ON THE THREE BALL THEOREM FOR SOLUTIONS
OF THE HELMHOLTZ EQUATION
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ABSTRACT. Let ux be a solution of the Helmholtz equation with the
wave number k, Aug + k*ur = 0, on (a small ball in) either R™, S™, or
H™. For a fixed point p, we define M., (r) = maxgg p)<r |ur(z)]. The
following three ball inequality

My, (2r) < C(k,r, @) My, (1) M, (47)' =

is well known, it holds for some o € (0,1) and C(k, r, «) > 0 independent
of ux. We show that the constant C(k,r, «) grows exponentially in
k (when r is fixed and small). We also compare our result with the
increased stability for solutions of the Cauchy problem for the Helmholtz
equation on Riemannian manifolds.

1. INTRODUCTION

In the present work we study constants in the three ball inequality for
solutions of the Helmholtz equation. We begin by recalling Hadamard’s
celebrated three circle theorem. Let f be a holomorphic function in the disk
Dr ={z € C: |z| < R}. Then its maximum function

My(r) = max|f(z)]
|z[<r

z|
satisfies the convexity condition
(1.1) My (rgry ™) < My(ro)*My(r1)' ™2,

for any 79,71 < R and o € (0,1). The proof of (1.1) is based on the fact
that log | f| is a subharmonic function. Note that by the maximum principle
(1.1) also holds when the maximum is taken over circles.

Surprisingly, Hadamard’s theorem generalizes to other classes of func-
tions, such as solutions of second order elliptic equations and their gradi-
ents. We refer the reader to the article [11] of Landis and to the survey [1].
Three spheres theorems for the gradients of harmonic functions and, more
generally, harmonic differential forms can be found in [15]. The three ball
theorem for solutions of the Helmholtz equation on Riemannian manifolds
was studied in [16]. This has various applications, for example it was one of
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the tools used to estimate the Hausdorff measure of the nodal sets of Laplace
eigenfunctions, see [12, 13].
We consider the Helmholtz equation

(1.2) Aprug + k2uk =0

on a domain D in a Riemannian manifold (M, g). For D = M and M being a
closed manifold without boundary, solutions of (1.2) are L?-eigenfunctions of
the Laplacian. One of the important facts for analysis on closed manifolds is
the existence of an orthonormal basis for L? (M) consisting of eigenfunctions
of the Laplacian. The classical example is the Fourier basis on the circle
S'. Such an orthonormal basis can be used to solve the heat, wave, and
Schrodinger equations on closed manifolds, under certain conditions.

We study properties of functions that satisfy the Helmholtz equation on
some geodesic ball in the manifold. Fix a point p € M and denote by B(p,r)
the geodesic ball of radius r centered at p. Then for a function u we define

M, (r) = Lo |u(z)].
The following doubling inequality holds for Laplace eigenfunctions on a
closed manifold

(1.3) My, (2r) < Cre® My, (r),

where C and Cy are constants only depending on the Riemannian manifold
(M,g). Inequality (1.3) was first shown by Donnelly and Fefferman in [5].
Later Mangoubi [16, Theorem 3.2] gave a new proof by showing the stronger
local inequality

(1.4) M, (3r) < C3eC*r M, (2r)* My, (87)'™*,

for small r, some fixed € (0,1), and constants C3 and Cy only depend-
ing on the curvature. Further results on the propagation of smallness for
eigenfunctions were obtained in [14]. In this article we show that (1.4) is
sharp in the following sense: The coefficient C3e“4*" in (1.4) cannot be re-
placed by a function growing subexponentially in kr as k grows. This is
done by constructing special families of solutions of the Helmholtz equation
on Euclidean spaces, hyperbolic spaces, and the standard spheres.

