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Abstract—A data compression system capable of providing
real-time streaming of high-resolution continuous point-on-wave
(CPOW) and phasor measurement unit (PMU) measurements
is proposed. Referred to as adaptive subband compression
(ASBC), the proposed technique partitions the signal space
into subbands and adaptively compresses subband signals based
on each subband’s active bandwidth. The proposed technique
conforms to existing industry phasor measurement standards,
making it suitable for streaming high-resolution CPOW and
PMU data either in continuous or burst on-demand/event-
triggered modes. Experiments on synthetic and real data show
that ASBC reduces the CPOW sampling rates by several orders
of magnitude for real-time streaming while maintaining the
precision required by industry standards.

Index Terms—Continuous point-on-wave (CPOW) measure-
ment. Phasor measurement units (PMU). Subband compres-
sion. Adaptive data compression. Wide-area monitoring systems
(WAMS). Real-time monitoring and control.

I. INTRODUCTION

With deeper penetration of inverter-based resources that

exhibit low inertia and fast dynamics, there are growing

needs for high-resolution grid measurement and streaming

technology [1], [2]. In [2], Silverstein and Follum make

a compelling case that the time-synchronized continuous

point-on-wave (CPOW) measurement technology has the

potential to address operational challenges in a broad range

of grid applications beyond the capabilities of the existing

phasor-measurement unit (PMU) technology. These appli-

cations include monitoring geomagnetic disturbances, sub-

synchronous resonance (SSR), rapid phase-jumps, and high-

resolution monitoring of inverter-based distributed energy

resources. The need for high-resolution data to capture new

phenomenon such as super harmonics and oscillations has

also been articulated in [1].

Anticipating that future wide-area measurement systems

(WAMS) will likely include CPOW, PMU, and SCADA de-

vices, this paper proposes a lossy compression technique for

the high-fidelity and high-resolution streaming technology in

either continuous or on-demand modes. By high-fidelity, we

mean that the signal reconstruction has the accuracy within

specifications of industry standards. By high-resolution, on
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the other hand, we mean that the source signal is sampled

at sufficiently high frequencies to capture higher-order har-

monics, wideband interharmonics, and wideband transients.

Fig. 1. Device sampling frequencies, (uncompressed) device reporting rates
for different applications and devices, and compression ratio required for
streaming at the rate of 256 samples/sec. Frequency ranges are approximately
illustrated. (Figure adapted from [2]–[4].)

CPOW technology produces time-synchronized continuous

streams of direct samples of measured signals at a data rate

ranging from 256 Hz to 1 MHz [2]. Point-on-wave (POW)

measurement devices already exist, such as digital fault

and disturbance recorders (DFR/DDR). Traditionally, high-

resolution point-on-wave (POW) measurements are event-

triggered designed for post-event analysis. Fig. 1 shows the

timescales of various grid events and existing measurement

devices that generate event-triggered measurements. Also

shown are the two existing streaming technologies based on

SCADA1 and PMU devices.

A critical difference between CPOW and PMU/SCADA

measurements is that CPOW measurements produce un-

filtered high-resolution voltage and current samples. Such

measurements capture crucial details in transient events that

reveal operational risks. For example, the post-event analysis

of the 2016 Big Cut Fire by NERC [5] shows that the rapid

voltage phase jumps caused many inverter trippings that led

to the loss of 1,200 MW solar generation. Such events would

not have been observed with sufficient accuracy by traditional

PMU and SCADA measurements. NERC report concludes

that POW measurements are the most useful sources of data.

Data compression is a key technology for future high-

resolution WAMS. If the existing communication infrastruc-

1SCADA: supervisory control and data acquisition.
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ture is used for streaming, compression ratios of 100-1000

are necessary for monitoring events such as line switching

voltages and some of the lightning overvoltages, as shown

in Figure 1. Currently, there is no existing technology that

provides such levels of compression. See [6].

Having a high compression ratio is only one measure in

evaluating a compression technology. Fundamental to stream-

ing data compression is the tradeoff among three factors: (i)

the compression ratio, (ii) the accuracy of the compression-

decompression algorithm, and (iii) the delay associated with

the compression and decompression processes. The tradeoff

between the first two can be formalized in an information-

theoretic setting as the rate-distortion tradeoff by Shannon

[7]. The last is relevant in streaming applications where

encoding/decoding delays are crucial constraints.

A. Related Literature

There are no compression techniques and standards for the

real-time streaming of CPOW data to our best knowledge.

Here we review some of the relevant technologies that can

be candidates for high rate CPOW/PMU data streaming.

