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Combinatorial relations on skew Schur and
skew stable Grothendieck polynomials

Melody Chan & Nathan Pflueger

Abstract We give a combinatorial expansion of the stable Grothendieck polynomials of skew

Young diagrams in terms of skew Schur functions, using a new row insertion algorithm for

set-valued semistandard tableaux of skew shape. This expansion unifies some previous results:

it generalizes a combinatorial formula obtained in earlier joint work with López Martín and

Teixidor i Bigas concerning Brill–Noether curves, and it generalizes a 2000 formula of Lenart

and a recent result of Reiner–Tenner–Yong to skew shapes. We also give an expansion in the

other direction: expressing skew Schur functions in terms of skew Grothendieck polynomials.

1. Introduction
Let ‡ be a skew Young diagram (Definition 2.1). The main result of this paper is a new
formula for the skew stable Grothendieck polynomial G‡ of Lascoux–Schützenberger
and Fomin–Kirillov [11, 13] as a linear combination of skew Schur functions s⁄ on
related shapes ⁄. As was demonstrated by Buch, the coe�cients of G‡ have a combi-
natorial interpretation in terms of set-valued tableaux [5], and our original motivation
for this paper came from a recent geometric result, proved in a companion paper [8],
identifying Euler characteristics of Brill–Noether varieties up to sign as counts of
set-valued standard tableaux.

It is natural to ask for a linear expansion of G‡ in terms of other symmetric func-
tions, particularly the basis of Schur functions. Such an expansion was obtained by
Fomin–Greene, who in fact obtained such expansions for a wide class of symmetric
functions including stable Grothendieck polynomials associated to arbitrary permu-
tations [10]. (Note that the stable Grothendieck polynomials of 321-avoiding per-
mutations precisely correspond to stable Grothendieck polynomials of skew shapes
as in [5], by a theorem of Billey–Jockusch–Stanley [4].) Buch’s expansion of skew
Grothendieck polynomials in terms of Grothendieck polynomials of straight shapes,
along with Lenart’s expansion of the latter into Schur functions, provides another
route to such an expansion [5, 14].

Our main theorem expresses G‡ instead as a linear combination of skew Schur
functions s⁄. The coe�cients of the linear combination have explicit combinatorial
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interpretations which we provide; they count appropriate auxiliary tableaux. We state
the result below, postponing all definitions to the next section.

Theorem 1.1. For any connected skew shape ‡, the skew Grothendieck polynomial

G‡ admits a linear expansion

G‡ =
ÿ

µ´‡

(≠1)|B(µ/‡)|a‡,µ · sµ

where the a‡,µ are nonnegative integers and the sµ are skew Schur functions. Here

a‡,µ is the product of the following two integers:

(1) the number of row-weakly-bounded semistandard tableaux of shape A(µ/‡),
and

(2) the number of row-bounded, reverse row-strict tableaux of shape B(µ/‡).

Here A(µ/‡) and B(µ/‡) are the subshapes of µ lying above and below ‡, respectively.
In fact, this statement is a specialization of a more general formula for row-refined
skew stable Grothendieck polynomials that we obtain in Theorem 3.4.

Theorem 1.1 generalizes Lenart’s theorem from 2000 expanding Grothendieck poly-
nomials for non-skew shapes into non-skew Schur functions [14]; in fact, that result
is a visible specialization. We explain this connection in detail in Remark 3.7. We
also give a theorem in the other direction, Theorem 4.1, expressing s‡ in terms of
polynomials Gµ, for skew shapes ‡. This generalizes an analogous theorem of Lenart
from the same paper.

To be clear, skew Schur functions, since they include Schur functions properly, are
evidently not a basis for the space of symmetric functions; thus the coe�cients of
our expansion are not canonical. To provide a point of comparison, a result in the
literature that is similar in spirit to Theorem 1.1 is the skew Pieri rule of Assaf–
McNamara, in which the product of a skew shape and a rectangle is expressed in
terms of other skew shapes [2, Theorem 3.2]. Again, this expression is necessarily
noncanonical, but it is combinatorially natural using an insertion algorithm. Our
proof also uses a new insertion algorithm for skew set-valued semistandard tableaux
that is related to previous work of Bandlow–Morse, and indeed our algorithm may be
interpreted as extending to the skew case some of their results [3, § 5]. In fact, it recalls
earlier work of Sagan–Stanley row insertion for skew (non-set-valued) tableaux [16],
as well as Buch’s “uncrowding” algorithm on set-valued tableaux [5, § 6]. We also
note that using insertion operations to derive such combinatorial identities has been
carried out previously, in the form of Hecke insertion operations studied in [6].

Motivation from geometry. Our original motivation came from a recent result
in Brill–Noether theory that we prove in a pair of companion papers ([8], together
with [9] which proves an auxiliary result).

Theorem 1.2 ([8]). Fix r, d > 0 and nondecreasing sequences –,— œ Zr+1
>0 . Let

(X, p, q) be a general twice-pointed curve of genus g over an algebraically closed field.

Then the algebraic Euler characteristic of the Brill–Noether variety Gr,–,—
d (X, p, q) is

‰(Gr,–,—
d (X, p, q))

= (≠1)g≠|‡| ·#(standard set-valued tableaux on ‡ of content {1, . . . , g}).