We also compare (1.4) with the increased stability for solutions of the
Cauchy problem for the Helmholtz equation studied in [8, 10, 3]. Roughly
speaking, the idea is that one can estimate the solution in the interior of
some convex domain from an a priori bound and an estimate of the Cauchy
data on some part of the boundary. Moreover, the estimate does not depend
on k. For solutions of the Helmholtz equation in a geodesic ball B (p, R) we
prove for r < Ry < R that

(1.5) / uj dvol < C(r, Rl)/ uj dvol,
B(p,T‘) B(szl)\B(pvr)

and call (1.5) the reverse three ball inequality. A more general result can be
found in [2, Section 1.3], where delicate questions regarding localization of

k
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solutions of the Schrédinger equation are considered. We deduce (1.5) from
a similar estimate for the H' norms where the constant does not depend on
k. The H' estimate is proved by a Carleman-type inequality, that can be
found in [9, 3.

The structure of the paper is as follows. We prove the sharpness of the
three ball inequality (1.4) in Section 2. In Section 2.1 we present the ar-
gument for the Euclidean space, while the arguments for the hyperbolic
space and the sphere are given in Section 2.2. We prove inequality (1.5) in
Section 3. Finally, we give a simple estimate for the location of the first
positive zero of the Bessel functions, and collect some comparison theorems
for solutions of the Sturm—Liouville equations in Appendix.

Acknowledgements. The authors are very grateful to the anonymous ref-
eree for useful comments. Their suggestions, in particular, substantially
improved the presentation in Section 3.

2. THE THREE BALL INEQUALITY

2.1. Bessel functions and the Helmholtz equation in R™. Let .J; de-
note the Bessel function of the first kind. We have collected some facts
about the Bessel functions in Appendix A. If Y, is an eigenfunction of the
Laplace operator on the sphere S*~! with eigenvalue m(m + n — 2) then

we(r,0) = 12 a1 (k1) Yo (0)

solves the Helmholtz equation (1.2). Moreover, any solution of (1.2) in R™
(or in the unit ball) can be decomposed into a series of such solutions.

In order to study the constant in the three ball inequality (1.4) that
involves the maximum function, we analyze the behavior of the Bessel func-
tions. From now on we assume that n = 2 for simplicity. Our results can
be easily extended to all dimensions n > 2.

Lemma 2.1. Let 0 <y < 0 < 1 and set B = /1 — 6. Then there exists a
constant C, only depending on v and 8, such that for any positive number

m we have
Bm

(2.1) Im(ym) < C (%) I (0m).

Proof. The strategy is to apply the Sturm comparison theorem, see Theorem
B.2. We apply the theorem to the Bessel function J,, solving the Bessel
equation
/ $2 — m2
(ZL‘J;,Z (ac)) + TJm () =0,
and a solution of the Euler equation

2 _ 1) m2
(2.2) (zy/ (2)) + u@/ (z) =0.

Let y be the solution of (2.2) satisfying the initial conditions
y(ym) = Jm(ym) and 3 (ym) = J;,(ym).
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We know that J,, is positive and increasing on [0,m]|. The latter can be
verified by using the second derivative test and inserting the argument of
the first maximum of .J,,, into the equation

220 (2) + xJ),(z) + (22 — m?) I (z) = 0.
Moreover, notice that for x € [ym, dm| we have
22 —m? < (6% —1)m

Hence all the conditions in the comparison theorem are satisfied and we
conclude that y (z) < J, () on [ym, dm].
Any solution of the Euler equation (2.2) is on the form

y(x) = 2™ + con™P.
Using that
Jm(ym) =y (ym) > 0 and J;,(ym) =y’ (ym) > 0,
we conclude that ¢; > 0 and |ca| < 1y m?mB  Thus
Tm(ym) = c1(ym)™ + ca(ym) ™" < 2¢1(ym)™ B

and
y(6m) > ger (6m)™,
where g = q(v,0) > 0. It follows that

T (ym) < 2¢1 (vym)™ < Z (%)mﬁy (o6m) < z (%)mﬁ Im (0m) .

We can now prove the main result of this section.

Theorem 2.2. Assume that there is an o € (0,1) and a constant C(k,r, o)
such that for any solution uy of the Helmholtz equation (1.2) the following
three ball inequality holds

(2.3) M,, (2r) < C(k,r, a) My, (r)*M,, (4r)' .

Then C(k,r, ) grows at least exponentially in kr. More precisely, C (k,r,a) >
cekT where ¢ and d are absolute constants.

