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Abstract—A data compression system capable of providing
real-time streaming of high-resolution continuous point-on-wave
(CPOW) and phasor measurement unit (PMU) measurements
is proposed. Referred to as adaptive subband compression
(ASBC), the proposed technique partitions the signal space
into subbands and adaptively compresses subband signals based
on each subband’s active bandwidth. The proposed technique
conforms to existing industry phasor measurement standards,
making it suitable for streaming high-resolution CPOW and
PMU data either in continuous or burst on-demand/event-
triggered modes. Experiments on synthetic and real data show
that ASBC reduces the CPOW sampling rates by several orders
of magnitude for real-time streaming while maintaining the
precision required by industry standards.

Index Terms—Continuous point-on-wave (CPOW) measure-
ment. Phasor measurement units (PMU). Subband compres-
sion. Adaptive data compression. Wide-area monitoring systems
(WAMS). Real-time monitoring and control.

I. INTRODUCTION

With deeper penetration of inverter-based resources that
exhibit low inertia and fast dynamics, there are growing
needs for high-resolution grid measurement and streaming
technology [1], [2]. In [2], Silverstein and Follum make
a compelling case that the time-synchronized continuous
point-on-wave (CPOW) measurement technology has the
potential to address operational challenges in a broad range
of grid applications beyond the capabilities of the existing
phasor-measurement unit (PMU) technology. These appli-
cations include monitoring geomagnetic disturbances, sub-
synchronous resonance (SSR), rapid phase-jumps, and high-
resolution monitoring of inverter-based distributed energy
resources. The need for high-resolution data to capture new
phenomenon such as super harmonics and oscillations has
also been articulated in [1].

Anticipating that future wide-area measurement systems
(WAMS) will likely include CPOW, PMU, and SCADA de-
vices, this paper proposes a lossy compression technique for
the high-fidelity and high-resolution streaming technology in
either continuous or on-demand modes. By high-fidelity, we
mean that the signal reconstruction has the accuracy within
specifications of industry standards. By high-resolution, on
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the other hand, we mean that the source signal is sampled
at sufficiently high frequencies to capture higher-order har-
monics, wideband interharmonics, and wideband transients.
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Fig. 1. Device sampling frequencies, (uncompressed) device reporting rates
for different applications and devices, and compression ratio required for
streaming at the rate of 256 samples/sec. Frequency ranges are approximately
illustrated. (Figure adapted from [2]-[4].)

CPOW technology produces time-synchronized continuous
streams of direct samples of measured signals at a data rate
ranging from 256 Hz to 1 MHz [2]. Point-on-wave (POW)
measurement devices already exist, such as digital fault
and disturbance recorders (DFR/DDR). Traditionally, high-
resolution point-on-wave (POW) measurements are event-
triggered designed for post-event analysis. Fig. 1 shows the
timescales of various grid events and existing measurement
devices that generate event-triggered measurements. Also
shown are the two existing streaming technologies based on
SCADA! and PMU devices.

A critical difference between CPOW and PMU/SCADA
measurements is that CPOW measurements produce un-
filtered high-resolution voltage and current samples. Such
measurements capture crucial details in transient events that
reveal operational risks. For example, the post-event analysis
of the 2016 Big Cut Fire by NERC [5] shows that the rapid
voltage phase jumps caused many inverter trippings that led
to the loss of 1,200 MW solar generation. Such events would
not have been observed with sufficient accuracy by traditional
PMU and SCADA measurements. NERC report concludes
that POW measurements are the most useful sources of data.

Data compression is a key technology for future high-
resolution WAMS. If the existing communication infrastruc-

ISCADA: supervisory control and data acquisition.
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ture is used for streaming, compression ratios of 100-1000
are necessary for monitoring events such as line switching
voltages and some of the lightning overvoltages, as shown
in Figure 1. Currently, there is no existing technology that
provides such levels of compression. See [6].

Having a high compression ratio is only one measure in
evaluating a compression technology. Fundamental to stream-
ing data compression is the tradeoff among three factors: (i)
the compression ratio, (ii) the accuracy of the compression-
decompression algorithm, and (iii) the delay associated with
the compression and decompression processes. The tradeoff
between the first two can be formalized in an information-
theoretic setting as the rate-distortion tradeoff by Shannon
[7]. The last is relevant in streaming applications where
encoding/decoding delays are crucial constraints.

A. Related Literature

There are no compression techniques and standards for the
real-time streaming of CPOW data to our best knowledge.
Here we review some of the relevant technologies that can
be candidates for high rate CPOW/PMU data streaming.

