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EULER CHARACTERISTICS OF BRILL-NOETHER VARIETIES

MELODY CHAN AND NATHAN PFLUEGER

Abstract. We prove an enumerative formula for the algebraic Euler char-
acteristic of Brill-Noether varieties, parametrizing degree d and rank r linear
series on a general genus g curve, with ramification profiles specified at up
to two general points. Up to sign, this Euler characteristic is the number of
standard set-valued tableaux of a certain skew shape with g labels. We use a
flat degeneration via the Eisenbud-Harris theory of limit linear series, relying
on moduli-theoretic advances of Osserman and Murray-Osserman; the count
of set-valued tableaux is an explicit enumeration of strata of this degeneration.

1. Introduction

Fix an algebraically closed field k of characteristic 0. Let X be a smooth, proper
curve of genus g over k, and let p, q ∈ X be distinct closed points. Throughout
the paper, r and d always denote nonnegative integers, and α = (α0, . . . ,αr) and
β = (β0, . . . ,βr) ∈ Zr+1

≥0 always denote nondecreasing sequences.

Definition 1.1. Fix r, d,α, and β as above. We write Gr,α,β
d (X, p, q) for the moduli

space of linear series of rank r and degree d over X, with ramification at least α at
p and at least β at q.

We refer to [ACGH85] for definitions and background and to [CLMPTiB18] for
more details in the setup that will be most relevant to this paper.

The celebrated Brill-Noether theorem (first stated and proved without marked
points [GH80] and later extended to curves with one or more marked points [EH83])
concerns the dimension of these varieties: if (X, p, q) is a general twice-marked
curve, then when Gr,α,β

d (X, p, q) is nonempty, its dimension is given by the Brill-
Noether number ρ (see §2.1 for the definition of ρ and Theorem 3.1 for a precise
statement of the Brill-Noether theorem for twice-marked curves). In the case ρ = 0,
there is an interesting combinatorial version of the Brill-Noether theorem for twice-
marked curves (originally due to Castelnuovo in the no-marked-points situation; see
[Tar13, §3.1] for the situation with marked points or [CLMPTiB18, Theorem 6.3]
for proofs directly in terms of tableaux): the variety Gr,α,β

d (X, p, q) is a union of
reduced points, where the number of points is equal to the number of skew standard
Young tableaux on a skew shape σ that we define below. This paper generalizes
this statement to all dimensions (that is, all values of ρ), thereby demonstrating an
intriguing connection between the geometry of Brill-Noether varieties and combina-
torial aspects of the skew shape σ. Rather than counting points in a 0-dimensional
variety, we compute the algebraic Euler characteristic.
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1514 M. CHAN AND N. PFLUEGER

Figure 1. The skew Young diagram σ(g, r, d,α,β) when g − d =
2, r = 2,α = (0, 1, 2),β = (0, 1, 1). The leftmost box in the first
row is box (0, 0).

For a proper variety G let χ(G) denote the algebraic Euler characteristic of G,
by which we mean the Euler characteristic of the structure sheaf:

χ(G) = χ(G,OG) =
∑

i

(−1)ihi(G,OG).

Our main theorem computes this Euler characteristic of Gr,α,β
d (X, p, q). To state it

requires the following definition.

Definition 1.2. Fix integers g, r, d ≥ 0 and α = (α0, . . . ,αr) and β = (β0, . . . ,βr) ∈
Zr+1
≥0 nondecreasing sequences. We let σ = σ(g, r, d,α,β) be the skew Young dia-

gram (Definition 2.2) with boxes

{(x, y) ∈ Z2 : 0 ≤ y ≤ r, −αy ≤ x < g − d+ r + βr−y}.

An example is shown in Figure 1. See §2 for preliminaries on Young diagrams
and tableaux.

Theorem 1.3. Let k be an algebraically closed field of characteristic 0, and fix
integers g, r, d ≥ 0 and α = (α0, . . . ,αr) and β = (β0, . . . ,βr) ∈ Zr+1

≥0 nondecreasing
sequences. For a general twice-pointed smooth, proper curve (X, p, q) over k of genus
g,

χ(Gr,α,β
d (X, p, q))

= (−1)g−|σ| ·#(standard set-valued tableaux on σ of content {1, . . . , g}).

Set-valued tableaux are defined precisely in Definition 2.2(2); they were first
introduced by Buch to capture the K-theory of the Grassmannian [Buc02]. In fact,
the variety is empty if and only if |σ| > g, which is consistent with the above
theorem; see Theorem 3.1.

It is intriguing that the Euler characteristic in Theorem 1.3 is (up to sign) given
by the answer to an enumerative problem. Indeed, our proof is enumerative in
nature: we consider a degeneration of the variety Gr,α,β

d (X, p, q) to a reducible
variety whose irreducible components can be enumerated with the aid of tableaux.

Independently, a determinantal formula for the Euler characteristic of twice-
pointed Brill-Noether varieties has been established by Anderson-Chen-Tarasca us-
ing degeneracy locus methods for maps of vector bundles [ACT17]. They com-
pute the K-class of the structure sheaf of the image of Gr,α,β

d (X, p, q) in the Jaco-
bian, from which the Euler characteristic may be computed. In a separate article
[CP18], we demonstrate combinatorially that the determinantal formula of [ACT17]
is equivalent to the enumerative formula of our paper; see that article for more dis-
cussion.
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EULER CHARACTERISTICS OF BRILL-NOETHER VARIETIES 1515

Our proof of Theorem 1.3 uses degenerations, limit linear series, and combina-
torics. When a curve degenerates over a suitable one-parameter base to a nodal
curve of compact type, the space of linear series on it admits a corresponding de-
generation to a space of limit linear series. That this degeneration may be taken
to be flat, under appropriate hypotheses, relies deeply on recent developments of
Osserman and Murray-Osserman [MO16,Oss14a] in the foundations of limit linear
series moduli stacks. The flatness is of course crucial for comparing Euler charac-
teristics of general and special fiber. The degeneration we use is to an elliptic chain,
an idea going back to Welters [Wel85].

The base case of the degeneration therefore involves the linear series on a twice-
pointed elliptic curve. Such spaces are examples of relative Richardson varieties
defined over the Picard variety of the elliptic curve. Relative Richardson varieties
are defined and studied in-depth in a separate article [CP19]. Briefly, they are
intersections of two Schubert varieties in the relative flag variety Fl(H) of a vector
bundle H, defined with respect to two versal flag bundles in H; versality is a
condition that generalizes transversality in every fiber.

To compute χ of the space of limit linear series on an elliptic chain, we stratify the
space and introduce pontableaux (extending [CLMPTiB18]), combinatorial objects
that encode the strata. Pontableaux are a generalization of set-valued tableaux. We
compute the Euler characteristics of the strata, together with the Möbius function
on the set of closed strata ordered by containment; what we are relying on is the
well-known fact that χ may be computed by cutting and pasting (Proposition 4.7).