Proof. Consider solutions of the Helmholtz equation on the form
ug(r,0) = Jpm(kr) sin(mb).
The maximal function then simplifies to

My, (r) = nggzr | i ()]
We now use the fact that for m > 0 the maximum of J,,,(z) is attained in
the interval (m, m (14 ¢ (m))), where £ (m) — 0 as m — oo. This is a well
known result on the asymptotic of the first zero of the Bessel functions, for
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the convenience of the reader we include a simple proof in Appendix A. We
choose myg such that € (m) < 1/3 when m > mg. Assume first that

kr > my = max{4,2m/3}.
Then given r we can find m > mg such that
6kr/5 < m < 3kr/2.
This implies kr < 5m/6 and 2kr > 4/3m. Then M,, (4r) = M,

we can reduce (2.3) to
Muk(2r)>a
—r——=) < C(k,r ).
< My, (r)
Set v =5/6 and § = HT"Y = 1. Applying Lemma 2.1 together with
My, (2r) > Jpm(m) > Jp(0m)
and M, (1) < Jpm(ym) we conclude that
My, (2r)\“
k > Uk > adm

for some positive constant d that can be computed. Finally, since m > 6kr/5
we get the required estimate when r > k~tm;.

Now for r < k~'m; we consider the solution wuy(r,6) = Jo(kr). Then
M,, (r) = Jo(0) since

(2r) and

k

Jo(0) = max |Jo(x)],
and we conclude that C(k,r,«) > 1 for any r > 0. Choosing ¢ < e~ we
have for all » > 0 that

C(k,r, a) > cedkr, O

2.2. Solutions of the Helmholtz equation on the sphere and hyper-
bolic space. In this section we repeat the argument of the sharpness of
the three ball inequality on the hyperbolic space and sphere. We show in
particular that assumptions on the sign of the curvature do not lead to bet-
ter behavior of the constant in the three ball inequality. Again, we use the
spherical symmetry of the spaces and separation of variables to construct a
solution of (1.2) that is the product of a radial and a spherical factor. On
the sphere the radial part is given by Legendre polynomials. For the hyper-
bolic space the radial part is also explicitly known, see [4, p. 4222 eq. (2.26)].
Once again, in our argument we only use the differential equation for the
radial part.

We define
%, when K > 0
(2.4) sing (r) =<, when K =0 .
sinh(v—FKr) when K < 0

VK
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Furthermore, we use the associated functions cosg (r) = (sing (7)), cotx (r) =

e (r) —L__ Then the Laplacian of a simply connected n-
Kx(T) cot g (1)
dimensional Riemannian manifold (M, g) with constant sectional curvature

K is given in polar coordinates by
d? d 1

Ay = — — 1) cot — 4+ ———Agn-1.
M dr2+(n )COK(T)dr+sin%((r) s

, and tang (r) =

In this section we work in dimension two. Assume that uy (r,0) = R (r) ©(0)
is a solution of the Helmholtz equation. Then R (r) satisfies the equation

(2.5) sin% (r) (RU (r) + (zzf) (r) & (r) + kZ) _ Agi©(0) m2.

Let k = K/k?* and let Ly ., (p) be the solution of the differential equation

© ()

(2.6) sin? (p) L1 (p) + sing (p) cosx (p) L, (p)
+ (Sini (p) — m2) Lim (p) =0,

where Ly, is well defined at p = 0 and positive on some interval (0,¢).
Then for m > 0 we have Ly, ,, (0) = 0. Note that when K = 0 this equation
becomes the Bessel equation. Setting R (1) = Ly m (k) we get a solution to
(2.5). Then (2.6) can be rewritten in the Sturm-Liouville form as

2 2

@.7) (sime (0) Lo (0)) + =5, 705

We begin by estimating the maximum point of L, ,, from below. Let
R {oo, k<0
K — .

ﬁ, k>0

Note that for p < R,; we have that sin, (p) is increasing, or equivalently that
cosy (p) > 0.

Ly (p) = 0.

Proposition 2.3. Let 0 < p] < p5 < --- < R, be the points where L, m,
attains local mazimums and minimums before Ry,. Then |Lim (pf)| is a
decreasing sequence in i. Moreover, the first local mazximum pi satisfies
g > sing L (m).