The need for data compression for power system monitor-
ing goes back at least three decades. Mehta and Russell made
one of the earliest contributions in [8], where they recom-
mended compressing data in the frequency domain using the
Fast Fourier Transform (FFT) by discarding high-frequency
coefficients. Discarding high-frequency components may lead
to significant distortions, however, when the signal has
higher-order harmonics. By processing data in blocks, FFT-
based techniques introduce inter-block distortions.

There is an extensive literature on compression of POW
measurements by event-triggered digital fault recorders
(DFR) [9]-[14]. For such applications, the data sampling
rate can be as high as 10MHz. Because the recorded data
are used in post-event analysis, these techniques are de-
signed to be efficient for offline storage instead of real
time streaming. To this end, having accurate reconstruction
is more important than having a high compression ratio
and small compression/decompression delay. Thus lossless
compression techniques are often preferred. Block linear
processing techniques such as FFT, discrete-cosine transform
(DCT), discrete wavelet transform (DWT) and spline have
been developed [8]-[16]. Nonlinear techniques such as neu-
ral network, fuzzy logic, and principal component analysis
(PCA) have also been proposed [12], [15], [17], [18].

PMU data compression for efficient storage has also at-
tracted considerable attention [19]-[21]. Such applications
are significantly different from real-time streaming. It is
often assumed that multiple data streams are accessible by
the compression algorithm so that spatiotemporal properties
can be exploited. Two-step procedures [20], [21] that first
compress in the spatial domain using PCA followed by
temporal compression techniques (such as DCT and DWT
based techniques) have shown to be effective.

The literature on the compression of streaming data for
power system monitoring and control is limited. See a
survey on compression techniques for PMU data in real-
time smart grid operations [6], where the authors reported
the capabilities of various compression techniques with the
compression ratio up to 5:1 for lossless compressions. Most
relevant to our work are the lossy compressions, categorized
by wavelet (and waveform packet) transform techniques,
mixed transform, parametric and nonparametric techniques
[6], [22], [23]. These state-of-the-art methods offer 6:1 to
16:1 compression ratios at the normalized mean squared error
(NMSE) from -20 to -30 dB. These techniques typically
do not work well for compressing rapid varying wideband
CPOW data.

In a broader context, the idea of subband compression
considered in this paper has long been successfully applied
in multimedia communications. Most of the data-streaming
techniques (such as the H.264 group) employ some forms of
subband compression. The key to subband compression is to
exploit the signal’s subband properties to apply high levels
of compression in subbands where artifacts of compression
are insignificant. For instance, in audio and video compres-
sion, the audio/video signals’ perceptual properties play a
crucial role in achieving tradeoffs among compression ratio,
reconstruction accuracy, and encoding-decoding latency. In
this paper, we focus on exploiting the harmonic structure of
current/voltage signals for compression.

B. Summary of Results and Contributions

Given that it is likely that CPOW and PMU technologies
will coexist in a future wide-area monitoring ecosystem, it
is particularly desirable that a single compression technology
applies to both data types. To this end, the proposed tech-
nique, referred to as adaptive subband compression (ASBC),
is perhaps the first such compression technique. Fig. 2
illustrates a conceptual infrastructure realization of the ASBC
technology. ASBC consists of an encoder for each remote
sensing device and a decoder at the fusion center?. Together,
they form the ASBC codec that provides end-to-end data
streaming. Implementations of the ASBC codec are explained
in Sec. III-IV.

Intelligent electronic
device (IED)

D -
encoder
measurement
transformer

Control center

ASBC
decoder

Phasor data
concentrator

Fig. 2. An application of ASBC technology for high resolution PMU
monitoring of power grids.

2A fusion center is a location where data streams from different sensing
devices are combined. A fusion center may be located at PMU data
concentrators (PDC) or the operator’s control center.
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ASBC partitions the signal spectrum into harmonic and
interharmonic subbands, as shown in Fig. 3. The harmonic
subbands are centered at integral multiples of the system
frequency (50 or 60 Hz). Each harmonic subband contains
frequency components within the sideband of a specific
bandwidth. The interharmonic subband, on the other hand, is
a set of frequency bands between harmonic subbands [24].

A key feature of ASBC is adaptivity. The encoder monitors
activity of subbands and transmits only signals from active
subbands. Such an approach is instrumental when transients
and interharmonics are episodic and wideband. The level
of interharmonics may be negligible most of the time and
becomes strong suddenly when magnified by resonance. Thus
an in-situ compression of interharmonics can achieve a high
compression ratio without affecting reconstruction accuracy.

In evaluating the performance of ASBC, we provide a
theoretical characterization of the compression ratio and the
normalized mean-squared error of ASBC and a set of nu-
merical comparisons between ASBC and selected benchmark
techniques.