The need for data compression for power system monitor-

ing goes back at least three decades. Mehta and Russell made

one of the earliest contributions in [8], where they recom-

mended compressing data in the frequency domain using the

Fast Fourier Transform (FFT) by discarding high-frequency

coefficients. Discarding high-frequency components may lead

to significant distortions, however, when the signal has

higher-order harmonics. By processing data in blocks, FFT-

based techniques introduce inter-block distortions.

There is an extensive literature on compression of POW

measurements by event-triggered digital fault recorders

(DFR) [9]–[14]. For such applications, the data sampling

rate can be as high as 10MHz. Because the recorded data

are used in post-event analysis, these techniques are de-

signed to be efficient for offline storage instead of real

time streaming. To this end, having accurate reconstruction

is more important than having a high compression ratio

and small compression/decompression delay. Thus lossless

compression techniques are often preferred. Block linear

processing techniques such as FFT, discrete-cosine transform

(DCT), discrete wavelet transform (DWT) and spline have

been developed [8]–[16]. Nonlinear techniques such as neu-

ral network, fuzzy logic, and principal component analysis

(PCA) have also been proposed [12], [15], [17], [18].

PMU data compression for efficient storage has also at-

tracted considerable attention [19]–[21]. Such applications

are significantly different from real-time streaming. It is

often assumed that multiple data streams are accessible by

the compression algorithm so that spatiotemporal properties

can be exploited. Two-step procedures [20], [21] that first

compress in the spatial domain using PCA followed by

temporal compression techniques (such as DCT and DWT

based techniques) have shown to be effective.

The literature on the compression of streaming data for

power system monitoring and control is limited. See a

survey on compression techniques for PMU data in real-

time smart grid operations [6], where the authors reported

the capabilities of various compression techniques with the

compression ratio up to 5:1 for lossless compressions. Most

relevant to our work are the lossy compressions, categorized

by wavelet (and waveform packet) transform techniques,

mixed transform, parametric and nonparametric techniques

[6], [22], [23]. These state-of-the-art methods offer 6:1 to

16:1 compression ratios at the normalized mean squared error

(NMSE) from -20 to -30 dB. These techniques typically

do not work well for compressing rapid varying wideband

CPOW data.

In a broader context, the idea of subband compression

considered in this paper has long been successfully applied

in multimedia communications. Most of the data-streaming

techniques (such as the H.264 group) employ some forms of

subband compression. The key to subband compression is to

exploit the signal’s subband properties to apply high levels

of compression in subbands where artifacts of compression

are insignificant. For instance, in audio and video compres-

sion, the audio/video signals’ perceptual properties play a

crucial role in achieving tradeoffs among compression ratio,

reconstruction accuracy, and encoding-decoding latency. In

this paper, we focus on exploiting the harmonic structure of

current/voltage signals for compression.

B. Summary of Results and Contributions

Given that it is likely that CPOW and PMU technologies

will coexist in a future wide-area monitoring ecosystem, it

is particularly desirable that a single compression technology

applies to both data types. To this end, the proposed tech-

nique, referred to as adaptive subband compression (ASBC),

is perhaps the first such compression technique. Fig. 2

illustrates a conceptual infrastructure realization of the ASBC

technology. ASBC consists of an encoder for each remote

sensing device and a decoder at the fusion center2. Together,

they form the ASBC codec that provides end-to-end data

streaming. Implementations of the ASBC codec are explained

in Sec. III-IV.
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Fig. 2. An application of ASBC technology for high resolution PMU
monitoring of power grids.

2A fusion center is a location where data streams from different sensing
devices are combined. A fusion center may be located at PMU data
concentrators (PDC) or the operator’s control center.
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ASBC partitions the signal spectrum into harmonic and

interharmonic subbands, as shown in Fig. 3. The harmonic

subbands are centered at integral multiples of the system

frequency (50 or 60 Hz). Each harmonic subband contains

frequency components within the sideband of a specific

bandwidth. The interharmonic subband, on the other hand, is

a set of frequency bands between harmonic subbands [24].

A key feature of ASBC is adaptivity. The encoder monitors

activity of subbands and transmits only signals from active

subbands. Such an approach is instrumental when transients

and interharmonics are episodic and wideband. The level

of interharmonics may be negligible most of the time and

becomes strong suddenly when magnified by resonance. Thus

an in-situ compression of interharmonics can achieve a high

compression ratio without affecting reconstruction accuracy.

In evaluating the performance of ASBC, we provide a

theoretical characterization of the compression ratio and the

normalized mean-squared error of ASBC and a set of nu-

merical comparisons between ASBC and selected benchmark

techniques.

