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In this paper we conduct a priori and a posteriori error analysis of the C0 interior penalty
method for Hamilton–Jacobi–Bellman equations, with coefficients that satisfy the Cordes
condition. These estimates show the quasi-optimality of the method, and provide one
with an adaptive finite element method. In accordance with the proven regularity theory,
we only assume that the solution of the Hamilton–Jacobi–Bellman equation belongs to
H2.
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1. Introduction

The goal of this paper is to conduct a priori and a posteriori error analysis of the C0 interior penalty finite element
method (FEM) for the approximation of strong solutions of the following nondivergence form Hamilton–Jacobi–Bellman
Dirichlet boundary-value problem. Find u : Ω → R such that

sup
α∈Λ

{Aα
: D2u− f α

} = 0 a.e. in Ω, (1.1)

u = g on ∂Ω, (1.2)

where Ω ⊂ Rd, d ≥ 2 is convex, and g is the restriction of a given H2(Ω) function to ∂Ω . We assume that

Λ is a compact metric space, and A, f ∈ C(Ω ×Λ), (1.3)

hich in turn define the collection of functions {f α
}α∈Λ, {Aα

}α∈Λ as follows: for each α ∈ Λ, f α
: x ↦→ f (x, α),

Aα
: x ↦→ A(x, α). We assume that the defined collection of coefficients is uniformly elliptic in the following sense:

there exist constants 0 < µ1 ≤ µ2 <∞ such that

µ1|ξ |
2
≤ ξ TAαξ ≤ µ2|ξ |

2 a.e. in Ω, ∀ξ ∈ Rd, ∀α ∈ Λ, (1.4)

and satisfies the following Cordes condition [1] uniformly in α: there exists ε ∈ (0, 1] such that
|Aα
|

Tr(Aα)
≤

1
√
d− 1+ ε

a.e. in Ω ∀α ∈ Λ. (1.5)
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n the case that Λ is a singleton set, we simply assume that A ∈ L∞(Ω) satisfies (1.4)–(1.5), and f ∈ L2(Ω). In this
ase (1.1)–(1.2) become the following linear nondivergence form elliptic equation

A : D2u = f a.e. in Ω, (1.6)

u = g on ∂Ω. (1.7)

emarkably, in two dimensions, uniform ellipticity implies the Cordes condition (1.5) (cf. [2]).
A solution u of (1.1)–(1.2) is called a strong solution if it belongs to H2(Ω), i.e., the weak derivatives of u up to

econd order belong to L2(Ω). This means that (1.1) holds a.e. with respect to the Lebesgue measure. The linear problem
1.6)–(1.7) is of interest, as it arises in the linearisation of (1.1)–(1.2), as well as other fully nonlinear elliptic partial
ifferential equations, such as the Monge–Ampère (MA) equation. The MA equation, and (1.1) encompass a variety
f modern applications, such as differential geometry, engineering, finance, economics, and stochastic optimal control
roblems.
Regularity: Since each Aα

∈ L∞(Ω;Rd×d
Sym), under the current hypotheses, in general a strong solution u ∈ H2(Ω) may

ot belong to Hs(Ω) for any s > 2. As such, we shall only assume that the true solution u ∈ H2(Ω).
One should note that under different hypotheses on the behaviour of the data A, f , and ∂Ω , the solution of the linear

roblem (1.6)–(1.7) may possess higher Sobolev regularity, and integrability, and may even be classically differentiable.

• Calderon–Zygmund theory of strong solutions [3]: if A ∈ C0(Ω;Rd×d), f ∈ Lp(Ω), 1 < p < ∞, and ∂Ω ∈ C1,1, then
u ∈ W 2,p(Ω).
• Classical solutions: if A ∈ C0,α(Ω;Rd×d), α ∈ (0, 1), f ∈ C0,α(Ω) and ∂Ω ∈ C2,α , then u ∈ C2,α(Ω).

The fully nonlinear problem (1.1)–(1.2) may also admit classical solutions, again provided that A, f , and ∂Ω are
ufficiently regular. In particular, if A, f , ∂Ω ∈ C∞ and Λ is a finite set, then u ∈ C0(Ω) ∩ C2,α(Ω) for some α > 0
cf. [4], Theorem 1, and note that A is not required to satisfy (1.5)). See also [5]. We seek to avoid such assumptions,
s polytopal domains do not possess such regularity, and in linearising (1.1)–(1.2), we cannot in general hope that the
oefficients will have these properties either. See [6–9] for finite element methods approximating elliptic equations on
urved domains.
The main challenge in designing a numerical method for (1.1)–(1.2) (aside from the nonlinearity) is the nondivergence

orm structure of the equation. Upon linearising (1.1)–(1.2), one arrives at a sequence of problems of the form (1.6)–(1.7).
owever, in general one cannot express A : D2u = ∇ · (A∇u) − (∇ · A) · ∇u, as A ∈ L∞(Ω), and thus may not possess
ufficient regularity. This means that (1.6)–(1.7) (and resultingly (1.1)–(1.2)) does not possess a weak formulation, and so,
ne cannot base a finite element method on that weak formulation. That said, this has not stopped the development of
umerical methods for (1.1)–(1.2) and (1.6)–(1.7), often relying on the existence and uniqueness theory of the underlying
quation, with methods dependent upon the different assumptions upon the coefficients and data, domain boundary,
nd resulting solution regularity outlined above. In particular, when A ∈ L∞(Ω;Rd×d), f ∈ L2(Ω), and Ω is convex, one
as [7,10,11], and if A ∈ C0(Ω;Rd×d), f ∈ Lp(Ω), 1 < p <∞, and ∂Ω ∈ C1,1 one has [12,13].
The papers [7,14] present and analyse discontinuous Galerkin FEMs that utilise a discrete analogue of the

Miranda–Talenti estimate; the current paper utilises a similar approach. However, the method of this paper does not
involve the inclusion of additional bilinear forms which numerically enforce a discrete Miranda–Talenti estimate (as
in [7,14]), and thus is simpler to implement.

The approach of [10] is a mixed FEM, also relying on a variant of the Miranda–Talenti estimate, in this paper, the
author was successful in proving a priori and a posteriori error estimates, as well as convergence of the adaptive method.
This approach was further extended to the nonlinear setting of (1.1)–(1.2) in [15].

The papers [12,13] both employ a numerical analogue of the freezing of coefficients technique utilised in the
alderon–Zygmund theory of strong solutions to (1.1)–(1.2), however, the method of the present paper allows for more
eneral coefficients and domains. For FEMs approximating (1.1) with oblique boundary conditions, see [6,9].
The fully nonlinear setting of (1.1)–(1.2) has seen several advancements in the literature, in the elliptic case [15–20],

s well as the parabolic setting [21]. The most recent development (to the knowledge of the authors) [20] relies on a
iscrete Miranda–Talenti estimate for continuous finite element functions.
The following estimates

∥D2v∥L2(Ω) ≤ ∥∆v∥L2(Ω), ∀v ∈ H2(Ω) ∩ H1
0 (Ω) (1.8)

∥v∥H2(Ω) ≤ C∥∆v∥L2(Ω),∀v ∈ H2(Ω) ∩ H1
0 (Ω) (1.9)

re the so called Miranda–Talenti estimates, and hold when the domain Ω is convex. The approaches of [19,20] rely upon
enormalising the nonlinear problem with the following parameter,

γ α
:=

Aα
: I

Aα : Aα
∈ L∞(Ω), (1.10)

or each α ∈ Λ.
Theorem 3 of [19] provides the existence and uniqueness of a function u belonging to the space

H := H2(Ω) ∩ H1(Ω),
0
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hat satisfies (1.1)–(1.2), in the case that g ≡ 0. Treating the case of inhomogeneous boundary data follows in a
anner similar to that of [19], Theorem 3. With the aim of invoking the Browder–Minty Theorem, we first define