Key symbols used are listed in Table I. Otherwise, nota-
tions used in this paper are standard. We use x(t) and z[n]
for continuous-time and discrete-time signals, respectively.

TABLE 1
MAJOR SYMBOLS (IN ALPHABETIC ORDER).

e(t): noise outside harmonic subbands.

F: sampling frequency of the uncompressed signal

Pk probability of the kth subband being active

Pe: probability of interharmonic subband being active

Ry: rate of quantization for the kth subband.

Re: rate of quantization for the interharmonic subband

Skt downsampling factor of the kth subband.

ug[n] upsampled signal from i"kQ[n] The data rate is the
same as yi[n]

z(t), z[n]: measurement signal model.

zk(t),zk[n]:  signal component associated with the kth harmonic
with W}, as its bandwidth.

Zx[n]: downsampled measurements from yg [n].

ikQ: quantized bit-stream of Zy[n] .

Zi[n]: downsampled measurements from yy, [n].

yr[nl: baseband representation of the kth harmonic z[n].

Je[n]: reconstruction of the interharmonic subband signal.

eX: normalized mean squared error of compression
technique x

nX: compression ratio of compression technique x

II. SIGNAL MODEL AND SUBBAND DECOMPOSITION

We model the continuous-time voltage (or current) signal
x(t) as the sum of K harmonics 2 (t) and an interharmonic
component e(t):

K
w(t) =D wu(t) +e(t), (1a)
k=1
2 (t) = ap(t) cos(kQot + o (1)), (1b)

where z1(¢) is the signal component associated with the
system frequency Fj (e.g., 50 or 60 Hz), Q¢ = 27 Fp, xx(t)

the kth harnomic centered around kFj, and K — 1 the total
number of higher-order harmonics®. Here we allow z1(t)
and its harmonics xy(t) to take the general analytical form
of (Ib). The interharmonic e(¢) models noise outside the
harmonic subbands.

|X(f)]
MADLNT
Fy 2F, 3F

Fig. 3. The spectrum of z(¢) and its harmonics. The grey area
represents the spectrum of interharmonics.

Let X(f),Xx(f) and E(f) be the Fourier spectra* of
x(t), x5 (t), and e(t), respectively, as illustrated in Fig. 3. We
assume that the spectrum X (f) of the kth harmonic xy(t)
is centered around kF}, with passband bandwidth® W}, < Fj.
The total bandwidth of z(t) is therefore K Iy + K <
(K + 3)Fo.

Sampled at the frequency Fs (Hz), the discrete-time signal
is given by, for n =0, +1,- - -,

K

z|n] == z(n/Fs) = sz[n] + e[n], (2a)
k=1

ol = axliloos (K3 + onlil), @b

where (ay[n], ¢x[n]) are the sampled amplitudes and phase
angles, and e[n] is the interharmonic signal.

Unlike CPOW data, PMU measurements are complex
phasors and real frequency measurements that are slowly
varying. To incorporate PMU data model in the same frame-
work, we make a slight generalization of (1) by modeling
PMU measurement x[n| as sampled complex baseband signal
x(t) with g = 0 defined by

z(t) = ag(t)e??o®. 3)

A special form of the above is used by the IEEE C37.118.1-
2011 standard for PMU dynamic compliance evaluation®.
With (3), the CPOW data compression techniques developed
here applies directly to PMU data.

3The TEEE Standard C37.118.2-2011 suggests to include higher order
harmonics up to the 50th order (K = 50).

4Here we assume the existence of Fourier transforms of all signals.

SThe passband bandwidth is defined by the width of the frequency band
containing non zero frequency components.

%The IEEE standard C37.118.1-2011 uses the model x(t) = %(1 +

kz cos(wt))Zkq cos(wt — ) for dynamic compliance evaluation.
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Fig. 4. A three-subband ASBC encoder where hy[n] is the impulse response of the kth subband filter. Time indices of signals are obmitted with y;

standing for sequence (y;[n]).

III. ADAPTIVE SUBBAND COMPRESSION: ENCODER

As illustrated in Fig. 4, an ASBC encoder partitions the
signal spectrum into a set of frequency bands, adaptively
masks inactive bands, and encodes the unmasked bands in
parallel. These individual components are explained below.

A. Subband decomposition

From the output of the sensor transformer, the continuous-
time measurement signal x(t) is sampled at Fy Hz. The
discrete-time signal x[n] is frequency down-shifted and
passed through a filterbank H = (H.,Hi, -, Hx) that
extracts the subband signal 2 [n] in its baseband represention
yx[n]. Specifically, the output of the kth subband filter is a
complex time series

727TF0
= i ,

yr[n] = (z[n]e %"y @ hg[n], wp : 4)
where ® is the convolution operator. Ideally, the filter for
the kth subband is a low-pass filter with bandwidth W}, /2,
whose output y[n] is the baseband representation of the kth
harmonic signal 2 [n].