Key symbols used are listed in Table I. Otherwise, nota-

tions used in this paper are standard. We use x(t) and x[n]
for continuous-time and discrete-time signals, respectively.

TABLE I
MAJOR SYMBOLS (IN ALPHABETIC ORDER).

e(t): noise outside harmonic subbands.

Fs: sampling frequency of the uncompressed signal

pk: probability of the kth subband being active
pe: probability of interharmonic subband being active

Rk: rate of quantization for the kth subband.
Re: rate of quantization for the interharmonic subband

Sk: downsampling factor of the kth subband.

uk[n]: upsampled signal from x̃
Q
k
[n]. The data rate is the

same as yk[n]
x(t), x[n]: measurement signal model.
xk(t), xk[n]: signal component associated with the kth harmonic

with Wk as its bandwidth.
x̃k[n]: downsampled measurements from yk[n].

x̃
Q
k

: quantized bit-stream of x̃k[n] .

x̃k[n]: downsampled measurements from yk[n].
yk[n]: baseband representation of the kth harmonic xk[n].
ŷe[n]: reconstruction of the interharmonic subband signal.

εχ: normalized mean squared error of compression
technique χ

ηχ: compression ratio of compression technique χ

II. SIGNAL MODEL AND SUBBAND DECOMPOSITION

We model the continuous-time voltage (or current) signal

x(t) as the sum of K harmonics xk(t) and an interharmonic

component e(t):

x(t) =

K∑
k=1

xk(t) + e(t), (1a)

xk(t) = ak(t) cos(kΩ0t+ φk(t)), (1b)

where x1(t) is the signal component associated with the

system frequency F0 (e.g., 50 or 60 Hz), Ω0 = 2πF0, xk(t)

the kth harnomic centered around kF0, and K − 1 the total

number of higher-order harmonics3. Here we allow x1(t)
and its harmonics xk(t) to take the general analytical form

of (1b). The interharmonic e(t) models noise outside the

harmonic subbands.

W0 W1 W2

f
F0 2F0 3F0

|X(f)|

Fig. 3. The spectrum of x(t) and its harmonics. The grey area
represents the spectrum of interharmonics.

Let X(f), Xk(f) and E(f) be the Fourier spectra4 of

x(t), xk(t), and e(t), respectively, as illustrated in Fig. 3. We

assume that the spectrum Xk(f) of the kth harmonic xk(t)
is centered around kF0 with passband bandwidth5 Wk < F0.

The total bandwidth of x(t) is therefore KF0 + WK

2 ≤
(K + 1

2 )F0.

Sampled at the frequency Fs (Hz), the discrete-time signal

is given by, for n = 0,±1, · · · ,

x[n] := x(n/Fs) =
K∑

k=1

xk[n] + e[n], (2a)

xk[n] := ak[n] cos

(
k
Ω0

Fs
n+ φk[n]

)
, (2b)

where (ak[n], φk[n]) are the sampled amplitudes and phase

angles, and e[n] is the interharmonic signal.

Unlike CPOW data, PMU measurements are complex

phasors and real frequency measurements that are slowly

varying. To incorporate PMU data model in the same frame-

work, we make a slight generalization of (1) by modeling

PMU measurement x[n] as sampled complex baseband signal

x(t) with Ω0 = 0 defined by

x(t) = a0(t)e
jφ0(t). (3)

A special form of the above is used by the IEEE C37.118.1-

2011 standard for PMU dynamic compliance evaluation6.

With (3), the CPOW data compression techniques developed

here applies directly to PMU data.

3The IEEE Standard C37.118.2-2011 suggests to include higher order
harmonics up to the 50th order (K = 50).

4Here we assume the existence of Fourier transforms of all signals.
5The passband bandwidth is defined by the width of the frequency band

containing non zero frequency components.
6The IEEE standard C37.118.1-2011 uses the model x(t) = Xm√

2
(1 +

kx cos(ωt))∠ka cos(ωt− π) for dynamic compliance evaluation.
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Fig. 4. A three-subband ASBC encoder where hk[n] is the impulse response of the kth subband filter. Time indices of signals are obmitted with yi
standing for sequence (yi[n]).

III. ADAPTIVE SUBBAND COMPRESSION: ENCODER

As illustrated in Fig. 4, an ASBC encoder partitions the

signal spectrum into a set of frequency bands, adaptively

masks inactive bands, and encodes the unmasked bands in

parallel. These individual components are explained below.