γ : H2(Ω)→ L2(Ω) by

Fγ [u] := sup
α∈Λ

{γ α(Aα
: D2u− f α)}, (1.11)

nd proceed to define ag : H → H ′ (where H ′ denotes the dual space of H) by

ag (u; v) := (Fγ [u+ g], ∆v)L2(Ω) u, v ∈ H. (1.12)

ne can show that ag is strictly monotone, and Lipschitz continuous on H , yielding the existence and uniqueness of a
unction u0 ∈ H such that

ag (u0; v) = 0 ∀v ∈ H. (1.13)

inally, we uniquely define u := u0 + g , which satisfies (1.1)–(1.2). This provides us with the following theorem.

heorem 1.1. Assume that Ω ⊂ Rd is a convex domain, and that the collection {Aα
}α∈Λ satisfies (1.4)–(1.5). Furthermore,

assume that g ∈ H2(Ω). Then, there exists a unique strong solution u ∈ H2(Ω) of the following HJB equation:

sup
α∈Λ

{Aα
: D2u− f α

} = 0 a.e. in Ω,

u = g on ∂Ω.
(1.14)

Contributions: In this paper we obtain a priori and a posteriori error estimates under the assumption that the true
solution belongs to H2(Ω). We note that the method we present has been considered in [20], in the homogeneous Dirichlet
case, where the authors prove stability, and a priori error estimates for the problem (1.1)–(1.2), as well as the fully
nonlinear Hamilton–Jacobi–Bellman equation. Our approach to the stability analysis is distinct from that of [20], as we
also consider the case of inhomogeneous boundary data. Furthermore, the recent publication [22] provides the existence
of an enriching operator when p ≥ 2, and d ∈ {2, 3}, which removes the restriction upon the polynomial degree p ∈ {2, 3},
when d = 3 present in [20] (cf. [20] Remark 4). Furthermore, we also undertake a posteriori error analysis for this problem,
and justify that one may utilise the scheme to approximate solutions to the fully nonlinear Monge–Ampère equation (see
Section 5).

As mentioned, a motivation of this paper is to develop a numerical method for the Monge–Ampère (MA) equation.
The (MA) equation is a prototypical fully nonlinear elliptic equation, arising in differential geometry, optimal transport,
engineering and fluid dynamics: given a nonnegative f : Ω → R+, and g : ∂Ω → R, find u : Ω → R such that{

detD2u = f in Ω,

u = g on ∂Ω.
(1.15)

In general solutions of (1.15) may not be unique; a simple example is given in the case d = 2, g ≡ 0, where it is clear
that if u satisfies (1.15), then so does −u. The existence of multiple solutions to (1.15) poses a significant challenge in
the design of numerical methods. In [23] (c.f. [23] Section 1.4), the authors implement a standard nine-point stencil finite
difference method (FDM) for an example of (1.15) that has at most two solutions, with a smooth right-hand side, and with
the choice of domain Ω = (0, 1)2. One would hope that the proposed FDM may have the same uniqueness property, that
is, that there exist at most two solutions to the numerical method. However, upon implementing this method on a 4 × 4
grid, and solving the resulting nonlinear system by applying Newton’s method, they obtain sixteen different numerical
solutions by varying the initial guess of the Newton’s method.

As mentioned in [23], one may conjecture that this phenomena extrapolates, causing Newton’s method to potentially
converge to 2(N−2)2 different solutions on and N×N grid, by varying the initial guess. When designing a numerical scheme,
it is important that one knows which solution the method is converging to, without needing too much prior knowledge
of the true solution (Newton’s method is well known to be conditionally convergent, often requiring that the initial guess
is sufficiently close to the true solution). A variant of the FDM implemented and discussed in [23] was proposed in [24],
with an additional selection criteria, which in essence singles out a particular numerical solution.

We overcome this difficulty, by using a long standing result due to N. Krylov [25], which allows one to characterise
the MA equation (1.15) as a HJB equation, if and only if u is convex. In the case that u ∈ W 2,∞(Ω) is uniformly convex,
nd d = 2, we are able to further show that the resulting HJB equation is equivalent to one with a control set Λ, and data
, f that satisfy (1.3)–(1.5). Moreover, the resulting numerical scheme is uniquely solvable. For other numerical methods
or the approximation of solutions to the MA problem, see [16,26–28].

Domain assumptions: In the current section, we have assumed that Ω ⊂ Rd, d ≥ 2, is convex, as this is a sufficient
ssumption of Theorem 1.1. However, in Section 2 we provide the numerical scheme, and from this point on, we further
ssume that d ∈ {2, 3} and that Ω is polytopal.
This paper is laid out as follows. In Section 2, we introduce the discrete problem, and prove the stability of the

ssociated bilinear form. Section 3 is devoted to convergence analysis; we prove quasi-optimal apriori error estimates
2
nd a posteriori error estimates in a H -type norm. In Section 4, we propose the linearisation scheme and adaptive

3
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cheme. Section 5 is devoted to applications to the Monge–Ampère problem. In Section 6 we implement the proposed
inite element method (as well as the adaptive version) in FEniCS [29], confirming the theoretical results of the paper.
inally, in Section 7, we provide concluding remarks on what has been achieved in this paper.

. The discrete problem

As mentioned in the introduction, from this point on, we shall further assume that Ω ⊂ Rd, d ∈ {2, 3} is convex
nd polytopal. Let Th be a simplicial triangulation of Ω and Vh ⊂ H1(Ω) be the continuous Lagrange finite element
pace of order p ≥ 2 associated with Th, and denote Vh,0 := Vh ∩ H1

0 (Ω). We denote by D2
h and ∆h, the piecewise

essian and Laplacian, respectively. Furthermore, we shall make use of the following mesh dependent (semi)norm for
∈ H2(Ω;Th) := {v ∈ L2(Ω) : v|K∈ H2(K )∀K ∈ Th}

∥u∥2h :=
∫

Ω

|D2
hu|

2
+

∑
e∈E i

h

σ

he
∥[[∂u/∂n]]e∥2L2(e), (2.1)

nd we note that ∥ · ∥h is indeed a norm on Vh,0.
The discrete problem is posed as follows: we seek uh ∈ Vh satisfying

ah(uh; v) :=
∫

Ω

Fγ [uh]∆hv +
∑
e∈E i

h

σ

he

∫
e
[[∂uh/∂n]]e[[∂v/∂n]]e = 0 ∀v ∈ Vh,0,

uh|∂Ω := gh,

(2.2)

where gh ∈ Vh is a suitable approximation of g (the derivatives in Fγ defined by (1.11) are considered piecewise), E i
h is

the set of internal edges of Th, [[·]]e denotes the jump across an edge e, and σ is a positive constant.
We remark that if g ≡ 0, and we instead seek uh ∈ Vh,0, then (2.2) coincides with the method presented in [20]. We

also note that the scheme is consistent in the following sense: if u ∈ H2(Ω) satisfies (1.1)–(1.2), then

ah(u; v) = 0 ∀v ∈ Vh,0. (2.3)

The above holds, since u satisfies (1.1)–(1.2), and u ∈ H2(Ω) so [[∂u/∂n]]e = 0 for e ∈ E i
h. The following theorem and

corollary are from [20]. As mentioned in the introduction, the results that follow, as presented in [20] hold for d = 2,
for any p ≥ 2, and for d = 3 if p ∈ {2, 3}. However, this occurs because the proofs rely on the existence of an operator
Eh : Vh,0 → H2(Ω) ∩ H1

0 (Ω) (called an enriching operator), that in particular satisfies the following estimate:

∥Ehv − v∥h ≤ C∗
∑
e∈E i

h

1
he
∥[[∂v/∂n]]e∥2L2(e), ∀v ∈ Vh,0 (2.4)

where the constant C∗ is (in principle) a computable, positive constant dependent only on the shape regularity of Th. A
particular construction of such an operator is provided in [20] and uses the C1 family of Clough–Tocher spaces, which
leads to the aforementioned restriction when d = 3 (cf. [20], Remark 4). However, in the recent paper [22], the existence
of an operator that satisfies (2.4) has been proven, only assuming p ≥ 2, for d ∈ {2, 3}. Thus, the proceeding results hold
for d ∈ {2, 3} and p ≥ 2.