Proof. At p} we have L., (pt) =0 and (2.7) implies that

K,m
sing (1) Lyt m (1) + (sin (p}) —m®) Ly (p7) = 0.
By the second derivative test it is not possible to have a maximum before
sin_ ! (m), implying the lower bound for the first local extremum.
The remaining part of the proposition follows from Sonin-Pélya oscillation

theorem, see Theorem B.3. The conditions in the oscillation theorem are
satisfied on the interval (sin;' (m), R,) since sin, (p) > 0,

(sin? (p) — m?)/ sin, (p) £ 0,
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and
-2 2\ /
, sin -m _
<sm,€ (p) %) = 2cos, (p) sin, (p) > 0.
Thus the sequence |Ly m(pf)| is decreasing. O

Remark 2.4. For m = 0, by analyzing the differential equation (2.6), we see
that L) ((0) = 0. Then the proof of Proposition 2.3 implies that L o(p)
satisfies Ly 0(0) > |Lyo(p)| for p > 0.

Now our aim is to prove an analog of Lemma 2.1. The next four results
show how we can control the ratio of two values of Ly p,.

Lemma 2.5. Let py € (0, Ry) and é € (0, 1) satisfy the inequality sin,(p2) <
dm. Then for py < ps and B = /1 — 62 we have the bound

Lem(ps) o 1 [(tanmz/z))ﬁm B (tanfi(m/m)—ﬁm] |

Lim(p1) — 2 tan,(p1/2) tan,(p1/2)
Proof. We compare the function L, ,, to a solution of the equation
2 52 _ 1)
2. (o) (o)) = TNy .
(2.8) (sing(p)y (p))" + S (7) y(p) =0

By the assumption we have
sin?(p) —m? < (62 — 1)m? = —3*m?

K

on the interval [p1, p2]. Let y be the solution to (2.8) that satisfies the initial
conditions

Y(p1) = Lum(p1) and y'(p1) = Ly, ,(p1)-

Then the comparison theorem implies that Ly, (p2) > y(p2).
The explicit solution to (2.8) is given by

y(p) = c1 tan™ (p/2) + ca tan "™ (p/2).

The first maximum p} of L, ,, satisfies sin,(p]) > m implying that ps < pJ.
Therefore Ly m(p1) > 0 and Ly ,,,(p1) > 0. Thus we have the inequality

—c1 tan??™(p1/2) < ¢ < ¢ tanP™(py/2),

since (tany (p/2))" > 0. We conclude that ¢; > 0 and similarly to Lemma 2.1
we get

Lian(p2) > y(p2) > e1(tan™ (pa/2) — tanZ’™ (p1/2) tan; ™ (p2/2)).

The estimate of ¢y from below implies that

Lim(p1) = y(p1) < 21 tan™(p1/2).

Combining the last two inequalities gives the result. O
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Corollary 2.6. Suppose that K > 0 and that p1 < p2 < min{R,,md} for
some 6 € (0,1). For B =+/1— 0% we have the estimate

9) Lem(p2) 1 (pa)ﬁm_ (m)‘ﬂm

Lim(p1) — 2 |\ ;1 p1
Proof. We note that sing(p2) < p2 < md. Applying Lemma 2.5 and using
the elementary inequality btanxz > tanbz for b € (0,1), the result follows

since
tan(p2/2) _ tan(vkpa/2) _ p2 0
tang(p1/2)  tan(ykp1/2) ~ p1

Corollary 2.7. Let K < 0 and suppose that

p1 < p2 < min{R|H|,2m5/3}
for some § € (0,1). Then for f =+/1— 062 and A = sin, (p2) /p2 we have

ez | () - ()7

1
Ln,m(pl) -2
Proof. Since \/|k|p < m/2 and sinh is convex we have
sing (p2) < 2pg sinh (7/2) /7 < 3p2/2 < md.

(2.10)

Applying Lemma 2.5 together with

p2v/—Fk
sinh (p2v/—k) @

(log(tanhx))" > for x < pav/—kK/2,

gives (2.10), since

tang(p2/2) _ tanh(/[sloa/2) _ po -
tang(p1/2)  tanh(y/|k]p1/2) — Ap1
We want to estimate the ratio of the values of L, ,, at two points py >

p1 > sin_1(m). In contrast with the Bessel functions, we do not locate the
maximum precisely.