A. Subband decomposition

From the output of the sensor transformer, the continuous-

time measurement signal x(t) is sampled at Fs Hz. The

discrete-time signal x[n] is frequency down-shifted and

passed through a filterbank H = (He,H1, · · · ,HK) that

extracts the subband signal xk[n] in its baseband represention

yk[n]. Specifically, the output of the kth subband filter is a

complex time series

yk[n] = (x[n]e−jkω0n)� hk[n], ω0 :=
2πF0

Fs
, (4)

where � is the convolution operator. Ideally, the filter for

the kth subband is a low-pass filter with bandwidth Wk/2,

whose output yk[n] is the baseband representation of the kth

harmonic signal xk[n].

The interharmonic distortion ye[n] whose spectrum corre-

sponds to the grey area of power spectrum in Fig. 3 can be

extracted by

ye[n] = x[n]−
√
2Re

( K∑
k=1

yk[n]e
jkω0n

)
. (5)

In absence of high order and interharmonics, x(t) = x1(t)
in (1), and only y1[n] is non-zero.

B. Activity detection

Except y1[n] from the output of subband filter H1 cor-

responding to the subband associated with the system fre-

quency F0, the outputs from the rest of subband filters are

passed thorough activity detectors (De,Dk) to determine the

level of compression required, ranging from transmitting at

the subband Nyquist rate to full compression that eliminates

the transmission of yk[n].
The activity detection is performed on blocks of samples.

The detector Dk takes a block of samples and outputs an

indicator wk = 1 for the block if the subband k is active

and wk = 0 otherwise. The detector for inter-harmonic

subband does the same way. A standard implementation of

the activity detector is the energy detector. More sophisticated

techniques such as quickest detection or machine-learning

based detection can also be used.

C. Subband compression

The compression of the harmonic subband k is achieved

by down-sampling of yk[n] by Sk fold. By the (passband)

Nyquist sampling theorem, if the kth subband has passband

bandwidth of Wk, then the signal in the kth subband can

be perfectly reconstructed by sampling xk(t) at frequency of

Wk (Hz). Given that x(t) is sampled at Fs (Hz), the rate of

down-sampling Sk is given by

Sk =

⌈
Fs

Wk

⌉
. (6)

If subband k is active, the down-sampler gives the com-

pressed data sequence

x̃k[n] =

{
yk[nSk], wk[n] = 1,

�, otherwise,
(7)
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where � is a masking symbol indicating that the data sample

needs not be encoded and transmitted. The data rate associ-

ated with x̃k[n] is at most 1/Sk of that of yk[n].
The interharmonic band is expected to be active infre-

quently. When an interharmonic signal needs to be trans-

mitted to the control center, an FFT-based (e.g., FFT-(k, L)
described in Sec. V-B) or wavelet based compression scheme

can be used. See references in [6].

D. Quantization and multiplexing

The down-sampled data streams are quantized by quantizer

(Qe,Qk) that maps subband stream x̃k[n] into a bit-stream

x̃Q
k of Rk bits/sample. A scaler quantizer such as pulse-code

modulation (PCM) quantizes individual sample of x̃k into Rk

bits of x̃Q
k , whereas a vector quantizer such as code excited

linear prediction (CLEP) or K-mean clustering takes a block

of M samples of and quantizes them into a block of MRk

bits of x̃Q
k . The bit-streams from subbands are multiplexed

into a single bit-stream b to be delivered to the receiver. Also

communicated the length of inactivity masks for each block

that is not transmitted due to inactivity.

IV. ADAPTIVE SUBBAND COMPRESSION: DECODER

ASBC decoders are located at regional data concentrators

or the control center where compressed streaming data are

reconstructed. Fig. 5 illustrates the schematic of an ASBC

decoder. The functionalities of individual components are

explained below.

The de-multiplexing block is the inverse of the multiplex-

ing block at the encoder. It parses the single bit-stream into

subband data streams x̃Q
k and x̃Q

e sent by the transmitter.

The decompression block reverses the compression block

and generates estimated harmonics (in baseband) ŷk in two

steps. First, x̃Q
k [n] is up-sampled (interpolated) with zeros

(including replacing masked symbols with zeros) to generate

sequence uk[n] that has the same data rate as that of

yk[n]. The interpolated sequence uk[n] is passed through a

subband interpolation filter H†
k with impulse response ĥk[n]

to produce an estimate of the baseband representation of the

kth harmonic signal ŷk[n]. The subband interpolation filter

may be chosen as the matched-filter ĥk[n] = hk[−n] to

maximize the signal-to-noise ratio. Other implementations,

such as windowed low-pass filters, can also be used. The

decompression of the interharmonic signal directly follows

the compression algorithm used at the encoder.