Theorem 2.1. One has that for any vh ∈ Vh,0,

∥D2
hvh∥L2(Ω) ≤ ∥∆hvh∥L2(Ω) + CMT

⎛⎜⎝∑
e∈E i

h

1
he
∥[[∂vh/∂n]]∥2L2(e)

⎞⎟⎠
1/2

, (2.5)

where the constant CMT is independent of h.

Corollary 2.2. One has that for any v ∈ Vh,0, and all t ∈ (0, 1),

∥∆hv∥
2
L2(Ω) ≥ (1− t)∥D2

hvh∥
2
L2(Ω) −

C2
MT
t

⎛⎜⎝∑
e∈E i

h

1
he
∥[[∂v/∂n]]∥2L2(e)

⎞⎟⎠ . (2.6)

We now prove a strict monotonicity result for ah (a variant of [20], Lemma 7), provided that σ is sufficiently large.

emma 2.3. One has that for any u, v ∈ Vh, such that u− v ∈ Vh,0

ah(u; u− v)− ah(v; u− v) ≥ δ(1−
√
1− ε)∥u− v∥2h,

for any δ ∈ (0, 1), independent of h, u and v, provided σ is sufficiently large (dependent on δ).
4
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roof. Take u, v, as in the hypotheses of the lemma, and denote w := u − v ∈ Vh,0. Denoting I to be the d × d identity
atrix, by (1.5), we have that

|γ αAα
− I|2 = (γ αAα

− I) : (γ αAα
− I) = (γ α)2(Aα

: Aα)− 2γ α(Aα
: I)+ I : I

= −
(Aα
: I)2

(Aα : Aα)
+ d

≤ −(d− 1+ ε)+ d = 1− ε a.e. in Ω, ∀α ∈ Λ.

(2.7)

nequality (2.7), Theorem 2.1, and Corollary 2.2 imply that for any t ∈ (0, 1)∫
Ω

(Fγ [u] − Fγ [v])∆hw ≥ ∥∆hw∥
2
L2(Ω) −

∫
Ω

sup
α∈Λ

{|(γ αAα
− I) : D2

hw|}|∆hw|

≥ ∥∆hw∥
2
L2(Ω) −

√
1− ε∥D2

hw∥L2(Ω)∥∆hw∥L2(Ω)

≥ (1−
√
1− ε/2)∥∆hw∥

2
L2(Ω) − (

√
1− ε/2)∥D2

hw∥
2
L2(Ω)

≥

[
(1− t)(1−

√
1− ε/2)−

√
1− ε/2

]
∥D2

hw∥
2
L2(Ω) −

C2
MT
t

∑
e∈E i

h

1
he
∥[[∂w/∂n]]∥2L2(e).

ow, for a given δ ∈ (0, 1), we set t = t(δ, ε) := (1− δ)(1−
√
1− ε)/(1−

√
1− ε/2) ∈ (0, 1). This gives us

ah(u; u− v)− ah(v; u− v) ≥ δ(1−
√
1− ε)∥w∥2h

+

(
σ (1− δ(1−

√
1− ε))− C2

MT
(1−
√
1− ε/2)2

(1− δ)(1−
√
1− ε)

) ∑
e∈E i

h

1
he
∥[[∂w/∂n]]∥2L2(e)

≥ δ(1−
√
1− ε)∥w∥2h

rovided that σ satisfies

σ ≥
C2
MT(1−

√
1− ε/2)2

(1− δ)(1−
√
1− ε)(1− δ(1−

√
1− ε))

=: C(δ, ε). □ (2.8)

emark 2.4 (Dependence of σ on ε). From (2.8), for a fixed value of δ ∈ (0, 1), we can see that the monotonicity of
h requires that σ is sufficiently large, dependent on ε. From the identity 1 −

√
1− ε = ε/(1 +

√
1− ε), we find that

ε/2 ≤ 1−
√
1− ε ≤ ε. We also have that 1− δ ≤ 1− δ(1−

√
1− ε) ≤ 1 and 1/4 ≤ (1−

√
1− ε/2)2 ≤ 1. It follows that

C2
MT

4(1− δ)
ε−1 ≤ C(δ, ε) ≤

2C2
MT

(1− δ)2
ε−1.

herefore, (2.8) holds if and only if σ ≥ CδC2
MTε
−1, for some positive constant Cδ dependent only on δ.

The following lemma is a simple consequence of the Lipschitz continuity of Fγ (with Lipschitz constant
√
d+1, see (3.8)

elow), and the definition of the norm ∥ · ∥h.

emma 2.5. One has that for any u, v, w ∈ Vh,

|ah(u;w)− ah(v;w)| ≤ (
√
d+ 1)∥u− v∥h∥w∥h.

The following proof is motivated by the proof of Theorem 1.1.

heorem 2.6. Under the hypotheses of Lemma 2.3, there exists a unique uh ∈ Vh satisfying (2.2).

roof. Let us define agh : Vh,0×Vh,0 → R, by agh (uh; v) := ah(u+ gh; v) for all uh, v ∈ Vh,0. Lemmas 2.3 and 2.5 then imply
hat for all uh, v, w ∈ Vh,0, and for any δ ∈ (0, 1) (so long as σ is sufficiently large, dependent on δ)

agh (uh; uh − v)− agh (v; uh − v) ≥ δ(1−
√
1− ε)∥uh − v∥2h,

|agh (uh;w)− agh (v;w)| ≤ C∥uh − v∥h∥w∥h,

here the constant C is independent of uh, v, w. Thus agh is strongly monotone and Lipschitz continuous, and so the
rowder–Minty Theorem implies the existence and uniqueness of uh,0 ∈ Vh,0 such that

agh (uh,0, v) = ah(uh,0 + gh; v) = 0 ∀v ∈ Vh,0.

hus, we may uniquely define uh := uh,0 + gh, which satisfies (2.2). □
5
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. Convergence analysis

.1. A priori error analysis

For the remainder of the paper, we assume that the parameter σ is chosen such that there exists a unique uh ∈ Vh
atisfying (2.2).

emark 3.1 (Choice of gh). In practice, one may use a variety of numerical approximations gh of g , for example, the L2
rojection, or some suitable interpolant. However, for the density argument of Remark 3.3 it is useful to define gh to be
he unique element of Vh that satisfies∫

Ω

D2
hgh : D

2
hv +

∫
∂Ω

ghv +
∑
e∈E i

h

σ

he

∫
e
[[∂gh/∂n]]e[[∂v/∂n]]e =

∫
Ω

D2
hg : D

2
hv +

∫
∂Ω

gv ∀v ∈ Vh. (3.1)

We first prove a quasi-optimal error estimate for the error ∥u−uh∥h, where u ∈ H2(Ω) satisfies (1.1)–(1.2). Let v ∈ Vh
atisfy v|∂Ω= gh, where gh satisfies (3.1). The triangle inequality gives us

∥u− uh∥h ≤ ∥u− v∥h + ∥v − uh∥h. (3.2)

emma 2.3, (2.3), and Lemma 2.5 imply that for any δ ∈ (0, 1) (denoting cδ,ε := δ(1−
√
1− ε))

cδ,ε∥v − uh∥
2
h ≤ ah(uh; uh − v)− ah(v; uh − v)
= ah(u; uh − v)− ah(v; uh − v)

≤ (
√
d+ 1)∥u− v∥h∥uh − v∥h.