Here ‡ is the skew-shape obtained from an (r + 1) ◊ (g ≠ d+ r) rectangle by adding
–r 6 · · · 6 –0 boxes down the left side and —0 > · · · > —r boxes down the right
side. The partitions – and — encode some ramification conditions imposed at the
two marked points p, q of X. Roughly speaking, from the geometric perspective it
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is natural to seek formulae for set-valued tableaux in terms of skew Schur functions,
which do not give preference to one marked point over the other, rather than (straight)
Schur functions, which do. Indeed, our result provides a combinatorial explanation of
the main theorem of [1], as we shall explain further in Remark 3.8. It also generalizes
a theorem with López and Teixidor i Bigas which computes genera of Brill–Noether
curves [7]. (That case corresponds to the situation in which there is exactly one more
label than the number of boxes.) In addition, a recent result of Reiner–Tenner–Yong
is also a special case of Theorem 1.1, and in fact, their work inspired some of the
results here [15, Corollary 3.11].

2. Preliminaries
We now give some preliminaries on tableaux. First we define a skew Young diagram:
this is almost the same as the usual definition, except that we only record the set of
boxes in a diagram rather than remembering a formal di�erence of two partitions.
Fix the partial order ∞ on Z2 given by (x, y) ∞ (xÕ, yÕ) if x 6 xÕ and y 6 yÕ.

Definition 2.1.
(1) A skew Young diagram is a finite subset ‡ µ Z2

>0 that is closed under taking

intervals. In other words, ‡ has the property that if (x, y) and (xÕ, yÕ) œ ‡ with

(x, y) ∞ (xÕ, yÕ), then
{(xÕÕ, yÕÕ) : (x, y) ∞ (xÕÕ, yÕÕ) ∞ (xÕ, yÕ)} ™ ‡.

(2) A skew Young diagram is called a Young diagram if ‡ is empty or has a

unique minimal element.

Skew Young diagrams are sometimes also called skew shapes, and skew Young
diagrams having a unique minimal element will sometimes be called straight shapes

for emphasis. In accordance with the English notation for Young diagrams, we will
draw the points of Z2 arranged with x-coordinate increasing from left to right, and
y-coordinate increasing from top to bottom, e.g.

(1, 1) (1, 2) · · ·
(2, 1) (2, 2)
...

Furthermore, we will draw, and refer to, the members of ‡ as boxes, as usual, and we
let |‡| denote the number of boxes in ‡. We shall assume throughout for convenience
that ‡ is a connected shape, i.e. its Hasse diagram is connected (see Remark 2.5 on
the disconnected case).

Definition 2.2.A tableau of shape ‡ is an assignment T of a positive integer, called

a label, to each box of ‡.

(1) A tableau T of shape ‡ is semistandard if the rows of ‡ are weakly increasing

from left to right, and the columns of ‡ are strictly increasing from top to

bottom.

(2) A tableau T of shape ‡ is standard if it is semistandard and furthermore each

integer 1, . . . , |‡| occurs exactly once as a label.

Definition 2.3 ([5]).A set-valued tableau of shape ‡ is an assignment of a nonempty

finite set of positive integers to each box of ‡.
Given sets S, T ™ Z>0, we write S < T if max(S) < min(T ), and we write S 6 T

if max(S) 6 min(T ). Then we extend the definitions of semistandard and standard
tableaux to set-valued tableaux.
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(1) A set-valued tableau T of shape ‡ is semistandard if the rows of ‡ are weakly

increasing from left to right, and the columns of ‡ are strictly increasing from

top to bottom.

(2) A set-valued tableau T of shape ‡ is standard if it is semistandard and fur-

thermore the labels are pairwise disjoint sets with union {1, . . . , r} for some

r > |‡|.
Denote by SS(‡) the set of all semistandard set-valued tableaux on ‡.

Let c = (c1, c2, . . .) be a nonnegative integer sequence that is eventually zero. We
say that a tableau or set-valued tableau T of shape ‡ has content c = c(T ) if label i
appears exactly ci times, for all i. Write |T | = |c(T )| =

q
ci for the total number of

labels.

Definition 2.4.
(1) For any skew shape ‡, the skew Schur function s‡ is

s‡ =
ÿ

T

xc(T )

as T ranges over all semistandard fillings of ‡.
(2) For any skew shape ‡, the skew stable Grothendieck polynomial G‡ is

G‡ =
ÿ

T

(≠1)|T |≠|‡|xc(T )

as T ranges over all semistandard set-valued fillings of ‡.

Given a set-valued tableau T of shape ‡, define the excess of T , denoted e(T ), as
the vector e = (e1, e2, . . .) in which ei records the number of labels in row i in excess
of the number of boxes in row i. Therefore |‡|+ |e(T )| = |c(T )|.

Remark 2.5.Definition 2.4 does not require ‡ to be a connected skew shape, but there
is little loss of generality in focusing on the connected case, as we do in this paper. If
‡ is a union of two disconnected parts ‡1,‡2, then a filling T of ‡ is semistandard if
and only if the resulting fillings T1 of ‡1 and T2 of ‡2 are semistandard, since no box
in ‡1 is comparable by ∞ to a box of ‡2. Also, c(T ) = c(T1) + c(T2). It follows that
G‡ = G‡1G‡2 . Hence Grothendieck polynomials of disconnected skew shapes factor
into those of connected skew shapes.

3. Row insertion for skew set-valued tableaux
We now set notation for a refinement of the Grothendieck polynomial based on
the excess statistic, and we prove a theorem expressing it linearly in terms of skew
Schur functions. Note that the idea of introducing an additional parameter into the
Grothendieck polynomial goes back already to [11].