The final decompression step takes the subband signals

ŷk[n] produce an estimate of the original direct sampled x[n]
of x(t) in the encoder:

x̂[n] =
√
2Re

(
K∑

k=1

ŷk[n]e
jkω0n

)
+ ŷe[n]. (8)

V. RATE-DISTORTION CHARACTERISTICS

The standard measure of lossy compression is the rate-

distortion curve that highlights the tradeoff between the level

of compression and the accuracy of the reconstruction. A

well designed compression scheme has a monotonic rate-

distortion curve: the higher the rate of the compressed signal,

the lower the compression ratio, the lower the distortion.

In this paper, we adopt the compression ratio and the

normalized mean-squared error to characterize the rate-
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distortion characteristics. Given a compression scheme χ, its

compression ratio7 defined by

ηχ =
Ruc

Rχ
, (9)

where Ruc is the data rate (bits/sec) of the uncompressed

signal and Rχ the rate of the compressed stream.

Let x[n] be the original (uncompressed) signal and x̂χ[n]
the reconstructed signal at the decoder. The normalized

mean-squared error (NMSE) in (dB) is defined by

Eχ = 10 log10

∑N
n=1 |x[n]− x̂χ[n]|2∑N

n=1 x
2[n]

(dB)

→ 10 log10
E(|x[n]− x̂χ[n]|2)

E(|x[n]|2) = (SNRχ)−1,(10)

where N is the length of the data sequence, and the mean-

square convergence of (10) assumes regularity conditions.

Note that 1
Eχ has the interpretation to be the signal-to-

reconstruction noise ratio (SNR).

For the application at hand, the data rate of the uncom-

pressed data stream can be measured by

Ruc = FsRQ (bits/sec), (11)

where Fs represents the sampling frequency of the measured

signal x(t) and RQ the rate of quantization (bits/sample).

The distortion of the uncompressed scheme comes only

from quantization error. With RQ bits PCM quantization, the

NMSE is approximately by

Euc ≈ −6RQ + 1.25 (dB). (12)

A. Rate-distortion measure of ASBC: (ηASBC, EASBC)

We provide a characterization of the compression ratio

ηASBC and the NMSE of the reconstruction EASBC.

The data rate of the compressed data stream by ASBC is

RASBC =

K∑
k=1

pk
Fs

Sk
Rk + peFsRe (bits/sec), (13)

where Fs is the sampling frequency of the uncompressed

data, pk the probability of kth subband being active, Rk the

rate (bits/sample) of the quantization in the kth subband, Sk

the down-sampling rate of kth subband, pe the probability

that the interharmonic subband is active, and Re the rate of

quantization of the interharmonic subband. The compression

ratio of ASBC is given by

ηASBC =
Ruc

RASBC
=

(
K∑

k=1

pk
Rk

RQSk
+ pe

Re

RQ

)−1

. (14)

If we ignore quantization, ASBC gains via adaptively down-

sampling of subband signals based on subband activity. As

an example, for the 6kHz sampling of the original signal and

7The theoretical compression ratio is defined by excluding protocol
overhead that has sublinear growth with the data length.

a harmonic subband of 6Hz bandwidth, ASBC achieves the

compression ratio 1000 : 1 for that subband.

The NMSE measure EASBC of ASBC depends on how

accurately ASBC can detect the activities of harmonic and in-

terharmonic subbands. Assuming all harmonic subbands are

active and there is no interharmonics, i.e., pe = 0, we have

EASBC ≈ Euc because ASBC achieves perfect reconstruction

of each harmonic signals by the Nyquist sampling theorem.

In practice, EASBC > Euc when false negative detection occurs

or when there is interharmonic signal.

B. Rate-distortion measure of FFT-(k, L) : (ηFFT, EFFT)

A benchmark compression scheme is based on the

fast Fourier transform (FFT), herein referred to as FFT-

(k, L). It takes a block of L data samples, computes the

FFT coefficients, and keeps only the k largest coefficients

X
(1)
j , · · · , X(k)

j (corresponding to the positive frequencies in

the jth block) and masks the rest.

The compression ratio of FFT-(k, L) is given by

ηFFT-(k, L) =
L

k
, (15)

where we ignore the log2 L bits needed to encode the

frequency locations. The NMSE of FFT-(k, L) is given by

EFFT-(k, L) = 10 log

(
1−

∑N/L
j=1

∑k
i=1 |X(i)

j |2∑N
i=1 |x[i]|2

)
. (16)

VI. NUMERICAL RESULTS

We present numerical results in two categories using

synthetic and real data. The first category is the compression

of CPOW measurements, where we studied the compression

of actual CPOW measurements and synthetic waveforms with

characteristics of power system signals. The tests using syn-

thetic waveforms allowed us to evaluate the performance of

benchmark techniques under different scenarios of transient

events. We also studied the compression of directly sampled

voltage measurements at the sampling frequency of 6 kHz.