Thus,

∥v − uh∥h ≤ c−1δ,ε (
√
d+ 1)∥u− v∥h. (3.3)

ombining (3.2) with (3.3), we arrive at the following quasi-optimal error estimate.

heorem 3.2. If uh ∈ Vh satisfies (2.2), then

∥u− uh∥h ≤ C♯( inf
v∈Vh:v|∂Ω=gh

∥u− v∥h), (3.4)

here C♯ := 1+ δ−1(1−
√
1− ε)−1(

√
d+ 1).

emark 3.3. Estimate (3.4) in combination with a density argument shows that

lim
h→0
∥u− uh∥h = 0.

oreover, the Poincaré–Friedrichs inequality for piecewise H2 functions (cf. [30,31]), implies that there exists a positive
onstant C independent of h such that

∥u− uh∥H1(Ω) + ∥u− uh∥L∞(Ω) ≤ C∥u− uh∥h, (3.5)

nd so

lim
h→0

(∥u− uh∥H1(Ω) + ∥u− uh∥L∞(Ω)) = 0.

3.2. A posteriori error analysis

The a posteriori error analysis is based on an enriching operator Eh : Vh,0 → H2(Ω) ∩ H1
0 (Ω) that satisfies (2.4). We

first consider the homogeneous case, g ≡ 0. In this case, we have that

∥u− uh∥h ≤ ∥u− Ehuh∥h + ∥uh − Ehuh∥h, (3.6)

and note that the monotonicity of ag on H implies that

∥u− Ehuh∥
2
h = ∥D

2(u− Ehuh)∥2L2(Ω) ≤
ag (u; u− Ehuh)− ag (Ehuh; u− Ehuh)

1− (1− ε)
1
2

. (3.7)

urthermore, it follows from (1.8), (1.12), and (1.13), that

ag (u; u− Ehuh)− ag (Ehuh; u− Ehuh)
= −(Fγ [Ehuh], ∆(u− Ehuh))L2(Ω)

= (−Fγ [uh] + (Fγ [uh] − Fγ [Ehuh]), ∆(u− Ehuh))L2(Ω)
√

(3.8)
≤ (∥Fγ [uh]∥L2(Ω) + ( d+ 1)∥uh − Euh∥h)∥u− Euh∥h,

6
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here we used the inequality

sup
α∈Λ

|γ αAα
| ≤ sup

α∈Λ

|γ αAα
− I| + |I| ≤

√
1− ε +

√
d <
√
d+ 1 (3.9)

hat follows from (2.7). Combining (3.7) and (3.8), we find

∥u− Ehuh∥h ≤
1

1− (1− ε)
1
2

(
∥Fγ [uh]∥L2(Ω) + (

√
d+ 1)∥uh − Ehuh∥h

)
, (3.10)

hich, together with (3.6) implies

∥u− uh∥h ≤
1

1− (1− ε)
1
2

(
∥Fγ [uh]∥L2(Ω) + (

√
d+ 2)∥uh − Ehuh∥h

)
. (3.11)

n view of (2.4) and (3.11), we arrive at the following a posteriori error estimate.

heorem 3.4. If g ≡ 0, then we have that

∥u− uh∥h ≤
1

1− (1− ε)
1
2

⎛⎜⎜⎝∥Fγ [uh]∥L2(Ω) + (
√
d+ 2)

√
C∗

⎛⎜⎝∑
e∈E i

h

1
he

∫
e
[[∂uh/∂n]]2e ds

⎞⎟⎠
1
2
⎞⎟⎟⎠ . (3.12)

We utilise Theorem 3.4 to prove the analogous result in the inhomogeneous setting.

heorem 3.5. We have that

∥u− uh∥h ≤
∥Fγ [uh]∥L2(Ω) + (

√
d+ 2)(1+

√
C∗/σ )∥g − gh∥h

1− (1− ε)
1
2

+

(
√
d+ 2)

√
C∗

(∑
e∈E i

h

1
he

∫
e[[∂uh/∂n]]2e ds

) 1
2

1− (1− ε)
1
2

.

(3.13)

roof. Define u0 := u− g ∈ H2(Ω) ∩ H1
0 (Ω). We see that u0 satisfies

sup
α∈Λ

{Aα
: D2u0 − gα

} = sup
α∈Λ

{Aα
: D2u− f α

} = 0 a.e. in Ω,

u0 = 0 on ∂Ω,

here gα
:= f α

− Aα
: D2g . Defining uh,0 = uh − gh ∈ Vh,0, by Theorem 3.4, we have that

∥u0 − uh,0∥h ≤

∥ supα∈Λ{γ
α(Aα
: D2

huh,0 − gα)}∥L2(Ω) + (
√
d+ 2)

√
C∗

(∑
e∈E i

h

1
he

∫
e[[∂uh,0/∂n]]2e ds

) 1
2

1− (1− ε)
1
2

. (3.14)

Let us denote gα
h := f α

− Aα
: D2

hgh. The triangle inequality and (3.9) imply that

∥ sup
α∈Λ

{γ α(Aα
: D2

huh,0 − gα)}∥L2(Ω) ≤ ∥ sup
α∈Λ

{γ α(Aα
: D2

huh,0 − gα
h )}∥L2(Ω)

+ ∥ sup
α∈Λ

{γ α(Aα
: D2

huh,0 − gα)} − sup
α∈Λ

{γ α(Aα
: D2

huh,0 − gα
h )}∥L2(Ω)

≤ ∥Fγ [uh]∥L2(Ω) + (
√
d+ 1)∥g − gh∥h,

s well as⎛⎜⎝∑
e∈E i

h

1
he

∫
e
[[∂uh,0/∂n]]2e ds

⎞⎟⎠
1
2

≤

⎛⎜⎝∑
e∈E i

h

1
he

∫
e
[[∂uh/∂n]]2e ds

⎞⎟⎠
1
2

+ ∥g − gh∥h/
√

σ .

pplying the above two estimates to (3.14), and using the triangle inequality once more provides

∥u− uh∥h ≤ ∥u0 − uh,0∥h + ∥g − gh∥h

≤

∥Fγ [uh]∥L2(Ω) + (
√
d+ 2)(1+

√
C∗/σ )∥g − gh∥h + (

√
d+ 2)

√
C∗

(∑
e∈E i

h

1
he

∫
e[[∂uh/∂n]]2e ds

) 1
2

1− (1− ε)
1
2

,

s desired. □
7
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According to Theorem 3.5, the error estimator

ηh := ∥Fγ [uh]∥L2(Ω) + ∥D
2
h(g − gh)∥L2(Ω)

+

⎛⎜⎝∑
e∈E i

h

1
he

∫
e
[[∂gh/∂n]]2e ds

⎞⎟⎠
1
2

+

⎛⎜⎝∑
e∈E i

h

1
he

∫
e
[[∂uh/∂n]]2e ds

⎞⎟⎠
1
2

,
(3.15)

is reliable. On the other hand, the local efficiency of ηh (modulo data approximation terms) is obvious because

∥Fγ [uh]∥L2(Ω) ≤ ∥ sup
α∈Λ

{|γ αAα
: D2

h(uh − u)|}∥L2(Ω) ≤ (
√
d+ 1)∥D2

h(uh − u)∥L2(Ω), (3.16)

1
he

∫
e
[[∂uh/∂n]]2e ds =

1
he

∫
e
[[∂(u− uh)/∂n]]2e ds ∀e ∈ E i

h. (3.17)

e denote the local indicators as follows for e ∈ E i
h, and K ∈ Th:

ηK (uh) := ∥Fγ [uh]∥L2(K ), η
gh
K := ∥D

2(g − gh)∥L2(K ),

η2
e (uh) :=

1
he
∥[[∂uh/∂n]]∥2L2(e), η2

e (gh) :=
1
he
∥[[∂gh/∂n]]∥2L2(e).

