pre-RC) for activation [169]. However, the mechanism of 

how OBI1 selects its substrate is still unknown. Recently, one study made an interesting 

observation that the parental MCMs inherited from the previous cell cycle have a distinct 

function from the nascent MCMs [170]. It was shown that the parental MCMs are 

preferred for forming active CMGs even though both parental and nascent MCMs can 

form pre-RC on chromatin. On the other hand, nascent MCMs serve to adjust the pace of 

active CMGs, possibly by acting as physical resistance of replication fork progression. It 

was therefore proposed that the surplus of licensed MCMs not only provides a backup 

system upon replication stress, but also acts to manage replication fork speed to actively 



prevent replication stress-associated DNA damage. Nevertheless, the mechanism that 

differentiates these two groups of MCMs remains to be elucidated.  

 

4. Licensing checkpoint 

As mentioned above, to prevent genome instability, cells should only enter S 

phase with a sufficient number of licensed origins. It was suggested that there is a 

“licensing checkpoint” that senses the number of licensed origins and delays or stops S 

phase entry if there is an insufficient number of origins licensed [171-173]. In 

untransformed cells, reducing MCM loading by different methods causes the cells to 

arrest at G1 phase. Importantly, the licensing checkpoint is often defective in cancer 

cells; where the inhibition of origin licensing leads to genome instability and apoptosis in 

several cancer cell lines due to their inability to halt from entering S phase [174-176]. 

Several of these reports link licensing checkpoint to the p53 status as well as 

cyclinE/CDK2 activity. However, the detailed mechanism of how cells sense the number 

of licensed origins remains elusive and requires further study. Recently, a study focusing 

on the re-entry of the cell cycle from quiescence, or G0, showed that MCM loading is 

slow and reduced in the first G1 phase, suggesting the licensing checkpoint is largely 

inactive when cells re-enter cell cycle [177]. Further, the chromatin environment was 

shown to impact origin utilization when quiescent cells reenter the cell cycle [178]. This 

under licensed condition in the first G1 phase leads to naturally occurring replication 

stress, as well as hypersensitivity towards genotoxic drugs. Together, the licensing 

checkpoint is critical for cells to maintain genome integrity and aberrant licensing can 

lead to cancer development.  

 

5. Mechanisms preventing re-replication 

One of the major challenges of DNA replication is to ensure that replication 

happens once and only once per cell cycle. Refiring of origins during the same S phase 

can result in re-replication leading to genome instability and chromosomal breakage 

during the following mitosis. Cells must exert elaborate regulatory events to prevent re-

replication from happening, and the major regulatory point is to prevent re-licensing 

during S phase [179]. 



In budding yeast, all six ORC subunits remain chromatin-associated throughout 

the cell cycle [180]. However, in mammalian cells, Orc1 is released from chromatin upon 

S phase entry in a CDK-dependent manner, gets ubiquitinated by SCFSkp2 and degraded 

via ubiquitin-mediated proteasomal degradation [181-184]. This prevents ORC from 

executing a second round of licensing. Only at M phase to G1 transition is Orc1 able to 

re-associate with chromatin and enable origin licensing [185-188]. The cell cycle 

dependent regulation of Orc1 proves to be one of many mechanisms that allow 

replication to occur once and only once per cell cycle [189]. As mentioned previously, 

Orc3 and Orc5 are also ubiquitinated in a cell cycle dependent manner that is critical for 

origin function. The role of other E3 ligases in regulating pre-RC/pre-IC function, origin 

firing, and maintenance of genome stability are an area of intense research [190, 191]. In 

addition, a recent report suggested that budding yeast ORC dimerizes in a cell cycle 

dependent manner to control licensing [192]. It remains to be seen if human ORC is 

regulated in a similar way. 

