DYNAMICAL VERSIONS OF HARDY’S UNCERTAINTY
PRINCIPLE: A SURVEY

AINGERU FERNANDEZ-BERTOLIN AND EUGENIA MALINNIKOVA

ABSTRACT. The Hardy uncertainty principle says that no function is better
localized together with its Fourier transform than the Gaussian. The textbook
proof of the result, as well as one of the original proofs by Hardy, refers to the
Phragmén-Lindel6f theorem. In this note we first describe the connection of
the Hardy uncertainty to the Schrodinger equation, and give a new proof of
Hardy’s result which is based on this connection and the Liouville theorem.
The proof is related to the second proof of Hardy, which has been undeservedly
forgotten. Then we survey the recent results on dynamical versions of Hardy’s
theorem.

1. INTRODUCTION

There are many mathematical interpretations of the uncertainty principle, which
states that the position and momentum of a quantum particle cannot be measured
simultaneously, or that a signal cannot be well-localized both in time and in fre-
quency. All of them refer to a double representation of a function, classically
this is the function itself and its Fourier transform, though more recent versions
of the uncertainty principle use some form of joint time-frequency representation,
for example the short-time Fourier transform. Each uncertainty principle has an
interesting and developing story, in this note we tell only one of them.

The most famous uncertainty principle was introduced by Werner Heisenberg
in 1927, and its mathematical formulation was given by Earle Hesse Kennard and
Hermann Weyl shortly after. It says that
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for all f € L%(R%), or equivalently,
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We always use the following normalization of the Fourier transform on R¢,
_ 1 —ix-&

f(f)—W/Rdf(x)e dz.

It is well-known that the Fourier transform is an isometry of L2(R%).

2010 Mathematics Subject Classification. 42A38, 35B05.

Key words and phrases. Uncertainty principle, Schrédinger equation.

EM was partially supported by NSF grant DMS-1956294 and by the Research Council of
Norway, project 275113. AFB was partially supported by ERCEA Advanced Grant 2014 669689
- HADE, by the project PGC2018-094528-B-100 (AEI/FEDER, UE) and acronym “IHAIP”, and
by the Basque Government through the project IT1247-19.

1



2 AINGERU FERNANDEZ-BERTOLIN AND EUGENIA MALINNIKOVA

The equality in Heisenberg’s uncertainty principle (1) is attained when f is a
generalized Gaussian function, i.e., f(z) = exp(—(Az,x)), where A is a positive
definite matrix. The fact that the Gaussian is the best localized function in time
and frequency was also recognized by English mathematician Godfrey H. Hardy
in 1933, in the formulation of the uncertainty principle that now bears his name.
Hardy attributed the remark that a function and its Fourier transform ”cannot be
very small” to Norbert Wiener and proved the following result

Theorem 1. Let f € L3(R) satisfy |f(z)] < Ce= 2" and |f(&)] < Ce bIE’. If
ab > 1/4 then f =0 and if ab = 1/4 then f(z) = ce~l*",

In his original article [26], Hardy gave two different proofs, both refer to holo-
morphic functions and use some results of complex analysis. The first one employs
the Phragmén-Lindel6f principle for entire functions. This proof or its variations
can be found in many textbooks, see for example [27, 38, 36]. The second one also
refers to entire functions, but makes use of the Liouville theorem only (at least
for the case when ab > 1/4); it is more elementary and seems to be forgotten.
We should also mention that Hardy proved a more general result, assuming that
1f(z)] = O(|z|™el=*) and | £(£)| = O(|¢|™e~61") as x,& — +o0, he showed that
f is a polynomial times e~®*I",

There was a search for a real variable proof of the Hardy uncertainty principle.
A rather elementary (real variable) argument, given by Terence Tao in his book
[39, §2.6], implies that f is zero if in the statement above ab > Cj for some large
constant Cy. Another real variable proof for the case ab > 1 is given by E. Pauwels
and M. de Gosson in [35], surprisingly their proof employs prolate spheroidal wave
functions, which, in the context of time frequency analysis, first appeared in the
celebrated series of works of H. Landau, H. Pollak and D. Slepian in the beginning
of 1960s. The first complete real proof for the sharp result is given in [8].

Before we exhibit the main topic of this note, the dynamical interpretation of
the Hardy uncertainty principle, and give a new proof of the result, we comment
briefly on classical approaches and generalizations.

Hardy proved the theorem for the case a = b = 1/2, which implies the general
result by a simple rescaling. The assumption on the decay in the Hardy theorem
can be replaced by the decay along a half-axes only. Gilbert W. Morgan gave the
following generalization of Hardy’s result already in 1934, [32].

Theorem 2. Let 1 < p < 2 and 1/p + 1/q = 1, suppose that f € L'(R) and
|f ()] < Ce= 121"/ and |f(£)] < Ce"I81"/9 and ab > | cos(pr/2)|*/?, then f = 0.

