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ADDITIVE SCHWARZ PRECONDITIONERS FOR A LOCALIZED
ORTHOGONAL DECOMPOSITION METHOD*
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Abstract. We investigate a variant of the localized orthogonal decomposition method (Henning and Peterseim,
[Multiscale Model. Simul., 11 (2013), pp. 1149-1175] and Malqvist and Peterseim, [Math. Comp., 83 (2014),
pp. 2583-2603]) for elliptic problems with rough coefficients. The construction of the basis of the multiscale finite
element space is based on domain decomposition techniques, which is motivated by the recent work of Kornhuber,
Peterseim, and Yserentant [Math. Comp., 87 (2018), pp. 2765-2774]. We also design and analyze additive Schwarz
domain decomposition preconditioners for the resulting discrete problems.
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1. Introduction. Let the bounded open set Q C R? (d = 1,2, 3) be an interval (d = 1),
a polygonal domain (d = 2), or a polyhedral domain (d = 3). The continuous problem is to
find u € H} () such that

(1.1) a(u,v) = (f,v)  Yve Hy(Q),

where f € Ly (Q),

a(u,v):/ﬂ(AVu)-Vvdx, and (f,v):/Qfde.

We assume that (1.1) is an elliptic problem with rough coefficients, i.e., the components of the
symmetric diffusion matrix A only belong to L., (£2) and the eigenvalues of A are bounded
below (resp., above) by the positive constant « (resp., 5). We will use || - ||, to denote the
energy norm +/a(-, ).

REMARK 1.1. Throughout the paper we will follow the standard notation for differential
operators, function spaces, and (semi-)norms that can be found, for example, in [3, 7, 8].

Note that
(1.2) Vallgie < vla < VB Ra@) — Yve HY(Q),
and hence, by (1.1) and a standard Poincaré-Friedrichs inequality,
(1.3) [ulla < (Cox/vVa)D| fllLa (),

where D = diam €2 and the positive constant Cp only depends on the shape of (2.

Let 7y be a quasi-uniform simplicial (or quadrilateral/hexahedral) triangulation of 2
and Vi C HJ () be the (coarse scale) P; (or Q1) finite element space associated with 7.
The fine scale P; (or J1) finite element space V}, C H& (€2) is associated with a uniform
refinement 7, of Tx.

We assume that (i) the approximate solution u;, € V}, defined by

(1.4) a(up,v) = (f,v) Yo eV,
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is a good approximation of u, (ii) the computation of wuy is too expensive, and (iii) the
approximate solution uy € Vi defined by

(1.5) a(ug,v) = (f,v) Vv e Vg

is a poor approximation of u. Therefore, we need a generalized finite element space that
bridges the two scales.

Elliptic problems with rough coefficients such as (1.1) appear in many multiscale problems.
There is a large body of literature on the numerical solutions of these problems by finite element
methods, which includes the variational multiscale method (cf. [21, 22, 23] and the references
therein), the multiscale finite element method (cf. [13, 19, 20] and the references therein),
the heterogeneous multiscale method (cf. [1, 2, 11, 12] and the references therein), and the
method of approximate component synthesis (cf. [17, 18] and the references therein).

Here we will consider the method of Localized Orthogonal Decomposition (LOD) in [16,
25] that does not require periodic structure or scale separation and at the same time can deliver
optimal convergence without any elliptic regularity assumption. It is based on the observation
that if 4 is the Galerkin approximation defined by (1.5) with V replaced by a generalized
finite element space VH, then

G(U—QH,u—ﬂH) :a(uau_aH) = (fvu_aH)a
and hence

1) o= Bl < gy (L 22
lu—tmlla
Therefore, if we can modify the basis functions of Vi so that the resulting Vi is orthogonal
(with respect to a(-, -)) to a subspace of V}, consisting of highly oscillatory functions, then
u — U, which is orthogonal to Vi, is highly oscillatory, and the quotient on the right-hand
side of (1.6) would be small. It was established in [25] that such modifications can be obtained
by solving local problems and that the magnitude of the quotient on the right-hand side of
(1.6) is O(H). This is in great contrast to the fact that the convergence of the standard finite
element method based on Vi can be arbitrarily slow for problems with rough coefficients [4].

More precisely, we will consider a variant of LOD motivated by the approach in [24],
where the modification of the basis functions is based on domain decomposition techniques.
Our key finding is that this variant of LOD has similar properties as the original version in [25]
and that standard domain decomposition preconditioners for (1.5) are also effective for this
variant of the LOD. The success of this method in bridging the two scales is illustrated in
Figure 5.2.

The rest of the paper is organized as follows. We present the variant of LOD in Section 2
and its analysis in Section 3. Preconditioning is discussed in Section 4, and numerical results
are presented in Section 5 for a problem whose coefficients exhibit high contrast and in
Section 6 for a problem with highly oscillatory coefficients. We end with some concluding
remarks in Section 7. For the convenience of the readers, we also include some standard
results in Appendix A so that this paper is self-contained with respect to LOD.

All the constants in this paper only depend on the shape regularity of T unless specified
otherwise. The dependence on «, 3, h, and H are always explicitly stated. To avoid the
proliferation of constants, we also use the notation A < B (B 2, A) to represent the statement
that A < (constant) x B, where the constant only depends on the shape regularity of Tz . The
notation A ~ B is equivalent to the statement that A < B and B < A.
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2. Multiscale methods based on orthogonal decomposition. We will denote the di-
mension of T (resp., Tp) by m (resp., n).

ms,h .