Definition 3.1. Let ‡ be a skew Young diagram. We define the row-refined skew
stable Grothendieck polynomial of ‡ to be the power series

RG‡(x;w) =
ÿ

TœSS(‡)
(≠1)|e(T )|xc(T )we(T ).

Thus RG‡(x;1) = G‡(x), so the usual skew stable Grothendieck polynomial is ob-
tained as a specialization.

Definition 3.2. Let µ be a skew Young diagram.

(1) A tableau T of shape µ is reverse row-strict if its rows are strictly decreasing

from left to right, and its columns are weakly decreasing from top to bottom.
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(2) A tableau T of shape µ is row-bounded, respectively row weakly-bounded, if
for every box (i, j) in µ, T (i, j) < i, respectively T (i, j) 6 i.

We henceforth adopt the following convention governing containment of Young
diagrams.

Convention 3.3. Fix ‡ a skew shape; we take the numbering of the rows of ‡ to start

at 1 at the top. For another skew shape ⁄, we write ⁄ ´ ‡ if every box of ‡ is a box of

⁄, and furthermore every box of ⁄ is in the same column as some box of ‡. In other

words, we will only consider skew shapes ⁄ ´ ‡ that occupy the same set of columns

as ‡. They are not allowed to extend ‡ to the right or to the left.

By Convention 3.3, if ‡ is a connected skew shape and ⁄ ´ ‡, then ⁄≠‡ consists of
a set of boxes above ‡ and a set of boxes below ‡. Write A(⁄/‡) and B(⁄/‡) for these
respective skew Young diagrams; A and B stand for above and below. We emphasize
that, contrary to some conventions, ⁄ may extend ‡ both above and below.

Theorem 3.4. For any connected skew shape ‡,

RG‡(x;w) =
ÿ

(µ,e)
(≠1)|B(µ/‡)| a‡,µ,e · sµ(x) ·we

where the sum is over all skew shapes µ ´ ‡ and sequences e, and the numbers a‡,µ,e
are nonnegative integers. Specifically, a‡,µ,e is the number of pairs (T Õ, T ÕÕ) such that

• T Õ
is a row-weakly bounded semistandard tableau on A(µ/‡), and

• T ÕÕ
is a reverse-row-strict, row-bounded tableau on B(µ/‡),

satisfying

c(T Õ) + c(T ÕÕ) = e.
For convenience, we record the coe�cient-by-coe�cient interpretation of Theo-

rem 3.4. Let SSc,e(‡) denote the set of semistandard set-valued fillings of ‡ of content
c and excess e.
Theorem 3.5. Let ‡ be any connected skew shape, and fix sequences c and e. Then

|SSc,e(‡)| =
ÿ

µ´‡

(≠1)|A(µ/‡)| · a‡,µ,e · |SSc,0(µ)|,

where a‡,µ,e are the nonnegative integers defined in Theorem 3.4.

Thus Theorems 3.4 and 3.5 are equivalent.

Remark 3.6. The change from B(µ/‡) in Theorem 3.4 to A(µ/‡) in Theorem 3.5 is
not accidental; it arises from the definition of RG as a signed generating function for
set-valued semistandard tableaux.

Then, by specializing to w = 1 in Theorem 3.4, we obtain Theorem 1.1.

Remark 3.7. Consider the row-bounded, reverse row-strict tableaux of shape B(µ/‡),
as in (2) above. There is a bijection between this set and the set of row-bounded, row-
and column- strictly-decreasing tableaux of shape B(µ/‡), obtained by replacing label
T (i, j) with i ≠ T (i, j). Therefore, when ‡ is a straight shape whose highest row is
in row 1, Theorem 1.1 reduces to [14, Theorem 2.2]. In particular, A(µ/‡) is always
empty in this case.

We also note that when N = |‡| + 1, Theorem 1.1 specialized to the monomial
x1 · · ·xN is equivalent to [7, Theorem 2.8]. Moreover a proof using a row insertion
algorithm in the special case that ‡ is a straight shape and N = |‡|+ 1 is presented
in [15, Proposition 3.9].
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Remark 3.8. The determinantal formula of [1] can also be expanded as a similar
sum involving enumeration of standard Young tableaux on larger skew shapes (see [1,
Theorem C]). Thus, Theorem 1.1 establishes in a purely combinatorial manner that
the determinantal formula in [1] is equal to the number of set-valued tableaux.

Remark 3.9.D. Grinberg has pointed out the row-refined skew stable Grothendieck
polynomials RG‡(x;w) in Definition 3.1, restricted to straight shapes ‡, are Hall-dual
to the power series g̃µ(x;w) defined in [12]. In other words,

ÈRG‡(x;w), g̃µ(x;w)Í = ”‡,µ

for straight shapes ‡ and µ. Here È·, ·Í denotes the Hall inner product on symmetric
functions in variables x, treating the wi as scalars.

Now we prove Theorem 3.5 using a new generalized row insertion algorithm. This
proof occupies the rest of the section. This algorithm extends the set-valued insertion
algorithm in [3] to the case of skew shapes.