4. Iterative scheme

Since the form ah is nonlinear in the first argument, we shall employ an iterative scheme, in order to approximate
the solution of (1.1)–(1.2). The method itself is referred to as a semismooth Newton’s method (described in Algorithm
1), we cannot apply classical Newton’s method, since ah is not classically differentiable in the first argument, due to
the presence of the supremum. The semismooth Newton’s method presented is also provided in [20], and superlinear
convergence results for a similar (discontinuous Galerkin) finite element method are proven in [19]. This particular
semismooth Newton’s method is also known as Howard’s Algorithm [32,33].

In order to apply the semismooth Newton’s method, we iteratively solve discrete problems that correspond to problems
of the form (1.6)–(1.7). To this end, given a measurable function α : Ω → Λ, let us define aα : Vh×Vh,0 → R, ℓα : Vh,0 → R
by

aα(u, v) := (γ αAα
: D2

hu, ∆hv)L2(Ω) +
∑
e∈E i

h

σ

he

∫
e
[[∂uh/∂n]]e[[∂v/∂n]]e ds

ℓα(v) := (γ α f α, ∆hv)L2(Ω).

One can see that the discrete problems of finding u ∈ Vh such that u|∂Ω= gh, and

aα(u, v) = ℓα(v) ∀v ∈ Vh,0,

is equivalent to (2.2), in the case that Λ is a singleton set.

Algorithm 1 Semismooth Newton’s method

Require: Ω ⊂ Rd, tol ∈ R+, itermax ∈ N, Th a mesh on Ω , Vh, Vh,0, Λ, {Aα, γ α, f α
}α∈Λ, u0

h, gh ∈ Vh
1: k← 0
2: r ← 1
3: u0

h ← u0
h

4: while k < itermax and r > tol do
5: Select an arbitrary αk ∈ argmax Fγ [uk

h]

6: uk+1
h ← the solution of

aαk (u, v) = ℓαk (v) ∀v ∈ Vh,0,

u|∂Ω = gh
(4.1)

7: r ← ∥uk+1
h − uk

h∥L∞(Ω)

8: uk
h ← uk+1

h
9: k← k+ 1
0: end while
8
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emark 4.1 (Choice of αk). The maximiser αk in Algorithm 1 is a function αk : Ω → Λ. In practice, αk may be represented
as a vector with Λ-valued entries (similar to the representation of a finite element function as a vector of degrees of
freedom). The dimension of this vector is typically dependent on the dimension of the finite element space (c.f. [34]
Algorithm 5.1).

The following algorithm (Algorithm 2) describes the adaptive scheme. A general adaptive scheme is defined by iterating
the following procedure:

Solve ↦→ Estimate ↦→ Mark ↦→ Refine.

There are several potential marking schemes that one could consider (for example Dörfler marking [35]); for the
experiments of this section, we implement the maximum marking strategy (described in Algorithm 2) with newest vertex
bisection (that is, a marked simplex is bisected, and then the generated node is joined to the closest vertex, so that the
refinement procedure does not result in hanging nodes).
Algorithm 2 Adaptive finite element method

Require: Ω ⊂ Rd, tol ∈ (0, 1), itermax ∈ N, θ ∈ (0, 1], T0 an initial mesh on Ω

1: k← 0, η0 ← 1
2: while k < itermax and r > tol do
3: Solve: uk ← the solution of Algorithm 1
4: Estimate: For all K ∈ Tk, e ∈ E i

h(Tk), calculate ηK (uk), η
gk
K , ηe(uk), ηe(gk)

5: ηk ← max{maxK∈Tk ηK (uk),maxK∈Tk η
gk
K ,maxe∈E i

h(Tk)
ηe(uk),maxe∈E i

h(Tk)
ηe(gk)}

6: Mark:
7: for e ∈ E i

h(Tk) do
8: if ηe > θηk then
9: Mark e
0: end if
1: end for
2: for K ∈ Tk do
3: if ηK > θηk then
4: Mark K
5: end if
6: end for
7: Refine: Define Tk+1 by bisecting all marked simplices, all simplices whose boundary contains a marked edge, and

joining created hanging nodes to closest vertices.
8: k← k+ 1
9: end while

4.1. Solving the linear problem in FEniCS

At each step of Algorithm 1, we are required to solve a linear problem of the form Eq. 4.1. This is equivalent to solving
linear system. The following code snippet details how we define the bilinear form a(·, ·) and linear form ℓ(·) in 4.1 in
EniCS (for simplicity we drop the αk subscript). For simplicity of exposition, we assume that A, f , g, σ , h and Th are given.

de f in ing f i n i t e element
fes = FiniteElement ( "CG" , mesh . u f l _ c e l l ( ) , degree )

de f in ing f i n i t e element space
FES = FunctionSpace (mesh , fes )

de f in ing t r i a l and t e s t func t i ons
h = Function ( FES )

v = TestFunction ( FES )

de f in ing boundary data as L^2 pro j e c t i on
gd = project (g , FES )

de f in ing uni t normal
= FacetNormal (mesh)

de f in ing penalty parameter
9
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amma = (A00+A11 ) / (pow(A00,2)+2 .0∗pow(A01 ,2 )+pow(A11 , 2 ) )

de f in ing mesh penalty parameter
s ig = sigma∗pow(h , 1 )

de f in ing jump s t a b i l i s a t i o n operator
def J_h (u , v ,mesh) :

J1 = s ig ∗(n [0 ] ( ’ + ’ )∗ (u . dx (0 ) ( ’ + ’ ) u . dx (0 ) ( ’ ’ ) ) \ \
+ n [1 ] ( ’ + ’ )∗ (u . dx (1 ) ( ’ + ’ ) u . dx (1 ) ( ’ ’ ) ) ) \ \
∗(n [0 ] ( ’ + ’ )∗ ( v . dx (0 ) ( ’ + ’ ) v . dx (0 ) ( ’ ’ ) ) \ \
+n [1 ] ( ’ + ’ )∗ ( v . dx (1 ) ( ’ + ’ ) v . dx (1 ) ( ’ ’ ) ) ) \ \
∗dS (mesh , metadata={ ’ quadrature_degree ’ : quad_deg } )

return J1

de f in ing nondivergence part o f the b i l i n e a r form
def ah (u , v ,mesh) :

a = gamma∗(A00∗u . dx ( 0 ) . dx(0)+A11∗u . dx ( 1 ) . dx(1)+A01∗u . dx ( 1 ) . dx ( 0 ) \ \
+A01∗u . dx ( 0 ) . dx (1 ) )∗ ( v . dx ( 0 ) . dx(0)+v . dx ( 1 ) . dx ( 1 ) ) \ \
∗dx(mesh , metadata={ ’ quadrature_degree ’ : quad_deg } )

return a

de f in ing b i l i n e a r form a
a = ah(u , v ,mesh)+ J_h (u , v ,mesh)

de f in ing l i n ea r form l
l = gamma∗( f )∗ ( v . dx ( 0 ) . dx(0)+v . dx ( 1 ) . dx ( 1 ) ) \ \
∗dx(mesh , metadata={ ’ quadrature_degree ’ : quad_deg } )

emark 4.2 (Boundary Data). We apply the Dirichlet boundary condition using the DirichletBC function in FEniCS. In the
ode snippet, and in our numerical examples, we take gh to be the L2 projection of g onto Vh. However, one could take
h to be the unique element of Vh satisfying (3.1).