Overall, our approach is aligned with and extends the work of Castorena-López-
Teixidor [CLMTiB17] and our recent joint work with López and Teixidor
[CLMPTiB18]. The latter article proves Theorem 1.3 in the special case
dimGr,α,β

d (X, p, q) = 1. Incidentally, the translation between the statements of
Theorem 1.3 and the main theorem in [CLMPTiB18] is not trivial, due to the in-
troduction of set-valued standard tableaux to this paper. We hope that the combi-
natorial understanding of the degeneration of Gr,α,β

d (X, p, q) provided in this paper

shall provide the foundation for deeper analysis of the geometry of Gr,α,β
d (X, p, q).

2. Preliminaries

2.1. Notation. We collect here some notation and definitions that will be used
throughout the paper.

(X, p, q) is a twice-marked curve of genus g.

g, r, d are nonnegative integers.

(the genus of X, and the rank and degree of the linear series in question)

α = (α0,α1, . . . ,αr) is a nondecreasing sequence of nonnegative integers.

(imposed ramification at p)

β = (β0,β1, . . . ,βr) is a nondecreasing sequence of nonnegative integers.

(imposed ramification at q)

σ = {(x, y) ∈ Z2 : 0 ≤ y ≤ r, −αy ≤ x < g − d+ r + βr−y}.
(the skew shape associated to g, r, d,α,β; see Remark 2.3)
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1516 M. CHAN AND N. PFLUEGER

ρ = g − (r + 1)(g − d+ r)−
r∑

i=0

αi −
r∑

i=0

βi.

(the Brill-Noether number)

ρ̂ = g − |σ|

= g −
r∑

y=0

max(0,αy + βr−y + (g − d+ r)).

(a test for nonemptiness of Gr,α,β
d (X, p, q); see Theorem 3.1(1))

Note that ρ ≥ ρ̂ with equality if and only if αy + βr−y ≥ −(g − d+ r) for all y.
In particular, when g − d+ r ≥ 0, it is always the case that ρ = ρ̂.

The curve X will sometimes be a smooth curve of genus g, and at other times it
will be a chain of g elliptic curves. We will specify which is meant in each context.

The notation Gr,α,β
d (X, p, q) will be used to refer either to the usual space of limit

linear series with imposed ramification (when X is smooth) or to the Eisenbud-
Harris space of limit linear series (see Definition 2.1).

We will sometimes define other ramification sequences α1,α2, . . . ,αg and β1,β2,
. . . ,βg (e.g. in Definition 2.1), which should not be confused with the individual
elements αi,βi of the original ramification sequences α,β. In this situation we will
typically require that α1 = α and βg = β.

Finally, we warn the reader of a mild abuse of notation in §4.1: we will use
the symbols ρ1, ρ2, . . . , ρn to denote sequences of integers (whose elements are ρni ),
which are not related to the Brill-Noether number ρ (with no subscripts or super-
scripts).

2.2. Limit linear series. We recall some preliminaries on the theory of Eisenbud-
Harris limit linear series [EH86], following [CLMPTiB18]. This theory applies to
all reduced, nodal curves of compact type, but we describe here only the case
of elliptic chains. A twice-marked elliptic chain (X, p, q) of genus g is a proper,
reduced, nodal curve X obtained by taking twice-marked genus 1 curves (E1, p =
p1, q1), . . . , (Eg, pg, qg = q) and gluing qi to pi+1 nodally. We say that (X, p, q) is
generic if pi − qi is not torsion in Pic0(Ei).

Definition 2.1. Let (X, p, q) be a twice-marked elliptic chain. The Eisenbud-
Harris scheme of limit linear series Gr,α,β

d (X, p, q) is the subscheme of
∏g

i=1 G
r
d(Ei)

obtained as a union

⋃ g∏

i=1

Gr,αi,βi

d (Ei, pi, qi).

The union above ranges over choices of ramification profiles (αi,βi)gi=1 with α1 = α
and βg = β, such that

βi
j + αi+1

r−j ≥ d− r,

for each j = 0, . . . , r and each i = 1, . . . , g − 1.

The k-points of the scheme Gr,α,β
d (E, p, q) correspond to isomorphism classes

of limit linear series on the elliptic chain (X, p, q). A limit linear series may be
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EULER CHARACTERISTICS OF BRILL-NOETHER VARIETIES 1517

described as a g-tuple (L1, L2, . . . , Lg), where Li is a linear series on the elliptic
curve Ei, called the Ei-aspect. A limit linear series is called refined if, denoting the
ramification sequence of the Ei-aspect at pi by αi and at qi by βi, the equation

βi
j + αi+1

r−j = d− r

holds for all 1 ≤ i ≤ g − 1 and 0 ≤ j ≤ r. A limit linear series is called coarse if it
is not refined.

2.3. Set-valued tableaux. Fix the partial order ≼ on Z2 given by (x, y) ≼ (x′, y′)
if x ≤ x′ and y ≤ y′.

Definition 2.2.

(1) A skew Young diagram is a finite subset σ ⊂ Z2 that is closed under taking
intervals. In other words, σ has the property that if (x, y) and (x′, y′) ∈ σ
with (x, y) ≼ (x′, y′), then

{(x′′, y′′) : (x, y) ≼ (x′′, y′′) ≼ (x′, y′)} ⊆ σ.

(2) A skew Young diagram is called a Young diagram if σ has a unique minimal
element.

Skew Young diagrams are sometimes also called skew shapes, and skew Young
diagrams having a unique minimal element will sometimes be called straight shapes
for emphasis. In accordance with the English notation for Young diagrams, we will
draw the points of Z2 arranged with x-coordinate increasing from left to right and
y-coordinate increasing from top to bottom, e.g.

(0, 0) (1, 0) · · ·
(0, 1) (1, 1)
...

Furthermore, we will draw and refer to the members of σ as boxes, and we let |σ|
denote the number of boxes in σ. We do not require that σ be connected.

Remark 2.3. Let g, r, d,α,β, and σ be as in §2.1. It follows from α,β being nonde-
creasing that σ is indeed a skew shape. The number of boxes is

|σ| =
r∑

y=0

max (0,αy + βr−y + (g−d+r)) .

Definition 2.4. A tableau of shape σ is an assignment T of a positive integer,
called a label, to each box of σ.

(1) A tableau T of shape σ is semistandard if the rows of σ are weakly increasing
from left to right and the columns of σ are strictly increasing from top to
bottom.

(2) A tableau T of shape σ is standard if it is semistandard and furthermore
each integer 1, . . . , |σ| occurs exactly once as a label.

Definition 2.5 ([Buc02]). A set-valued tableau of shape σ is an assignment of a
nonempty finite set of positive integers to each box of σ.
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1518 M. CHAN AND N. PFLUEGER

Given sets S, T ⊆ Z>0, we write S < T if max(S) < min(T ), and we write S ≤ T
if max(S) ≤ min(T ). Then we extend the definitions of semistandard and standard
tableaux to set-valued tableaux.