2.1. The ideal multiscale finite element space V'3, . The construction of V""" in-
volves an operator II : HJ(2) — Vy. Following the suggestion in [24], the function
ITv € Vg is defined by taking the nodal average of the local Ly-orthogonal projections of v
into the space of linear/bilinear polynomials. More precisely,

2.1 —
.1) (v 7;32;

where p is any interior vertex of T, 7, is the set of the elements in 7z that share p as a
common vertex, and 9, € Py (T") (or Q1(T)) is determined by

(2.2) / tpwdr = / vw dz Yw e Pi(T) (or Q1(T)).
T T

We have

2.3) v =v Vv e Vy,

and, by a direct calculation and the Bramble-Hilbert lemma (cf. Appendix A),
2.4) H_lH’U_HUH[Q(Q) + |HU|H1(Q) < CT|U‘H1(Q) Yo e H&(Q),

where C; only depends on the shape regularity of 7. In view of (1.2), we also have

(2.5) Iv|le < Cv/Blavlla Yo e Hi(Q).

We will denote by K ,1:[ the kernel of the restriction of II to V},, i.e.,

K} ={veV,: Ilv=0}.

REMARK 2.1. Let £ = n — m and ¢, . .., @y be the nodal basis functions in V}, that
vanish at the nodes of V (cf. Figure 2.1 for a two-dimensional example with the (), finite
element). Then {(I — )y, ..., (I — ).} is a basis of K;'. Indeed, if

O—ZC]I My Zc]goj HZCJQOJ,

then the function IT 25:1 cj; = 0 because it is a function in V7 that vanishes at the nodes
of V. It follows that Z§:1 cjp; =0andhence ¢y = --- = ¢, = 0.
Let the operator &, : V}, — K E be the orthogonal projection with respect to a(+, -), i.e.,

(2.6) a(Chv,w) = a(v,w) Vv e V,,we K,l;[
There are two obvious relations between I and €,:

2.7) e, =0  onVj,
(2.8) (I-¢)I—-T)=0  onV,.
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FIG. 2.1. Nodes for the Q1 finite element spaces: the nodes for ¢1,...,om € Vi are represented by the
circles and the nodes for o1, . .., pp € Vy, are represented by the solid dots.

The multiscale finite element space V; e V}, is the orthogonal complement of K }?
with respect to the bilinear form a(-, -), i.e.,

ms,h

Vg ={veV,: alv,w)=0 Ywe K, }.

h . .
Note that V;;™" has the same dimension as Vi and

ms,h .

2.9) I1-¢,: V) — Vg " is the orthogonal projection with respect to a(-, -).

The restriction of I — € to Vj is an isomorphism between Vy and V;In sh because
the restriction of II(I — &) to V}y is the identity operator by (2.3) and (2.7). Therefore, if
{b1,...,¢m} is the nodal basis of Vy, then {(I — €4)¢1,..., (I — €4)pm} is a basis of

ms,h
Vs,
ms,h

The approximate solution uy; " € V];n S of (1.4) is defined by

(2.10) a(up" v) = (f,v) Vove V;S’h
It follows from (1.4), (2.9), and (2.10) that
(2.11) ugs’h = (I — Cp)up, or equivalently, up — uzs’h = Crupn,

from which we can derive the following error estimates (cf. [24, 25] and Appendix A):

(2.12) lun = uf " lla < (Ci/Va) H| fl a0
(2.13) lun = g o) < (CF/a)H2(|f | Lo,

where C} is the constant that appears in (2.4).

One can treat the ideal multiscale finite element method as a reduced-order method
where the functions ¢y, = €, ¢1, ..., Y, = €0, that correct the original basis functions
@1, ..., 0m of Vg can be computed in parallel and off-line. However, the computation of ;
involves solving the equation

(2.14) a(;, w) = a(p;, w) Ywe K,I?,

which is expensive. Fortunately, the function ¢; decays exponentially (cf. [25]), and it is
possible to replace v; by a localized version. A two-dimensional example of a @ finite
element basis function ¢; and the corrected basis function ¢; — v, is provided in Figure 2.2,
where ) is the unit square (0,1) x (0,1), h = 1/160, and H = 1/20.
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(@i = CPy) (xy)

FIG. 2.2. ¢; (left) and ¢; — v; (right), with h = 1/160 and H = 1/20.

2.2. A localized multiscale finite element space VI}T’I ,sc’h. We will replace v; by the ap-
proximation v; ;, obtained by k steps of a preconditioned conjugate gradient (PCG) algorithm
(cf. [14, 28]) applied to the equation (2.14) with 0 as the initial guess.

We use an additive Schwarz preconditioner (cf. [9]) based on the subspaces K; (1 <i < m)
of K, defined by

(2.15) K; ={(I —I)v: v € V} and v vanishes outside wy, }.

Here w,, is the union of the elements in 7 that share the interior node x; as a common
vertex (cf. Figure 2.3 for a two-dimensional example with the (); element). The functions in
K are supported on the patch &,, generated by adding one layer of elements in 7z to wy,
(cf. Figure 2.3).