The interharmonic distortion y.[n] whose spectrum corre-
sponds to the grey area of power spectrum in Fig. 3 can be
extracted by

yeln] = o] - ﬂR(fyk ).

k=1

In absence of high order and interharmonics, x(t) = x1 (t)
in (1), and only y1[n] is non-zero.

B. Activity detection

Except y1[n] from the output of subband filter H; cor-
responding to the subband associated with the system fre-
quency Fj, the outputs from the rest of subband filters are
passed thorough activity detectors (D, Dj) to determine the
level of compression required, ranging from transmitting at
the subband Nyquist rate to full compression that eliminates
the transmission of yy[n].

The activity detection is performed on blocks of samples.
The detector Dj, takes a block of samples and outputs an
indicator wy, = 1 for the block if the subband k is active
and wp = 0 otherwise. The detector for inter-harmonic
subband does the same way. A standard implementation of
the activity detector is the energy detector. More sophisticated
techniques such as quickest detection or machine-learning
based detection can also be used.

C. Subband compression

The compression of the harmonic subband k is achieved
by down-sampling of yx[n] by Sy fold. By the (passband)
Nyquist sampling theorem, if the kth subband has passband
bandwidth of Wy, then the signal in the kth subband can
be perfectly reconstructed by sampling x4 (t) at frequency of
Wy (Hz). Given that x(t) is sampled at F, (Hz), the rate of
down-sampling Sy, is given by

F

Sk = W

(6)

If subband k is active, the down-sampler gives the com-
pressed data sequence

- | yk[nSk], wgln] =1,
Tkln] = { £, otherwise, @)
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Fig. 5. A three-subband ASBC decoder. Time indices of internal signals (x;

where # is a masking symbol indicating that the data sample
needs not be encoded and transmitted. The data rate associ-
ated with Z[n] is at most 1/Sy, of that of y[n].

The interharmonic band is expected to be active infre-
quently. When an interharmonic signal needs to be trans-
mitted to the control center, an FFT-based (e.g., FFT-(k, L)
described in Sec. V-B) or wavelet based compression scheme
can be used. See references in [6].

D. Quantization and multiplexing

The down-sampled data streams are quantized by quantizer
(Qe, Qp) that maps subband stream I [n] into a bit-stream
:El? of Ry, bits/sample. A scaler quantizer such as pulse-code
modulation (PCM) quantizes individual sample of Z, into Ry
bits of ikQ, whereas a vector quantizer such as code excited
linear prediction (CLEP) or K-mean clustering takes a block
of M samples of and quantizes them into a block of M Ry,
bits of ig The bit-streams from subbands are multiplexed
into a single bit-stream b to be delivered to the receiver. Also
communicated the length of inactivity masks for each block
that is not transmitted due to inactivity.

IV. ADAPTIVE SUBBAND COMPRESSION: DECODER

ASBC decoders are located at regional data concentrators
or the control center where compressed streaming data are
reconstructed. Fig. 5 illustrates the schematic of an ASBC
decoder. The functionalities of individual components are
explained below.

The de-multiplexing block is the inverse of the multiplex-
ing block at the encoder. It parses the single bit-stream into
subband data streams :EkQ and 7% sent by the transmitter.

Reconstruction

,u;) are omitted.

The decompression block reverses the compression block
and generates estimated harmonics (in baseband) g in two
steps. First, ikQ[n] is up-sampled (interpolated) with zeros
(including replacing masked symbols with zeros) to generate
sequence wuy[n| that has the same data rate as that of
yx[n]. The interpolated sequence uy[n] is passed through a
subband interpolation filter H,t with impulse response f[1]
to produce an estimate of the baseband representation of the
kth harmonic signal §[n]. The subband interpolation filter
may be chosen as the matched-filter hy[n] = hy[—n] to
maximize the signal-to-noise ratio. Other implementations,
such as windowed low-pass filters, can also be used. The
decompression of the interharmonic signal directly follows
the compression algorithm used at the encoder.

The final decompression step takes the subband signals
Ui [n] produce an estimate of the original direct sampled x[n]
of z(t) in the encoder:

i[n] = V2Re| > irln]e’ ™ | + je[n].
k=1

(®)

V. RATE-DISTORTION CHARACTERISTICS

The standard measure of lossy compression is the rate-
distortion curve that highlights the tradeoff between the level
of compression and the accuracy of the reconstruction. A
well designed compression scheme has a monotonic rate-
distortion curve: the higher the rate of the compressed signal,
the lower the compression ratio, the lower the distortion.