. Applications to the fully nonlinear Monge–Ampère equation

Let us consider the fully nonlinear Monge–Ampère (MA) equation:

detD2u = f , in Ω, (5.1)

u = g, on ∂Ω, (5.2)

u is convex, (5.3)

here f and g are given functions, and f is assumed to be uniformly positive. Thanks to [25] we may characterise
quation (5.1)–(5.3) as the following HJB problem:

max
W∈X
{−W : D2u+ 2f 1/2(detW )1/2} = 0, in Ω, (5.4)

u = g, on ∂Ω, (5.5)

here X := {W ∈ R2×2
: W ≥ 0,W = W T , Trace(W ) = 1}.

However, the control set, X , contains degenerate matrices, which do not satisfy (1.5). This is remedied by the results
in particular Theorem 5.2) below, which prove that we may consider a restricted control set of matrices that satisfy (1.5)
niformly. The material that follows is present in [36], under the assumption of classical differentiability of the solution
o the MA problem (5.4)–(5.5). Furthermore, similar results are also present in [25].

heorem 5.1. Let Ω be a bounded convex open subset of R2, and assume that g ∈ H2(Ω), and that f ∈ C0(Ω) is nonnegative.
Let Xξ := {W ∈ X : detW ≥ ξ}. Then, for any constant ξ ∈ (0, 1/4], there exists a unique solution u ∈ H2(Ω) of the following
HJB equation

sup
W∈Xξ

{−W : D2u+ 2(detW )1/2f 1/2}(x) = 0, a.e. in Ω,

u(x) = g, on ∂Ω.

(5.6)
10
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roof. First note that as ξ ≤ 1/4, one has that (1/2)I ∈ Xξ , and so Xξ ̸= ∅. The set Xξ also contains only positive definite
matrices (since all elements of Xξ are 2× 2 matrices with positive trace and determinant), and in two dimensions uniform
ellipticity implies the Cordes condition. Then, setting Λ = Xξ , we can see that Xξ is a compact metric space; using the
Euclidean distance as a metric, and noting that Xξ = D−1([ξ, 1/4]), where D : Λ→ R given by

D(W ) := det(W ), W ∈ Xξ ,

is a continuous function, we deduce that Xξ is closed. Since each member of Xξ is of unit trace, denoting the eigenvalues
of W ∈ Xξ by λ1, λ2, we have that |W |2 = λ2

1 + λ2
2 = (λ1 + λ2)2 − 2λ1λ2 = 1 − 2 detW ≤ 1 − 2ξ < ∞. Thus Xξ is

bounded. It then follows that Xξ is compact.
We can apply Theorem 1.1, yielding existence of a unique v ∈ H2(Ω) satisfying⎧⎨⎩ sup

W∈Xξ

{W : D2v + 2(detW )1/2f 1/2} = 0 in Ω,

u = −g on ∂Ω.

(5.7)

We then (uniquely) define u := −v. □

Theorem 5.2. Let d = 2, assume that Ω is convex, that g ∈ W 2,∞(Ω), and f ∈ C0(Ω) is uniformly positive. Furthermore,
assume that u ∈ W 2,∞(Ω) is uniformly convex, and satisfies (5.1)–(5.2). Then, there exists ξ ∈ (0, 1/4] dependent upon
|u|W2,∞(Ω), such that u is also the unique solution to⎧⎨⎩ sup

W∈Xξ

{−W : D2u+ 2(detW )1/2f 1/2} = 0 a.e. in Ω,

u = g on ∂Ω.

(5.8)

Proof. Let us define the map Au : Ω → R2×2 by:

Au(x) :=
Cof(D2u)

∆u
, (5.9)

ote that this map is well defined, since u is uniformly convex, and so, its Laplacian is uniformly positive. Also, since
∈ W 2,∞(Ω), we have that Au ∈ L∞(Ω). Furthermore, Cof(D2u) is symmetric, and

Tr(Au) =
1

∆u
Tr(Cof(D2u)) =

∆u
∆u
= 1,

and so Au : Ω → X . We see that Au satisfies

− Au(x) : D2u(x)+ 2 det(Au(x))1/2f 1/2

=
1

∆u(x)
(− Cof(D2u(x)) : D2u(x)+ 2(det(CofD2u(x)))1/2f (x)1/2)

=
2

∆u(x)
(− detD2u(x)+ det(D2u(x))1/2f (x)1/2)

=
2

∆u(x)
(− detD2u(x)+ f (x)) = 0.

(5.10)

e also obtain a lower bound on the determinant of Au:

det(Au) = det
(
Cof(D2u)

∆u

)
=

det(D2u)
(∆u)2

=
f

(∆u)2
≥

δ

2|u|2W2,∞(Ω)

=: ξ,

where δ = infx∈Ω f (x) > 0, and so, ξ > 0.
Let us consider the following HJB equation: find v ∈ H2(Ω) such that⎧⎨⎩ sup

W∈Xξ

{−W : D2v + 2(detW )1/2f 1/2} = 0, x ∈ Ω,

v = g, x ∈ ∂Ω.

(5.11)

There is an important difference between the set X and the set Xξ := {W ∈ X : detW ≥ ξ}, which is that the latter set
consists entirely of positive definite matrices. It then follows from Theorem 5.1 that there exists a unique v ∈ H2(Ω) that
satisfies (5.11).
11
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We then see that the solution u of the MA equation satisfies (noting that Xξ ⊆ X)

sup
W∈Xξ

{−W : D2u+ 2(detW )1/2f 1/2} ≤ sup
W∈X
{−W : D2u+ 2(detW )1/2f 1/2} = 0 a.e. in Ω.

Since Au(x) ∈ Xξ for a.e. x ∈ Ω , from (5.10), we obtain

sup
W∈Xξ

{−W : D2u+ 2(detW )1/2f 1/2} ≥ −Au(x) : D2u+ 2(det Au(x))1/2f 1/2 = 0 a.e. in Ω.

By combining these results, we obtain

sup
W∈Xξ

{−W : D2u(x)+ 2(detW )1/2f 1/2} = 0 a.e. in Ω.

Since u = g on ∂Ω , and u ∈ H2(Ω), by uniqueness u = v. □

6. Numerical results

Remark 6.1 (PDE Coefficients). In Experiment 6.1, we consider the coefficient matrix given by Aij := (1+δij)
xixj
|xi∥xj|

composed
with an affine map. This example was considered in [14]. Furthermore, we multiply the coefficient matrix by an interface
function χΩ (defined below), so that the coefficients have large jumps.

Remark 6.2 (Monge–Ampère). In Experiment 6.3, we consider a family of Monge–Ampère type problems with true
solutions that have been slightly modified from an example that is present in [28] (cf. [28], Test 4). The modifications
ensure that the true solutions are uniformly convex and belong to W 2,∞(Ω) \ Vh.

6.1. Experiment 1

In this experiment, we consider the following problems⎧⎪⎪⎨⎪⎪⎩
2∑

i,j=1

(1+ δij)
(xi − 0.5)
|xi − 0.5|

(xj − 0.5)
|xj − 0.5|

χN
Ω (x1, x2)D2

ijus = fs, in Ω,

us = gs, on ∂Ω,

(6.1)

here Ω = (0, 1)2. Furthermore, the interface function χN
Ω satisfies χN

Ω = 1 on Ω1 := ∪
N/2−1
i,j=0 {2i/N < x1 <

2i + 1)/N, 2j/N < x2 < (2j + 1)/N}, and χN
Ω = 1000 on Ω \ Ω1. In this case we take N = 20. In this case fs and

s are chosen so that the solution of (6.1) is given by u(x) = |x|1+s. We consider the exponent s ∈ {0.01, 0.1, 0.2, . . . , 0.5}.
It holds that us ∈ H2+δ(Ω), for arbitrary δ ∈ [0, s]. Furthermore, us lacks regularity at the origin, and one can see in Fig. 1,
the error estimator prioritises refinement towards the origin, in addition to further refinement in the areas of the domain
where χΩ is the largest. We apply both Algorithm 2 with θ = 0.2, and a uniform refinement procedure, so that we may
ompare the two approaches. For clarity, we denote the numerical solution by uh,adapt, and uh,unif for the adaptive and
niform approach, respectively. We consider a variety of values of s, and polynomial degree, p, and calculate the error in
he following (semi) norms: ∥ · ∥L2(Ω), |·|H1(Ω), ∥ · ∥h, and also calculate the error estimator ηh.

