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Abstract 
 
Hydrogen exchange-mass spectrometry (HX-MS) is used widely to characterize higher-order 
protein structure and to locate changes in protein structure and dynamics that accompany, for 
example, ligand binding and protein-protein interactions. Quantitative differences in the amount 
of hydrogen exchange between two states (i.e., differential HX) are taken as evidence of 
significant differences in higher-order structure or dynamics. The quantitative measures range 
from simple mass differences at one HX labeling time to differences averaged across an HX time 
course with correction for deuterium recovery. This work applies the principles of uncertainty 
propagation to differential HX measurements to facilitate the identification of significant 
differences. Furthermore, it is shown that pooled estimates of experimental uncertainty result in a 
lower false positive rate than estimates of uncertainty based on individual standard deviations. 
 
INTRODUCTION 
 
With improvements in automation of HX-MS measurements over the past decade, there has been 
a substantial increase in the use of differential HX to quantitatively identify changes in HX 
between two protein states. The improved precision has led many to consider issues related to the 
limits of detection. Accurate propagation of experimental uncertainty is essential for a rigorous 
consideration of the decision “when is a difference real?”[1, 2] 
 
In the first part of this work, the principles of uncertainty propagation [3, 4] are applied to all of 
the different ways in which differential HX can be quantified. These different ways include 
taking differences at individual HX labeling times and approaches where differences across all 
HX labeling times are accumulated (e.g., sum of differences, arithmetic mean of differences). In 
addition, cases with and without back-exchange correction are also treated. It is assumed in this 
treatment that the measurement uncertainties, u , in the centroid masses of the peptides are 
random and uncorrelated. The second part of this work is concerned with whether individual 
uncertainties or a pooled estimate of uncertainty is more accurate. Example of differential HX-
MS calculations and their associated uncertainties are provided in the final part of this work. 
 
A few definitions are needed to initially establish the derivations. Let the labels A and B denote 
two samples that are the subject of differential HX-MS measurements. The peptide of interest 
has HN  exchangeable amides hydrogen atoms. m denotes the measured centroid mass of a 
peptide. tD denotes the amount of deuteration measured in a peptide at HX exchange time t 
 
 0t tD m m= −   (1) 
 
where the subscript zero denotes the mass of the undeuterated peptide. Typically the peptide 
mass is measured in n replicates,[5] so the following treatment assumes that the arithmetic mean 
of the replicates is used as the measured quantity represented by tm . The standard uncertainty in 
the centroid mass, represented as ( )u m , may be estimated based on the standard deviation of the 

mean, ( )s m : 
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where the index i  increments over replicate measurements of the peptide mass and the overbar 
notation denotes the arithmetic mean of replicate measurements. Table 1 summarizes this work 
by setting forth various expressions of differential HX and their associated combined 
uncertainties in a standardized notation. Derivations of these quantities follow. (In the treatment 
that follows, the notations ( )s x  and ( )u x denote, respectively, the standard deviation in the 

mean of x  and the standard uncertainty in the mean of x , and thus, ( )2s x  and ( )2u x should be 
understood as the squares of those quantities.) 
 
Following modern recommendations on the use and reporting of measurement uncertainties,[3, 
4] traditional confidence intervals (e.g., based upon a t statistic) are replaced by an expanded 
uncertainty that may be obtained by taking the combined uncertainty in differential HX 
measurements, u , multiplied by a coverage factor, k: 
 
 U ku=  (3) 
 
In many areas of chemical analysis the coverage factor is taken as 2k = , however the choice of 
a coverage factor to test significance in a particular context will depend on the number of 
measurements. In differential HX-MS measurements, the null hypothesis is an HX difference of 
zero, thus an HX difference would be deemed significant when its absolute value exceeds ku . In 
other words, when zero is not within the confidence interval U± . Null differential HX-MS 
measurements (i.e., the sample compared to itself) may be useful in defining a suitable value for 
the coverage factor since, by definition, all measured HX differences arise from random errors in 
the measurements. A thorough consideration of the selection of an appropriate coverage factor, 
however, is outside the scope of the present work. The coverage factor used should be reported 
when the uncertainty is reported in published work.[6] 
 