Lemma 2.8. Suppose that 0 < p1 < R, and sing(p1) > {m, where § > 1.
There is an absolute constant C > 0 such that

ma, [ L), C
max,<p, |Li.m ()] (€ —1m
Proof. Let p] be the first local maximum of L ,,. By Proposition 2.3 if
p1 > pi then the left-hand side of (2.11) is one and the statement becomes
trivial.

The rest of the proof relies on the comparison of L, ,, and a solution of
the equation

(2.11)

/ m2(§2 -1)

(212) (Sinﬁ(p)y/) + Sinn(p) Y= 0
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on the interval (p1,00). Solutions to (2.12) are of the form

y(p) = c1 cos(ylog(tan,(p/2))) + c2 sin(y log(tan,(p/2))),

where 72 = ¢2 — 1. Let d = ~ylog(tan(p1/2)) and choose a solution y of
(2.12) on the form

y(p) = Cr cos(ylog(tans(p/2)) — d) + Cysin(ylog(tans(p/2)) — d),

with initial data y(p1) = Lkxm(p1) and y'(p1) = Ly, ,,,(p1). This gives the
values

Ly m(p1) sing(p1)

Ci=Lgm(p1), Co=
Y

Applying the comparison theorem, we get

Ly m(p2) < Cy cos(ylog(tank(p2/2)) — d) + Co sin(ylog(tan,(p2/2)) — d).

Since sin and cos are bounded by 1, we estimate C2/ Ly m(p1) from above
to prove (2.11). In order to estimate Cy, we see that the assumption p; < pj
implies Ly (p) > 0 and Lj ,,(p) > 0 on the interval (0, p1). Equation (2.7)

shows that L}, (p) < 0 when p € (po, p1), where pg = sin_!(m). Then the
Taylor formula gives

Ln,m(PO) - Ln,m(pl) +(p1 — PO)L;,m(Pl) < 0.
Consequently,

Ln,m(pl) - Ln,m(p(]) < Lli,m(pl)

L p1) < .
wm (1) P1 = po P1 — pPo

For K > 0 the inequality
T — o > sinxy —sinxg when x1 > xg
implies that p; — po > (£ — 1)m. For K < 0, we note that
x1 —csinhx; > xg — csinhxzg when =z > xg,

if coshz; < ¢~'. Using the assumption p; < R\, we conclude that p1 —po >
c(& — 1)m, where ¢ = (cosh7/2)~1. Finally, we obtain

C
< 2 2 < € —1m /"’
mas Ly (p)] < VO +C3 < L) <1 e 1>m) .

Now we are ready to prove that the coefficient in the three ball theorem
grows exponentially in rk if we restrict ourselves to balls with sufficiently
small radius 7.

Theorem 2.9. Let (M,g) be either a hyperbolic plane or a sphere and
denote its curvature by K. Suppose that for some o € (0,1) there exists a
constant Cy(k,r, K) such that for any solution uy, to the Helmholtz equation
(1.2) the following inequality holds

M, (2r) < Co(k, 7, K)M,, (r)* M,, (47)""*, 0<r<

e
8v/IK|
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Then
(2.13) Colk,r, K) > gec2okr,
where c¢1 and co only depend on K.
Proof. Consider the family of functions
Uk, (1, 0) = Ly m(kr) sin (m#) ,

where m is a non-negative integer. By construction, uy, ,, solves the Helmholtz
equation. Thus for any m we have the inequality

s (555 (o)

where

1
>
-2

(2.14) (g7 —q="™).

Min(p) = max L (2.
z<p

Note that choosing m = 0 gives Cy(k, 7, K) > 1 by Remark 2.4. Thus if we

assume that kr < Cy for some constant C7, we may choose ¢o and ¢ small

enough such that the inequality holds.