This was a case that the signal has significant harmonics and

interharmonics. The second category is the compression of

PMU measurements, including synchrophasor measurements

and frequency estimates, where both synthetic and actual

PMU data were used for experiments.

ASBC was compared with four benchmark techniques: (i)

FFT-based compression described in Sec. V-B, (ii) Multi-

resolution discrete wavelet transform (DWT) using the same

parameter (wavelet function, decomposition level) selection

method as in [16], (iii) Compressive sampling (CS) [22],

and (iv) Exception compression with swing door trending

compression (EC-SDT) [23]. Rate-distortion curves that plot

reconstruction error against compression ratio η are used

in the compression. We use NMSE (dB) to measure re-

construction error for CPOW data compression and the

maximum Total Vector Error (TVE) defined in [25] for PMU

compression.
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A. Compressions of synthetic CPOW measurements

The purpose of this experiment was to test the performance

of compression when the regular sinusoidal waveform was

interrupted by episodes of transient events with signals of

abnormal characteristics. We focused on four types of event

signals shown in Table II. Among the set of waveforms at the

event state, the amplitude modulation (AM) and frequency

modulation (FM) waveforms were designed according to

the requirement on performance under dynamic compliance

specified by [25]. The linear chirp waveform was used to

simulate the frequency ramping events, and the interharmonic

(IH) waveform modeled frequency components not in multi-

ples of the system frequency F0.

TABLE II
TEST WAVEFORMS

Test cases Signal waveforms

Normal state: xN (t) =
∑K

k=0
ak cos(2π60(k + 1)t+ φk)

σt = 0

Event: xAM(t) = α0 + α cos(2πΔt) cos(2π60t+ θ0)

σt = 1 xFM(t) = α cos(2π60t+ β cos(2πΔt− π) + θ0)

xChirp(t) = α cos(2π(59.5 + γt) + θ0)

xIH(t) =
∑W

k=1
αk cos(2πfkt+ θk)

Signal parameters: σt–the switching state, (ak, φk)–amplitude and
phase angles of harmonics, (αk, β, γ, θk)–transient parameters, and fk–
interharmonic frequencies.

To simulate transient events, we used a two-state Markov

switching model that modulated the signal between the

normal state (σt = 0) waveform xNorm(t) and the event state

(σ = 1) with waveforms chosen from AM, FM, chirp, and

IH signals. The Markov switching process was characterized

by state transition rate (λ, μ) where 1/λ was the expected

holding time of the normal state and 1/μ the expected

holding time of the event state.

Fig. 6 shows the rate-distortion curve of ASBC, FFT, and

DWT techniques for the FM and AM events. The sampling

rate of the original signal was 5400 Hz. As shown in the

upper panel, the NMSE of DWT scheme was about 30

to 40 dB higher than those of FFT and ASBC. Note that

DWT uses non-sinusoidal basis functions. They tend to be

effective for approximately constant or staircase valued sig-

nals (such as phasor measurements). For the compression of

sinusoidal voltage/current CPOW measurements, sinusoidal

basis functions used in ASBC and FFT had the advantage

of being closer to the native voltage/current waveforms even

for linear chirp signals. In this experiment, the requirement

of high compression ratios forced DWT to discard too many

parameters, resulting in high reconstruction error.

ASBC had about 4-6 dB gain over FFT for the com-

pression ratio between 540:1 and 54:1, whereas FFT had 3

dB gain over ASBC at a compression ratio of 1350:1. Note

that the 95% confidence interval of ASBC was considerably

smaller than that of FFT, indicating that the errors of the
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Fig. 6. FM/AM parameters: α0 = 1, λ = 0.1, μ = 2. Top panel
NMSE with 95% confidence interval for the AM (Left) and FM
(right) events. No high order harmonics and interharmonics. Bottom:
the maximum reconstruction error for the FM and AM events.

FFT scheme were more dispersed. The same behavior was

confirmed by the maximum reconstruction error plot at

the lower panel of Fig. 6. The main reason that ASBC

outperformed FFT was that FFT introduced discontinuities at

the boundaries of FFT blocks. In contrast, the ASBC encoder

did not have discontinuities. This phenomenon was more

pronounced for the linear-chirp test cases shown in Fig. 7
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Fig. 7. Left: comparison of rate-distortion curve for linear chip events.
Right: a segment of the original and its reconstruction. λ = 0.1, μ = 1

Fig. 7 shows the rate-distortion plot for the linear chirp

events. The linear chirp signals have a much wider band-

width, and the achievable compression ratio significantly

lower than possible in FM/AM events. The left panel shows

the NMSE for the three techniques. Again, DWT was not

competitive against FFT and ASBC techniques, and ASBC

had a considerable gain over the FFT compression in the low

compression ratio regime. In particular, ASBC had about 15

dB lower NMSE at the compression ratio of 180:1 and 20 dB

lower at the compression ratio of 54:1. The right panel shows

the original signal and reconstructed ones in the time domain.