PROPAGATION OF UNCERTAINTY IN DIFFERENTIAL HX-MS 
 
Case 1: Individual HX differences 
 
The fundamental unit of differential HX-MS measurement of a peptide at labeling time t is 
 
 ( ) ( )0 0t t t t t tt A B A B A BD D D m m m m m m∆ = − = − − − = −   (4) 

 
Note that inclusion of the mass of the undeuterated peptide, 0m  is unnecessary since it cancels 
out. Furthermore, inclusion of independent measurements of  0m in A and B unnecessarily 
introduces additional uncertainty into tD∆ . Hence it is recommended that differential HX should 
be calculated without reference to the mass of the undeuterated molecule.  
 
Uncorrelated random uncertainty in (4) propagates as 



 

 ( ) ( ) ( )2 2

t tt A Bu D u m u m∆ = +   (5) 

 
where ( )tAu m  and ( )tBu m denote the standard uncertainties as defined in (2). (Throughout this 

work, parentheses in equations are used only to denote either order of operation or to label a 
variable, parentheses are not used as a shorthand for multiplication.) 
 
Fractional HX is represented here as HX. The simplest example is representing the amount of HX 
as a fraction of the number of exchanging amides in the peptide, NH: 
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Here, the mass mδ (1.0063 Da), the difference between the atomic masses of deuterium and 
protium, serves simply to render HX∆ as a truly dimensionless quantity. With current HX-MS 
technology, the uncertainty in mδ (approximately ±0.0003 Da) will be negligible compared to 
measurement uncertainty in centroid mass (approximately ±0.1 Da) and can be safely dispensed 
with by taking 1 Damδ ≈ . Since the number of exchangeable amides in a peptide is an exact 
number, it has no uncertainty associated with it. Thus the combined uncertainty is simply scaled 
by the mass of the exchangeable amide hydrogens: 
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Similarly, changing to a percentage scale would require multiplication of both tHX∆ and 

( )tu HX∆ by 100%. 
 
Case 2: Accumulated HX difference 
 
In some cases, the accumulated HX difference, summed across all HX labeling times, Tt∈  
where T denotes the set of labeling times. The number of distinct HX labeling times, T Tn =  
(i.e., the cardinality of set T). 
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Here the subscript Σ  is added to denote accumulation across HX labeling times. (The summation 
in (8) is formed from the mean values of replicates.) Following the method for propagation of 
random uncertainty in sums and differences yields 
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In some cases, the arithmetic mean of DΣ∆ is reported [7] 
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This quantity can be described either as the ‘mean difference’ or the ‘difference of the means’. 
 
Since the number of HX labeling times, Tn , is an exact quantity, the uncertainty in (9) is simply 
scaled by Tn : 
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Accumulated HX differences can also be expressed as a fraction of the of exchangeable amides: 
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which again just scales the propagated uncertainty in (9) 
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Case 3: Individual HX difference with measured deuterium recovery correction 
 
Introduction of an experimental determination of the deuterium recovery (i.e., after correction for 
back-exchange) [8] through the measurement of a deuteration control introduces an additional 
source of uncertainty. Here, it is assumed that the mass of a deuterated form of the peptide (e.g., 
a deuteration control) has been determined, m∞ , such that 
 
 0D m m∞ ∞= −   (14) 
 
with an associated standard uncertainty of ( )u D∞ . (To avoid additional sources of error, it is 

recommended that 0m  be based on the theoretical average mass of the peptide as in (4), however, 



if there is a systematic bias in centroid mass determination,[9, 10, 11] it may be necessary to 
account for such bias.) D∞ can then be used to adjust the HX difference in various ways such as 
fractional HX difference: 
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where the asterisk is appended to denote correction for measured deuterium recovery. 
Propagation of random uncertainty in this case (see derivation in the Appendix) results in 
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Equations (15) and (16) can be expressed as percentages by simply multiplying both quantities 
by 100%. 
 