For an interesting discussion of the Morgan theorem, one-sided decay, and some
remarkable related results, we refer the reader to [33] and [27].

The assumptions of both theorems formulated above are point-wise bounds for a
function and its Fourier transform. In 1980s M. Cowling and J. F. Price [9] obtained
versions where the bounds are replaced by an integral condition, the simplest version
is the so-called L2-Hardy uncertainty principle:

el f(x) € L’(R), and ' f(g) € IP(R)

implies f =0 when ab > 1/4.
Hardy’s theorem can be generalized to higher dimension, the statement is exactly
the same for f € L?(R?). This can be deduced from the one dimensional result using
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the Radon transform, see [37]. Note that we discuss only the simplest generalization
of the Hardy uncertainty principle to R¢. The appealing problem of natural higher
dimensional statements is studied in [5, 4, 11, 10].

An interesting interpretation of Hardy’s uncertainty principle was given in the
beginning of the current century, [7, 13]. It turns out that Theorem 1 is equivalent
to the following statement.

Theorem 3. Let u(t,z) be a solution to the free Schridinger equation
Oru = iAu(t, ).
Suppose that u € C1([0, T), W22(R?)) satisfies the following decay conditions
|u(0,2)| < Cel"l* and |u(T,x)| < CePlal®,

where o, B > 0.
(i) If a > (16T?)~! then u(t,z) = 0,
(ii) if af = (16T%)7" then u(t,z) = ce~(eti/WT)al®,

A real-variable proof of this theorem is due to M. Cowling, L. Escauriaza,
C. E. Kenig, G. Ponce, and L. Vega, [8].

In this note we first show that the uniqueness result is equivalent to Hardy’s
theorem and give a simple proof of Theorem 3. The proof involves holomorphic
functions, however the proof of part (i) is based only on the Liouville theorem,
which says that every bounded holomorphic function is a constant, the argument
reminds the second proof of Theorem 1, given by Hardy in [26]. The proof of part
(ii) requires some analysis of a singular point of a holomorphic function. We then
present an overview of the recent generalizations of Theorem 3, which are called
the dynamical versions of Hardy’s uncertainty principle.

2. FREE SCHRODINGER EQUATION

2.1. Solution by the Fourier transform. In this section we present the classical
formula for the solution of the Schréodinger equation, we provide the details for the
convenience of the reader. A generalization of the result is used later in the note.
We consider the free Schrodinger equation

(2) Opu(t, x) = iA u(t, ),

where A, = 83—;24—...—1— % is the Laplace operator. It is one of the simplest examples
1
of a constant coefficient linear dispersive equation. Dispersive equations are called

so since parts of solutions with different frequencies disperse with different speeds,
spreading spatially. A plane wave is a solution to (2) of the form

ug, (t,€) = exp(iz - & — it|&l*).

Clearly, any superposition of the plane waves is also a solution. The plane waves
satisfy |u(t,z)] = 1. Below we analyze solutions that decay in x. More precisely,
we assume that v € C1([0,T], W?2(R%)). This smoothness assumption can be
weakened but we prefer to avoid the technical details in this note.

An effective method to solve linear constant coefficients dispersive equations is
by applying the Fourier transform in spatial variables. Let u(t,£) = Fyu(t, x), then
(2) reads

atﬂ(t7 5) = 7Z‘€|2a(ta 5)
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Thus the solutuon to (2) with initial data u(0,z) = ug(z) € L?(R?) satisfies
(3) at, &) = T €).

Hence, by the Fourier inversion formula,

1 12
u(t,z) = @) /Rd T (3T/3

1 e (o).
B W/}Rd /Rd ! (=) g (y)dyde.

The formula for u(t, z) above can be written as the convolution
u(t.) = [ uolu)Kile ~ )y,
R

where K is the (distributional) inverse Fourier transform of the function eI,

Formally, we write

1 e2
Ki(z) = @y /Rd PG 5)d§,

although the integral does not converge. To make sense of the integral, let

]_ - 2 2
Ke(z) = i(tlE]" +a-8) o —el&l” g¢.
t (’JZ) (27T)d /]Rd e e E
Then it is easy to see that
1 2 )
Ké(g) = — = —lal?/(4(e+it))
t(x) (47.[_(5_’_“;))(1/26
The limit of K7 (x) as € — 0 exists and is equal to
1 204
K . — £ A CT
) = Gryaz®
Therefore the solution to the Schrédinger equation is given by
1 ilz—y|?
(4) u(t,x) = (Arit) 2 /Rd eyl D () dy.

We note that if k; denotes the standard heat kernel, then formally K; = k;;.

2.2. Uniqueness for the free Schrodinger evolution and Hardy’s theorem.
Using the integral formula for the solution (4), it is not difficult to see that The-
orem 1 is equivalent to Theorem 3 with d = 1. We show one implication, the
Hardy uncertainty principle follows from the uniqueness result for the Schrodinger
equation.