Notice that the normal sinusoidal waveform transitioned to

a linear chip at time t = 16 seconds. The reconstruction of
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FFT and DWT around t = 16 showed a significantly larger

error than that of ASBC.

B. Compressions of CPOW voltage measurements.

We applied ASBC directly to a data set (hereafter referred

to as UTK6K) provided by the University of Tennessee,

Knoxville. The UTK6K data set consisted of 1.8 million

voltage measurements sampled at 6KHz. Fig. 8 (Top) shows

the power spectrum of the directly sampled data stream,

from which we observed the presence of harmonics and

interharmonics. The plot also showed that the energy levels

from the 20th to 50th subbands were negligible.

ASBC was implemented with 3 Hz bandwidth for sub-

bands associated with all 50 harmonics. Only the top k sub-

bands with the highest energy level were compressed and de-

livered where k was chosen to have the required compression

ratio. The bottom left panel of Fig. 8 shows the rate-distortion

curve of ASBC, FFT, and DWT for the compression ratio

from 400:1 to 40:1. For this range of compression ratios,

DWT was not competitive. ASBC was seen to out-perform

FFT in the compression ratio range of 400:1 to 100:1, and the

two schemes are comparable for the range of 66.7:1 to 40:1.

The reason that FFT-based compression did not perform well

was, again, that the block implementation of FFT introduced

discontinuities, which caused reconstruction errors. As the

compression ratio decreased, more FFT coefficients were

preserved, the reconstruction error of FFT improved.

To evaluate the effects of interharmonics, we added

additional interharmonic transient events to the original

UTK6KHz dataset in the same way as experiments discussed

in Sec. VI-A. The bottom right panel of Fig. 8 shows the

rate-distortion plot with interharmonics subband activated.

An energy detector was used to determine when and whether

the interharmonics subband should be activated. Only those

harmonics subbands with sufficient energy levels were com-

pressed and transmitted. Interharmonics subband, when de-

tected being active by the energy detector, was compressed

dynamically to the effective bandwidth ranging from 60 to

120Hz. As shown in the bottom left panel, the presence of in-

terharmonics increased NMSE slightly for ASBC at the high

compression ratio. Overall, ASBC consistently performed

better than other methods. The standard deviations were small

for all three methods; thus, the confidence intervals were not

shown in the plot.

C. Compressions of PMU dynamic compliance performance

ASBC can also be used for compressing the streaming of

PMU data. Besides ASBC, FFT, and DWT compressions,

we also considered two methods based on compression prin-

ciples other than Fourier or wavelet-based techniques. One

technique was the application of the compressive sampling

(CS) technique [22]; the other was based on a combination of

exception compression and swing-door-trending compression

(EC-SDT). EC-SDT is a heuristic that forms a time-varying
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Fig. 8. Top: Power spectrum density of the direct voltage measurements.
Bottom left: comparison of rate-distortion curves without interharmonics.
Bottom right: comparison with added interharmonics.

band that covers measurements and interpolating these mea-

surements by a piecewise linear reconstruction.
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Fig. 9. Left: Max TVE fixed at compression ratio 3:1. Right: Rate distortion
with ω = 5Hz. kx = 0.1, ka = 0.1

Fig. 9 shows the performance of the dynamic compliance

test of the benchmark techniques. The left panel of Fig. 9

shows the maximum total variation error (TVE) vs. the fre-

quency of amplitude/phase variation at the low compression

ratio8 of 3:1. All tested methods except FFT satisfied the

1% maximum TVE requirement of IEEE C37.118.1-2011

up to 2Hz modulation frequency. FFT performed the worst

for it suffered badly from the discontinuity between blocks.

The compressive sampling (CS) solution appeared to be

more sensitive to the modulation frequency. Among the rest

techniques, DWT performs the best at this compression ratio,

and EC-SDT performed slightly better than ASBC at the

lower modulation frequency.

The right panel of Fig. 9 shows the performance compar-

ison in a significantly higher range of compression ratios.

ASBC, DWT and EC-SDT performed similarly up to 30:1

compression ratio, and ASBC outperformed both DWT and

8The maximum compression ratio used in [23] was converted to the
standard definition in (9)
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EC-SDT above the compression ratio of 30:1. The max TVE

of FFT remains high throughout the tests due to discontinuity.