(1) A set-valued tableau T of σ is semistandard if the rows of σ are weakly
increasing from left to right and the columns of σ are strictly increasing
from top to bottom.

(2) A set-valued tableau T of σ is standard if it is semistandard and furthermore
the labels are pairwise disjoint sets with union {1, . . . , r} for some r ≥ |σ|.

The content of a set-valued tableau is the multiset of labels occurring in it. So
a semistandard tableau is standard if and only if the content is {1, 2, . . . , |σ|}. We
call a tableau almost-standard if it is semistandard and no label occurs more than
once (i.e. all elements of the content have multiplicity 1).

3. Linear series on an elliptic curve

Fix integers g, d, r ≥ 0 and nondecreasing sequences α and β ∈ Zr+1
≥0 . In this sec-

tion, we establish basic results on the geometry of the moduli space Gr,α,β
d (X, p, q),

especially in the case where X has genus 1.
We record the following basic facts about the nonemptiness, dimension, reduced-

ness, and irreducibility of the variety Gr,α,β
d (X, p, q). See §2.1 for definitions of ρ

and ρ̂. Part (1) of this theorem is what is usually called the Brill-Noether theorem
for curves with two marked points.1 It is discussed in [EH83] with a characteristic
0 hypothesis, while [Oss14b] gives a characteristic-free argument.

Theorem 3.1 ([Oss14b, Theorem 1.1, Lemma 2.1]). Fix g, r, d,α, and β.

(1) For a general twice-pointed curve [(X, p, q)] ∈ Mg,2, the variety

Gr,α,β
d (X, p, q) is nonempty if and only if ρ̂ ≥ 0. If it is nonempty, then it

has pure dimension ρ.
(2) When X = E is a curve of genus 1, to ensure that statement (1) holds, it

suffices to take points p, q ∈ E such that p− q is not d′-torsion in Pic0(E)
for any d′ ≤ d. Furthermore, in this situation Gr,α,β

d (E, p, q) is reduced and
irreducible.

In fact, Theorem 3.1 is also proved by Osserman using a degeneration to elliptic
chains, so it is reasonable that our argument is closely related. In fact, the analysis
of the skew shape σ(g, r, d,α,β) captures the combinatorial part of the analysis in
[Oss14b]. Another proof of Theorem 3.1(1) is given in [ACT17] as well.

Proposition 3.2. Given nondecreasing sequences α1,β1,α2,β2 ∈ Zr+1
≥0 , let

α = maxα1,α2 and β = max β1,β2.

Then
Gr,α1,β1

d (X, p, q) ∩ Gr,α2,β2

d (X, p, q) = Gr,α,β
d (X, p, q).

In particular, under the hypotheses of Theorem 3.1(2), every such intersection is a
reduced scheme.

1Often the phrase “Brill-Noether theorem” refers specifically to the case where there are no
marked points and no ramification is imposed (as it was originally formulated), while this version,
or a generalization to more marked points in characteristic zero, is called the “extended Brill-
Noether theorem.”
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EULER CHARACTERISTICS OF BRILL-NOETHER VARIETIES 1519

Proof. The equality is clear on the level of sets. The scheme-theoretic equality
follows from the description of the functor of points of Gr,α,β

d (X, p, q) in [Ossa,
Theorem 4.1.3]. !

We now specialize to the case where X = E is a curve of genus 1 and p, q ∈ E
such that p − q is not d′-torsion for any d′ ≤ d. Recall that there is a natural
projection morphism

π : Gr,α,β
d (E, p, q) → Picd(E),

described on points by forgetting the sections of a linear series.

Lemma 3.3. The morphism π : G → Picd E is surjective if and only if ρ̂ = 1.
Equivalently, this holds if and only if αy + βr−y < d− r for all y.

Proof. This is implicit in the proof of Lemma 2.1 in [Oss14b]. !

Proposition 3.4. Write G = Gr,α,β
d (E, p, q) for short. The morphism π : G →

Picd E is either surjective or has image a point. Moreover:

(1) In the first case, we have

Hi(G,OG) ∼=

{
k if i = 0, 1,

0 else.

In particular, if π is surjective, then χ(G) = 0.
(2) In the second case, we have

Hi(G,OG) ∼=

{
k if i = 0,

0 else.

In particular, if π has image a point, then χ(G) = 1.

Proof. This is proved in [CP19]; we summarize the main points as follows.
Given a rank-d vector bundle H over a smooth irreducible base scheme S, two

complete flags P• and Q• in H are called versal if the map Fr(H) → Fl(d)2 that
they define, where Fr(H) denotes the frame bundle, is a smooth morphism. One
may consider the relative partial flag variety Fl(i0, . . . , is;H) parameterizing flags
of subspaces of codimension i0, . . . , is. Within this relative flag variety are relative
Schubert varieties, defined in terms of either P• or Q•. An intersection of two rela-
tive Schubert varieties inside a relative partial flag variety Fl(i0, . . . , is;H), defined
with respect to P• and Q•, respectively, is called a relative Richardson variety. In
our situation, H is the rank-d vector bundle over Picd(E) whose fiber over [L] is
canonically identified with H0(E,L), and P• and Q• are the flags determined by
vanishing orders at p and q, respectively.

Of the many geometric properties enjoyed by a relative Richardson variety
π : R → S, as proved in [CP19], one of them is that Hi(R,OR) ∼= Hi(S′,OS′)
for all i ≥ 0, where S′ = π(R) is the scheme-theoretic image of R in S. In particu-
lar, the proposition follows. !

4. Limit linear series on an elliptic chain

The objective of this section is to analyze the scheme structure of the Eisenbud-
Harris scheme of limit linear series Gr,α,β

d (X, p, q), where (X, p, q) is a generic twice-
marked elliptic chain (as defined in §2.2), and to deduce Theorem 1.3 from this
analysis.
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1520 M. CHAN AND N. PFLUEGER

The main results about the structure of Gr,α,β
d (X, p, q) for an elliptic chain are

the following; these will be proved in §4.3 after preliminary results are established
in §§4.1 and 4.2.

The first of these, Theorem 4.1, is not new. It follows, for example, from the
proof of Theorem 1.1 in [Oss14b]. That proof uses an inductive argument in which
an elliptic curve is attached to a genus g− 1 smooth curve, which adapts readily to
constructing a chain of g elliptic curves. But we are not aware of a reference stating
this fact specifically for an elliptic chain, so we state the result for convenience and
will provide a brief proof in our notation.

Theorem 4.1. Let (X, p, q) be a generic twice-marked elliptic chain, as defined in
§2.2. Then the Eisenbud-Harris scheme Gr,α,β

d (X, p, q) is nonempty if and only if
ρ̂ ≥ 0. If nonempty, the Eisenbud-Harris scheme is reduced of dimension ρ, and
the locus of refined series is dense. (Here ρ, ρ̂ are as in §2.1.)