Assume that Theorem 3 is true and let f be a function as in the Hardy theorem.

We define
1

P —q 2
T /Rem uR/@O=ily /4 f )y

for ¢ > 0. Since f is decaying fast the function wu(t,z) is smooth. Then, differen-
tiating the integrand, we see that d,u = iA,u. Moreover, by taking the limit as
t — 0, we get u(0,2) = e~ l#I’/4 f(z). Furthermore,

u(t,z) =

cilal*/4

(4mi)1/2

o~

u(l,z) = f(z/2).
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The assumptions in the Hardy theorem can now be translated to
[u(0, z)| < Ce~alel’ lu(l, z)] < Ceblel?/4,

Now applying Theorem 3 with 7' = 1 we conclude the argument.
The reverse implication can be shown in a similar way.

2.3. A proof of the uniqueness theorem. We now give a relatively elementary
proof of Theorem 3. The main idea is to consider the family of partial differential
equations Oyu = zA,u with complex parameter z. When z = +1 we get the
heat and the backward heat equations, while z = 7 corresponds to the Schrodinger
equation. Computations, similar to ones presented in Section 2.1, show that the
fundamental solution is

ki (2)(z) = (dmat) =4/ 2e 1o/ (2t)

Thus for a fast decaying initial condition ug(z) the solution to the equation is given
by u(t,x) = ug * kt(z), so ki(z) =: k¢, is a complex extension of the heat kernel.
Assume now that

lug ()] = [u(0, )] < eI,

We start with the initial condition «(0,x) = ug(z) that decays fast and we solve
the generalized heat equation. We see that the heat equation itself is solvable (it
corresponds to z real and positive) as is the Schrédinger equation (corresponding
to pure imaginary z), but the backward heat equation cannot be solved in general,
and our function is not defined for small real negative z. We consider the function

1 a2 /(4z
W /d € ol )uo(y)dy =k, * Ug,
R

for z € Qo = {z : R(—1/(42)) — o < 0}. Solving the last inequality for z, we see
that the integral above converges uniformly on compact subsets of the domain

Q={2€C:|2+1/(8a)| > 1/8a}.

F(z,z) =

The function F2(z,z) is a holomorphic function of z in g, when = € R? is fixed.
Note that we take the square of F' to avoid the branching of /.
Now, we start with w(T, z) = u1(z) and define

1 .
/e—\x—y|2/<4<z—zT>>ul(y)dy.
Rd

(47 (z —iT))4/2
Using the decay of u; we see that G%(z,z) is well defined and holomorphic in the
domain

G(Z,{,C) = sziT *Up =

M ={z€C:|z—iT+1/85] > 1/(85)}.
Moreover G(it,z) = u(t,z) when ¢ € (0,7). Hence the holomorphic functions
F2(.,z) and G?(-, ) coincide on the interval (0, T). Therefore F2(-,z) is extended
to a holomorphic function on Qy U Q;.

To simplify the notation, we denote (8a)~! = A and (88)~! = B. Then the
complements of g and € are circles with the radii A and B, while the distance
between the centers is /T2 + (A — B)2.

If AB < T?/4 (which is equivalent to 16c3 > T72) then the circles do not
intersect. Thus F%(z,z) extends to an entire function in z for each fixed z. It also
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z plane

2o
FIGURE 1. Tangent circles 9€)y and 9); and their common tan-
gent line [ for the case AB = T?/4, z-plane

satisfies

C > 2 \2
6 1Pl < g (/ e el dy)
C

(4lzl(a +7))?
where 7 = R(1/(42)). We fix x and note that F?(z,z) is uniformly bounded as
|z| > 1/c. Then, by the Liouville theorem, F?(z, ) is a constant function in z for
each x. This means that d;u = 0 and thus Au = 0. There are no non-zero decaying
harmonic functions, therefore u(t, ) = 0.

This proof of part (i) uses only the facts that the function e®* satisfies the mean
value property and that a bounded function satisfying the mean value property on
the whole plane is a constant. An elementary proof of the latter can be found in
[34].

Now assume that 16a8 = T2 i.e., AB = T?/4, then the circles 9Qy and
9, touch at one point, which we denote by zp, see Figure 1. Thus F?(z,z) is a
holomorphic function in C\ {29}. We consider z = 0 and claim that F?(z,0) has
a pole at zy. To prove that, we draw the common tangent line [ to the circles 9
and 99y, and consider the images of this line under the transformations ¢ = 27!
and n = (z —4iT)~!. These are circles wy and w; passing through the origin, while
the images of the circles 02y and 02; under those two respective transformations
are vertical lines [y and [; tangent to wg and wy, see Figure 2. We see that wy is
defined by the equation

e—2valzl?/(v+a)
)

R(C — Co) = ¢ = Col*/(2ro),
where (y = 2, L and rg is the radius of wy. Let z be a point close to zg lying above
the line [ (on the other side of the line I than ). Then ¢ = 2! lies inside the
disk bounded by wg and we have the following inequality
(6) R(¢ — o) = ¢l — Gol* = ealz — 20,
where ¢ = (2r¢) ! and ¢; = ¢|29|7*/2. The estimate (5) implies

|F2(z,0)| <Clz - zo|*2d
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(=27

Co

FIGURE 2. Circle wy and tangent line [y in ¢ = 1/z-plane

when z is in the half-plane above the line [. For the other half-plane we repeat the
argument, using the function G2, and conclude that F?(z,0) has a pole at zy of
order less than or equal to 2d.