Assume first that K < 0so that (M, g) is the hyperbolic plane. If kr > C}
we choose a positive integer m such that 10m < 18kr < 11m. We apply
(2.10) with py = kr and py = pkr < 2kr, where p = 19/17. Then py <
2/3md with 6 < 1. We obtain

My (2kr) _ Lym(p2) (m)ﬁm B ( P2 >_ﬁm
M (kr) — Lim(p1) Ap1 Apr ’
where 8 = v/1 — 2 and
A = sing (p2) /p2 < sing (2kr) /(2kr) < 4sinh(7/4)/m < 10/9.
Therefore g = /A > 1 is an absolute constant and we have
M, (2kr) S 1
My (kr) — 2
Thus there are ¢; > 0 and ¢ > 0 such that
M., (2kr) > ¢q exp(cam) My, (kr).
On the other hand, we have 2kr > {m for £ = 10/9. Applying (2.11) we get
Mm(4r) — maxpgzlkr ‘Ll‘iym(p)’ S 1 + C/m S CO,
M (2r)  maxy<okr |Lim(p)]
where Cp is an absolute constant. Note also that m = kr. Then (2.13)
follows for negative curvature.

Assume now that K > 0 so that (M,g) is a sphere. If kr > Cy we
choose m to be a positive integer such that 10m < 12kr < 11m. We first let
p1 = kr and py = 13kr/12 and apply (2.9) with § = 143/144. Thus (2.14)
follows whenever kr > C;. Using (2.11) with p; = 2kr we need to check
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that 2p; > {mm for some & > 1. Note that 2p; = 4kr > 10/3m and choose
E< %. Then (2.13) follows for positive curvature. O

3. THE REVERSE THREE BALL INEQUALITY

The question of stability of the solution to the Cauchy problem for the
Helmholtz equation and the dependence of the estimates on the wave num-
ber k was studied by many authors, see e.g. [8, 19, 10, 3]. We include a
special case of the results adapted to the case of Riemannian manifolds to
demonstrate the difference between the usual three ball theorem and the
reverse one.

Let (M, g) be a Riemannian manifold with sectional curvature satisfying

kg(X, X) <sec(X,X) < Kg(X, X).

We denote by grad,, and Aj; the gradient and Laplace operators on func-
tions on M. Let B be a geodesic ball with diameter strictly less than the
injectivity radius of (M, g). Additionally, in the case that K > 0 we assume
that the diameter of B is strictly less than NS

Theorem 3.1. Let u;, solve the Helmholtz equation Aypuy + k2up = 0 in
B = B(p,R) and let r < Ry < R. There exists C = C(r, R1) such that

(3.1) / uj dvol < C(r, Rl)/ uj dvol,
B(p,T) B(p,Rl)\B(p,’l‘)

The result is very closed to a particular case of the result in [3], we sketch
the proof for the convenience of the reader.

We say that a function ¢ : B — R is strictly convex if its Hessian is
positive definite. We choose a point = such that x ¢ B(p,R) but R +

dist(z, p) is strictly less than the injectivity radius and than 2% for the

case K > 0, and consider ¢(y) = dist(x,y)?. This function is smooth on B
since the metric on the Riemannian manifold is assumed to be smooth and
x ¢ B while B is contained in the ball of the injectivity radius around =z.
Moreover, Hess(¢) is (uniformly) positive definite on B and ¢ has no critical
points, see [18, Theorem 6.4.8] and the preceding discussions. By repeating
the computations of [3, Lemma 1|, where it is also pointed out that the
result holds on Riemannian manifolds, we obtain the following point-wise
inequality. Let w € C?(B) and let v = e'®w, then

2 (Apw+k*w)? > 2div(bgrad,; v+a)+4t(Hessys (¢) grad,, v, grady; v) s
+ 4¢3 (Hess s ¢ grad; ¢, grad,, ¢)arv?® + t(grad; Ay, grad y, v) o,
where b = —tvAps¢ — 2t{grad,; v, grad,,; ) and

a = t(| grad,, v\?w — (k2 + t2| grad,, (bﬁw)vQ) grad, ¢.
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Lemma 3.2. Let (M,g) and B be as above. Then there exists a constant
co > 0 such that for any function w € C2(B) and k > 0 the following
inequality holds

(3.2) / |Aprw + k*w|? dvol > co/ lw|? + | grad,; w|3; dvol.
B B

Proof. We repeat the argument given in [3, Corollary 1]. Integrating the last
inequality over a ball B and taking into account that functions a and b have
compact supports in B, we conclude that the divergence term disappears.
For the next two terms, which contain the Hessian of ¢, we use the convexity
inequality

(Hessys ¢ gradyy f,grady; f)u > el gradyy fI3y

and the computation
grad,; v = e'®(grad,; w + tw grad,; ¢).
Finally, the last term is estimated as
|t(grad,; Ay, grad,, v) o] < et| grady, v|3; + e 1t grad,y; Ayo|3,0°.