REMARK 2.2. Let ¢; 1, ..., @i m, be the nodal basis functions of V}, that vanish outside
wg, and at z; (cf. Figure 2.3). Then, as in Remark 2.1, {(I — II)¢; 1,...,(I —II)pim,}isa
basis of K.

FIG. 2.3. The patches wy; (left) and &z, (right), where the node x; is represented by the circle and the nodes
for @i 1,...,pim, are represented by the solid dots.

The preconditioned operator P : K ,? — K ,? for (2.14) is given by (cf. [26, 30, 31])
(2.16) P=>"P,

j=1

where P; is the orthogonal projection from K’ ,ILI onto K; with respect to the bilinear form
a(+, ). Note that the support of Pv is a subset of the union of all the &,;’s whose intersections
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with the support of v have nonempty interiors. Since the function ¢; on the right-hand side
of (2.14) is supported on w,,, at the end of k PCG steps the function v; j is supported in a
patch around z; (with respect to 7z ) whose diameter is proportional to k. Thus, v; , is a
localized version of ;.

Let the linear operator €, ;, : Vg — K ,1} be defined by

2.17) Chxdi = Vik, for1 <i<m.

Then €}, ;. is a localized version of €, and we define V;’ Z’h to be the subspace of V}, spanned

by the functions ¢; — ¥, = (I — Cp )¢, for1 <i < m.
Again we have an obvious relation

(2.18) ¢, =0 on Vg

that together with (2.3) implies that II(1 — &}, ;) is the identity operator on V. Hence, the
operator I — €, 5. : Vg —> VP}HZ’h is an isomorphism, and the dimension of V" Z’h is identical
to the dimension of V.

The approximate solution uzf,;h €Vy " is then defined by

(2.19) a(upit w) = (fw)  Ywe Vit

REMARK 2.3. The matrix representing a(v, w) with respect to the basis {¢; — ¥; 1 }74

of Vi Z’h is less sparse than the matrix representing a(v, w) with respect to the basis {¢; }7,
of VH

3. Analysis of the localized multiscale finite element method. First we observe that
(2.4) implies

3.1 H_lHU||L2(Q) :H_1||'U_HU||L2(Q) SCT|’U|H1(£2) VUEK}E{.

Therefore, the one-level additive Schwarz preconditioner based on K, . . . , K, in fact behaves
like a two-level additive Schwarz preconditioner with generous overlap, as demonstrated in
the analysis below.

The condition number of the preconditioned operator P in (2.16) is determined by the
formulas (cf. [5, 7, 26, 30, 31])

Amax [P] = max a(v;f}) ,

v .
veK),  min g a(vj,vj)
v=3""" 105 j=1
v; €K

(3.2) Amin [P] = min a(vélv)
veK)  min Za(vj,vj)
v=3"7T1 15 j=1
’UjGK]'

Since we are using an overlapping domain decomposition preconditioner, we have a standard
estimate (cf. [7, 26, 30, 31])

(33) )\max [P] S Cba

where C, is determined by the maximum number of the subspaces K1, ..., K,, that have a
nonempty intersection, which in turn is determined by the shape regularity of 7.
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We can construct a partition of unity (cf. [31, Section 3.2]) consisting of nonnegative

Lipschitz continuous functions p1, .. ., p,,, such that

(3.4) ij(m) =1 Ve Q,
(3.5) p; vanishes outside w,

(3.6) V0520 < Cp/diam(w,,),

where C, only depends on the shape regularity of 7.
Given any v € K ,13 we define

= (I = INIn(vp;),

where I, : C() — Vj, is the nodal interpolation operator associated with 7;,. Then,
v; € K; by (2.15) and (3.5), and

m m

ZUJ_I M1, (v ij)_ Mo = v

by (3.4). Furthermore, by (1.2), (3.1), (3.6) and direct calculations (cf. [31, Section 3.6],
[26, Section 2.5.3], or [7, Section 7.4]), we have,

E a(vj,vy)
j=1

3.7) SBY In(vp)li @)

Jj=1

m

(I = D) I (vp) |71 (0
1

J

3

[NgE

~E) [|v|§p<wxj) VP17 ) 101 )

.

?H

S Bl

which implies through (3.2)

o TH” 2||’U||L2(Q))<5|U|HI(Q) (B/a)a(v,v),

(3.8) Amin [P] Z (B/a) 7!
Putting (3.3) and (3.8) together, we have

_ Amax [P]
(3.9) K [P] = N 1P| < Gy(B/ ),

where Cy only depends on the shape regularity of 7. The theory for PCG (cf. [14, 28]) then
yields

(3.10) H¢zk”a < H¢Z”a = ”@h@Ha < H(bz”av
2qk 2qk

3.11 ) aSi iagi illasy

G11) I = ekl < Tz Wil < Tzl

where

512 .- H[P]—l VCi(BJa) —1
' VE[P]+1 \/Cﬁ 3/a) +1

is bounded away from 1 uniformly with respect to h and H.