Similarly, we consider the functions

1 2
— —le—yl*/4z (o d 4
2z(4mz)d/2 /Rde (yj—z;)uo(y)dy, J yeeey

Then each F7(z,z) extends to a holomorphic function in C\ {29} and F}(z,0) has
a pole at zp. An estimate of F}(z,0) gives

|Fj2(z,0)| < Clz — 2|24,

Fi(z,2) = 0F(x,2)/0z; =

Finally, consider ¢ = (o + t, where ¢ > 0 is real and small. For this case the
inequality (6) can be replaced by R(¢—(p) = |¢—(p|- Then, repeating the argument
above and taking z = 1/¢, we see that (z —20)?F?(z,0) and (z — z9)*"' F7(z,0) are
bounded along the curve z = 2¢(1 +t2z9) !, t > 0. Thus F?(z,0) has a pole at zo
of order not exceeding d, while for each Fj2 (2,0),7 =1,...,d, the order of this pole
does not exceed d + 1.

We assume first that d = 1. To finish the proof of the end-point case we use the
Hermite functions,

Un(t) = et 0" -t _ H,(t)e /2,
otn
which form an orthogonal basis for L?(R). More generally, for any complex number
~ with Ry > 0 we may define the generalized Hermite functions

U0 = Ha(V2rt)e ™,
which still form an orthogonal basis for L?(R).
First we consider F?(2,0). This is a holomorphic function in C\ {20} that tends
to zero at infinity and has a simple pole at zgp, thus

F%(2,0) = b(z — 29) "
Hence -
/ eV Uy (y)dy = c2'/? (2 — 2) V2.
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A simple computation shows that

21/2

o0 2 2
7 v /(42 = gy = WS
(7) [we e Y \/7?(14_427)1/2

We choose v = —1/(4z9) = —(o/4 and see that for some constant ¢y and every ¢
T At gy = [ v/
co/ e e dy = / e uo(y)dy.

This means that all even moments of ug are equal to the corresponding moments
2 2
of coe="1¥" and thus ug(y) + uo(—y) = 2coe™ Y .
Then, similarly, we consider FZ(z,0). We have

F12(z7 0) =ba(z — zo)_2 +b1(z— zo)_l.
On the other hand

00 (k+1)/2
O P U R S —
(8) /0 y e e " dy ck(1+427)(k+1)/2.

Representing yug(y) as the series in 1/)7(;’), we conclude that

o
yuo(y) — yuo(—y) = 2(c1 + cay)e V.

Now, taking y — 0 and using that ug(y) = G(0,y) is a continuous function, we see
that ¢; = co = 0. Thus ug is even and ug(y) = coe_"”y‘z. It is not difficult to check
that v = o+ #/4T. This concludes the proof of Theorem 3 for the case d = 1.

To complete the proof in higher dimensions we consider F(z,x) and all its par-
tial derivatives in the spatial variables at x = 0. Rewriting the integral in polar
coordinates, we have

F(z,0) = (47T2)d/2/ rdil/ uo(ry’)da(y’)efrz/(“)dr.
0 Sd-1

Let ®(r) = r%! [gu 1 ug(ry’)do(y’). The identity (8) and the fact that F? has a
pole at zg = —1/(47) of order not exceeding d imply that

d—1

2

O(r) = chrle_w .
1=0

Moreover, since ®(r) has zero at zero of order d — 1, we conclude that ®(r) =
erd=1e=7" . On the other hand, looking at the partial derivatives of F' we see that
for any homogeneous polynomial p(y) of degree k,

B(r) =14 [ ot/ o)
is a linear combination of the form Zgin arle=’ | If Jsa-1 2(y)do(y’) = 0 then
®,(r) = 0 since its zero at the origin is of order larger than d—1+k. Therefore u is
orthogonal to all polynomials with zero mean on each sphere centered at the origin.
This implies that ug is a constant on each such sphere and thus ug(y) = ce= v,
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2.4. Heat equation. We saw that the Schrédinger equation and the heat equation
are close relatives. Therefore, it is natural that the Hardy uncertainty principle
implies a uniqueness result for the heat equation.