Combining these inequalities, we get
/ |Aprw + k2w|2e?? dvol > ¢ / <t3\w|262t¢ +t gradw|262t¢) dvol,
B B

when t > tg. The powerful feature of the last inequality is that c¢; and %,
do not depend on k (but depend on ¢ which we fix). Finally, we fix some
t > tp and let M = maxp e?? and m = ming e??. Then (3.2) holds with
co = cymmin{t3, t} M1, O

Suppose now that uy is a solution of the Helmholtz equation (1.2) in a ball
B9p, R) that satisfies the conditions in Theorem 3.1. We apply inequality
(3.2) to w = ugx, where x € C3(B) is compactly supported on B and equals
to one on a smaller ball By CC B. This gives the inequality

1
/ lug | + | grad ug|? dvol < — lup Aprx + 2 grad uy, - grad x|? dvol.
B Co Jp\B,

The last inequality implies that for any r < R such that Bg = B(x, R)
and B, = B(x,r) are geodesic balls satisfying the conditions in Lemma 3.2,
there is a constant Ca(r, R) such that

(3.3) / lug|? + | grad ug | dvol <

T

Cy(r, R) / lug|? + | grad ug |* dvol.
BR\BT‘

Inequality (3.3) shows that if u} + | grad ug|? is small on the annulus Bg\ By,
then it is small on the whole ball Bg. For the Euclidean space an alternative
proof can be obtained by decomposing a solution uy into series of products
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of Bessel functions and spherical harmonics. From this, one can deduce (3.3)
from the Debye asymptotic of the Bessel functions.

To compare with the previous section and finish the proof Theorem 3.1,
we can also use Caccioppoli’s inequality to control the Sobolev norm of uy
by its L%-norm.

Lemma 3.3 (Caccioppoli’s inequality). Let ¢ > 0 and let R = R(M) be
small enough. Furthermore, let ¢ < r < R — 2. We denote

Q=DB(z,R)\ B(z,r) and
Qp =B(z,R+¢)\ B(z,r—¢), Q_=DB(z,R—¢)\B(x,r+e¢).

Assume that up € C? (Q) and Apuy + k>ug, = 0 in Q4. Then there exists a
constant C = C(M) such that

C
kg/ uj dvol — 2/ui dvolg/ lgrad ug|? dvol
e"Ja Q

< (k:2 + 502) / uj dvol.
Q4

Proof. There exists a smooth function ¢ with compact support in €24 that
satisfy o1 =1 on Q and |grad ¢ | < g and |App4] < E% Then, using the
divergence theorem, we have

kz/ g0+uidvol: —/ wrurAprug dvol
Qy Q,
= / (grad ug, grad (¢4 ug)) dvol
Q4

1
:/ o |grad uy,|? dvol—/ uz Aoy dvol.
Qy 2 Ja,

Hence

/ lgrad ug|* dvol < (k? + Ce7?) / u? dvol.

Q Q4
On the other hand, choosing a similar function ¢_ € C§°(€2) such that
p_ =1 on Q_, we conclude that

grad ug|? dvol > k> u? — Ce 2 [ w2 dvol. O
k k
Q Q

Finally, we go back to the inequality (3.3), and apply the Caccioppoli
inequality. Rename Ry = R+ ¢ and r; = r — . This gives the following
estimate of the L?-norm of a solution to the Helmholtz equation by its L2
norm on an annulus

k2/ ug dvol < / | grad ug | dvol + 05_2/ uj dvol
B B, B,

1

< (k* + Cez)/

ut dvol + Ce™2 / uj dvol,
Br,\Br,

By,



14 S. M. BERGE AND E. MALINNIKOVA

for any 71 < R;. Then for k > Ce™! the inequality (1.5) follows. For
k < Ce!, we use (3.3) and the Caccioppoli inequality again, to see that

/ lug|? dvol < C(r, R)(k* + Ce?) / |ug|? dvol.
r BRl \BTl

Thus, since k < Ce™!, the inequality (1.5) follows also for that case. This
conclude the proof of Theorem 3.1.