Theorem 4.2. Let Gr,α,β
d (X, p, q) be as in Theorem 4.1. Then

χ(Gr,α,β
d (X, p, q))

= (−1)g−|σ| ·#(standard set-valued tableaux on σ of content {1, . . . , g}) .

In order to deduce Theorem 1.3 from Theorems 4.1 and 4.2, we will consider a
smoothing of X to a smooth curve of genus g and make use of results from the
theory of limit linear series. This is carried out in §4.4.

4.1. The stratification of the Eisenbud-Harris space. Throughout this sub-
section, fix data (g, r, d,α,β), and let (X, p, q) be a generic twice-marked elliptic
chain of genus g, as defined in §2.2. We will describe the irreducible components of
the Eisenbud-Harris scheme Gr,α,β

d (X, p, q). We begin by reviewing some definitions
and facts from [CLMPTiB18].

Let α = (α1, . . . ,αg+1) denote a (g+1)-tuple of nondecreasing sequences of r+1
integers. We call α a valid sequence for the data (g, r, d,α,β) if the following three
conditions hold ([CLMPTiB18, Definition 3.8]).

(1) For i = 0, . . . , r, α1
i = αi.

(2) For i = 0, . . . , r, αg+1
i = d− r − βr−i.

(3) For n = 1, . . . , g and i = 0, . . . , r,

αn+1
j ≥ αn

j ,

where, for any particular value of n, equality holds for at most one value of
j (which may be different for different values of n).

The set of all valid sequences for the data (g, r, d,α,β) is denoted VS(g, r, d,α,β).
Given a valid sequence α, define the complementary sequence β = (β0, . . . ,βg)

by
βn
i = d− r − αn+1

r−i .

As in [CLMPTiB18, Definition 4.6], define

C(α) =
g∏

n=1

Gr,αn,βn

d (En, pn, qn) ⊆
g∏

n=1

Gr
d(En).

The definition of the complementary sequence guarantees that any point
(L1, . . . , Lg) ∈ C(α) may be regarded as the aspects of a limit linear series, and the
first two conditions in the definition of a valid sequence ensure that this limit linear
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EULER CHARACTERISTICS OF BRILL-NOETHER VARIETIES 1521

series lies in Gr,α,β
d (X, p, q). In fact, the loci C(α) constitute a decomposition of

Gr,α,β
d (X, p, q) into irreducible components.

Lemma 4.3 ([CLMPTiB18, Corollary 4.8]). For any choice of data (g, r, d,α,β)
and generic twice-marked elliptic chain (E, p, q) of genus g,

Gr,α,β
d (X, p, q) =

⋃

α∈VS(g,r,d,α,β)

C(α).

Furthermore, the locus of refined limit linear series is equal to the set of points lying
in just one of the schemes C(α).

It is necessary for our purposes to enumerate all intersections of the loci C(α) as
well. To do so, we introduce the following terminology. Let α be a valid sequence.
A sequence β = (β1, . . . ,βg) of nondecreasing (r + 1)-tuples is called a compatible
sequence for α if for all n, i,

βn
i ≥ d− r − αn+1

r−i .

For a valid sequence α and compatible sequence β, define

C(α,β) =
g∏

n=1

Gr,αn,βn

d (En, pn, qn) ⊆
g∏

n=1

Gr
d(En).

The locus C(α) is a special case, in which β is taken to be the complementary
sequence. The loci C(α,β) include all intersections of any set of loci C(α), due to
the following.

Lemma 4.4. For valid sequences α,α′ and sequences β,β′ compatible with them
(respectively),

C(α,β) ∩ C(α′,β′) = C(max(α,α′),max(β,β′)),

scheme-theoretically. Here by max(α,α′) the sequence of (r + 1)-tuples is formed
by taking the maximum of each element of each sequence individually.

Proof. This follows from Proposition 3.2, applied to each factor individually in the
definition of C(α). !

Note that in Lemma 4.4, it is not necessarily true that max(α,α′) is again a
valid sequence; if not, the intersection will be empty.

The attributes of the loci C(α,β) needed in our analysis are summarized as
follows.

Lemma 4.5. Let α be a valid sequence for data (g, r, d,α,β), and let β be a com-
patible sequence.

(1) C(α,β) is nonempty if and only if for all n ∈ {1, 2, . . . , g}, i ∈ {0, . . . , r},
αn
i + βn

r−i ≤ d− r,

with equality for at most one value of i per value of n.
(2) If C(α,β) is nonempty, then it is reduced and equidimensional with

dimC(α,β) = ρ−
g−1∑

n=1

r∑

i=0

(
βn
i + αn+1

r−i − (d− r)
)
.

(3) If C(α,β) and C(α′,β′) are nonempty, then the containment C(α,β) ⊆
C(α′,β′) holds if and only if for all n, i, αn

i ≥ α′n
i and βn

i ≥ β′n
i .
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(4) If β is complementary to α, then a dense open subset of C(α,β) consists of
refined limit linear series. Otherwise, all points correspond to coarse series.

(5) The Euler characteristic of the structure sheaf is given by

χ (C(α,β)) =

{
1 if for all n, there is some i with equality αn

i + βn
r−i = d− r,

0 otherwise.

Proof. Parts (1) and (2) follow from Theorem 3.1, applied to each elliptic curve Ei

individually. One direction of part (3) follows from Lemma 4.4, while the converse
follows from part (2): if the stated inequalities do not hold, then the intersection
of the two loci would have dimension strictly smaller than either locus. Part (4)
follows by observing that a limit linear series is refined if and only if it lies in
C(α,β) for a complementary choice of α,β, but not in C(α′,β′) for any other
choice of α′,β′ (see Lemma 4.3), together with the fact (from part (2)) that any
other locus would intersect C(α,β) (which is equidimensional) in a locus of strictly
smaller dimension.

Part (5) follows from Proposition 3.4, together with the fact that for each n, the

morphism Gr,αn,βn

d (En, pn, qn) → Picd(En) is surjective if and only if there is no i
such that αn

i + βn
r−i = d− r (Lemma 3.3). !

In §4.2, we will describe a convenient way to enumerate the pairs α,β giving
nonempty strata C(α,β) and completing the proof of Theorems 4.1 and 4.2. But
first we recall a standard fact relating the Euler characteristic of a union with the
Euler characteristics of the irreducible components and their intersections.

Definition 4.6. For any finite poset P, define a Möbius function µP on P as
follows: if Z is maximal, let µP(Z) = 1. Otherwise, define µP(Z) recursively by

µP(Z) = 1−
∑

{Y ∈P:Y >Z}

µP(Y ).

(This differs from the usual Möbius function (see e.g. [Sta97, §3.7]) by a minor
change in convention.) Now let Z1, . . . , ZN be irreducible closed subschemes of a
projective k-scheme X, and let G = Z1∪· · ·∪ZN be the scheme-theoretic union. By
a closed stratum of G we mean any nonempty intersection of the Zi. We suppose
every closed stratum (including the Zi themselves) is reduced. We let P be the
poset of closed strata, ordered by inclusion.