Theorem 4. Let u(t,z) € C*([0,T], W?2(R%)) be a solution to the heat equation
dyu = Agu. Suppose that u(0,z) € L*(RY) and |u(T,z)| < eI, If § > 1/(4T)
then u = 0.

The case 6 = 1/4T corresponds to the situation «(0,z) is the Dirac delta func-
tion. The fact that the Hardy uncertainty principle implies Theorem 4 follows by
applying the Fourier transform in variable x, which gives

(9) a(t,€) = e a(0,).

Thus, if the initial data ug(z) = u(0,x) € LY(R?) then [a(T,¢)| < Ce=TIEP | com-
bined with the decay condition for w(T, ), it implies that w(T,z) = 0if § > 1/(4T)
and u(T,z) = coe®l#1" if § = 1/(4T). The latter implies Go(¢) = ¢ and u is a
multiple of the Dirac delta function.

We can also prove Theorem 4 using the approach suggested in the previous
section. The condition |u(T,z)| < e~91#* implies that the function

G?(z,x) = (ko_p * u(T, x))?
is holomorphic in the domain
Q=1{z:]z—T+ (87 > (88)71}.
While the condition u(0,z) € L' implies that the function
F2(z,2) = (k,  u(0,2))?

is holomorphic when R(z) > 0. Moreover we know that F2(t,z) = G?(t,z) when

€ (0,T). If § > 1/(4T), the two domains cover the whole complex plane and we
obtain a bounded entire function. It leads to a contradiction in the same way as
above for the Schrodinger equation. If ¢ = 1/(4T) then the resulting function is
holomorphic in C \ {0}, but the singularity at 0 is removable for almost every x
since

li_}mO F?(z,2) = u?(0, )

almost everywhere. And we get a contradiction again.

We also note that Theorem 4 does not imply the limit case ( ab = 1/4) in the
Hardy uncertainty principle. The reason is that in general a bounded function is
not a Fourier transform of an L'-function. To obtain an equivalent statement, one
should extend the notion of solutions of the heat equation to the case when the
initial data is a measure.

3. THE SECOND PROOF OF HARDY AND BEURLING’S UNCERTAINTY PRINCIPLE

3.1. On forgotten proof of Hardy. We were not able to find the second proof of
Hardy or its variations in any textbook and give a sketch of this proof here. First,
Hardy notes that the decay conditions on f and f imply the decay conditions on
felx) = (f(x)+ f(—x))/2 and f, = (f(z) — f(—x))/2 and their Fourier transforms.
Next, the functions fi = (fo+ fe)/2, fa = (fe — fe)/2, f3 = (fo+ifo)/2, and fi =
(fo — ZJ/”;) /2 also satisfy the decay condition together with the Fourier transforms.
So one may assume that f: i*f.
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Let first f be even, so that f = +f. Hardy considers the function

M@*:Aweﬂﬁ”ﬂ@dx

where f decays as the Gaussian. Then A is a holomorphic function when R(s) > —1
and the equation f = +f translates into the identity
Ar(s) = s7V2A(1/s),
we skip the details of choosing the right branch of the root function here.
Then the function u(s) = /s +1Af(s) satisfies pu(s) = p(1/s) and it can be
extended to a holomorphic function in C\ {—1}. Moreover, y has a pole at s = —1.

Finally, Hardy refers to the injectivity of the transform, i.e., Ay = A4 if and only if
f = g, and the identity for the Hermite functions

—et /2 (S — 1)n
/ Vot dt = ( (s + 1)nti/z”

The case f is odd is not written down in [26]. For this case we suggest to consider
the function

- o0 2 o0 o0
)\f(s):/o :ce*s””2/2f(x) dm—:l:\/;/o xe*”2/2/0 fly)sinzy dy dz,

the second identity follows from the fact f= iif Then j\f( ) =53/2)¢1/s. For
this case we consider the function u(s) = /(s +1)s /\f . Which extends to a
holomorphic function in C\ {—1}.

3.2. Beurling’s uncertainty principle. The following version of the uncertainty
principle is due to Arne Beurling

Theorem 5. Suppose that f € L*(R) and

[ [ e=is@ufie) dras < .

The theorem appeared in the collected works of Beurling, [3] and dates back to
the 1960s. The original proof of Beurling uses the Phragmén-Lindel6f theorem and
it can be found in [29]. Higher dimensional versions of the Beurling theorem were
obtained in [5]. In 2012 Hakan Hedenmalm gave another proof and generalized the
statement in [28]. His result was further extended in [24]. We follow the ideas in
[28] to give a relatively short proof of the original statement of Beurling. Clearly,
the Beurling theorem implies the L2-version of the Hardy uniqueness result.

First, as for the case of Hardy’s result, we may assume that f is either even or
odd. Then, taking the real and imaginary parts we may reduce the problem to the
case when f is also real-valued. Now, following the idea of Hedenmalm, consider

the function
/ / zsm&f diC df
Then F is well-defined and holomorphic in the strip S = {s € C: |S(s)] < 1}.

