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River deltas grow through repeated stacking of sedimentary lobes, the location and size of which are
determined by channel avulsions (relatively sudden changes in river course). We use a model coupling
fluvial and coastal processes to explore avulsion dynamics under a range of wave energies and sea-level-
rise rates and find that the primary control on avulsion location and delta lobe size in our model is
the critical superelevation ratio (SER), the amount of channel aggradation relative to the surrounding
floodplain that is required to trigger an avulsion. The preferred avulsion location arises because of
geometric constraints — a preferential avulsion node occurs at the break in floodplain slope that develops
as the river progrades and/or sea level rises. This concavity develops in our model because the river
profile aggrades and erodes via linear diffusion, whereas the diffusion of the floodplain topography
is limited to episodic crevasse splays. These results are in contrast to recent modeling work, which
was motivated by laboratory experiments and assumes a union between river channel and floodplain
aggradation rates, and where avulsion nodes are driven by backwater hydrodynamics. The preferred
avulsion length in our model scales well with laboratory, field, and model results without including
hydrodynamic backwater effects. This work suggests an alternative mechanism to explain avulsion
locations on deltas where floodplain topography aggrades and/or diffuses more slowly than the river
channel profile, and it points to the need to elucidate river channel and floodplain connectivity over
large space and time scales, and how the connectivity varies from one type of delta to another.
Published by Elsevier B.V.
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channel at bankfull discharge relative to the far-field floodplain
(i.e., beyond levee relief) and is correlated with channel levee relief
(Hajek and Wolinsky, 2012; Mohrig et al., 2000). Because avul-
sions pose hazards to inhabitants and infrastructure (Sinha, 2009),
a better understanding of natural avulsion dynamics and where an
avulsion is most likely to occur facilitates improved and more sus-
tainable management practices (Paola et al., 2011).

Field, laboratory, and modeling studies have indicated that avul-
sion nodes on deltas tend to occur at a distance from the river
mouth that scales with the “backwater zone”, the lowermost por-
tion of the river near the mouth, where flow is affected by the
presence of the receiving lake or ocean basin (Chadwick et al.,
2019; Chatanantavet et al., 2012; Ganti et al., 2016a, 2016b; Jerol-
mack, 2009). The length of the backwater zone is approximated
by Lg ~ D/S, where D is a characteristic flow depth (here, the
bankfull channel depth) and S is the riverbed slope (Paola, 2000).
Recent work (Chadwick et al., 2019; Chatanantavet et al., 2012;
Ganti et al., 2014, 2016b), motivated in part by field observations

1. Introduction

More than half a billion people live on or near deltas, as their
low-lying, fertile landscapes have long been ideal locations for hu-
man settlement (J. P. M. Syvitski et al., 2009). These landscapes
have become increasingly vulnerable to submergence as sea-level
rise, accelerated subsidence, and decreased upstream sediment
supply all lower deltaic elevations relative to sea level (Blum and
Roberts, 2009; Tessler et al., 2015). Rivers typically deliver sedi-
ment to one part of a delta at a time, successively building distinct
lobes, and channel avulsion dynamics control both the location and
size of delta lobes. These avulsions, which occur when the river
changes its course, are often associated with channel superele-
vation, which is a measure of the water surface elevation in the
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(Nittrouer et al., 2011, 2012), credits hydrodynamic backwater ef-
fects as the primary driver of avulsion location; repeated alterna-
tions between flooding events and lower flows create a peak in
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net channel sedimentation at a location that scales with Lg, driv-
ing avulsions at this location of maximum deposition (and channel
superelevation).

Here, we show that an alternative mechanism could explain
the observed scaling for some deltas—a mechanism that doesn’t
involve hydrodynamic backwater effects, but instead arises from
morphodynamic processes that give rise to differences in the ge-
ometry of the longitudinal river profile relative to that of the
surrounding floodplain as the delta evolves over time. If fluvial
sediment transport processes diffuse the longitudinal river pro-
file more rapidly than floodplain deposition during floods smooths
floodplain topography, then either channel progradation or base
level rise will drive in-channel aggradation that causes the river
profile to become super-elevated most quickly at a distance that
scales with the backwater length. This geometric explanation,
which is supported by preliminary comparisons to some large nat-
ural deltas, arises from the results of simple numerical modeling
experiments. In order to most clearly understand how geometrical
constraints on avulsion locations can arise, we describe here, step
by step, how the delta landscape evolves from the dynamics repre-
sented in the model. This preferred avulsion location persists over
a range of wave influences and sea-level rise rates without explic-
itly including hydrodynamic backwater effects or varying flows.