Definition 3.10 (RSK row insertion). First, recall the row insertion operation, the

atomic operation of the RSK algorithm [17, § 7.11] (we present a very slightly more

general version). Suppose ‡ is a skew or straight shape and T is a semistandard tableau

of shape ‡. Given k œ N and i, the operation T Ωi k inserts k in the leftmost box of

row i labeled j > k, or a new box at the right end of the ith row if no box in that row

is labeled > k (in the case where there are not yet any boxes in that row, the new box

is placed directly below the leftmost entry in the previous row). In the latter case the

operation terminates. In the former, we insert j into the (i+1)st row of ‡ in the same

manner, and repeat down the rows of ‡. The insertion path is the sequence of boxes

bi,j1 , bi+1,j2 , . . . in which insertions occurred; one can check that j1 > j2 > · · · [17,
Lemma 7.11.2].

In particular, row insertion inputs a semistandard tableau of shape ‡ and outputs
a semistandard tableau of shape ‡Õ obtained by adding one box to ‡.

Remark 3.11.Notice that row insertion may be applied without changes to set-valued
tableaux in the following situation. Suppose T is a set-valued semistandard tableau
of shape ‡. Suppose k is a label in a box b with at least one other label; let i index
the row containing b. Suppose further that every box in row i+ 1, i+ 2, . . . is labeled
with a singleton set. Then one may define the operation T Ωi k as before, deleting k
from box b and row-inserting it in the next row, and repeating. Simply put, the row
insertion path does not traverse any box with more than one label in this case.

This observation allows for the next algorithm.

Algorithm 3.12. The skew set-valued row insertion algorithm, for a connected skew

shape ‡, is as follows. The input is

(1) a skew shape ⁄ ´ ‡ with B(⁄/‡) = ?,

(2) T Õ
a reverse-row-strict, row-weakly-bounded tableau on A(⁄/‡), and

(3) T œ SSc,e≠c(T Õ)(⁄).
The output will be:

(1) a skew shape µ ´ ‡ with A(µ/‡) = ?,

(2) T ÕÕ
a reverse-row-strict, row-bounded tableau on B(µ/‡) with c(T ÕÕ) = e, and

(3) ÂT œ SSc,0(µ).

The algorithm proceeds as follows. Let r be the number of rows of ‡. For each
k = r, . . . , 1 (in descending order), we will do two “sweeps” of ‡. First we sweep out
all labels in row k that are not the minimum in their box, via row-inserting them
downward. Then we sweep out all labels in all (singly-labeled) boxes b for which
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T Õ(b) = k, again via row insertion. These boxes need not be in row k. In the auxiliary
labeling T ÕÕ, the newly created boxes are labeled k, and properties of row insertion
will imply that at most one box in each column of T ÕÕ is labeled k. An example is
given in Example 3.13.

Now we describe the algorithm more precisely. For k = r, . . . , 1, proceed as follows.
First, let m be the maximum label in the rightmost box of row k that has multiple
labels. Delete m and insert m into the leftmost box of row k+1 labeled m2 > m, or a
new box at the right end of the (k+1)st row if no box in that row is labeled > m. In the
latter case the operation terminates; the new box is labeled k in the auxiliary filling T ÕÕ.
In the former, we insert m2 into the (k+2)nd row of ‡ in the same manner, and repeat
down the rows of ‡. This is the familiar row-insertion operation of Definition 3.10.
The insertion path is the sequence of boxes b0 = (k, j0), b1 = (k+1, j1), . . . in which
insertions occurred; one can check that j0 > j1 > · · · ([17, Lemma 7.11.2]). Repeat
row-insertion on the maximum label in the rightmost non-singly valued box in row k,
until that row has only singly-valued boxes.

The second part of step k is as follows. Since T Õ is row-weakly-bounded and reverse
row-strict, it follows that there is at most one box (i, j) œ A(⁄/‡) in each row such
that T Õ(i, j) = k; furthermore i > k if so, so that T (i, j) must consist of a single
label. So for each such box (i, j), taken in order with i increasing, delete the box and
row-insert the label T (i, j) it starting in row i + 1. When the operation terminates,
the new box is labeled k in the auxiliary filling T ÕÕ. We note for later use that in this
stage, every box labeled k in T ÕÕ is the leftmost of its row, since all boxes labelled > k
have already been removed.

Example 3.13. Let

‡ = ⁄ = T Õ =
1

2 1
1 T =

2 3

1, 4 6 8

5, 7 9 10, 13

11 12

.

The algorithm gives
2 3

1, 4 6 8

5, 7 9 10

11 12 13

2 3

1, 4 6 8

5 9 10

7 12 13

11

2 3

1 6 8

4 9 10

5 12 13

7

11

2 3

6 8

1 9 10

4 12 13

5

7

11

3

2 8

1 6 10

4 9 13

5 12

7

11

3

8

1 2 10

4 6 13

5 9

7 12

11

3

8

2 10

1 6 13

4 9

5 12

7

11
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and the auxiliary tableau T ÕÕ is
3

3 1
2 1
2
1

Lemma 3.14. The output of Algorithm 3.12 takes the claimed form.

Proof. We remark that the process in Algorithm 3.12 preserves the property that
every box in row k + 1 and below has exactly one label in it, so the row-insertion is
always well-defined. The process also clearly preserves the content of the tableau T .
Thus iterating the described two-step process for k = r, . . . , 1 produces the output
data µ, T ÕÕ, and ÂT , with c( ÂT ) = c(T ). Furthermore T ÕÕ is row-bounded since T Õ was
row-weakly-bounded. To conclude that the output is as claimed, the only thing left
to show is that the labeling T ÕÕ of B(µ/‡) is reverse row-strict.