S. cerevisiae Cdc6 and its ortholog, Cdc18 in S. pombe, are rapidly degraded 

when cells enter S phase via ubiquitin-mediated proteasomal degradation, after being 

phosphorylated by S and M-phase CDKs [193-197]. Human Cdc6 is also regulated by 

CDK but through a different mechanism. Human Cdc6 is targeted for degradation by 

APC/C-dependent proteolysis [198]. During G1 phase where licensing takes place, Cdc6 

is protected from destruction by cyclinE/Cdk2-dependent phosphorylation [199]. In S 

phase, it was proposed that Cdc6 is phosphorylated by cyclinA/Cdk2 and exported from 

the nucleus [75, 200, 201]. However, this model was challenged by other studies showing 

that a fraction of Cdc6 remains chromatin-bound even in S phase [202-204]. In addition, 

a more recent study showed that Cdc6 is also targeted for degradation by SCFcyclinF 

complex late in the cell cycle [205]. Therefore, the detailed mechanism regulating Cdc6 

during cell cycle remains to be delineated. 

The cell cycle-dependent regulation of Cdt1 is the major regulatory point for 

preventing re-replication. S. cerevisiae Cdt1 is controlled by CDK phosphorylation that 

inhibits its interaction with Orc6 [101], and subject to nuclear export during S phase 

[206]. In other eukaryotes including humans, however, Cdt1 protein is degraded upon S 

phase entry [207-209]. Cdt1 is controlled by two independent E3 ligase pathways to 



ensure its destruction after S phase entry. First, Cdt1 is phosphorylated by CDKs, which 

leads to its recognition by SCFSkp2 E3 ligase for ubiquitination and degradation [210-

213]. Second, degradation of Cdt1 is further restricted to S phase by “replication-coupled 

destruction” through interacting with chromatin-bound PCNA (Proliferating Cell Nuclear 

Antigen), which is the processivity factor for DNA polymerase at the replication fork 

[214, 215]. Cdt1 contains a conserved PCNA-interacting protein (PIP) box that mediates 

its interaction with PCNA; the interaction, in turn, triggers Cdt1 ubiquitination and 

degradation by CRL4Cdt2 E3 ligase [216]. In addition, metazoan Cdt1 is inhibited by 

direct binding of another cell cycle-oscillating protein, Geminin [217-221]. Geminin 

levels are elevated in S phase and drastically reduced upon entry in M phase due to 

degradation by APC/C [222], thus allowing Cdt1 to be active only during G1. Moreover, 

a recent study uncovered that Cdt1 is also hyperphosphorylated in G2 phase by Cyclin 

A/CDK1, which inhibits the loading of MCM during G2 phase [223]. This finding 

provided yet another independent mechanism to prevent re-replication within one cell 

cycle and maintain genome integrity.  

6. Replication initiation and replication stress 

A significant threat to genomic and chromosomal stability comes from replication 

stress. Replication stress is referred to conditions that cause the slowing or stalling of 

replication fork progression and perturbation of the dynamics of DNA synthesis [224, 

225]. Replication stress can be induced by exogenous or endogenous sources. Exogenous 

causes include ionizing radiation (IR), ultraviolet (UV) irradiation, and chemotherapeutic 

drugs that lead to DNA damage, interstrand crosslinks, and DNA breaks. These DNA 

lesions block CMG unwinding or polymerases, causing the fork to stall. Chemical 

compounds such as hydroxyurea (HU) that result in dNTP depletion/imbalance also 

induce replication stress by causing uncoupling of DNA polymerase with CMG helicase 

[226]. Similarly, endogenous DNA damage such as naturally occurring depurination or 

oxidation can lead to replication stress. A great fraction of endogenous causes of 

replication stress has resulted from sequence or chromatin features that make replication 

intrinsically difficult. These include short tandem repeats and microsatellites regions 

[227], secondary structures such as hairpins or G-quadruplexes [228, 229], centromeres 

and telomeres regions [230, 231]. Collisions of replication and transcription machinery 



and R-loop, the three-stranded structures containing a DNA-RNA duplex and the 

excluded ssDNA, also impede replication progression [232, 233]. Common fragile sites, 

the chromosomal regions prone to experience replication stress and break upon 

replication inhibition, usually contain one or several of the above features [234-236]. 

Importantly, common fragile sites also correlate with origin-poor and ORC-poor regions, 

indicating that inefficient origin activity and reduced dormant origins cause genome 

instability [237, 238].  