2. Methods
2.1. Coupled model description

In the River Avulsion and Floodplain Evolution Model (RAFEM),
cell widths are greater than channel widths, such that the channel
belt is contained within a single cell, and within-channel processes
are not resolved. Natural levees, although not explicitly resolved,
exist adjacent to the river channel within the river cells (Aalto
et al,, 2003; Pizzuto, 1987; Walling and He, 1998), and levee el-
evation is maintained at one bankfull channel depth above the
river bed elevation (Hoyal and Sheets, 2009; Jerolmack and Paola,
2007). Herein, ‘floodplain elevation’ refers to the elevations in the
adjacent floodplain cells (not the elevation of the natural levee to-
pography). The river course is determined using a steepest-descent
algorithm (Jerolmack and Paola, 2007) that compares the eleva-
tions of the three downstream and two cross-stream cells (i.e., no
upstream flow is permitted). Erosion and deposition along the river
channel are modeled as a linear diffusive process (Paola, 2000),
and the bed elevation at the river mouth is held at a constant
channel depth below sea level, such that either shoreline progra-
dation or base-level rise will cause a diffusive wave of aggradation
to migrate upstream.

An avulsion is triggered when a river cell meets or exceeds the
critical superelevation ratio [SER (Table S1), the elevation differ-
ence between the levee elevation and the minimum elevation of
the adjacent (i.e., two cross-stream) floodplain cells, normalized by
bankfull channel depth (Mohrig et al., 2000; Ratliff et al., 2018)],
and a new steepest-descent path to sea level is determined. If the
new path is shorter than the prior river course, the avulsion oc-
curs (Ganti et al., 2016b; Slingerland and Smith, 2004). However, if
the new path is longer than the previously-existing one, the avul-
sion does not occur, representing an avulsion that would not be
successful along a shallower channel gradient with a decreased
sediment transport capacity (Hoyal and Sheets, 2009; Slingerland
and Smith, 2004). Instead, a crevasse splay is deposited (Shen et al.,
2015; van Toorenenburg et al., 2016) at the failed avulsion branch,
adjacent to the river channel. The crevasse splay is deposited in the
first failed channel cell and the adjacent floodplain cells, with the
deposition rate tied to the in-channel aggradation rate upstream
of the splay in the river channel (Ratliff et al., 2018). In these ex-
periments, we seed an initial downstream-sloping landscape with
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random variability, and the parameter values are consistent with
Ratliff et al. (2018) [see Ratliff et al. (2018) for a more complete
description of RAFEM].

The bedload sediment flux (i.e., sand) from the RAFEM river
mouth is retained in the shoreline and distributed alongshore us-
ing the Coastline Evolution Model [CEM (A. Ashton et al., 2001; A.
D. Ashton and Murray, 2006)], a one-line model in which gradients
in wave-driven alongshore sediment transport, Qs, cause erosion
and accretion of the shoreline and nearshore seabed. Erosion and
accretion extend offshore to the shoreface depth, Dsf, below which
wave-driven sediment transport becomes negligible. Assuming an
approximately constant long-term shoreface profile geometry and
conservation of nearshore sand leads to:

dn _ 1 dQs

dt — Dy dx

(1)

where 7 is shoreline position, t is time, and x is the alongshore
direction.

In CEM, offshore wave-approach angles change every model
day, and coastline-shape evolution depends on the mix of influ-
ences from different angles [the ‘wave climate’ (A. D. Ashton and
Murray, 2006)]. In experiments reported here, the net effect of
the wave climate is to diffusively smooth the plan view coastline
shape, with a symmetric mix of influences from the left and right.
The wave height, which represents an effective average value (A.
D. Ashton and Murray, 2006), remains constant over each exper-
iment. If part of the delta lobe blocks a shoreline cell from the
current offshore wave direction, then no sediment transport oc-
curs in this “wave-shadowed zone”, which approximates the effect
of decreased wave energy within and adjacent to this region (from
wave refraction and diffraction).

RAFEM and CEM are coupled using the Community Surface Dy-
namics (CSDMS) Basic Model Interface (Peckham et al., 2013), and
model sensitivity analyses were conducted using the Dakota toolkit
(Adams et al., 2014). Both RAFEM and CEM are available as part of
the CSDMS model repository (https://csdms.colorado.edu) and can
be downloaded and coupled using pymt, a Python toolkit for run-
ning and coupling Earth surface models (https://pymt.readthedocs.
io). The parameter values used here are consistent with the values
used in Ratliff et al. (2018).

2.2. Floodplain elevation profiles

Results from the coupled RAFEM-CEM model are also com-
pared to natural systems. Using ArcMap 10.6, a 15 km buffer was
generated around global river centerlines (1:50m ‘medium’ scale
data, downloaded from NaturalEarthData.com on 16 August 2018)
and exported as a .kmz file for viewing in GoogleEarth. The 15
km buffer lines following the right bank (looking downstream)
of the Mississippi River and the left bank (looking downstream)
of the Brahmaputra River were traced, and elevation data along
these profiles was extracted using the GEOCONTEXT-PROFILER
(http://www.geocontext.org/publ/2010/04/profiler/en/). The lower
1000 km of these profiles was then smoothed using a Savitzky-
Golay filter (window length = 5, polynomial order = 3). Locations
of the avulsion nodes were determined using visual comparison of
the floodplain profiles and the river channels in GoogleEarth.