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

ADDITIVE SCHWARZ PRECONDITIONERS FOR LOD 241

REMARK 3.1. In the case of a large quotient 3/, the number ¢ defined by (3.12) is close
to 1, and the performance of the localized multiscale finite element method would be adversely
affected by the estimate (3.11). However, there are two mitigating factors. The first factor
is that the condition number estimate (3.9) may be too pessimistic. The reason is that the
functions v; that appear in (3.7) belong to the subspaces K; of K ,13, and hence the diameters
of their supports are of order O(H). Consequently, the effective contrast for such functions
can be much smaller than 3/« due to averaging. The second factor is that the estimate (3.11)
can be improved if the operator P has outlying eigenvalues (cf. [14]).

The following lemma converts the estimates (3.10) and (3.11) into estimates for the
operator €, defined in (2.17), which are useful for the error analysis and the preconditioning
of the localized multiscale finite element method. It is based on the observation that

i O Nl

(3.13) |¢il 1) = H™, where 714=

QU &
I
W N =

LEMMA 3.2. The following estimates hold for the operator €y, . :

(3.14) €, — Chplla S VB/agh(H/D) T,
(3.15) €hilla S 1+ V/B/ad(H/D) ™,

where ||€p, — €y, k||o (resp., ||€n.k|la) is the operator norm of €, — &, i, (resp., €, 1) induced
by the energy norm || - ||q and D = diam Q.
Proof. We have, by (1.2), (3.11), and (3.13),

m
< leil 1 — Yiklla

¢ =1

m m
<Y lal loile S VBEH™ Y Jeil
=1 =1

316 ||€n - Cun) S,
=1

and by a standard discrete estimate together with a standard Poincaré-Friedrichs inequality
(and scaling), we also have

(.17) ¢ gfrdH cids
2 el SH 2 e

m m
> o > s
im1 =1

The estimate (3.14) follows from (3.16) and (3.17), and the estimate (3.15) follows from (3.14),
the triangle inequality, and the fact that ||& ]|, = 1. 0

. . R
Next we derive error estimates for u7;’,".

ms,h

THEOREM 3.3. The solution uy; ;. of (2.19) satisfies the estimate

5 H*dDdde < (1/\/&)H7dDd7‘rd

HY(Q) ™

a

G18)  un = w3 < llun = " o + [Co(8/) ulla] (H/D)~ " T*q",

where the constant Cy depends only on the shape regularity of Ty and D = diam Q.
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Proof. Since (I — €, x,)Iuy, belongs to V;f,i’}’, we can use the Galerkin error estimate

|un — ur}r},sigh”a = min fu, — o,

ms,
UGVH,k

together with (2.8), (2.11), and (3.14) to obtain

lun — w5

la < lun — (I — Cp i) up|a
= [fun — (I = €p)Mup] + [(I =€) — (I = &g i) [Hup |
= [[fun — (I = Cp)un] + (Cp e — ) Hup |
< Jlun — uf®" o + Cor/B/aq" (H/D) ™7 | Tup |,

The proof is completed by the observation that (1.1), (1.4), and (2.5) imply
(3.19) Muplle < Civ/B/allunlla < Crv/B/allulle. O

REMARK 3.4. The dependence on H in the error estimate (3.18) can be eliminated at the
expense of increasing the dimension of the localized finite element space (cf. [24]).
It follows from (1.3), (2.12), and (3.18) that

llun — w5

lo < (Ct/Va) H| fll o) + C3(Crr/V/a)(8/@) DIl ||, (H/D) ™ 7q".

In particular, by choosing k sufficiently large such that

(3.20) " < (a/B)(H/D)' T4,
we have
(3.21) l|un — uEf;;hIIa < (1/Va)(Ci + CyCop) H| fl Ly (02)5

i.e., the performance of the localized multiscale finite element method would be similar to that
of the ideal multiscale finite element method.
A standard duality argument then yields

(3.22) lun — Wi | < (1/)(Ct + CoCre)H?| £l Lac)-

REMARK 3.5. In the case of a large contrast 3/, the smallest k that satisfies (3.20)
would be quite large if both the condition number estimate (3.9) and the error estimate (3.11)
are sharp. As mentioned in Remark 3.1, the condition number estimate (3.9) might not be
sharp, and the estimate (3.11) can be improved if the operator P has outlying eigenvalues. If
the effective value of ¢ in (3.11) is independent of the contrast, then the estimate (3.20) will
be satisfied if we choose k to be larger than a multiple of log(3/a) + log(D/H), a number
dominated by log(5/a)log(D/H) for large 8/c and small H/D.

4. Preconditioning the multiscale finite element methods. Both the ideal and the lo-
calized multiscale finite element methods are ill-conditioned when H is small, and therefore
effective iterative solvers for the discrete problems would require preconditioning.
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4.1. The ideal multiscale finite element method. Let the linear SPD operator
AR VY — VS be defined by

ms,h ms,h

4.1) (A" v,w) = a(v,w) Vo,we Vg ',

where (-, -) denotes the canonical bilinear form between a vector space and its dual. Similarly,
the linear SPD operator Ay : Vi — VJ; is defined by

4.2) (Agv,w) = a(v, w) Yo,we Vg.

ms,h

Let @ : Vg — Vy 7 be the restriction of I — &}, to Vg, and Qt:
transpose of () with respect to the canonical bilinear form, i.e.,

(V2" — V7, be the

mSh] veVy.