In this paper, we adopt the compression ratio and the
normalized mean-squared error to characterize the rate-
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distortion characteristics. Given a compression scheme Y, its
compression ratio’ defined by
RUC
X ©)
where R"¢ is the data rate (bits/sec) of the uncompressed
signal and RX the rate of the compressed stream.

Let [n] be the original (uncompressed) signal and X |[n]

the reconstructed signal at the decoder. The normalized
mean-squared error (NMSE) in (dB) is defined by

SN [an) — #X[n)?

nX =

EX = 10logy, ZN 0] (dB)
5 10log,, E(p’][E”(}'x_[nj]’z[;‘]'Q) — (SNRY)~1(10)

where IV is the length of the data sequence, and the mean-
square convergence of (10) assumes regularity conditions.
Note that gix has the interpretation to be the signal-to-
reconstruction noise ratio (SNR).

For the application at hand, the data rate of the uncom-

pressed data stream can be measured by

R" = F;Rq (bits/sec), (11

where F represents the sampling frequency of the measured
signal z(¢) and R¢ the rate of quantization (bits/sample).
The distortion of the uncompressed scheme comes only
from quantization error. With 2 bits PCM quantization, the
NMSE is approximately by

£ ~ —6Rg +1.25 (dB). (12)

A. Rate-distortion measure of ASBC: (n*SBC, £ASBC)

We provide a characterization of the compression ratio
n"SBC and the NMSE of the reconstruction £ASBC,
The data rate of the compressed data stream by ASBC is

K
F :
RASBC _ } :kaikRk + peFsR. (bits/sec),  (13)
k=1

where F is the sampling frequency of the uncompressed
data, p; the probability of kth subband being active, R, the
rate (bits/sample) of the quantization in the kth subband, Sy
the down-sampling rate of kth subband, p. the probability
that the interharmonic subband is active, and R, the rate of
quantization of the interharmonic subband. The compression
ratio of ASBC is given by

R = R R\
k e
= (> m + e ) . (14
(k—l Rq Sk Ko
If we ignore quantization, ASBC gains via adaptively down-

sampling of subband signals based on subband activity. As
an example, for the 6kHz sampling of the original signal and

ASBC __
Y ~ RASBC

"The theoretical compression ratio is defined by excluding protocol
overhead that has sublinear growth with the data length.

a harmonic subband of 6Hz bandwidth, ASBC achieves the
compression ratio 1000 : 1 for that subband.

The NMSE measure £ASBC of ASBC depends on how
accurately ASBC can detect the activities of harmonic and in-
terharmonic subbands. Assuming all harmonic subbands are
active and there is no interharmonics, i.e., p. = 0, we have
EASBC ~ gu¢ because ASBC achieves perfect reconstruction
of each harmonic signals by the Nyquist sampling theorem.
In practice, EASBC > £U¢ when false negative detection occurs
or when there is interharmonic signal.

B. Rate-distortion measure of FFT-(k, L) : (nffT, FFT)

A benchmark compression scheme is based on the
fast Fourier transform (FFT), herein referred to as FFT-
(k,L). It takes a block of L data samples, computes the
FFT coefficients, and keeps only the k largest coefficients
X ](1), e X ](-k) (corresponding to the positive frequencies in
the j*" block) and masks the rest.

The compression ratio of FFT-(k, L) is given by

FFT-(k, L) _ L

n = 15)

where we ignore the log, L bits needed to encode the
frequency locations. The NMSE of FFT-(k, L) is given by

N/L k (1) 2
D) 10108 <1 B Zj:l > im1 |Xj | ) (16)
SN )2

VI. NUMERICAL RESULTS

We present numerical results in two categories using
synthetic and real data. The first category is the compression
of CPOW measurements, where we studied the compression
of actual CPOW measurements and synthetic waveforms with
characteristics of power system signals. The tests using syn-
thetic waveforms allowed us to evaluate the performance of
benchmark techniques under different scenarios of transient
events. We also studied the compression of directly sampled
voltage measurements at the sampling frequency of 6 kHz.
This was a case that the signal has significant harmonics and
interharmonics. The second category is the compression of
PMU measurements, including synchrophasor measurements
and frequency estimates, where both synthetic and actual
PMU data were used for experiments.

ASBC was compared with four benchmark techniques: (i)
FFT-based compression described in Sec. V-B, (ii) Multi-
resolution discrete wavelet transform (DWT) using the same
parameter (wavelet function, decomposition level) selection
method as in [16], (iii) Compressive sampling (CS) [22],
and (iv) Exception compression with swing door trending
compression (EC-SDT) [23]. Rate-distortion curves that plot
reconstruction error against compression ratio n are used
in the compression. We use NMSE (dB) to measure re-
construction error for CPOW data compression and the
maximum Total Vector Error (TVE) defined in [25] for PMU
compression.