Indeed, since the rows are processed in the order r, . . . , 1 in Algorithm 3.12, it is
enough to show that for a fixed k œ {1, . . . , r} that no two boxes labelled k in T ÕÕ

lie in the same row. This follows from the standard fact that row-insertion paths
move weakly to the left. Precisely: Suppose m and mÕ are labels that are processed
consecutively in step k. Let b0, b1, . . . bM be the insertion path of m. By assump-
tion, after m is inserted, every box bi except possibly b0 is still singly labeled, and
max(T (b0)) < T (b1) < · · · < T (bM ).

Furthermore, we claim that the label mÕ is on or to the left of the insertion path
of m. Indeed, if mÕ is also in row k, then this is clear since mÕ < m; otherwise, we
simply note that mÕ is in the leftmost box of its row, so the claim is also clear. Finally,
row-insertion of mÕ preserves the property of being weakly left of the insertion path
of m. So the insertion path of mÕ cannot end to the right of that of mÕ; thus it ends
below that of mÕ. This concludes the proof of the lemma. ⇤

Now we show that all possible outputs are attained bijectively by the algorithm.

Proposition 3.15. For any connected skew shape ‡ and any c and e, Algorithm 3.12
produces a bijection between choices of

(1) a skew shape ⁄ ´ ‡ with B(⁄/‡) = ?,

(2) T Õ
a reverse-row-strict, row-weakly-bounded tableau on A(⁄/‡), and

(3) T œ SSc,e≠c(T Õ)(⁄);
and choices of

(1) a skew shape µ ´ ‡ with A(µ/‡) = ?,

(2) T ÕÕ
a reverse-row-strict, row-bounded tableau on B(µ/‡) with c(T ÕÕ) = e, and

(3) ÂT œ SSc,0(µ).
Therefore,

(1)
ÿ

(⁄,T Õ)
|SSc,e≠c(T Õ)(⁄)| =

ÿ

(µ,T ÕÕ)
|SSc,0(µ)|

where

• the left hand sum ranges over all ⁄ ´ ‡ with B(⁄/‡) = ?, together with a

reverse row-strict, row-weakly-bounded labeling T Õ
of A(⁄/‡), and

• the right hand sum ranges over all µ ´ ‡ with A(µ/‡) = ?, together with a

reverse row-strict, row-bounded labeling T ÕÕ
of B(µ/‡).

Algebraic Combinatorics, Vol. 4 #1 (2021) 182



Combinatorial relations

Proof. The skew set-valued row-insertion algorithm in Algorithm 3.12 constructs a
map

(2)
‡

(⁄,T Õ)
SSc,e≠c(T Õ)(⁄)

RSK‡≠≠≠≠æ
‡

(µ,T ÕÕ)
SSc,0(µ),

where the conditions on ⁄, µ, T Õ, and T ÕÕ are as in the statement of the proposition. We
claim this map is a bijection, and it su�ces to provide an inverse. The inverse may be
described algorithmically as follows. Given µ, T ÕÕ, and ÂT satisfying conditions (1), (2),
and (3) described as the output of Algorithm 3.12, perform the following procedure
for k = 1, . . . , r. Consider the boxes of B(µ/‡) labelled k in T ÕÕ, in order from highest
to lowest row number (i.e. lowest to highest on the page). For each such box b, delete
b and inverse-row-insert its label m upwards, stopping if it reaches row k. If the label
m lands in a new box bÕ, necessarily in row > k, then set T Õ(b) = k. An example is
given in Example 3.13, read in reverse.

The resulting tableau T Õ is reverse-row-strict by an argument analogous to
Lemma 3.14. So the result of this procedure is the data ⁄, T Õ, and T satisfying the
conditions (1), (2), and (3) described as the input of Algorithm 3.12. Now it is evident
that the procedure described is in fact inverse to the RSK map in Algorithm 3.12,
since each upwards insertion operation is inverse to row insertion, and it processes
boxes in the reverse order. ⇤

Now we state a definition and lemma, which will be used to prove Theorem 3.4.
We will postpone its proof until after the the proof of Theorem 3.4. The need for
Definition 3.16 as a hypothesis for Lemma 3.18 was pointed out to us by D. Grinberg.

Definition 3.16. Let P be any finite poset, with its set of cover relations C = {(x, y) œ
P ◊ P : x l y} partitioned into two disjoint sets C = G Û B (called good and bad,
colloquially). We will say that the partition is acyclic if the directed graph on the

Hasse diagram of P obtained by orienting all good cover relations up and all bad

cover relations down is acyclic.

Example 3.17. The partition G Û B of the cover relations in the Hasse diagram is
drawn below is not acyclic.

•
G B

•

G

•

B
•

Lemma 3.18. Let P be any finite poset, with its set of cover relations C = {(x, y) œ
P ◊ P : xl y}. Let C = G Û B be an acyclic partition of C, with elements of G and

B called good and bad throughout. Say that an increasing sequence

I = (? = I0 ( · · · ( I¸ = P )
of order ideals Ii is a G-sequence if for every i = 1, . . . , ¸, the only cover relations

within Ii r Ii≠1 are in G. Precisely: if x, y œ Ii r Ii≠1 and xl y then (x, y) œ G. The

length of such a G-sequence I is defined to be |I| = ¸. Then

(3)
ÿ

I a G-sequence
(≠1)|I| =

I
(≠1)|P |

if G = ?,

0 otherwise.