In some cases, it is preferred to apply a back-exchange correction in order to obtain mass units, 
or equivalently, number of exchanged amides: 
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Since this merely scales the uncertainty by H HN m , the uncertainty becomes 
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Case 4: Accumulated HX difference with measured deuterium recovery correction 
 
This case simply uses the principles established under cases 2 and 3. The simplest instance is 
summed differences corrected for back-exchange: 
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In this case, the propagated uncertainty is a simple extension of (18) 
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The mean deuteration difference can also be corrected for back-exchange: 
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It is apparent that the propagated uncertainty is merely (20) scaled by Tn . 
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Finally, the mean fractional HX can also be corrected for back-exchange: 
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For which the propagated uncertainty is 
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Expression of 

*
HX∆  as a percentage simply requires multiplying (23) and (24) by 100%. 

 
ESTIMATION OF UNCERTAINTY IN HX-MS MEASUREMENTS. 



Having established how uncertainty propagates in all of the common scenarios for expression of 
differential HX-MS measurements, we can now turn to approaches that can be taken to estimate 
uncertainty in centroid measurements. Replicated measurements provide two benefits: (i) the 
mean value of the measurements is more accurate and (ii) the variation in the replicated 
measurements provides an estimate of the uncertainty. What is atypical, from an analytical 
chemistry perspective, about HX-MS data is that the data set is usually composed of hundreds to 
thousands of replicated measurements, each one with a small number of replicates, typically 
three. Uncertainty can be estimated from the standard deviation of the measurand based on the 
small number of replicate measurements as described by equation (2). However, estimates of 
standard deviation based on triplicate measurements are notoriously unreliable. Figure 1 
illustrates this point by showing the distribution of standard deviations obtained from 2000 
triplicate measurements, simulated using a random data following a gaussian distribution.  
 
Previously, my colleague and I have argued that pooling the standard deviations of all peptide 
centroids is a more accurate estimate of the uncertainty in centroid determination:[2, 12, 13]  
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where the index j runs over all samples, all peptides, and all labeling times and the subscript p 
has been added to denote that the standard deviation is based upon a pooled estimate. The pooled 
standard deviation is depicted by the red vertical line in Figure 1, and is very close to the true 
value of the uncertainty (1.009 vs. 1). The standard pooled uncertainty is then simply 

 
Figure 1. Standard deviations from 2000 sets of triplicate random numbers drawn from a 
randomized gaussian distribution  with a population mean of 0 and a population standard 
deviation of 1. The red reference line denotes the pooled standard deviation ( ps ). Numbers 
were generated using Gaussian Random Number Generator hosted on random.org. 
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Replacement of the individual uncertainties in each replicated centroid determination with a 
global estimated uncertainty simplifies the combined uncertainty determination, especially if the 
same number of replicates was used in all centroid measurements. This is advantageous because 
calculation of the combined uncertainty equations, particularly in cases 3 and 4, is cumbersome.  
 
Tables 2 and 3 recast the combined uncertainties in Table 1, replacing individual standard 
deviations with a pooled estimate of uncertainty in cases with and without identical numbers of 
replicates in all centroid determinations. Table 3 represents the simplest case, but only applies for 
equal numbers of replicates across the entire data set. 
 