0885-8950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on June 18,2021 at 13:29:02 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2021.3072882, IEEE

Transactions on Power Systems

A. Compressions of synthetic CPOW measurements

The purpose of this experiment was to test the performance
of compression when the regular sinusoidal waveform was
interrupted by episodes of transient events with signals of
abnormal characteristics. We focused on four types of event
signals shown in Table II. Among the set of waveforms at the
event state, the amplitude modulation (AM) and frequency
modulation (FM) waveforms were designed according to
the requirement on performance under dynamic compliance
specified by [25]. The linear chirp waveform was used to
simulate the frequency ramping events, and the interharmonic
(IH) waveform modeled frequency components not in multi-
ples of the system frequency Fjp.

TABLE II
TEST WAVEFORMS

Test cases H Signal waveforms

N (1) = SOF_, ar, cos(2m60(k + 1)t + ¢)

Normal state:

gt = 0
Event: ™M (t) = ag + acos(2mAt) cos(2m60t + 0p)
or =1 2™ (t) = o cos(2760t + B cos(2m At — ) + 6g)

NP (t) = avcos(2m(59.5 + yt) + 0o)
aM(t) = 37, ok cos(2m fict + 0k)
Signal parameters: o¢—the switching state, (ag, ¢y )—amplitude and

phase angles of harmonics, (ay, 3,7, 0k )-transient parameters, and fr—
interharmonic frequencies.

To simulate transient events, we used a two-state Markov
switching model that modulated the signal between the
normal state (o, = 0) waveform zN°™(¢) and the event state
(o0 = 1) with waveforms chosen from AM, FM, chirp, and
IH signals. The Markov switching process was characterized
by state transition rate (A, ) where 1/\ was the expected
holding time of the normal state and 1/u the expected
holding time of the event state.

Fig. 6 shows the rate-distortion curve of ASBC, FFT, and
DWT techniques for the FM and AM events. The sampling
rate of the original signal was 5400 Hz. As shown in the
upper panel, the NMSE of DWT scheme was about 30
to 40 dB higher than those of FFT and ASBC. Note that
DWT uses non-sinusoidal basis functions. They tend to be
effective for approximately constant or staircase valued sig-
nals (such as phasor measurements). For the compression of
sinusoidal voltage/current CPOW measurements, sinusoidal
basis functions used in ASBC and FFT had the advantage
of being closer to the native voltage/current waveforms even
for linear chirp signals. In this experiment, the requirement
of high compression ratios forced DWT to discard too many
parameters, resulting in high reconstruction error.

ASBC had about 4-6 dB gain over FFT for the com-
pression ratio between 540:1 and 54:1, whereas FFT had 3
dB gain over ASBC at a compression ratio of 1350:1. Note
that the 95% confidence interval of ASBC was considerably
smaller than that of FFT, indicating that the errors of the
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k
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Fig. 6. FM/AM parameters: ag = 1, A = 0.1, 4 = 2. Top panel
NMSE with 95% confidence interval for the AM (Left) and FM
(right) events. No high order harmonics and interharmonics. Bottom:
the maximum reconstruction error for the FM and AM events.

FFT scheme were more dispersed. The same behavior was
confirmed by the maximum reconstruction error plot at
the lower panel of Fig. 6. The main reason that ASBC
outperformed FFT was that FFT introduced discontinuities at
the boundaries of FFT blocks. In contrast, the ASBC encoder
did not have discontinuities. This phenomenon was more
pronounced for the linear-chirp test cases shown in Fig. 7

0 —6— ASBC
—+—FFT ! ]
—=—DWT
o 0
S A 0
53] k.
E e
z -50 -1|—©—ASBC
;\é —»— Original
—8—FFT
4 * * 2 —&— Wavelet
-100%
540:1 180:1 90:1 54:1 15.98 1599 16 16.01  16.02
Compression Ratio Time(s)

Fig. 7. Left: comparison of rate-distortion curve for linear chip events.
Right: a segment of the original and its reconstruction. A = 0.1, u =1

Fig. 7 shows the rate-distortion plot for the linear chirp
events. The linear chirp signals have a much wider band-
width, and the achievable compression ratio significantly
lower than possible in FM/AM events. The left panel shows
the NMSE for the three techniques. Again, DWT was not
competitive against FFT and ASBC techniques, and ASBC
had a considerable gain over the FFT compression in the low
compression ratio regime. In particular, ASBC had about 15
dB lower NMSE at the compression ratio of 180:1 and 20 dB
lower at the compression ratio of 54:1. The right panel shows
the original signal and reconstructed ones in the time domain.
Notice that the normal sinusoidal waveform transitioned to
a linear chip at time ¢ = 16 seconds. The reconstruction of
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FFT and DWT around ¢ = 16 showed a significantly larger
error than that of ASBC.