<QtC7U> = <<,QU> VC S [VH

el

THEOREM 4.1. The SPD operator QAg Qt V;S’h is an optimal

preconditioner of A% [ " More precisely, we have
1yt
] Amax [(QA7' Q1AL

= /)
Amin [(QA 1Qt) m@h} ,Cf(ﬂ/ )

AN

(43) n QAR Q) AT

where C; is the constant in (2.4).
Proof. We will use the following Rayleigh quotient formulas (cf. [28]):

mb N 1 ms,h o <AIII}S7hQIU’ QU>
(@4 howe [(QAF' QAT | = hue |45 (Q45Q)] = veVs  (Agv,o)

m:a h _ -1 ms,h _ . <A287hQU7 QU>
(45 Awin [(QA oh Ay } = Amin [AH QA Q)} SO T Aoy

It follows from (2.9), (4.1), and (4.2) that

@.6) (A"

Qu,Qu) = a((I — €)v,I — €)v) < alv,v) = (Agv,v) Yv € Vy.
From (2.3), (2.5), (2.7), (4.1), and (4.2), we also have

(Agv,v) = a(v,v) = a(IL(I — €,)v,II(] — € )v)

.7 < CH(B/a)a((I =)o, (I = €x)v)
— C3(B/a) (A" Qu, Qu) Yo e Vg,

The estimate (4.3) follows from (4.4)—(4.7). 0
REMARK 4.2. Note that the estimate (4.7) (and consequently the estimate (4.3)) can be
pessimistic. This is due to the fact that the bound (2.5) for functions in H} () may be too

restrictive for the functions (I — &;)v € V}; " that actually appear in (4.7).
COROLLARY 4.3. We have

7 [(QBQHAE™"| = [(BAmAZ QA" Q)| < C}(B/a)n(BAR),

where B is any linear SPD operator that maps V}; into V.
s,h

Therefore a good preconditioner for A g has a similar effect on AE
ALt

as the preconditioner
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4.2. The localized multiscale ﬁnit‘i element method. Here we want to construct a
preconditioner for the SPD operator Azsk Vi Z’h — [Virk h] defined by

ms,h

4.8) (Agk v,w) = a(v,w) Vo, we V' b

We assume that k is sufficiently large so that (3.20) is satisfied and therefore the error esti-
mates (3.21) and (3.22) are valid.
LetQr=1—Cpp:Vyg — VI;H; M and QL [V h] — V}; be the transpose of Q)
with respect to the canonical bilinear forms. We have the following analog of Theorem 4.1.
THEOREM 4.4. The SPD operator Q1A' QY : [Vi'y g [ Vms’ is an optimal

preconditioner of A%’ H, k . More precisely, we have

(4.9 r @Az QDAT | < Co(8/a),

where the constant Co only depends on the shape regularity of Ty.
Proof. Again we use the Rayleigh quotient formulas

ms,h
-1 ms,h] <AH,;C ka’ ka>
(4.10) Amax [(QkAH Qk)AHk} T ety <AH”U v
ms,h . . < H k ka ka)
(411) m1n [(QkA Qk)AH k i| - ,Unel\l}; <AHU U>

According to (3.15), (3.20), (4.2), and (4.8), we have

ms,h

(412) <AHk le} ka>— a(([ Q:h k) (I — Q:hJC)U)
< 2a(v,v) + 2a(€h kv, € ,v) S (Agv, v) Vv e Vy.

In the other direction, we have, by (2.3), (2.5), (2.18), (4.2), and (4.8),

(Agv,v) = a(v,v) = a(TI(I — € k)v, (I — 4 k)v)
(4.13) < CP(B/a)a((I = Chi)v, (I — Epp)v)

ms,h
= CT (B/a) <AHSk Qrv, Qrv) Vv e Vy.
The estimate (4.9) follows from (4.10)—(4.13). a
Note that Remark 4.2 also applies to the estimate (4.9).
COROLLARY 4.5. We have

r [(QeBQRARY| = v [(BAmAZ (QLATL Q0|

ms,h

< k[BAu]k |(QuAF QDAL | < Co(8/a)k [BA],

where B is any linear SPD operator that maps V], into V.

s

Therefore a good preconditioner for Ay has a similar effect on A kah as the preconditioner
g1
H -

5. Numerical results for high contrast coefficients. The domain for the numerical
experiments is the unit square (0,1) x (0,1), and f is the constant function 1. The diffusion
matrix A takes the form of

ol 2

0 A
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where A1, and As are randomly generated piecewise constant functions with respect to a
uniform partition of €2 into 40 x 40 small squares (cf. Figure 5.1). The values of A;; and Az
range between 1 and 1350.

1600
1400
1200

1000

FIG. 5.1. A11 (left) and Aaz (right).

5.1. Convergence of the multiscale finite element methods. We take 1/}, to be the ()1
finite element space associated with the uniform partition of €2 into 160 x 160 small squares
(i.e., h = 1/160). The solution uy, obtained by the standard finite element method (1.4) is
treated as the reference solution.

The solutions up, urf}s’h, and uy (with h = 1/160 and H = 1/20) are depicted in
Figure 5.2. It is observed that uEs’h provides a good approximation of u, while u gy suffers
from the pre-asymptotic effect and fails to capture uy,.

x10%

(xy)

msh
Un

FIG. 5.2. wuy, (top left), u‘,?’h (top right) and g (bottom), with h = 1/160 and H = 1/20.