Example 3.19. Suppose P = P (⁄) is the poset of boxes of a diagram ⁄. If G =
? then the G-sequences are in natural correspondence with increasing tableaux of
shape ⁄ with label set {1, . . . , N} for some N . Lemma 3.18 states that counting these
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increasing tableaux, with sign according to the parity of N , is (≠1)|P |. For example,
if P = P ( ) then the lemma states that

(≠1)4 = #
;

1 2 3
4 ,

1 2 4
3 ,

1 3 4
2

<
≠ #

;
1 2 3
3 ,

1 2 3
2

<
.

Postponing the proof of Lemma 3.18, we now prove Theorem 3.5.

Proof of Theorem 3.5. We fix ‡ and sequences c and e, with |c| = |‡|+ |e|; otherwise
the statement is trivial. Now isolating the term |SSc,e(‡)| on the left of Equation (1),
we have

(4) |SSc,e(‡)| =
ÿ

(µ,T ÕÕ)
|SSc,0(µ)| ≠

ÿ

(⁄,T Õ):⁄)µ

|SSc,e≠c(T Õ)(⁄)|

where the conditions on (µ, T ÕÕ) and (⁄, T Õ) are as stated in Proposition 3.15. Now we
may use Proposition 3.15 inductively to expand each of the terms |SSc,e≠c(T Õ)(⁄)| in
the second sum of Equation (4). We obtain

(5) |SSc,e(‡)| =
ÿ

(µ,T Õ,T ÕÕ)
b‡,µ,T Õ,T ÕÕ · | SSc,0(µ)|,

for some coe�cients b which we will soon study. Here
• µ ´ ‡ is a skew shape,
• T Õ is any row-weakly-bounded filling of A(µ/‡),
• T ÕÕ is a reverse-row-strict, row-bounded filling of B(µ/‡),

such that

c(T Õ) + c(T ÕÕ) = e.

To prove Theorem 3.5 it is enough to show that the coe�cients on the right hand
side are given by

b‡,µ,T Õ,T ÕÕ =
I
(≠1)|A(µ/‡)| if T Õ is semistandard,
0 otherwise.

Indeed, it follows from the recursive expansion of Equation (4) that the coe�cient
b‡,µ,T Õ,T ÕÕ depends only on T Õ: it is the signed count of the number of ways to build
T Õ as a sequence of tableaux

? = T0 ( T1 ( · · · ( T¸ = T Õ

on a corresponding sequence of skew shapes

? = ⁄0 ( ⁄1 ( · · · ( ⁄¸ = A(µ/‡)

such that each ⁄i is obtained from ⁄i≠1 by adding boxes on the left or above boxes
of ⁄i≠1, and the restriction of Ti to ⁄i/⁄i≠1 is reverse row-strict for each i. By the
signed count, we mean that such a sequence is counted with sign (≠1)¸.

For example, a filling T Õ =

2 1
2 2
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can be obtained in the following ways, with the following signs:

2 2 2
1

2 2
2 1
2 2 +

2
1
2

1
2 2

2 1
2 2 +

2
1

2 2
2 1
2 2 ≠

2 2 2
2 1
2 2 ≠

and so b‡,µ,T Õ,T ÕÕ = 0 for this T Õ.
Thus, to compute b‡,µ,T Õ,T ÕÕ in general, we let P = P (A(µ/‡)) be the poset whose

elements are boxes of A(µ/‡) and such that b1 l b2 if and only if box b1 is directly to
the right of or directly below b2. Now let G be the subset of cover relations b1 l b2 of
P in which either

• b1 is directly to the right of b2 and T Õ(b2) > T Õ(b1), or
• b1 is directly below b2 and T Õ(b2) > T Õ(b1).

Let B be the set of cover relations not in G. Observe that G and B are an acyclic
partition of the cover relations, in the sense of Definition 3.16. Indeed, a cycle in
the oriented Hasse diagram, say on boxes b0, b1, . . . , bt = b0 would correspond to a
sequence of inequalities T (b0) 6 T (b1) 6 · · · 6 T (bt) = T (b0), and since the boxes
b0, . . . , bt occupy more than one row and one column, at least one (in fact at least two)
of those t inequalities are strict, which is clearly impossible. Then by Lemma 3.18 it
follows that

b‡,µ,T Õ,T ÕÕ =
I
(≠1)|A(µ/‡)| if G = ?,

0 otherwise.
But G = ? means precisely that T Õ is semistandard. ⇤

It remains only to prove Lemma 3.18.

Proof of Lemma 3.18. We prove Lemma 3.18 by induction on |P |, with P = ? being
obvious.

Write J(P ) for the set of order ideals of P . We break up (3) according to the first
order ideal I1 and proceed inductively on P r I1. Start with the equality

(6)
ÿ

I a G-sequence
(≠1)|I| =

ÿ

? ”=AœJ(P )

ÿ

I a G-sequence
I1=A

(≠1)|I|.

Notice that for any order ideal A, the partition on the cover relations of PrA induced
by G Û B is again acyclic. Then by induction, the nonzero contributions to the right
hand side of (6) come from nonempty order ideals A in which

• all cover relations inside A are good,
• all cover relations inside P rA are bad.

Let A be the set of nonempty order ideals of P satisfying these conditions. Then
using (3) inductively, (6) becomes

(7)
ÿ

I a G-sequence
(≠1)|I| =

ÿ

AœA
(≠1) · (≠1)|PrA|.