B. Compressions of CPOW voltage measurements.

We applied ASBC directly to a data set (hereafter referred
to as UTK6K) provided by the University of Tennessee,
Knoxville. The UTK6K data set consisted of 1.8 million
voltage measurements sampled at 6KHz. Fig. 8 (Top) shows
the power spectrum of the directly sampled data stream,
from which we observed the presence of harmonics and
interharmonics. The plot also showed that the energy levels
from the 20th to 50th subbands were negligible.

ASBC was implemented with 3 Hz bandwidth for sub-
bands associated with all 50 harmonics. Only the top & sub-
bands with the highest energy level were compressed and de-
livered where k was chosen to have the required compression
ratio. The bottom left panel of Fig. 8 shows the rate-distortion
curve of ASBC, FFT, and DWT for the compression ratio
from 400:1 to 40:1. For this range of compression ratios,
DWT was not competitive. ASBC was seen to out-perform
FFT in the compression ratio range of 400:1 to 100:1, and the
two schemes are comparable for the range of 66.7:1 to 40:1.
The reason that FFT-based compression did not perform well
was, again, that the block implementation of FFT introduced
discontinuities, which caused reconstruction errors. As the
compression ratio decreased, more FFT coefficients were
preserved, the reconstruction error of FFT improved.

To evaluate the effects of interharmonics, we added
additional interharmonic transient events to the original
UTK6KHz dataset in the same way as experiments discussed
in Sec. VI-A. The bottom right panel of Fig. 8 shows the
rate-distortion plot with interharmonics subband activated.
An energy detector was used to determine when and whether
the interharmonics subband should be activated. Only those
harmonics subbands with sufficient energy levels were com-
pressed and transmitted. Interharmonics subband, when de-
tected being active by the energy detector, was compressed
dynamically to the effective bandwidth ranging from 60 to
120Hz. As shown in the bottom left panel, the presence of in-
terharmonics increased NMSE slightly for ASBC at the high
compression ratio. Overall, ASBC consistently performed
better than other methods. The standard deviations were small
for all three methods; thus, the confidence intervals were not
shown in the plot.

C. Compressions of PMU dynamic compliance performance

ASBC can also be used for compressing the streaming of
PMU data. Besides ASBC, FFT, and DWT compressions,
we also considered two methods based on compression prin-
ciples other than Fourier or wavelet-based techniques. One
technique was the application of the compressive sampling
(CS) technique [22]; the other was based on a combination of
exception compression and swing-door-trending compression
(EC-SDT). EC-SDT is a heuristic that forms a time-varying
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Fig. 8. Top: Power spectrum density of the direct voltage measurements.
Bottom left: comparison of rate-distortion curves without interharmonics.
Bottom right: comparison with added interharmonics.

band that covers measurements and interpolating these mea-
surements by a piecewise linear reconstruction.
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Fig. 9. Left: Max TVE fixed at compression ratio 3:1. Right: Rate distortion
with w = 5Hz. k, = 0.1, ko, = 0.1

Fig. 9 shows the performance of the dynamic compliance
test of the benchmark techniques. The left panel of Fig. 9
shows the maximum total variation error (TVE) vs. the fre-
quency of amplitude/phase variation at the low compression
ratio® of 3:1. All tested methods except FFT satisfied the
1% maximum TVE requirement of IEEE C37.118.1-2011
up to 2Hz modulation frequency. FFT performed the worst
for it suffered badly from the discontinuity between blocks.
The compressive sampling (CS) solution appeared to be
more sensitive to the modulation frequency. Among the rest
techniques, DWT performs the best at this compression ratio,
and EC-SDT performed slightly better than ASBC at the
lower modulation frequency.

The right panel of Fig. 9 shows the performance compar-
ison in a significantly higher range of compression ratios.
ASBC, DWT and EC-SDT performed similarly up to 30:1
compression ratio, and ASBC outperformed both DWT and

8The maximum compression ratio used in [23] was converted to the
standard definition in (9)
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EC-SDT above the compression ratio of 30:1. The max TVE
of FFT remains high throughout the tests due to discontinuity.