The convergence history for the ideal multiscale finite element method and the localized
multiscale finite element method are presented in Figure 5.3 for the energy norm and in
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Figure 5.4 for the Ly-norm. In both cases the localized solution u?}skh with k = [3log(1/H)]

107

10°

10~

10

——e
— e

PR N—

Localized MSFEM
k= [ 2log(1/H) |
O(H) reference
O(HW’Z) reference
Ideal MSFEM
Localized MSFEM
k= [ 3log(1/H) ]

10°

10*
2

FIG. 5.3. Relative errors in the energy norm.

< O(Hz) reference
Localized MSFEM
k=[2*log(1/H)]
—©— O(H) reference
Ideal MSFEM
-~ Localized MSFEM
k=[3*log(1/H)]

10*

FIG. 5.4. Relative errors in the La-norm.

and the ideal solution uzs’h are almost identical, and their order of convergence agrees
with (2.12) and (3.21) in the case of the energy norm and with (2.13) and (3.22) in the case of
the Ly-norm. On the other hand, the choice of k = [21og(1/H)] results in a reduced order of

convergence.
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In order to test the dependence of the performance of the localized multiscale finite
element method on the contrast, we have solved (2.19) for three additional randomly generated
diffusion matrices, so that the contrast 3/« in the four examples increases from the order of
10 to the order of 10%. The relative errors in the energy norm are displayed in Figure 5.5. The
magnitudes are similar for the four examples, and the order of convergence is O(H ). The
choice of k is [3log(1/H)] for the contrasts 10, 1.2 x 102, and 1.3 x 10, and [4log(1/H)]
for the contrast 1.4 x 10%, which indicates that the effective value of ¢ in (3.11) is likely to be
independent of the contrasts (cf. Remark 3.5).

—— (/a=10.9605 11

S —%— (a=120.1326
107 | = Bla=1.3167x10% | |

| —e— pa=1.4432 10" | |
| —<—- O(H) reference | {
10° 10*
2

FIG. 5.5. Relative energy norm errors for the localized multiscale finite element method with respect to four
different contrasts.

5.2. Preconditioning the ideal multiscale finite element method. At first we take
h = 1/160 and solve (2.10) by the Conjugate Gradient (CG) method (without a precon-
ditioner). The number of iterations required to reduce the residual by a factor of 10~° for
various H are reported in Table 5.1.

TABLE 5.1
Iteration counts for CG (h = 1/160).

1I/H 10 20 40 80
lterations | 19 46 122 332

Next we solve the same problem by the Preconditioned Conjugate Gradient (PCG) method
with A;f as the preconditioner. The number of iterations required to reduce the residual by a
factor of 109 for various H are reported in Table 5.2. The improvement over the CG method
and the optimality established in Theorem 4.1 are clearly visible.

We then test the performance of additive Schwarz domain decomposition preconditioners.
We divide €2 into J overlapping subdomains with various overlaps measured by the ratio R
between the diameter of the subdomains and the amount of overlap. In the case of the two-level
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TABLE 5.2
Iteration counts for PCG with A;I1 as the preconditioner (h = 1/160).

1/H \10 20 40 80
Iterations‘ 9 13 13 14

TABLE 5.3
Iteration counts for PCG (with one-level and two-level additive Schwarz preconditioners) for (2.10) with
h =1/320and H = 1/80.

R
J 1 2 4 1 2 4

one-level two-level

52 33 | 49 53 || 31 | 45 | 47
102 39 | 48 67 || 38 | 36 | 44
202 48 | 88 | 119 || 33 | 37 | 42
402 103 | 155 | — 33|32 | —

preconditioner, the mesh size of the coarse grid is proportional to 1/v/.J. We solve (2.10)
with h = 1/320 and H = 1/80 by the PCG method with standard one-level and two-level
additive Schwarz preconditioners for Ay as preconditioners for Ags’h, and record the number

of iterations needed to reduce the residual by a factor of 10~ in Table 5.3.
ms,h

According to Corollary 4.3, the performance of the PCG for A;; " is determined by the
condition number of BAg, where B is either the one-level or the two-level additive Schwarz
preconditioner for A . Therefore, the number of iterations is dictated by the condition number
estimates for overlapping additive Schwarz domain preconditioners (cf. [31, Section 3.6],
[26, Section 2.5.3], or [7, Section 7.4]). In particular, for a given R, the number of iterations
for the one-level method will increase as J increases while the number of iterations for the
two-level method will stay bounded. This is observed in Table 5.3.

We also test the weak scalability of the one-level and two-level additive Schwarz methods
by fixing a fine mesh with h = 1/320 and increasing the number of degrees of freedom for
V;S’h and the number of subdomains by a factor of 4 simultaneously, with the initial mesh
size H = 1/40 and the initial number of subdomains JJ = 25. R is taken to be 8. The results
are displayed in Figure 5.6, which again agree with the behavior predicted by Corollary 4.3
and the theory of additive Schwarz preconditioners, i.e, the two-level algorithm is scalable
while the one-level algorithm is not.

5.3. Preconditioning the localized multiscale finite element method. We consider the
problem (2.19) for the multiscale finite element method with h = 1/320, H = 1/80, and
k = [3log(1/H)] and perform the same test for the performance of additive Schwarz domain
decomposition preconditioners. The results are identical to the results for the ideal multiscale
finite element method reported in Table 5.3.