It remains to identify A in terms of P and G, which we do as follows. Let Y be the
maximal up-closed subset of P such that all cover relations within Y are bad. Note
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that Y is uniquely defined, since if Y1 and Y2 are up-closed subsets satisfying that
condition, then Y1 fi Y2 also satisfies the condition.

Let X = P r Y . Let Y Õ ™ Y be the subset consisting of the minimal elements
y œ Y satisfying that if xl y then (x, y) œ G. Then we claim

claim 3.20.
(1) If X = ? then A = {I ™ min(P ) : I ”= ?}, where min(P ) denotes the

minimal elements of P .

(2) If X ”= ? and some cover relation within X is in B, then A = ?.

(3) If X ”= ? and all cover relations within X are in G, then

A = {X fi I : I ™ Y Õ}.

Proof of Claim 3.20. If X = ? then G = ?, and A then consists of all nonempty
order ideals with no cover relations within them. So part (1) follows.

Suppose X ”= ?. Suppose A œ A. Now for each maximal element x œ X, there is
some y œ Y such that xly is good. So necessarily x œ A, since otherwise the covering
relation x l y would lie in P r A. So A contains all maximal elements of X; thus
A ´ X. So if some cover relation within X is in B, then A = ?, proving part (2).

Otherwise, we see that X œ A. Furthermore, if A œ A then A fl Y must be an
antichain in Y ; otherwise A contains a bad cover relation. So A fl Y ™ min(Y ).
And if y œ A fl Y , then any cover relation x l y must be good. We conclude that
A ™ {X fi I : I ™ Y Õ}; the reverse containment also clearly follows. ⇤

Now from Claim 3.20, the rest of the proof of Lemma 3.18 can be deduced from (7)
by using the obvious identity

q
S™T (≠1)|S| = 0 for nonempty finite sets T . Explicitly,

in the case 3.20(1), Equation (7) becomes
ÿ

? ”=A™min(P )
(≠1) · (≠1)|PrA| = (≠1)|P |.

In the case 3.20(2), Equation (7) is the empty sum. In the case 3.20(3), Equation (7)
becomes ÿ

I™Y Õ

(≠1) · (≠1)|Pr(XfiI)| = (≠1)|P |+1
ÿ

I™Y Õ

(≠1)|I|,

which is 0, as desired, provided that Y Õ ”= ?. It remains only to show that Y Õ = ? is
not possible.

If Y Õ = ? then by definition of Y Õ, every minimal element y œ Y covers some
x œ X such that xl y is bad. And every maximal element x œ X is covered by some
y œ Y such that x l y is good. Therefore in the orientation of the Hasse diagram
of P described in Definition 3.16, every element in X sends out an upwards edge,
and every element in Y sends out a downwards edge. Therefore the oriented Hasse
diagram has no sink and cannot be acyclic, contradicting the hypotheses. ⇤

4. An inverse formula
We give an analogous linear expansion of skew Schur functions into skew stable
Grothendieck polynomials. This formula generalizes [14, Theorem 2.7], which pertains
to straight shapes, and visibly specializes to that result when ‡ is a straight shape.

Theorem 4.1. For any connected skew shape ‡,

(8) s‡ =
ÿ

µ´‡

(≠1)|A(µ/‡)|b‡,µ ·Gµ

where the b‡,µ is the product of the following two numbers:
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(1) the number of row-weakly-bounded, reverse-row-strict tableaux of shape

A(µ/‡), and
(2) the number of row-bounded, semistandard tableaux of shape B(µ/‡).

Proof. Fix ‡. By Theorem 1.1, the right hand side of (8) is

(9)
ÿ

µ´‡

ÿ

⁄´µ

(≠1)|A(µ/‡)|+|B(⁄/µ)|a⁄,µ · bµ,‡ · s⁄

and a⁄,µ · bµ,‡ is the product of the sizes of the following two sets:
(1) the row-weakly-bounded tableaux T Õ on A(⁄/‡) which are semistandard on

A(⁄/µ) and reverse-row-strict on A(µ/‡), and
(2) the row-bounded tableaux T ÕÕ on B(⁄/‡) which are reverse-row-strict on

B(⁄/µ) and semistandard on B(µ/‡).
Now for a fixed ⁄, a row-weakly-bounded filling T Õ of A(⁄/‡), and a row-bounded

filling T ÕÕ of B(⁄/‡), the contribution of the triple (⁄, T Õ, T ÕÕ) to the sum (9) is

(10)
ÿ

µ with ‡™µ™⁄
T Õ,T ÕÕ satisfy (1),(2)

(≠1)|A(µ/‡)|+|B(⁄/µ)| · s⁄

Now if ⁄ = ‡ then (10) equals s‡ vacuously. Otherwise, we show that (10) vanishes.
In words, the coe�cient of s⁄ in (10) is a signed count of ways to divide the two shapes
A(⁄/‡) and B(⁄/‡), such that in each, the upper-left is semistandard and the lower-
right is reverse-row-strict. Then the following lemma, applied to A(⁄/‡) and B(⁄/‡),
finishes the proof of Theorem 4.1. ⇤

Lemma 4.2. Let µ be any nonempty skew shape. A division of µ is a partition µ =
µS Û µR into two skew shapes such that µS is an order ideal of µ considered as a

poset (Definition 2.1). In other words, no box of µR is north/west of any box of µS.

Suppose T is a (non-set-valued) tableau on µ. Say that (µS , µR) is allowed by T if T
is semistandard on µS and reverse-row-strict on µR. Then

ÿ

(µS ,µR) allowed by T

(≠1)|µS | = 0.