D. Compressions ov PMU frequency measurements

We applied ASBC to a dataset referred to as UTK1.44,

which consisted of frequency estimates from the University

of Tennessee, Knoxville. The dataset contained two data

streams, each with 1,800,000 samples at the rate of 1440

samples/sec. One distinct feature of this dataset was the

frequency ramping event between 308.4 and 308.6 seconds,

as shown in the right panel of Fig. 10. As a time series,

the frequency measurements are close to being constant at

around 60 (Hz). Thus only a single subband is needed for

ASBC. We varied the subband bandwidth to achieve different

compression ratios.

The performance of the four data compression methods

was evaluated base on the maximum error of the reconstruc-

tion of the frequency measurements (Max FE) as defined by

the IEEE Standard C37.11 [25] that specifies the acceptable

performance is to have Max-FE below 0.005 Hz. At the

compression ratio of 48:1, only ASBC and DWT met the

0.005 Hz threshold. DWT performed the best for compression

ratios above 48:1 because the frequency estimates were

approximately constant outside the event around 308.5 sec.
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Fig. 10. Maximum FE and time-domain reconstruction

The right panel of Fig. 10 showed a segment time-domain

reconstructions at the compression ratio of 48:1. As Fourier

based compression techniques, ASBC and FFT compression

exhibited small oscillatory error patterns even when the orig-

inal frequency estimates were approximately constant. Such

artifacts are results of the optimal sinusoidal approximation

of non-sinusoidal waveforms9. Because the magnitude of the

errors are well within the specification of the IEEE C37.11

Standard, such artifacts should be treated as noise. The small

spike of reconstruction error of FFT around t = 309 sec was

caused by the discontinuity of the block implementation.

E. Implementation Issues

We now discuss briefly implementation issues of the

proposed compression technology. As shown in Fig. 4-5,

9As suggested by the Chebyshev alternation theorem, the optimal approx-
imation error must oscillate around the true value.

major costs of implementations are the frequency up/down

shifts and subband filters in the ASBC encoder and decoder.

Such operations are standard in communication systems;

only minor modifications of the off-the-shelf technology are

necessary. The costs of hardware implementations are low.

The overall performance of the compression technology

depends, naturally, on setting design parameters appropriately

for power system signals. This includes choosing appro-

priately the size of the encoding and decoding filterbank

to tradeoff implementation accuracy and filtering delays.

Classical signal processing techniques such as windowing

offer practical ways to achieve good tradeoffs.

VII. CONCLUSION

As an emerging technology, real-time and high-resolution

CPOW and PMU monitoring of the power grid has the

potential to provide situational awareness crucial to reliability

and resiliency in the advent of large-scale integration of

highly dynamic inverter-based energy resources such as wind,

solar, and storage. As pointed out in [2], data compression

is needed for real-time streaming and event-specific polling.

This paper presents a practical solution derived from a

low complexity technology that has been widely used outside

the power system domain. The developed technique applies

to the streaming of both CPOW and PMU measurements

in either on-demand/event-driven or continuous streaming

modes. The main contribution of this work lies in specializing

subband compression techniques to the power system-specific

decomposition of signal bandwidth into harmonic subbands.

To this end, we demonstrate that ASBC can achieve 100 to

1000:1 compression ratios necessary to monitor a wide range

of transient events.

We have compared the Fourier-based (ASBC and FFT) and

wavelet-based (DWT) compression schemes using a combi-

nation of synthetic and real data, albeit in limited laboratory

settings. In these experiments, ASBC performed better than

generic implementations of FFT and DWT-based compres-

sions. DWT-based techniques are known for their advantages

of capturing waveform details, and there is a significant

literature on the effectiveness of DWT-based compression

when the compression ratio is relatively low. For CPOW

streaming with high compression ratio, however, DWT-based

techniques did not offer sufficiently high compression ratio

for the level of accuracy required by industrial standards in

our experiments. Such characteristics need to be validated in

more extensive field studies.

We have left out several issues that would be of signif-

icance in future work. ASBC, in its current form, applies

to compressions at individual CPOW sensors. Power system

measurements are constrained by physical laws that impose

strong spatial dependencies. A natural framework is to exploit

spatial dependencies at data concentrators. In such settings,

ASBC can be combined with some of the spatiotemporal

compression techniques [20], [21] for either efficient storage
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or streaming. An issue of particular significance is data

security and anomaly detection in CPOW data. It worths

mentioning that CPOW data, unlike PMU and SCADA

measurements, are more difficult for data injection attacks

[26] and potentially easier to detect malicious data attack.
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