In order to test the dependence of the performance of the preconditioners on the contrast,
we have solved (2.19) by PCG with the two-level preconditioner for the additional randomly
generated coefficient matrices in Section 5.1. The mesh size for the localized multiscale finite
element method is H = 1/40, and the choice of & is [3log(1/H)] for the first three contrasts
and [4log(1/H)] for the largest contrast. The numbers of iterations required to reduce the
residual by a factor of 10~° are displayed in Figure 5.7, where the number of subdomains is
J = 52,102, and 202, and the ratio between the diameter of the subdomains and the overlap is
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350

—— One-level AS
Two-level AS

300 |

250

[~
=]
(=]

150 [

Iteration count

100
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0 L L ' I L i
0 200 400 600 800 1000 1200 1400 1600

Number of Subdomains

FIG. 5.6. Iteration counts for the weak scaling test with initial mesh size H = 1/40 and initial number of
subdomains J = 25 (h = 1/320, R = 8).

R = 2. It can be observed that the number of iterations increases by a factor of at most 2 as
the contrast increases by a factor of 10, which indicates that the condition number estimates
in Theorem 4.1, Corollary 4.3, Theorem 4.4, and Corollary 4.5 are indeed too pessimistic
(cf. Remark 4.2).

6. Numerical results for highly oscillatory coefficients. We consider a problem first
treated in [19]. The domain for the numerical experiments is also the unit square (0, 1) x (0, 1),
and f is the constant function —1. The diffusion matrix .4 takes the form of ¢(x)I, where

2 2
2+1.851n( ”1> 2+sin< m2)
€ €
- +

c(z) = .
2 D
2—|—1.8cos( ”2) 2+1.851n< m)
€ €

The contrast 3/« for this problem is ~ 16 for all choices of e.

6.1. Convergence of the localized multiscale finite element method. We take V}, to
be the @, finite element space associated with the uniform partition of €2 into 256 x 256
small squares (i.e., h = 1/256). The solution wu;, obtained by the standard finite element
method (1.4) is treated as the reference solution.

The boundary value problem (1.1) is solved by the localized multiscale finite element
method (2.19) with £ = [3log(1/H)] and H = 1/16, 1/32, and 1/64. The convergence
history for the energy (resp., Lz2-) norm for e = 0.16, 0.08, and 0.04 are displayed in Figure 6.1
(resp., Figure 6.2). It is observed that the convergence in the energy norm is O(H ), which
agrees with the estimate (3.21), and the convergence in the Lo-norm is O(H 2), which also
agrees with the estimate (3.22). Moreover the performance of the method is independent of e.

6.2. Preconditioning the localized multiscale finite element method. The domain {2
is divided into J subdomains, where the ratio between the diameter of the subdomain and the
amount of overlap is denoted by R. In the case of the two-level preconditioner, the mesh size
of the coarse grid is proportional to 1/+/.J.
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100 T T T T
Bla=10.9605
0 —*— /a=120.1326 | |
—*— §/a=1.3167x10°
80 —8— Bla=1.4432x 10 |
70 + n
5 6ol i
[e]
(@]
S o 3
©
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30 \ 1
20 —_—
10 1

0 50 100 150 200 250 300 350 400
Number of Subdomains

F1G. 5.7. Iteration counts for the two-level additive Schwarz preconditioner for four different contrasts, where
H =1/40, R = 2, and J = 52, 102 and 202.

107

——¢=0.16
—8—¢=0.08
—*—¢=0.04

G- - O(H) reference

10—3 L
102 10° 10*

FIG. 6.1. Relative errors in the energy norm for different €.

We solve (2.19) by the PCG method with standard one-level and two-level additive
Schwarz domain decomposition preconditioners for Ay as preconditioners for Ag?,;h. For
h = 1/256 and H = 1/64, the number of iterations required to reduce the residual by a
factor of 10~ are reported in Table 6.1 for R = 2 and Table 6.2 for R = 4. The results of

solving (2.19) by CG without a preconditioner are also presented in Table 6.3 for comparison.

We observe that the performance of the PCG is more or less independent of e, which
is consistent with Corollary 4.5, where the condition number estimate only depends on the
contrast. The PCG iteration counts in Table 6.1 and Table 6.2 (especially the ones for the
two-level preconditioner) show substantial improvement over the iteration counts in Table 6.3
for the CG algorithm.

We also test the weak scalability of the two-level preconditioner by increasing the number
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& O(Hz) f
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104 L

102

FIG. 6.2. Relative errors in the La-norm for different e.

TABLE 6.1

.
10%

Iteration counts for PCG (with one-level and two-level additive Schwarz preconditioners) for (2.19) with R = 2,
h =1/256, H=1/64 and ¢ = 0.16, 0.08, and 0.04.