Moreover, by the monotone convergence theorem, F' is continuous on S. For real

s, we have
s) = \/7r/2/ f(z)f(sz)dx
R

Then f = 0.
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we have used that f, f € LY(R). Then F(s) = s~1F(1/s) for s € R\ {0}. We obtain
that F' can be extended to a holomorphic function on C \ 4i. The singularities at
s = &1 are removable since the function is continuous at these points. Finally, the
functional equation F(s) = s 1F(1/s) and the fact that F is bounded near the
origin imply that |F(s)] — 0 when |s| — co. Thus F' = 0. In particular,

F(1) = \/E/sz(ac) dx = 0.

Finally, since f is real-valued, we conclude that f = 0.

4. RECENT VERSIONS OF THE UNIQUENESS THEOREM

We now return to the dynamical versions of the uncertainty principles. In the
last 15 years the uniqueness results for the free Schrodinger and heat equations
were generalized to a large class of evolutions. We give an overview of some of
these results in this section.

4.1. Schrodinger and heat equations with a potential. First, we consider the
Schrédinger equation with a potential,

(10) Owu(t, z) = i(Au+ Vu).

In a series of articles, Luis Escauriaza, Carlos E. Kenig, Gustavo Ponce, and Luis
Vega, [13, 14, 15, 16, 17], generalized the uniqueness result for the case when V is
a bounded potential satisfying one of the following conditions:

(i) limp—oo fOT Sup, > g [V (t,2)|dt < oo,

(ii) V(t,x) = Vi(z) + Va(t, x), where V] is real-valued (and does not depend on t)
and V5 decays fast in x uniformly in ¢, more precisely, for any k > 0 there is C},
such that [Va(t, z)| < Cre=*l=l”,

Theorem 6. Let u € C([0,T],L?(R%)) be a solution to (10), where V satisfies
either (i) or (it). If |u(0,z)| < Ce=ll* and lu(l,z)] < Ce Pl with o >
1/(16T?) then u = 0.

Note that the condition on «f is sharp! The result is further generalized to
semi-linear equations and covariant Schrédinger evolution in [16] and [2, 6], and to
Navier-Stokes equation in [12].

We outline the proof of Theorem 6. First it suffices to consider the case when
a = f3, the Appell transform reduces the general case to this one. We renormalize
the solution and assume that T = 1. The first step is to show logarithmic convexity
of some weighted norm of the solution, the method can be compared to the one
used by Shmuel Agmon for elliptic equations in 1960s, see [?]. For each t € [0, 1]
and ¢ € S9! we define

H{(t) :/ el B Oy (¢, 2) 2 da,
Rd

where b(t) = 16ut(1 — t). The derivative of v(t,z) = etl=FRME (¢ ) in t is
written as the sum of a symmetric and anti-symmetric operator,

O = (S + A)v.
Then a straightforward calculation implies that

(log H(t))" > 2((SA — AS)v,v).
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Careful estimates also show that (log H(t))"” > —16uR?. Therefore
(11) H(t)exp(—32uR*t(1 —t)) < H(0)' "H(1)".
The right hand side does not depend on R, while in the left hand side for ¢t = 1/2
the weight (with which u? is integrated) is
oxp(2ule + 4pRE* — 8pR?).

We look at the coefficient in front of R?, if 3213 > 8y it is positive and thus we see
that u(1/2,z) = 0 for almost each x, by letting R — oo. Then u = 0. This formal
computation can be justified if H(0) and H(1) are finite. This proves Theorem 6
when o = > 1/2.

To extend the result for the range o = 8 > 1/4, Escauriaza, Kenig, Ponce, and
Vega developed an ingenious bootstrapping argument. To sketch their argument,
we write (11) as

/ |U,(t, x)|262,u\z|2+4Rub(t)m~f—2R2b(t)(1—,ub(t))dx < H(O)l_tH(l)t
Rd

Under the assumption o« = § < 1/2 a formal integration of the last inequality with
respect to R leads to

/ |u(t,x)|262“1(t)“”|2dx < H0)''H(1)!,
Rd

for a1 (t) = p/(1 — ub(t)). Notice that a;(1/2 —¢) = a1(1/2+1¢), a1(0) = a1(1) = p
and aq(t) > p when t € (0,1), which shows that the solution u decays faster at
(0,1) than at the endpoints. Next, one can construct a positive function by (¢) such
that b1(0) = b1(1) = 0 and so that

H, (t) _ /d ‘ea1(t)|a:+Rb1(t)g|2u(t’x)|2dx’
R

satisfies

(12) H,(t) exp(—2R?b(t)) < H (0)' ' H (1)! = H(0)' TH(1)".