Proposition 4.7. We have

χ(G) =
∑

Z∈P
µP(Z)χ(Z).

Proof. This follows, using standard combinatorics, from the elementary fact that
χ(Zi ∪ Zj) = χ(Zi) + χ(Zj)− χ(Zi ∩ Zj). !

4.2. The poset of pontableaux. The irreducible components of the space of limit
linear series on an elliptic chain, and all intersections thereof, can be enumerated by
combinatorial objects, closely analogous to set-valued tableaux, called pontableaux;
the pontableaux of [CLMPTiB18] are a special case (see Remark 4.17).

In what follows, we will define, for data (g, r, d,α,β) as in Definition 1.2, a poset
PT(g, r, d,α,β) whose elements are called pontableaux, which will be in bijection
with the strata of the space of limit linear series on an elliptic chain. We will
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define combinatorial attributes µ(P ), dimP,χ(P ) for all pontableaux P ; we will
show (Lemma 4.23) that these coincide with the Möbius function, dimension, and
Euler characteristic of the corresponding strata. After making these definitions, the
main combinatorial result of this section will be the following theorem.

Theorem 4.8. Given data (g, r, d,α,β), let σ be the corresponding skew shape
(Definition 1.2). Then

∑

P∈PT(g,r,d,α,β)

µ(P )χ(P )

= (−1)g−|σ| ·#(standard set-valued tableaux on σ of content {1, . . . , g}) .

4.2.1. The set of pontableaux. Pontableaux will be defined in terms of sequences of
nonincreasing (r+1)-tuples of integers. These (r+1)-tuples may be interpreted as
the right border of a set of boxes extending infinitely to the left. We first fix some
notation that will be convenient throughout this section.

(1) Lowercase Greek letters will denote nonincreasing (r+1)-tuples of integers,
which will be indexed from 0 to r. The elements of a tuple λ will be denoted
(λ0, . . . ,λr). Note that there is no requirement that the λi be nonnegative.
We will identify a tuple λ with the set {(x, y) : 0 ≤ y ≤ r, x < λy}. For
example, we will write λ ⊆ ρ to mean that λy ≤ ρy for all 0 ≤ y ≤ r. The
elements of this set will be called the boxes contained in the tuple. Visually,
λ defines an eastern border on Z2, and we associate to λ the infinite set of
boxes to the left of the border.

(2) If ρ,λ are two nonincreasing (r + 1)-tuples, then ρ/λ will denote the skew
shape obtained by taking the set difference of the boxes contained in ρ
minus the boxes contained in λ:

ρ/λ = {(x, y) : 0 ≤ y ≤ r, λy ≤ x < ρy}.

Note that we do not necessarily assume that λy ⊆ ρy when using this
notation.

(3) We restrict our attention to the horizontal strip Z × {0, 1, . . . , r}, whose
elements are called boxes. We will say that a box (x, y) ∈ Z× {0, 1, . . . , r}
is an inward corner, respectively, an outward corner, of λ if it is minimal
not in λ, respectively, maximal in λ, with respect to the order ≼ on Z
(Definition 2.2).

(4) If (x, y) is an inward corner, we will write λ ∪ (x, y) to denote the tuple
resulting from increasing λy by 1. If (x, y) is an outward corner, we will
write λ\(x, y) to denote the tuple resulting from decreasing λy by one.

Example 4.9. Let λ = (3, 1). The inward corners of λ are (3, 0) and (1, 1), and
the outward corners of λ are (2, 0) and (0, 1).

· · ·

Observation 4.10. A box (x, y) is an inward corner of λ if and only if it is an outward
corner of λ ∪ (x, y). Every tuple ρ that differs from λ by 1 in one place is obtained
by either adding an inward corner or removing an outward corner of λ.
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Definition 4.11. A pontableau sequence is a sequence t=(λ1, ρ1,λ2, ρ2, . . . ,λg, ρg)
of nonincreasing (r + 1)-tuples of integers, satisfying the following two conditions.

(1) For all 1 ≤ n ≤ g − 1, ρn ⊇ λn+1.
(2) For all 1 ≤ n ≤ g, either λn ⊇ ρn or there is a single inward corner bn of

λn such that λn ∪ bn ⊇ ρn.

Denote by PT(λ1, ρg) the set of pontableaux with the specified values of λ1 and
ρg. For data (g, r, d,α,β) as in §2.1, denote by PT(g, r, d,α,β) the set PT(λ1, ρg),
where

λ1 = (−α0,−α1, . . . ,−αr),

ρg = (g − d+ r + βr, g − d+ r + βr−1, . . . , g − d+ r + β0).

In other words, a pontableau sequence is a sequence of box sets that can grow
only one box at a time and only between λn and ρn, but that can shrink by any
number of boxes at any step.

Definition 4.12. Given a pontableau sequence t = (λ1, ρ1,λ2, ρ2, . . . ,λg, ρg), the
ramification sequences of t are the following nondecreasing (r + 1)-tuples, for 1 ≤
n ≤ g:

αn
i = (n− 1)− λn

i ,

βn
i = ρnr−i − (n− d+ r).

Observation 4.13. The conditions defining a pontableau sequence are equivalent to
the following conditions on the associated ramification sequences.

(1) αn+1
i + βn

r−i ≥ d− r for all i ∈ {0, 1, . . . , r}.
(2) αn

i + βn
r−i ≤ d − r for all i ∈ {0, 1, . . . , r}, with equality for at most one

value of i.

These conditions are equivalent to saying, in the language of §4.1, that the αn form
a valid sequence (where we define αg+1 in terms of β by αg+1

i = d − r − βr−i),
the βn form a compatible sequence, and these sequences satisfy the necessary and
sufficient condition of Lemma 4.5(1) to determine a nonempty stratum.

Although pontableau sequences are convenient for use in our proofs, it is prefer-
able to concisely encode the same information as the sequence, as follows.

Given a pontableau sequence (λ1, . . . , ρg), we associate to each (x, y) ∈ Z ×
{0, 1, . . . , r} a set t(x, y) of symbols. Each symbol is one of “n”, “−n,” or “n−,”
where n is an integer from {1, 2, . . . , g}. The set t(x, y) is determined as follows.

(1) If (x, y) is contained in ρn but not in λn, then include the symbol “n” in
t(x, y). This symbol is called an augmentation.

(2) If (x, y) is contained in ρn−1 but not in λn, then include the symbol “−n”
in t(x, y). This symbol is called a left removal.

(3) If (x, y) is contained in λn but not in ρn, then include the symbol “n−” in
t(x, y). This symbol is called a right removal.

Taken together, the sets t(x, y) and the initial tuple λ1 uniquely encode all of
the tuples in a pontableau sequence. Indeed, the left removals −n encode which
boxes must be removed from ρn−1 to obtain λn, and the right removals n− and
augmentation n (which occurs in a unique box if at all) encode which boxes must
be removed and added from λn to obtain ρn, respectively.
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Definition 4.14. The labeling associated to a pontableau sequence t = (λ1, . . . , ρg)
is obtained by writing in every box (x, y) ∈ Z× {0, 1, . . . , r} the elements of the set
t(x, y) as described above. We will use the word pontableau to refer interchangeably
to a pontableau sequence or to its associated labeling.