Case 1: p = 4, and s = 0.01. We observe that

∥u0.01 − uh,adapt∥L2(Ω) = O(ndofs−2), ∥u0.01 − uh,unif∥L2(Ω) = O(ndofs−1.01),

|u0.01 − uh,adapt|H1(Ω) = O(ndofs−1), |u0.01 − uh,unif|H1(Ω) = O(ndofs−0.51),

ηadapt, ∥u0.01 − uh,adapt∥h = O(ndofs−0.01), ηunif, ∥u0.01 − uh,unif∥h = O(ndofs−0.005),

nd so, the adaptive method outperforms the uniform scheme. We also plot the effectivity index in Fig. 2, verifying (3.16)–
3.17), for the adaptive scheme.

Case 2: p = 3, and s ∈ {0.1, . . . , 0.5}. We observe that

∥us − uh,adapt,s∥L2(Ω) = O(ndofs−(2+s)), ∥u0.01 − uh,unif,s∥L2(Ω) = O(ndofs−(1+s/2)),

|us − uh,adapt,s|H1(Ω) = O(ndofs−(1+s)), |u0.01 − uh,unif,s|H1(Ω) = O(ndofs−(0.5+s/2)),

∥us − uh,adapt,s∥h = O(ndofs−s), ∥u0.01 − uh,unif,s∥h = O(ndofs−s/2),

ηadapt,s = O(ndofs−1.11), ηunif,s = O(ndofs−s/2).
12
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Fig. 1. On the left are the convergence rates for Experiment 6.1, with s = 0.01, and on the right is the final adapted mesh.

Fig. 2. Plot of the effectivity index, with error indicators and true errors for Experiment 6.1, with polynomial degree p = 4.

6.2. Experiment 2

In the previous experiment, we observed the advantage of applying the adaptive scheme, when compared with uniform
refinement (see Fig. 1). However, the solution is known to possess Hs-regularity, with s > 2, and is known to lack regularity
at the origin. We propose a second experiment, in which the solution is unknown, the right-hand is smooth, and the
coefficients are indeed discontinuous (we choose a smooth right-hand side in order to surmise that any bad behaviour of
the solution is due to the coefficients and regularity of ∂Ω). In particular we consider the boundary value problem:⎧⎪⎪⎨⎪⎪⎩

2∑
i,j=1

(1+ δij)
(xi − 0.5)
|xi − 0.5|

(xj − 0.5)
|xj − 0.5|

χN
Ω (x1, x2)D2

ijuN = 1, in Ω,

uN = 0, on ∂Ω,

(6.2)

here Ω = (0, 1)2. We consider the case N = 10, and in this case the PDE theory implies that uN ∈ H2(Ω) ∩ H1
0 (Ω)

see (1.13)). We consider the polynomial degree p = 2, and an initial triangulation with a resolution that matches the
ndicator function (i.e., N squares in each coordinate direction, with each square further bisected into two triangles), and
pply uniform mesh refinement, as well as adapted refinement (applying Algorithm 2), and compare the results.
The solution is unknown, and so we plot the error estimator ηh in each case. Due to discrete Poincaré–Friedrichs’

nequalities and the reliability and efficiency of the estimator, ηh may be used to as a predictor for the (semi)norms
· ∥L2(Ω), |·|H1(Ω), and ∥ ·∥h. Since the convergence rates in ∥ ·∥L2(Ω), |·|H1(Ω), as predicted by ηh are likely to be pessimistic,

e calculate the error arising between successive meshes, and appeal to this to guide the convergence. In particular, we

13
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Fig. 3. Final adapted mesh for Experiment (6.2), with N = 10.

Table 1
p = 2, uniform refinement.

ndofs ∥θh∥h EOC |θh|H1(Ω) EOC ∥θh∥L2(Ω) EOC ηh EOC

1,681 0.212 0.000 3.548 · 10−3 0.000 4.531 · 10−4 0.000 169.505 0.000
6,561 0.252 0.126 3.846 · 10−3 5.906 · 10−2 1.549 · 10−4 −0.788 119.413 −0.257

25,921 0.161 −0.324 1.389 · 10−3 −0.741 4.709 · 10−5 −0.867 77.433 −0.315
103,041 9.639 · 10−2 −0.373 4.21 · 10−4 −0.865 1.27 · 10−5 −0.950 45.459 −0.386

Table 2
p = 2, adaptive refinement.

ndofs ∥θh∥h EOC |θh|H1(Ω) EOC ∥θh∥L2(Ω) EOC ηh EOC

1,093 0.186 0.000 3.126 · 10−3 0.000 4.041 · 10−4 0.000 234.229 0.000
2,911 0.188 8.685 · 10−3 2.924 · 10−3 −6.823 · 10−2 2.729 · 10−4 −0.401 172.288 −0.314
7,501 0.189 4.851 · 10−3 2.291 · 10−3 −0.258 5.139 · 10−5 −1.764 127.046 −0.322

20,159 0.137 −0.328 1.285 · 10−3 −0.584 5.097 · 10−5 −8.282 · 10−3 82.034 −0.442
52,503 8.345 · 10−2 −0.515 4.466 · 10−4 −1.104 2.724 · 10−5 −0.655 50.968 −0.497

132,973 5.011 · 10−2 −0.549 1.47 · 10−4 −1.196 8.607 · 10−6 −1.240 31.666 −0.512

define θk := uk − uk−1, where the subscript k denotes the current refinement level, and appeal to the fact that for the
norms under consideration ∥u − uk∥ ≤ ∥u − uk−1∥ + ∥θk∥, and that the contribution ∥θk∥ should be the dominating
erm. We plot the final adapted mesh generated by the adaptive scheme in Fig. 3. The predictions show that the adaptive
cheme outperforms uniform refinement, however, not to the same degree as is observed in Experiment 6.1, in the L2-
and H1-norms. The exact values are provided in Tables 1–2.

6.3. Experiment 3

In this experiment, we consider the following Monge–Ampère problems

detD2ua = fa, in Ω, (6.3)

ua = ga, on ∂Ω, (6.4)

n Ω = (0, 1)2.
Case 1: The functions fa and ga are chosen so that the true solution of (6.3)–(6.4) is given by

ua(x1, x2) = |x1 − a| sin(x1 − a)+ 50.0(x21 + x22),

or a ∈ {0.4, 0.5}. Our initial mesh is a uniform triangulation on Ω consisting of two squares (each further subdivided
nto two right-angled triangles) in the x1 and x2 direction, as such, we have that u0.5 is piecewise smooth on the initial
esh (and all subsequent meshes, since each marked triangle is bisected), however, u0.4 does not enjoy this piecewise
moothness property, and so, its approximation, u , does not converge as fast, as observed in Fig. 4. In both cases,
h,a=0.4

14



S.C. Brenner and E.L. Kawecki Journal of Computational and Applied Mathematics xxx (xxxx) xxx

a
W
T

Table 3
p = 4, a = 0.4, uniform refinement.

ndofs ∥eh∥h EOC |eh|H1(Ω) EOC ∥eh∥L2(Ω) EOC ηh EOC

81 0.832 0.000 2.22 · 10−2 0.000 1.477 · 10−3 0.000 0.880 0.000
289 0.703 −0.133 9.745 · 10−3 −0.647 3.105 · 10−4 −1.226 0.797 −7.714 · 10−2