J €1 0.16 | 0.08 | 0.04 || 0.16 | 0.08 | 0.04
one-level two-level
22 13 14 15 13 13 15
42 15 16 16 15 15 16
82 26 24 27 15 15 16
162 51 45 45 15 16 15
TABLE 6.2

Iteration counts for PCG (with one-level and two-level additive Schwarz preconditioners) for (2.19) with R = 4,
h =1/256, H =1/64 and e = 0.16, 0.08, and 0.04.

g | 0.16 | 0.08 | 0.04 || 0.16 | 0.08 | 0.04
one-level two-level
22 14 15 15 13 14 15
42 23 21 24 15 15 16
82 42 36 42 16 15 15
162 81 70 70 15 16 15
TABLE 6.3
Iteration counts for CG (h = 1/256, H = 1/64).
€ \ 0.16 0.08 0.04
Tierations | 207 149 114

of degrees of freedom in V}}’ Z’h and the number of subdomains by a factor of 4 simultaneously,
with the initial mesh size H = 1/16 and the initial number of subdomains J = 4. The results
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are reported in Figure 6.3. It is clear that the two-level additive Schwarz algorithm is scalable
and its performance is independent of e.

50 T .

——¢=0.16

s —8—¢=0.08 ]
—%— ¢=0.04

40

35 - 4

30 -

0 10 20 30 40 50 60 70

FIG. 6.3. Iteration counts for the weak scaling test for the two-level preconditioner with initial mesh size
H = 1/16 and initial number of subdomains J = 4 (h = 1/256, R = 2).

7. Concluding remarks. As a reduced-order method, the variant of the LOD method
considered in this paper is effective for applications that involve repeated solves of problems
with rough coefficients.

Additive Schwarz domain decomposition preconditioners play a role in both the off-line
stage and the on-line stage. They are used in the construction of the localized multiscale
finite element space V;} Zh where the subdomains are patches around the nodes of the coarse
finite element space V7. They are also used as preconditioners for the localized multiscale
finite element method, where the subdomains are constructed as in overlapping domain
decomposition preconditioners for standard second-order problems.

We use a basic interpolation operator II in this paper. There are more sophisticated
coefficient-dependent interpolation operators (cf. [15, 27]) that can lessen the adverse effects
of the contrast 8/« under additional assumptions on the diffusion matrix .A. The approach in
this paper can also be applied to LOD methods based on these interpolation operators.

Acknowledgement. This work was supported in part by the National Science Foundation
under Grant Nos. DMS-16-20273 and DMS-19-13035. The authors would like to thank two
anonymous referees for many helpful comments.

Appendix A. Analysis of the ideal multiscale finite element method. First we provide
some details for the estimate (2.4). Let T € Tg and w; be the interior of the union of all the
elements in 7z that share at least one vertex with T'. We will show that

(A]) H;le’U — HUHLQ(T) + |HU‘H1(T) S |U|H1(wT) V’U S Hé(Q),

where Hr is the diameter of 7', and then (2.4) follows immediately.
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Letv € H'(Q) and T € Ty be arbitrary and p be a vertex of T that is interior to €. In
view of (2.1) and (2.2), we have, by standard inverse estimates (cf. [7, 8]),

- —d/2 ~ —d/2
(M) S D Nl S H2 Y Y el < H2 Y llza),
TeT, TeT, TeT,

and hence
(A2) 1ol Ly 7y S 10ll2s wr)-
According to the Bramble-Hilbert lemma (cf. [6, 7, 10]), there exists a constant ¢ such that
(A3) Hy o = ellLyqor) < [0l n)-
It follows from (A.2) and (A.3) that
(A4) H;1|\v —Iv||p, ) = H{1||(v —c¢) = II(v — )| L, (1)
S Hy'o = elliyor) S [0lmi(orn-
Let IT : H}(£2) — Vi be a quasi-local operator [7, 29] that satisfies
(A.5) Hi' o — || gy ory + Mol oy S [0laiwry Vo € Hy ().

We can complete the proof of (A.1) by combining (A.4) and (A.5) with a standard inverse
estimate:

|H’U‘H1(T) < v — ﬁU|H1(T) + |1:IU|H1(T)
S HE T =Tl g1y + [0] 51 (wr)
S H T = vl Ly + Hy o = Tl Ly () + [0l wr) S [0]H )

Next we derive the error estimates (2.12) and (2.13). From (1.2), (1.4), (2.4), (2.6), and (2.7),
we find

||€huh||§ = a(uh, thuh) = a(uh, Qihuh - HQhuh)
= (f,(I —)Chup)
< H|[fll 2, CtlChunl a1y < HI| fl o) (Ci/Va) I€hunlla,

and hence
(A.6) [€hunlla < (Ci/Va)HI fllLy)-

The estimate (2.12) follows from (2.11) and (A.6).
Finally, we derive the estimate (2.13) by a duality argument. Let w, € V}, be defined by

(A7) a(wp,v) = (Crup,v) Yo e V.
Then we have the following analog of (A.6):

(A.8) 1€hwnlla < (Ci/Va)H||Chun| L, 0)-
It follows from (2.6) , (A.7), and (A.8) that

[€hunlZ, @) = a(wn, Cpun) = a(Chwn, Chup,)
< N€hwnllall€hunlla < (Ct/Va)H||Chun|l Lo |€nun]la-
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Therefore we have, by (A.6),

I€hunllzac0) < (C/Va)H|[Chunlla < (CF/a)H?|[f]l Ly,

which is the estimate (2.13) because of (2.11).

REMARK A.1. Since the estimate (A.1) is quasi-local, the results for the multiscale finite

element methods can be easily extended to triangulations that are not necessary quasi-uniform
(cf. [24, 25]).
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