Definition 4.15. For a pontableau P , the underlying set-valued tableau, denoted
tab(P ), is the skew set-valued tableau obtained by placing in box (x, y) all of the
augmentations “n” in t(x, y).

Example 4.16. Let (g, r, d,α,β) = (2, 1, 4, (0, 0), (0, 2)). We consider the pontab-
leau sequence t = (λ1, ρ1,λ2, ρ2) = ((0, 0), (1,−1), (1,−2), (1,−1)). The associated
ramification sequences are recorded in the table below.

i α1 β1 α2 β2

0 0 1 0 0
1 0 3 3 2

The pontableau labeling associated to t is

1
−2, 2 1−

and the underlying set-valued tableau of t is

1
2

Remark 4.17. The “pontableaux” of [CLMPTiB18] are a special case of the pontab-
leaux we have defined here, albeit with modified notation. Consider the special case
where ρg ⊇ λ1, σ = ρg/λ1 is connected and σ has exactly g−1 boxes. Consider only
those pontableaux that have no left-removals (i.e. such that ρn = λn+1 for all n).
Such pontableaux either have g − 1 distinct augmentations (all in different boxes)
or one right-removal and g different augmentations. These correspond bijectively
to the pontableaux considered in [CLMPTiB18]. The difference in notation is that
we now indicate the removals by “n−” rather than “−n” in order to distinguish
left-removals and right-removals. This distinction is nonexistent in [CLMPTiB18],
where only top-dimensional strata are labeled with pontableaux.

4.2.2. The poset structure. Pontableaux (for a fixed choice of λ1 and ρg, i.e. for
fixed data (g, r, d,α,β)) are arranged into a poset as follows.

Definition 4.18. Let P, P be two pontableaux in PT(λ1, ρg). Say that P generizes
to P (or that P specializes to P ), written P ⊇ P , if for all n ∈ {1, 2, . . . , g − 1},

λn+1 ⊆ λ
n+1 ⊆ ρn ⊆ ρn,

where λn and ρn (respectively, λ
n
and ρn) are the tuples in the pontableau sequence

of P (respectively, P ). Regard PT(λ1, ρg) as a poset with this partial order.

Example 4.19. An example of the poset of pontableaux is shown in Figure 2. If
two or more strata share the same underlying set-valued tableau, they are enclosed
by a dashed line. Note that the example in Figure 2 is the same example as
[CLMPTiB18, Figure 7], except that now all strata are displayed, not just the
top-dimensional ones.

Define the following three combinatorial attributes of pontableaux.
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1 4
3 5

1 4
2 5

1 3 4, 5−
2 5

1 4
1−, 2 3 5

1 3
1−, 2 4 5

1 2 3, 4−
4 5

2 4
3 5

1 2 3, 5−
4 5

1 2 4, 5−
3 5

1 3
2 4

1 3
2 5

1 3
4 5

2 3
4 5

1 2
2−, 3 4 5

1 2
3 5

1 3
2, 3−, 4 5

1 2
1−, 3 4 5

1 2, 3−, 4
3 5

1 2
3 4

1 2
4 5

1,−2, 2 4
3 5

1 2,−4, 4
3 5

1 3,−4, 4
2 5

1 4
2,−3, 3 5

1 2,−3, 3
4 5

1 3
2 4,−5, 5

1 3 4,−5
2 5

1 2
−3, 3 4 5

1,−2, 2 3
4 5

1 2
3,−4, 4 5

1 2,−3, 4
3 5

1 3
−2, 2 4 5

1 3
2,−4, 4 5

1 3
2,−3, 4 5

1 2 3,−5
4 5

1 2 3,−4
4 5

1 2
−2, 3 4 5

1 2
3 4,−5, 5

1 2 4,−5
3 5

1 4
−2, 2 3 5

Figure 2. The pontableau poset for (g, r, d,α,β) =
(5, 1, 4, (0, 0), (0, 0)). Compare to [CLMPTiB18, Figure 7].

Definition 4.20. Let P be a pontableau. Define µ(P ), dimP , and χ(P ) as follows.

(1) Denote by L the number of left removals in P . Let µ(P ) be 0 if P has two
identical left removals (i.e. “−n” for the same value of n) in horizontally
or vertically adjacent boxes. Otherwise, let µ(P ) = (−1)L.

(2) Let dimP = g −#(augmentations in P ) + # (right-removals in P ).
(3) Let χ(P ) = 1 if every possible augmentation 1, 2, . . . , g occurs somewhere

in P , and let χ(P ) = 0 otherwise.

4.2.3. Properties of the Möbius function of the pontableau poset. We first verify
that µ(P ) indeed gives the Möbius function for the poset PT(λ1, ρg).

Lemma 4.21. Fix data (λ1, ρg). The function µ given in Definition 4.20, restricted
to the set PT(λ1, ρg), is equal to the Möbius function µPT(λ1ρg) (see Definition 4.6).
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Proof. Fix a pontableau P ∈ PT(λ1, ρg). It suffices to verify the equation
∑

P⊇P

µ(P ) = 1,

where the sum is taken over all P ∈ PT(λ1, ρg) generizing P (including P itself).

The g − 1 chains of inclusions λn+1 ⊆ λ
n+1 ⊆ ρn ⊆ ρn in Definition 4.18

are independent of each other, and if (λ
1
, . . . , ρg) satisfy these g − 1 chains of

inclusions, then they are a pontableau sequence. So the choice of P amounts to

g − 1 independent choices of a pair (ρn,λ
n+1

).
Let ρ ⊇ λ be two nonincreasing tuples. We use the following notation:

I(ρ,λ) = {ρ′ : ρ ⊇ ρ′ ⊇ λ}.
M(ρ,λ) = {(ρ′,λ′) : ρ ⊇ ρ′ ⊇ λ′ ⊇ λ}.

f(ρ,λ) =

{
(−1)|ρ/λ| if no two boxes of ρ/λ are adjacent,

0 otherwise.

s(ρ,λ) =
∑

(ρ′,λ′)∈M(ρ,λ)

f(ρ′,λ′).

The set of all P ⊇ P is in bijection with
∏g−1

n=1 M(ρn,λn+1), and the set of
left removals “−n” in P is in bijection with the boxes of ρn−1/λn. It follows that

µ(P ) =
∏g−1

n=1 f(ρ
n,λ

n+1
). Therefore

∑

P⊇P

µ(P ) =
n−1∏

g=1

s(ρn,λn+1).

The lemma will immediately follow from this equation and the following claim.

Claim. For any two tuples ρ ⊇ λ, s(ρ,λ) = 1.