Note that this is again (11) but a and b are replaced by a1 and b;. A similar study
as before tells us that 1 — a1(1/2)b1(1/2) < 0 implies © = 0, while otherwise we

can integrate again to improve the decay at (0,1). This self-improvement can be
repeated several times, resulting in a sequence of functions

ak(t)

(13) ar+1(t) = T ar (e (D)’ ao(t) = p
such that

p<ai(t)<..<ag(t), te(0,1).
On each step the new function satisfies ar(1/2—t) = ar(t+1/2), ar(0) = ax(1) = p,
and

e O Pue, z))13 < H(0)'~ H(1)".
As for the functions by (t), they are constructed from ag(t) in such a way that at
each step relation (12) is satisfied for the pair of functions aj, and b,. More precisely,
as shown in [15], bg(¢) is the solution to

. . 2
bk = —é(dk + 32&;3 — 73(;;: )
bi.(0) = by.(1) = 0.



DYNAMICAL VERSIONS OF HARDY’S UNCERTAINTY PRINCIPLE: A SURVEY 13

If, for some k, we have 1 —ay(1/2)bx(1/2) < 0, which translates in a condition on
parameter u, the iterative argument stops and we reach a contradiction implying
u = 0. Otherwise, the process is infinite and the limit function a(t) = limy_,o0 ar(t)
exists. Since (13) implies b (t) = (art+1 — ag)/(agag+1), the functions by will con-
verge to 0 and, from the differential equation satisfied by by, one can deduce that
the limit function a(t) satisfies

i+ 320° — 2@° — ¢
a(0) = a(l) = p.

Solving the ODE under the constraint a(1/2 —t) = a(1/2 + t) leads to

. C
alt) = A(1+ (t—1/2)2C2)

for some C' > 0. Computing the maximum in C of p = a(0) = C/(4 + C?), we see
that p must be less than 1/4. Then Theorem 6 follows.
A similar strategy gives a powerful generalization of Theorem 4,[17].

Theorem 7. Let V(t,z) € L®(R x RY) and u be a solution to the equation
Ou = Azu+ Vu,

u e L>([0,T), L2(R) N L2([0, T, HY(RD)]). If |u(T,z)| < e~ and 6 > 1/VT,
then uw = 0.

A natural question is what decay a stationary solution to the Schrédinger equa-
tion may have. The question was asked by E. M. Landis in 1960, who conjectured
that if V € L>(R?), Au+ Vu =0 in R, and |u(z)| < C exp(—|z|'*¢) with ¢ > 0,
then u = 0. The conjecture was disproved by V. Z. Meshkov, who constructed an
example of a complex valued u and V' such that |u(z)| < exp(—|z[*/3) and proved
that there are no solution with a faster decay. A remaining question is if the Landis
conjecture holds under the assumption that V' is real valued. In spite of some recent
progress [30], this is an open problem in dimensions d > 3.

4.2. Discrete evolutions. Another twist of the uniqueness results for Schrodinger
equation was given in [21, 25, 18, 19], where uniqueness theorems are obtained for
the discrete equation. Let A4 be the usual discrete Laplacian on Z¢. We consider
the equation

(14) AU (t,n) = (AU (t,n) + V(t,n)U(t,n)),

where n € Z% and V is a bounded potential. The uniqueness results say that
a solution to the discrete Schrédinger equation which decays fast at two times is
trivial. To find the optimal decay, we consider the free evolution with V' = 0. In
dimension d = 1, there is a solution Uy(t,n) = i~"e %], (1 — 2t), where J, is
the Bessel function, and it has optimal decay at ¢ = 0 and ¢t = 1. The role of
the Gaussian is now played by the Bessel function. This fact is related to different
behavior of the heat kernels: for the continuous case the standard heat kernel
is k(1,z) = (4m)~ Y2 exp(—22/4), while for the discrete case the heat kernel is

K(1,n) = e YI,(1)] < e~} (n!2")~1, where I,, are the modified Bessel functions,

(-

1) = (i iz).
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Theorem 8. Let U(t,n) be a solution to (14), with V =0, on [0,1] x Z. Suppose
that

N
>|s;|%|<2n|) . nez\{o}.

Then U(t,n) = Ci~"e~2" ], (1 — 2t). In particular, a solution to the free discrete
Schrodinger equation cannot decay faster than J,(1) both att =0 and t = 1.

U(0,n)|+U,n

The idea of the proof is to consider the function ¢ (¢,2z) = Y>> _U(t,n)z". It
is not difficult to show that it is defined on the unit circle |z| = 1, Moreover the
decay of U(0,1) and U(1,1) shows that (0, z) and (1, z) are entire functions. The

equation (14) implies
(t,2) = D0, 2),

and (¢, z) extends to an entire function for any ¢ € [0,1]. Careful analysis of this
function and application of the Phragmén—Lindel6f theorem finishes the proof. It
would be interesting to find a real-variable, or at least more elementary, proof.

This result was generalized to special classes of time-independent potentials.
General bounded potentials were considered in [25] (in dimension d = 1) and [21]
(in arbitrary dimension). The result is as follows.