 A more direct relationship between replication initiation and replication stress lies 

in the context of oncogene activation or overexpression-induced replication stress [239, 

240]. Early studies identified that the overexpression of cyclin E induces chromosomal 

instability due to defects in pre-RC chromatin loading [241, 242]. This could be due to 

short G1/premature S phase entry before sufficient origins are licensed. As discussed 

above, a reduced number of dormant origins due to insufficient licensing makes cells 

more vulnerable to replication stress.  The common fragile sites represent regions where 

dormant origins are either inefficiently licensed/activated resulting in replication fork 

failure and increased susceptibility to breakage [243]. Moreover, overexpression of 

oncogenes, including cyclin E, Ras, and Myc, have been proven to drive excessive usage 

of origins that can lead to acute depletion of dNTPs in the cells, resulting in replication 

stress and genome instability [244, 245]. Increased replication initiation by oncogenes 

also increased the chance of replication-transcription collision [246]. A recent study using 

genome-wide mapping further revealed that oncogene overexpression induces a subset of 

intragenic origins to be fired early due to short G1/premature S phase entry, which 

greatly increases the replication-transcription collision and DNA breakage [247]. The 

regulation of transcription activity at origins is also critical for genomic integrity [248]. 

 One direct consequence of replication stress is the formation of exposed ssDNA 

due to fork stalling. Thus, replication stress is tightly associated with the activation of 

ATR pathway of the DDR. The activation of ATR starts from RPA loading onto exposed 

ssDNA, which can be generated by end-resection of DSBs, replication stress, or 

intermediates during the DNA repair processes [249-255]. RPA-ssDNA then serves as a 

platform to recruit ATR via its partner protein ATRIP (ATR interacting protein) [256]. 

Two independent mechanisms then function to activate ATR. The binding of Rad17/RFC 



and Rad9-Rad1-Hus1 (9-1-1) complexes to the junction of RPA-ssDNA and dsDNA 

recruits TopBP1, the first ATR-activating domain (AAD)-containing protein, to activate 

ATR kinase activity [257-260]. On the other hand, ETAA1, the second protein identified 

with an AAD, binds to RPA directly and activates ATR in parallel to TopBP1 [261-263]. 

Subsequently, the activated ATR phosphorylates its downstream effector kinase Chk1 

[264]. Like the ATM-Chk2 axis, ATR-Chk1 controls many cellular events during DNA 

damage. One proteomic study identified more than 700 ATM/ATR downstream 

substrates in human cells, highlighting the complexity of the DDR network [265]. 

Importantly, many pre-RC and pre-IC proteins have been identified in this study as 

ATM/ATR substrates, suggesting the existence of intricate regulatory mechanisms in 

replication initiation or perhaps playing other non-canonical roles. DNA Polymerase 

epsilon playing a critical role in checkpoint pathway during S phase to sense stalled 

replication confirms that a link between DNA replication machinery and S-Phase 

checkpoint exists in eukaryotes [266-268]. Further, Pol ϵ binds replication origins early in 

S phase and the essential function of Pol ϵ was not dependent on its DNA synthesis 

activity [269]. 

ATR signaling also has critical roles in the regulation of replication during S 

phase. Under genotoxic conditions, checkpoints are activated and the cell cycle is halted. 

It is well established that replication initiation is targeted for repression by ATR-Chk1 

pathway in order to prevent S phase progression and further damage to the DNA until 

DNA damages are repaired [270-273]. The repression of origin firing by checkpoint also 

prevents DNA topological stress [274]. Interestingly, the ATR-Chk1 activation inhibits 

the global origin firing, yet promotes local origins to initiate in order to support the 

completion of those regions of DNA where replication forks are stalled [275]. However, 

the detailed mechanism remains elusive. On the contrary, even without exogenous 

sources of DNA damage, the basal level of ATR-Chk1 activity is critical to control origin 

activity. Many studies discovered that ATR or Chk1 inhibition causes increased global 

origin firing and abnormal early activation of late origins [276-281], suggesting an 

essential function of ATR pathway in regulating unperturbed S phase progression and its 

importance in genome integrity. On the other hand, deregulation of many pre-RC and 

pre-IC proteins directly affects ATR signaling pathway activation. Cdc6 has been shown 



to directly interact with ATR and activate replication-checkpoint [282]. MCM7 reduction 

leads to ATR activation defects [165]. Further, TopBP1, one of the pre-IC proteins, is 

also an essential protein for ATR activation [257]. The regulation of DNA replication 

initiation events and checkpoint signaling pathways remains an active field of study. 
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