Proof of Claim. Rearranging the summation,

s(ρ,λ) =
∑

ρ′∈I(ρ,λ)

∑

λ′∈I(ρ′,λ)

f(ρ′,λ′).

In the inner sum, the only λ′ that give nonzero values of f(ρ′,λ′) are obtained by
adding to the boxes of ρ′ some subset of the set C = {inward corners of ρ′} ∩ λ.
Conversely, any subset S ⊆ C gives a choice λ′ that contributes (−1)S to the inner
sum. Therefore, for fixed ρ′,λ,

∑

λ′∈I(ρ′,λ)

f(ρ′,λ′) =
∑

S⊆C

(−1)|S| =

{
1 if C = ∅,
0 otherwise.

Therefore the inner sum is equal to 1 if and only if ρ′ = λ and 0 otherwise. The
claim follows and also the lemma. !

Recall the definition of almost standard from §2.3. In what follows, we will always
be referring to almost-standard tableaux with content a subset of {1, 2, . . . , g}.

Lemma 4.22. Let t be any set-valued tableau (not necessarily almost-standard)
whose content is an N-element subset of {1, 2, . . . , g}, and denote by

tab−1(t, g,λ1, ρg)
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the set of all pontableaux P ∈ PT(λ1, ρg) such that tab(P ) = t. Let σ be the skew
shape ρg/λ1. Then

∑

P∈tab−1(t,g,λ1,ρg)

µ(P )

=

{
(−1)N−|σ| if t is an almost-standard set-valued tableau on σ,

0 otherwise.

Proof. We may assume throughout that any given symbol n occurs at most once in
t, since otherwise t is not the underlying set-valued tableau of any pontableau, and
both sides of the claimed equation are equal to 0. We will denote by bn the box in
which the label n occurs in t, if it does occur; if n does not occur in t we will say
that bn does not exist. We may also assume that either bg does not exist or it is
an outward corner of ρg. This is because if bg exists but is not an outward corner
of ρg, then there are no almost-standard set-valued tableaux on σ with g in box bg,
and also there are no pontableaux with an augmentation “g” in box bg, and again
both sides of the claimed equation are 0.

We proceed by induction on g. Consider first the case g = 1. In this case,
PT(λ1, ρ1) is either empty or contains a single element, depending on whether
σ = ρ1/λ1 has more than one box. If it is nonempty, then its single element P has
µ(P ) = 1, and there is a single almost-standard set-valued tableau on σ: either the
empty tableau or the tableau obtained by placing “1” in the single box of σ. If
the poset is empty, then σ has no almost-standard set-valued tableau, since there
is only one label available for more than one box. So the lemma holds for g = 1.

Now suppose that g ≥ 2 and that the lemma holds for smaller values of g. Fix
a set-valued tableau t with symbols chosen from {1, 2, . . . , g}, and let t′ be the set-
valued tableau obtained by removing g from t if it appears. As observed in the first
paragraph, we may assume that t has no repeated symbols, and the last symbol g,
if it appears, appears in an outward corner of ρg.

Reorder the sum in question according to the choice of ρg−1 and λg. Here, each
sum can be taken over the set of all possible (r+1)-tuples (only finitely many terms
will be nonzero).

∑

P∈tab−1(t,g,λ1,ρg)

µ(P ) =
∑

ρg−1

∑

λg

{µ(P ) : P has specified choice of ρg−1,λg}.

Define the function f as in the proof of Lemma 4.21, and observe that if P =
(λ1, . . . , ρg) ∈ tab−1(t, g,λ1, ρg), then defining P ′ = (λ1, . . . , ρg−1), we have P ′ ∈
PT(λ1, ρg−1), µ(P ) = µ(P ′)f(ρg−1,λg), and the underlying set-valued tableau of
P ′ is t′.

Therefore the sum may be rewritten as follows. Here, the sums are taken over
the following sets: ρg−1 is chosen from the set of all nonincreasing (r+1)-tuples; P ′

is chosen from tab−1(t′, g − 1,λ1, ρg−1); λg is chosen from either I(ρg−1\bg, ρg\bg)
(if bg exists, i.e. g occurs in t) or I(ρg−1, ρg) (if bg does not exist). This is because
ρg ⊆ λg ⊆ ρg−1 and bg ̸∈ λg, if bg exists.

∑

P

µ(P ) =
∑

ρg−1

(
∑

P ′

µ(P ′)

)(
∑

λg

f(ρg−1,λg)

)
.
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Case 1 (bg does not exist). In this case, we can conclude, as in the proof of Lemma
4.21, that the second inner sum is

∑

λg

f(ρg−1,λg) =

{
1 if ρg−1 = ρg,

0 otherwise.

Therefore the overall sum reduces to only the term where ρg−1 = ρg; hence it is∑
P ′ µ(P ′), where the sum is taken over P ′ ∈ tab−1(t′, g−1,λ1, ρg). The statement

of the lemma now follows from the inductive hypothesis.

Case 2 (bg is an outward corner of ρg). The second inner sum
∑

λg f(ρg−1,λg) has
one nonzero term for each choice of a set C of outward corners of ρg−1 such that

• if bg ∈ ρg−1, then C is contained in the set of outward corners between
ρg−1 \ bg and ρg \ bg,

• if bg ̸∈ ρg−1, then C is contained in the set of outward corners between
ρg−1 and ρg \ bg.

The contribution of this term is (−1)|C|. These terms will cancel each other
unless there is only one of them. Hence, if bg ∈ ρg−1, then ρg−1 \ bg = ρg \ bg and
the inner sum is f(ρg−1, ρg−1 \ bg) = −1. If bg ̸∈ ρg−1, then ρg−1 = ρg \ bg and the
inner sum is f(ρg−1, ρg−1) = 1. Therefore, it follows that the inner sum is

∑

λg

f(ρg−1,λg) =

⎧
⎪⎨

⎪⎩

1 if ρg−1 = ρg\bg,
−1 if ρg−1 = ρg,

0 otherwise.

Therefore the overall sum is the following difference of two terms involving posets
of pontableaux for g − 1:

∑

P

µ(P ) =
∑

P ′∈tab−1(t,g−1,λ1,ρg\bg)

µ(P ′)−
∑

P ′∈tab−1(t,g−1,λ1,ρg)

µ(P ′).

By the inductive hypothesis, the two sums on the right side are as follows.
∑

P ′∈tab−1(t,g−1,λ1,ρg\bg)

µ(P ′)

=

{
(−1)(N−1)−(|σ|−1) if t′ is almost-standard on σ\bg,
0 otherwise;

∑

P ′∈tab−1(t,g−1,λ1,ρg)

µ(P ′) =

{
(−1)(N−1)−|σ| if t′ is almost-standard on σ,

0 otherwise.

Now, note that t is almost-standard on σ if and only if either g is the only symbol
in its box and t′ is almost-standard on σ\bg or g is not the only symbol in its box
and t′ is almost-standard on σ. In either case, one of the sums above is zero and the
other is ±1, and their difference is the desired quantity from the lemma statement.
On the other hand, if t is not almost-standard on σ, then both of the sums above
are zero, and again the lemma statement follows. This completes the induction and
establishes the lemma. !