Beyond the convenience, estimating uncertainty by pooling standard deviations is more accurate. 
Equation (3) defines a significance limit or confidence interval: HX differences larger than the 
propagated uncertainty are treated as significantly different. In other words, such differences are 
too large to be explained by the uncertainty in the measurements if the two samples were 
identical. If the samples are in fact identical, an observed difference that exceeds the limits is a 
false positive: a difference has been detected where no true difference exists. Figure 2 illustrates 
false positives (red symbols) that arise when uncertainty is estimated from individual standard 
deviations. Two sets of triplicate measurements were drawn from a random number generator 
1000 times. The random numbers had a gaussian distribution with a population mean of zero and 
a standard deviation of 1. (The distribution of standard deviations was shown in Figure 1.) The 
result, with 4k = for the coverage factor in equation (3), is a false positive rate of 1.7%. In 
contrast, Figure 3 shows that use of the pooled standard deviation for the uncertainty estimate 
results in zero false positives. The results obtained with different values of the coverage factor 
are shown in Figure 4. As might be expected, more permissive uncertainty estimates (i.e., 
smaller coverage factors) do result in larger false positive rates, but the false positive rate with 
pooled uncertainty estimate is always lower than that obtained with individual standard 
deviations. These false positives arise because in some cases, the triplicate data happen to cluster 
together, resulting in a small standard deviation. Indeed, this is evident in Figure 1. While figure 
4 suggests that a coverage factor of 4k = will be sufficient to essentially eliminate false positives 
from differential HX data based on triplicated centroid measurements, a suitable coverage factor 
will depend on the size of the differential HX-MS data set and its variability. 



  

 
Figure 2.  Differences between 1000 pairs of triplicate random numbers drawn from a 
randomized gaussian distribution with a population mean of 0 and a population standard 
deviation of 1. For clarity, the differences are spread across four panels. The bars represent 
the expanded uncertainty based on individual standard deviations (shown in Figure 1) with a 
coverage factor of 4k = . The red symbols denote false positives as defined in the text. 
Numbers were generated using Gaussian Random Number Generator at random.org. 



  

 
Figure 3.  Differences between 1000 pairs of triplicate random numbers drawn from a 
randomized gaussian distribution, as described in Figure 2. For clarity, the differences are 
spread across four panels. The bars represent the expanded uncertainty based on pooled 
standard deviations (shown in Figure 1) with a coverage factor of 4k = . There are no false 
positives. Numbers were generated using Gaussian Random Number Generator at 
random.org. 



 
 
 
ILLUSTRATION OF DIFFERENTIAL HX-MS UNCERTAINTY CALCULATIONS 
 
Figure 5 represents typical data from a differential HX-MS measurements from two samples in 
which the peptide of interest exhibits a small differences in HX. The peptide contains 7 
exchangeable amide hydrogens ( H 7N = ), measured at 9 HX times ( T 9n = ) and has an 
undeuterated average mass of 1000 Da ( 0 1000 Dam = ). All measurements were obtained in 
triplicate ( 3n = ). The raw data for this simulation are provided in the Supporting Information. 
Table 3 provides the mean deuteration values (

tAD  and 
tBD ), their associated standard 

deviations, all expressions of individual HX differences and their corresponding combined 
uncertainties. Table 4 provides the accumulated HX differences. All results were tested for 
significance , using a coverage factor 4k = , according to 
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Figure 4. Effect of coverage factor, k , on the false positive rates for the data shown in 
Figures 2 and 3. 
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where x∆ denotes an HX difference. Here,  1H  indicates a significant difference (i.e., rejection 
of the null hypothesis).  
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APPENDIX 
 
Propagation of uncertainty in fractional differential HX with uncertainty in numerator and 
denominator. The simplest form of fractional differential HX with uncertainty in the numerator 
and denominator is 
 

 
 

Figure 5. Simulated HX uptake plot to illustrate the calculation of HX differences and their 
uncertainties. The error bars denote the standard deviations. See text for details. 
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For simplicity, let this equation be represented as 
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having associated random uncertainties ( )u x , ( )u y , and ( )u z . The combined random 
uncertainty[4] may be found using  
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Substitution of (29) into (31) and taking the positive square root gives 
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z

= + +  (32) 

 
Hence, by comparison of (28) and (29), equation (32) becomes 
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Table 1. Summary of combined uncertainties for different expressions of differential HX. 
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m  denotes the arithmetic mean of replicate measurements of the centroid mass of a peptide, A  and B  denote the two samples in a 
differential HX measurement,  t denotes an HX labeling time ( )Tt∈  where T  is the set of labeling times, Tn  is the number of 

distinct HX labeling times (i.e., the cardinality of T). The notation ( ) ( )
( )