1,089 0.323 −0.586 2.366 · 10−3 −1.067 3.586 · 10−5 −1.627 0.359 −0.602
4,225 0.268 −0.138 1.211 · 10−3 −0.494 1.231 · 10−5 −0.789 0.333 −5.501 · 10−2

16,641 0.142 −0.461 2.989 · 10−4 −1.021 9.441 · 10−6 −0.194 0.164 −0.519

Table 4
p = 4, a = 0.4, adaptive refinement.

ndofs ∥eh∥h EOC |eh|H1(Ω) EOC ∥eh∥L2(Ω) EOC ηh EOC

81 0.832 0.000 2.22 · 10−2 0.000 1.477 · 10−3 0.000 0.880 0.000
139 0.888 0.120 1.738 · 10−2 −0.453 9.446 · 10−4 −0.827 0.953 0.148
341 0.610 −0.418 9.273 · 10−3 −0.700 3.333 · 10−4 −1.161 0.712 −0.324
839 0.468 −0.293 3.159 · 10−3 −1.196 7.299 · 10−5 −1.687 0.515 −0.359

1,961 0.260 −0.693 1.426 · 10−3 −0.937 2.891 · 10−5 −1.091 0.317 −0.571
4,385 0.184 −0.427 5.369 · 10−4 −1.214 2.488 · 10−5 −0.187 0.217 −0.470
9,341 0.117 −0.600 1.815 · 10−4 −1.434 3.954 · 10−6 −2.432 0.148 −0.506

19,609 8.074 · 10−2 −0.502 7.139 · 10−5 −1.258 3.293 · 10−6 −0.247 9.937 · 10−2 −0.540

Table 5
p = 4, a = 0.5, uniform refinement.

ndofs ∥eh∥h EOC |eh|H1(Ω) EOC ∥eh∥L2(Ω) EOC ηh EOC

81 8.886 · 10−4 0.000 3.136 · 10−5 0.000 2.558 · 10−6 0.000 9.902 · 10−4 0.000
289 9.265 · 10−5 −1.777 2.092 · 10−6 −2.128 8.781 · 10−8 −2.651 1.082 · 10−4 −1.740

1,089 1.114 · 10−5 −1.597 1.308 · 10−7 −2.090 2.808 · 10−9 −2.595 1.332 · 10−5 −1.579
4,225 1.32 · 10−6 −1.574 8.142 · 10−9 −2.048 8.959 · 10−11 −2.541 1.597 · 10−6 −1.564

16,641 1.673 · 10−7 −1.507 5.777 · 10−10 −1.930 5.611 · 10−11 −0.341 2.056 · 10−7 −1.495

Table 6
p = 4, a = 0.5, adaptive refinement.

ndofs ∥eh∥h EOC |eh|H1(Ω) EOC ∥eh∥L2(Ω) EOC ηh EOC

81 8.886 · 10−4 0.000 3.136 · 10−5 0.000 2.558 · 10−6 0.000 9.902 · 10−4 0.000
139 6.3 · 10−4 −0.637 2.18 · 10−5 −0.673 1.734 · 10−6 −0.720 7.346 · 10−4 −0.553
275 2.816 · 10−4 −1.180 7.504 · 10−6 −1.563 2.955 · 10−7 −2.594 2.856 · 10−4 −1.385
495 9.876 · 10−5 −1.782 1.534 · 10−6 −2.701 5.567 · 10−8 −2.840 1.028 · 10−4 −1.739

1,107 3.64 · 10−5 −1.240 4.15 · 10−7 −1.625 1.303 · 10−8 −1.805 3.794 · 10−5 −1.238
2,531 1.107 · 10−5 −1.439 1.022 · 10−7 −1.695 2.092 · 10−9 −2.212 1.242 · 10−5 −1.351
4,915 4.528 · 10−6 −1.348 3.541 · 10−8 −1.596 6.216 · 10−10 −1.829 4.419 · 10−6 −1.557
9,285 1.479 · 10−6 −1.759 7.005 · 10−9 −2.547 7.541 · 10−11 −3.316 1.598 · 10−6 −1.600

Table 7
p = 4, uniform refinement.

ndofs ∥θh∥h EOC |θh|H1(Ω) EOC ∥θh∥L2(Ω) EOC ηh EOC

4,225 1.044 0.000 1.214 · 10−2 0.000 4.9 · 10−4 0.000 0.451 0.000
16,641 1.090 3.174 · 10−2 6.871 · 10−3 −0.415 1.237 · 10−4 −1.004 0.436 −2.442 · 10−2

66,049 1.035 −3.77 · 10−2 3.303 · 10−3 −0.531 2.497 · 10−5 −1.161 0.424 −2.061 · 10−2

ua ∈ W 2,∞(Ω), and we set the polynomial degree p = 4. Note that in this case we apply the adaptive finite element
method given by Algorithm 2, in conjunction with the semismooth Newton’s method given by Algorithm 1.

We also compare the adaptive scheme with that of uniform refinement. The exact results are provided in Tables 3–6.
We observe that when a = 0.4, the adaptive scheme out performs uniform refinement, whereas when a = 0.5 the two
approaches are comparable (we surmise this is due to the piecewise smoothness property of u0.5).

Case 2: Here we take fa ≡ 1, ga ≡ 0. In this case the true solution is unknown, and so we rely on the error estimator,
s well as the incremental solutions in order to indicate the performance of the numerical method (as in Experiment 6.2).
e take p = 4 and compare the adaptive scheme with uniform refinement. We display the exact convergence results in
ables 7–8, and observe that the adaptive scheme outperforms the uniform scheme in all (semi)norms.
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Table 8
p = 4, adaptive refinement.

ndofs ∥θh∥h EOC |θh|H1(Ω) EOC ∥θh∥L2(Ω) EOC ηh EOC

1,985 1.042 0.000 1.193 · 10−2 0.000 4.373 · 10−4 0.000 0.452 0.000
3,751 1.091 7.198 · 10−2 6.915 · 10−3 −0.857 1.353 · 10−4 −1.843 0.437 −5.367 · 10−2

7,063 1.038 −7.881 · 10−2 3.415 · 10−3 −1.115 4.694 · 10−5 −1.673 0.424 −4.598 · 10−2

14,775 1.003 −4.612 · 10−2 1.808 · 10−3 −0.862 2.397 · 10−5 −0.911 0.413 −3.546 · 10−2

29,009 0.975 −4.211 · 10−2 8.518 · 10−4 −1.116 5.544 · 10−6 −2.170 0.403 −3.543 · 10−2

59,189 0.953 −3.144 · 10−2 4.245 · 10−4 −0.977 3.558 · 10−6 −0.622 0.394 −3.16 · 10−2

Fig. 4. Convergence rates for Experiment 6.3, we observe faster convergence rates for u0.5 than for u0.4 .

7. Concluding remarks

In this paper, we were successful in proposing and analysing a C0-interior penalty method for the approximation of the
fully nonlinear Hamilton–Jacobi–Bellman equation with inhomogeneous Dirichlet boundary data. The analysis consisted
of three parts: proving a stability estimate, a quasi-optimal a priori error estimate, and an a posteriori error estimate in a
H2-style norm. All of the aforementioned analysis was undertaken, assuming regularity no higher than H2(Ω), as implied
by the corresponding PDE theory. All of the theoretical results were confirmed in the experiments section, which included
the implementation of an adaptive method, based upon the proven a posteriori error estimate. Furthermore, we were able
to apply the proposed method to the fully nonlinear Monge–Ampère equation, providing a uniquely solvable, optimally
convergent, and adaptive finite element method.
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