D. Compressions ov PMU frequency measurements

We applied ASBC to a dataset referred to as UTK1.44,
which consisted of frequency estimates from the University
of Tennessee, Knoxville. The dataset contained two data
streams, each with 1,800,000 samples at the rate of 1440
samples/sec. One distinct feature of this dataset was the
frequency ramping event between 308.4 and 308.6 seconds,
as shown in the right panel of Fig. 10. As a time series,
the frequency measurements are close to being constant at
around 60 (Hz). Thus only a single subband is needed for
ASBC. We varied the subband bandwidth to achieve different
compression ratios.

The performance of the four data compression methods
was evaluated base on the maximum error of the reconstruc-
tion of the frequency measurements (Max FE) as defined by
the IEEE Standard C37.11 [25] that specifies the acceptable
performance is to have Max-FE below 0.005 Hz. At the
compression ratio of 48:1, only ASBC and DWT met the
0.005 Hz threshold. DWT performed the best for compression
ratios above 48:1 because the frequency estimates were
approximately constant outside the event around 308.5 sec.

0.06
—6— ASBC
—%—FFT 60.04
N —&— EC-SDT
E 0.044 —O—DWT
S 60.02
jaal
=
% —6— ASBC
= 0.02 60 —— Original
—+—EC-SDT
X —O—FFT
. 3 59.98 —v—DWT
1440:1 144:1 72:1 60:1 48:1 308 308.5 309
Compression Ratio Time(s)

Fig. 10. Maximum FE and time-domain reconstruction

The right panel of Fig. 10 showed a segment time-domain
reconstructions at the compression ratio of 48:1. As Fourier
based compression techniques, ASBC and FFT compression
exhibited small oscillatory error patterns even when the orig-
inal frequency estimates were approximately constant. Such
artifacts are results of the optimal sinusoidal approximation
of non-sinusoidal waveforms®. Because the magnitude of the
errors are well within the specification of the IEEE C37.11
Standard, such artifacts should be treated as noise. The small
spike of reconstruction error of FFT around ¢ = 309 sec was
caused by the discontinuity of the block implementation.

E. Implementation Issues

We now discuss briefly implementation issues of the
proposed compression technology. As shown in Fig. 4-5,

9 As suggested by the Chebyshev alternation theorem, the optimal approx-
imation error must oscillate around the true value.

major costs of implementations are the frequency up/down
shifts and subband filters in the ASBC encoder and decoder.
Such operations are standard in communication systems;
only minor modifications of the off-the-shelf technology are
necessary. The costs of hardware implementations are low.

The overall performance of the compression technology
depends, naturally, on setting design parameters appropriately
for power system signals. This includes choosing appro-
priately the size of the encoding and decoding filterbank
to tradeoff implementation accuracy and filtering delays.
Classical signal processing techniques such as windowing
offer practical ways to achieve good tradeoffs.

VII. CONCLUSION

As an emerging technology, real-time and high-resolution
CPOW and PMU monitoring of the power grid has the
potential to provide situational awareness crucial to reliability
and resiliency in the advent of large-scale integration of
highly dynamic inverter-based energy resources such as wind,
solar, and storage. As pointed out in [2], data compression
is needed for real-time streaming and event-specific polling.

This paper presents a practical solution derived from a
low complexity technology that has been widely used outside
the power system domain. The developed technique applies
to the streaming of both CPOW and PMU measurements
in either on-demand/event-driven or continuous streaming
modes. The main contribution of this work lies in specializing
subband compression techniques to the power system-specific
decomposition of signal bandwidth into harmonic subbands.
To this end, we demonstrate that ASBC can achieve 100 to
1000:1 compression ratios necessary to monitor a wide range
of transient events.

We have compared the Fourier-based (ASBC and FFT) and
wavelet-based (DWT) compression schemes using a combi-
nation of synthetic and real data, albeit in limited laboratory
settings. In these experiments, ASBC performed better than
generic implementations of FFT and DWT-based compres-
sions. DWT-based techniques are known for their advantages
of capturing waveform details, and there is a significant
literature on the effectiveness of DWT-based compression
when the compression ratio is relatively low. For CPOW
streaming with high compression ratio, however, DWT-based
techniques did not offer sufficiently high compression ratio
for the level of accuracy required by industrial standards in
our experiments. Such characteristics need to be validated in
more extensive field studies.

We have left out several issues that would be of signif-
icance in future work. ASBC, in its current form, applies
to compressions at individual CPOW sensors. Power system
measurements are constrained by physical laws that impose
strong spatial dependencies. A natural framework is to exploit
spatial dependencies at data concentrators. In such settings,
ASBC can be combined with some of the spatiotemporal
compression techniques [20], [21] for either efficient storage
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or streaming. An issue of particular significance is data
security and anomaly detection in CPOW data. It worths
mentioning that CPOW data, unlike PMU and SCADA
measurements, are more difficult for data injection attacks
[26] and potentially easier to detect malicious data attack.
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