2
2 s x

u x
n x

= denotes the square of the standard uncertainty in 

x as defined by (2) where ( )n x is the number of replicate measurements of x  and ( )s x is the standard deviation. Importantly, in 

this parenthetical notation ( )n x nx≠ . HN  denotes the number of exchangeable amide hydrogens in the peptide, 1 Damδ ≈ is the 
difference between the mass of deuterium and protium, and D∞ is measured mass increase of a deuteration control as defined by 
(14) . 

  



Table 2. Summary of combined uncertainties for different expressions of differential HX using pooled standard deviation. 
With unequal replicates With equal replicates, n , is all measurements 
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Table 3. Differential HX, combined uncertainty, and significance testing for individual HX times.  

t (s) tAD  (Da) ( )tAs D  (Da) 
tBD  (Da) ( )tBs D (Da) 

tD∆ (Da) ( )tu D∆ (Da) significanta tHX∆  ( )tu HX∆  significanta 

10 1.49 0.080 1.65 0.036 -0.16 0.051 FALSE -0.0163 0.0050 FALSE 

50 2.41 0.087 2.78 0.112 -0.37 0.082 TRUE -0.0368 0.0081 TRUE 

100 2.68 0.118 3.26 0.066 -0.58 0.078 TRUE -0.0579 0.0078 TRUE 

500 3.73 0.013 4.81 0.060 -1.08 0.036 TRUE -0.1069 0.0035 TRUE 

1000 4.49 0.060 5.11 0.019 -0.61 0.037 TRUE -0.0610 0.0036 TRUE 

5000 5.41 0.049 5.40 0.146 0.01 0.089 FALSE 0.0005 0.0088 FALSE 

10000 5.47 0.127 5.40 0.073 0.07 0.085 FALSE 0.0073 0.0084 FALSE 
50000 7.33 0.121 7.51 0.020 -0.17 0.071 FALSE -0.0174 0.0070 FALSE 

100000 7.48 0.045 7.46 0.056 0.02 0.041 FALSE 0.0017 0.0041 FALSE 

∞b 7.57 0.044 7.57 0.044      
 

          
 

t (s) 
*
tD∆   (Da) ( )*

tu D∆ (Da) significanta 
*
tHX∆  ( )*

tu HX∆  significanta 

10 -0.218 0.068 FALSE -0.0217 0.0067 FALSE 

50 -0.493 0.110 TRUE -0.0490 0.0108 TRUE 

100 -0.774 0.107 TRUE -0.0770 0.0103 TRUE 

500 -1.430 0.068 TRUE -0.1422 0.0047 TRUE 

1000 -0.817 0.056 TRUE -0.0812 0.0048 TRUE 

5000 0.007 0.118 FALSE 0.0007 0.0117 FALSE 

10000 0.098 0.113 FALSE 0.0097 0.0112 FALSE 
50000 -0.232 0.095 FALSE -0.0231 0.0094 FALSE 

100000 0.023 0.055 FALSE 0.0023 0.0055 FALSE 
aSignficance testing with a coverage factor 4k =  according to equation (27). bDenotes a measured deuteration control.  
  



Table 4. Differential HX, combined uncertainty, and significance testing for accumulated differences. 
Quantity Value Uncertainty significanta 

DΣ∆  -3.8088 Da 0.1993 Da TRUE 
D∆  -0.4232 Da 0.0221 Da TRUE 

HX∆  -0.0519 0.0022 TRUE 
*DΣ∆  -5.0638 Da 0.2538 Da TRUE 
*D∆  -0.5626 Da 0.0293 Da TRUE 
*

HX∆  -0.0559 0.0029 TRUE 
aSignficance testing with a coverage factor 4k =  according to equation (27) 