Theorem 9. Let U(t,n) € C([0,1] : £2(Z%)) be a solution to (14) on [0,1] x Z<.
Suppose that ||V ||leo < 1. There exists constant v such that if

[U(0,n)| + |U(1,n)| < Cexp(—y|n|log|n|), n e Z*\{0}.
then U = 0.

The approach in [25] follows the scheme of [16] described in the first step of the
proof of Theorem 6 in Section 4.1. We describe the details of [21]. The idea is to
make use of the following result, known in the literature as Carleman-type inequal-
ity, whose proof relies on the computation of a commutator between a symmetric
and an anti-symmetric operator. In what follows || - [|2 stands for || - || L2 ([0,1],¢2(z4))5
and || - ||so will represent the supremum norm.

Lemma 1. Let ¢ : [0,1] — R be a smooth function and v > @. There exists

Ro = Ro(d, [|¢'|loo + [|¢" |0, 7) and ¢ = c(d, [|¢'[|co + " |loc) such that, if R > Ry,
a >+yRlog R and g € C}([0,1],02(Z%)) has its support contained in the set

{(t,n) : [n/R + p(t)er| > 1}
then

\/sinh(2a/ R?) sinh(2a/VdR)||e®

Thanks to this inequality, one can deduce lower bounds for nontrivial solutions
of (14) with a general bounded potential. In order to do that, consider the following
cut-off functions

%+w(t)61|2g”2 < cfe” %+w(t)61|2(iat + Ag)gll2.

Ljz| <R-1 1,z| >2 3,te[2,3]
eR _ ’ — ’ ) 1) = ) 81 8l
®) {o,|w -r M {o, w1, P e o,

and define g(t,n) = U(t,n)0%(n)u(% + ¢(t)e1). By means of the Leibniz rule,
n 2
and carefully studying the size of the weight eclfre®el” iy the support of the
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derivatives of the cut-off functions, one can check that

V/sinh(2a/R2) sinh(2a/VaR) [l E el g, < el el (i, + Ag)glls

n 2
<[leelfteel gy + 6N (R) + 2| U |2,

where A(R (fo > r—2<inj<rt1 [U(E, n)\Q) . The fact that a needs to be larger

that ”leogR implies that for R > Ry depending only on the dimension, the first
term in the right-hand side can be absorbed in the left-hand side (one can check
that the product of sinh functions increases with R). On the other hand, if we

Vs lu(t, 0)[2 dt > 1, the norm in the left-hand side is bounded by

assume
||ea|%+tpe1|29”2 > 6904’

since g(t,0) = u(¢,0) if ¢t € [1/2—1/8,1/2+1/8], and in that the region the weight
is exactly €’*. So for R > Ry depending on ||U||2 the last term in the right-hand
side of (15) can also be absorbed and we get

1/2
/ |U(t,n)|2 > e—5a — e—chogR
0 R 2<|n\<R+1

after choosing « appropriately. This proves the following lower bound.

Theorem 10. Let U € C1([0,1] : £2(Z%)) satisfy (14). Assume that

1 1/2+1/8
| S wempdsa, [ propazt,
0 czd 1/2-1/8
and
[Vie= swp  {V(m} <1,

tel0,1],5€24
then there exists Ry = Ro(d, A) > 0 and ¢ = ¢(d) such that for R > Ry it follows
that "

/ \U(t,n)|2 > ce—chogR.
0

R— 2<\n|<R+1

We remark that this lower bound only uses the fact that the solution is nontrivial
and that the constant c in front of the term Rlog R only depends on the dimension.

Theorem 10 implies Theorem 9. The decay conditions at times ¢t =0 and t = 1
imply upper bounds for the term A(R). Indeed, monotonicity results from [25, 21]
show that

(16) 1 1E T (0) 2 0y + €718 MU ()2 2y < 00

for some fixed ~ implies [|e?I"1"°& 11U (¢)]| 4274y < 00 for all ¢ € [0,1]. Hence, if (16)
is satisfied,
)\(R) < Ce—'leogR

for a positive constant C'. Thus, by letting R tend to infinity we arrive to a con-
tradiction if «y is large enough, since the upper bound decays faster than the lower
bound, and therefore U = 0 if (16) is satisfied for v > ~9 where vy depends only on
the dimension. However, these results are not sharp. We know that the bound can



16

AINGERU FERNANDEZ-BERTOLIN AND EUGENIA MALINNIKOVA

be improved to exp(—|n|(log|n|+ u)) for some large constant u. For the free equa-
tion (V = 0), the condition p > log2 — 1 implies the uniqueness, and the question
is if for bounded potential the uniqueness result holds with the same range of p.

Further uniqueness results for solutions of discrete Schrodinger type equations,
that are inspired by the works of Escauriaza, Kenig, Ponce, and Vega on the con-
tinuous case, can be found in [1, 31, 20, 23].
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