APPENDIX A. THE FIRST POSITIVE ZERO OF THE BESSEL FUNCTION

Let [ be a non-negative half-integer, and let I' denotes the gamma func-
tion. The Bessel function J; is a solution to the second order ODE

(A1) P2 (p) + pJi (p) + (0> = 17) Ji (p) = 0,
which is bounded at the origin and normalized by the condition

lim p~'Jy(p) = 27T (1 + 1)~ %
p—0

For alternative definitions and many useful asymptotic formulas for the
Bessel functions we refer the reader to [17].

It is well known that the first positive zero of J;, usually denoted by
ji, satisfies j; =< [ 4+ cl'/3 as | — oo. We already explained in the proof
of Lemma 2.1 that j; > [ and we give a simple proof of the inequality
41 < 1+ cl'/3. This will be done by comparing the Bessel equation to the
following equation

(A.2) P*y!' (p) + pyi(p) + (aip* — 1/D)yi(p) = 0

on the interval p € [l +11/3, +00).
Suppose that a; < 1 satisfies

(A.3) I+ —a?) > 12 —1/4.

Then the Sturm-Picone comparison theorem, see Theorem B.1, implies that
between any two zeros of y; there is a zero of J;. It is easy to check that
yi1(p) = p~ /% cos(ayp) solves (A.2) and has roots at (7/2+ kx)/a; for k € Z.
We choose a; = I~1/3. Then (A.3) holds for I large enough. Hence J; has a
root on the interval [l +1Y/3, 1+ 1/3 4+ 7l'/3] and j; <1+ (7 + 1)I/3.

APPENDIX B. COMPARISON THEOREMS FOR STURM-LIOUVILLE
EQUATIONS

Classical Sturm-Liouville theory is concerned with second order differen-
tial equations on the form

(p(2)y'(2))" + q(x)y(z) = 0 on [a, b].
Special cases of Sturm-Liouville equations are the radial solutions to the
Helmholtz equation, see (2.5). To estimate solutions to these radial equa-
tions in Section 2.2, we compare them to some more simple Sturm-Liouville
equations. To do this we use the following classical theorems:
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Theorem B.1 (Sturm-Picone Comparison Theorem, [7, Theorem B|). Let
y1 and yo be non-zero solutions to

(p1(@)yy () + q1(z)y1(x) =0,
(p2(x)ys(2)) + g2(x)y2(z) = 0,

on the interval [a,b]. Assume that 0 < p2 < p1 and q1 < g2, and let z; and
zo be two consecutive zeros of y1. Then either yo has a zero in the interval

(21,22), or y1 = yo.

Theorem B.2 (Sturm Comparison Theorem, [6, Chapter 13.7]). Let y; > 0
on (a,c) and ya be non-zero solutions to

(p(2)yi(z)) + q1(2)y1 (2) = 0,
(p(z)ys(2)) + g2(2)ya(z) = 0,

on the interval (a,c) C [a,b]. Assume that p > 0 and g2 < q1 on [a,b].
Furthermore, assume that

yi(a) = y2(a) = 0 and y1(a) = y5(a) > 0.
Then yi(x) < ya(z) for all x € (a,c).

It is also important for us to estimate the maximum of some solutions to
the Helmholtz equation. To limit the search, we use the following theorem:

Theorem B.3 (Sonin-Pélya Oscillation Theorem, [6, Chapter 13.7]). Lety
be a solution of the differential equation

(p(2)y'(2))" + q(2)y(z) = 0,
where p and q are continuously differentiable functions on [a,b]. Suppose that

p>0,q#0 and (pg) > 0 on (a,b). Then the successive local mazimums
of ly(z)| form a decreasing sequence.
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