From these two lemmas, Theorems 4.8 and 4.2 follow.
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Proof of Theorem 4.8. Rearrange the summation to group together pontableaux
with the same underlying tableau t. Note that for a pontableau P , the value χ(P )
depends only on the underlying set-valued tableau t; hence we can denote this value
by χ(t). Therefore we may write

∑

P∈PT(g,r,d,α,β)

µ(P )χ(P ) =
∑

t

χ(t)
∑

P∈tab−1(t)

µ(P ).

Since χ(t) = 1 if t has content {1, 2, . . . , g} and χ(t) = 0 otherwise, we need
only sum over the set-valued tableaux on σ with content {1, 2, . . . , g}. It follows
from Lemma 4.22 that this sum is equal to (−1)g−|σ| times the number of almost-
standard set-valued tableaux on σ with content {1, . . . , g}. !
4.3. Proofs of Theorems 4.1 and 4.2. We now assemble the results above to
describe in detail the geometry of the Eisenbud-Harris scheme Gr,α,β

d (X, p, q), where
X is a generic twice-marked chain of elliptic curves. Throughout this subsection,
fix data (g, r, d,α,β) and the chain (X, p, q).

First note that, in light of Observation 4.13, the nonempty loci C(α,β) are in
bijection with pontableaux P ∈ PT(g, r, d,α,β). Hence we will denote by

C(T ) ⊆ Gr,α,β
d (X, p, q)

the locus corresponding to a pontableau T . First we point out that the geometric
facts about C(α,β) translate to combinatorial attributes of T .

Lemma 4.23. For any pontableau T ∈ PT(g, r, d,α,β):

(1) C(T ) is nonempty and equidimensional of dimension dim(T ).
(2) χ(C(T )) = χ(T ).
(3) If T has no left-removals, then a dense open subset of C(T ) consists of

refined series. Otherwise, all points of C(T ) correspond to coarse series.
(4) The Möbius function of the poset of loci C(T ) is equal to µ(P ).

Proof. The nonemptiness claim in part (1) follows from Observation 4.13 and part
(1) of Lemma 4.5. For the dimension claim, note that part (2) of Lemma 4.5 and
the definition of αn

i ,β
n
i in terms of T show that

dimC(T ) = ρ−
g−1∑

n=1

r∑

i=0

(ρnr−i − λn+1
i ),

where ρ (with no subscripts or superscripts) here denotes the Brill-Noether number
rather than the numbers ρni encoded in T . In other words, dimC(T ) is ρ minus the
number of left-removals in T . Expressing ρ in terms of λ1

i and ρgi shows that it is
equal to g minus the number of augmentations in T plus the number of removals
(left or right). Hence dimC(T ) is equal to g plus the number of right-removals in
T minus the number of augmentations in T , which is dimT . This proves part (1).

Part (2) follows from part (5) of Lemma 4.5 and the observation that for any
value of n, the equality αn

i + βn
r−i = d − r holds for some i if and only if the

augmentation “n” appears in T .
Part (3) follows from part (4) of Lemma 4.5 and the observation that β is

complementary to α if and only if there are no left-removals in P .
Part (4) follows from part (3) of Lemma 4.5, the observation that the condition

stated there matches the definition of the poset structure on PT(g, r, d,α,β), and
Lemma 4.21. !
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Proof of Theorem 4.1. Note that ρ̂ ≥ 0 if and only if |σ| ≤ g. If |σ| ≤ g, then
it is possible to construct a pontableau for the data (g, r, d,α,β): the boxes of σ
can be filled in with any almost-standard tableaux, and then a right-removal “g−”
can be placed in all boxes of λ1/ρg. The result will be a pontableau. Hence by
Lemma 4.23 part (1), Gr,α,β

d (X, p, q) is nonempty. Conversely, if Gr,α,β
d (X, p, q)

is nonempty, then by Lemma 4.3 and the fact that nonempty loci C(α,β) corre-
spond to pontableaux, there exists a pontableau for the data (g, r, d,α,β), hence an
almost-standard set-valued tableau on σ. Hence σ has at most g boxes, and ρ̂ ≥ 0.

By Lemma 4.3, Gr,α,β
d (X, p, q) is a union of reduced schemes of pure dimension ρ,

namely, C(T ) for pontableaux T with no left-removals. So it too has pure dimension
ρ. Each C(T ) has a dense open subset of refined series; hence so does Gr,α,β

d (X, p, q)
as a whole. !

Proof of Theorem 4.2. Lemma 4.23, combined with Proposition 4.7 and Theorem
4.8, shows that

χ(Gr,α,β
d (X, p, q))

=
∑

P∈PT(g,r,d,α,β)

µ(P )χ(P )

= (−1)g−|σ|#(standard set-valued tableaux on σ of content {1, . . . , g}).
!

4.4. Proof of the main theorem. We now deduce our main result, Theorem 1.3,
from properties about smoothing of limit linear series, together with the analogous
statement (Theorem 4.2) for chains of elliptic curves.

Proof of Theorem 1.3. Let (X, p, q) be a general twice-marked curve of genus g.
By Theorem 3.1, Gr,α,β

d (X, p, q) is nonempty if and only if ρ̂ ≥ 0 or equivalently
|σ| ≤ g. This is equivalent to the existence of a set-valued tableau on σ with content
{1, . . . , g}. The theorem holds vacuously in case ρ̂ < 0, so we assume that ρ̂ ≥ 0.

By semicontinuity, there is a dense open subset U of Mg,2 on which

χ(Gr,α,β
d (X, p, q)) is constant. Let (X0, p0, q0) be a generic twice-marked elliptic

chain, as defined in §2.2, and let B be the spectrum of a discrete valuation ring.
Then there exists a flat deformation of (X0, p0, q0) with base B such that the in-
duced morphism B → Mg,2 sends the generic point to a point in U . Replacing B
with a finite base extension if necessary, we may assume that the family of curves
over B is a smoothing family in the sense of [Ossb, Definition 3.9]. Denote the
general member of this family by (Xη, pη, qη).

Theorem 4.1 shows that the hypotheses of [MO16, Corollary 3.3] are satisfied.
Hence there exists a flat proper scheme over B whose special fiber is the Eisenbud-
Harris space on (X0, p0, q0) and whose general fiber is Gr,α,β

d (Xη, pη, qη). By flat-
ness, the Euler characteristic of the structure sheaf of the general fiber is equal to
that of the special fiber. Since the generic point of B is sent to U , it follows that
this is also the Euler characteristic of the structure sheaf of Gr,α,β

d (X, p, q) for a
general twice-marked curve (X, p, q). !

Remark 4.24. The results of [MO16] that we use above are stated in terms of
varieties Gr

d(X) without marked points. However, similar arguments apply to the
situation where marked points are present, as has already been noted by Osserman.
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