Example 4.3. If T = (a1, . . . , an) is a tableau on a single row of length n, then the
above sum is empty unless a1 6 · · · 6 aM > · · · > an for a unique index M . In
this case, there are two allowable divisions: where µS is either the first M or the first
M ≠ 1 boxes.

Proof of Lemma 4.2. Each cover relation b1lb2 in µmay be labelled S or R according
to whether the restriction of T to the 2-box shape {b1, b2} is semistandard or is reverse-
row-strict. In the first case, write S in box b1; in the second case, write R in box b2.
In this way, fill the boxes of µ using the alphabet {?, S,R, SR}. (In Example 4.3, the
first M ≠ 1 boxes are S, the next box is empty, and the remaining are R.)

Now if there are any allowable divisions at all, then no box is labelled SR, the S
boxes must be an order ideal, the boxes containing R must be the complement of
an order ideal, and the empty boxes form an antichain in between. Then (µS , µR) is
allowable if and only if µS contains all S boxes and µR contains all R boxes. Then
to prove the lemma, it is enough to show that there exists at least one empty box.
Consider, among all boxes with maximum number in T , an upper-rightmost one. That
box has empty label. ⇤

Algebraic Combinatorics, Vol. 4 #1 (2021) 187



Melody Chan & Nathan Pflueger

Acknowledgements. We thank Vic Reiner, Bridget Tenner and Alexander Yong for
generously answering some questions over email about their work [15]. We also thank
Jennifer Morse, Travis Scrimshaw, and an anonymous referee for helpful contextual
remarks and references. We are grateful to Darij Grinberg for correcting an earlier
error in the formulation of Lemma 3.18, and for other detailed comments.

References
[1] Dave Anderson, Linda Chen, and Nicola Tarasca, K-classes of Brill–Noether loci and a deter-

minantal formula, https://arxiv.org/abs/1705.02992, 2017.
[2] Sami H. Assaf and Peter R. W. McNamara, A Pieri rule for skew shapes, J. Combin. Theory

Ser. A 118 (2011), no. 1, 277–290.

[3] Jason Bandlow and Jennifer Morse, Combinatorial expansions in K-theoretic bases, Electron.
J. Combin. 19 (2012), no. 4, Paper no. 39 (27 pages).

[4] Sara C. Billey, William Jockusch, and Richard P. Stanley, Some combinatorial properties of
Schubert polynomials, J. Algebraic Combin. 2 (1993), no. 4, 345–374.

[5] Anders Skovsted Buch, A Littlewood–Richardson rule for the K-theory of Grassmannians, Acta

Math. 189 (2002), no. 1, 37–78.

[6] Anders Skovsted Buch, Andrew Kresch, Mark Shimozono, Harry Tamvakis, and Alexander Yong,

Stable Grothendieck polynomials and K-theoretic factor sequences, Math. Ann. 340 (2008),

no. 2, 359–382.

[7] Melody Chan, Alberto López Martín, Nathan Pflueger, and Montserrat Teixidor i Bigas, Genera
of Brill–Noether curves and staircase paths in Young tableaux, Trans. Amer. Math. Soc. 370
(2018), no. 5, 3405–3439.

[8] Melody Chan and Nathan Pflueger, Euler characteristics of Brill–Noether varieties, to appear

in Transactions of the AMS.

[9] , Relative Richardson varieties, https://arxiv.org/abs/1909.12414.
[10] Sergey Fomin and Curtis Greene, Noncommutative Schur functions and their applications, Dis-

crete Math. 193 (1998), no. 1-3, 179–200, Selected papers in honor of Adriano Garsia (Taormina,

1994).

[11] Sergey Fomin and Anatol N. Kirillov, Grothendieck polynomials and the Yang-Baxter equation,
in Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique,

DIMACS, Piscataway, NJ, sd, pp. 183–189.

[12] Pavel Galashin, Darij Grinberg, and Gaku Liu, Refined dual stable Grothendieck polynomials
and generalized Bender-Knuth involutions, Electron. J. Combin. 23 (2016), no. 3, Paper no. 3.14

(28 pages).

[13] Alain Lascoux and Marcel-Paul Schützenberger, Structure de Hopf de l’anneau de cohomologie
et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math.

295 (1982), no. 11, 629–633.

[14] Cristian Lenart, Combinatorial aspects of the K-theory of Grassmannians, Ann. Comb. 4
(2000), no. 1, 67–82.

[15] Victor Reiner, Bridget Eileen Tenner, and Alexander Yong, Poset edge densities, nearly reduced
words, and barely set-valued tableaux, J. Combin. Theory Ser. A 158 (2018), 66–125.

[16] Bruce E. Sagan and Richard P. Stanley, Robinson–Schensted algorithms for skew tableaux, J.
Combin. Theory Ser. A 55 (1990), no. 2, 161–193.

[17] Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Math-

ematics, vol. 62, Cambridge University Press, Cambridge, 1999, With a foreword by Gian-Carlo

Rota and appendix 1 by Sergey Fomin.

Melody Chan, Brown University, Department of Mathematics, Box 1917, Providence, RI 02912,

USA

E-mail : melody_chan@brown.edu

Nathan Pflueger, Amherst College, Department of Mathematics and Statistics, Amherst, MA

01002, USA

E-mail : npflueger@amherst.edu

Algebraic Combinatorics, Vol. 4 #1 (2021) 188