3. Results: modeled delta landscape evolution

This model framework hinges on how the river profile evolves,
representing the large-scale, long-term effects of longitudinal sed-
iment flux gradients as diffusional processes (Paola, 2000). As
an initial condition, we start from a pre-existing (planar) land-
scape, representing previous river deposits, intersecting sea level
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Fig. 1. Illustration of profile view of riverbed and surrounding floodplain geometry
over time. A) Initial model conditions with dashed floodplain profile exactly overlay-
ing bankfull water surface elevation profile. B) Profiles after channel progradation,
where brown arrows represent riverbed aggradation relative to the previous profile
(faded lines). Kink in floodplain profile develops where wetlands that form as the
delta progrades intersect the sloping floodplain profile. C) Critical SER met at the
red arrow; bankfull water surface elevation is a channel depth above the floodplain,
and the riverbed elevation has reached that of the floodplain at the kink (and has
reached the elevation of sea level). D) An example profile with sea-level rise and
progradation. For reference, faded lines represent profiles without sea-level rise im-
posed. Floodplain profile kink migrates upslope as wetlands aggrade at the same
rate that sea level rises. Sea-level rise also induces shoreline erosion assuming a
quasi-equilibrium generalized Bruun Rule (Ratliff et al., 2018), causing a tendency
for the river mouth to retrograde as sea level rises (while fluvial sediment deposi-
tion tends to cause progradation). (For interpretation of the colors in the figure(s),
the reader is referred to the web version of this article.)

(Fig. 1A). As the river deposits sediment at the shoreline, the river
mouth progrades seaward, and longitudinal diffusion smooths the
river profile, such that the riverbed aggrades as a diffusive wave
of riverbed deposition propagates upstream of the river mouth
(Fig. 1B). We assume that natural levees form adjacent to the river
channel (Aalto et al., 2003; Pizzuto, 1987; Walling and He, 1998)
and that their aggradation rate is fully coupled to that of the river
bed. However, we do not assume that the landscape farther away
from the river channel aggrades at rates that are tightly coupled to
that of the riverbed. Floodplain elevations do increase as crevasse
splays occur (Shen et al., 2015; van Toorenenburg et al., 2016), but
the resulting deposition rates are not sufficient in our model ex-
periments for the distal floodplain to aggrade at the same rate as
the river channel. More significantly, we represent wetland devel-
opment in the area adjacent to the river behind the prograding
shoreline by imposing a minimum elevation in all areas landward
of the prograding shoreline that is slightly above sea level.
Therefore, as the river mouth progrades, a horizontal portion of
the delta floodplain profile develops (Fig. 1B). If sea level is held
constant, the elevations of the sloping and horizontal portions of
the distal floodplain remain approximately constant through time,
while the river profile continues to lengthen, diffuse, and aggrade
(Fig. 1C). The superelevation of the riverbed, relative to the flood-
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plains that are above sea level, develops most rapidly in the zone
surrounding the break in slope of the floodplain profile. If the
threshold SER required to trigger an avulsion is 1, then the avulsion
cannot occur until the horizontal delta plain widens and progrades
far enough for the riverbed elevation to reach that of sea level. So,
the model dynamics of the river profile evolution relative to the
floodplain profile evolution lead to avulsions that occur at a dis-
tance from the river mouth that scales with Lg.

Although the avulsion location is always associated with the
floodplain slope break, the distance from the river mouth to an
avulsion location [the avulsion length (L4)] depends on the dif-
fusivity of the river profile and on the threshold SER. Studies of
avulsions in the field (Mohrig et al., 2000) indicate that avulsions
generally occur at SER = 0.5-1 (Hajek and Wolinsky, 2012), but this
value is significantly less for some systems [e.g., Mississippi River,
<0.1 (Toérnqvist and Bridge, 2002)]. The critical SER in prototypi-
cal channels can be affected by many factors, including levee grain
size, cohesiveness, and vegetation. Here, we use a critical SER of
either 0.5 or 1 to explore how avulsion dynamics depend on this
parameter. If the riverbed elevation must aggrade to that of the
surrounding floodplain elevation (SER = 1, Fig. 2A), then L4 is be-
tween 1.5 and 2 Lp over several orders of magnitude in sea level
rise rates (SLRR*, Table S1). If SER = 0.5 (Fig. 2B), L, is close to Lg.
This scaling with SER arises because a higher SER requires more
in-channel aggradation (and associated progradation) to trigger an
avulsion, and it is similar to recent modeling results of avulsion
processes with variable flow regimes (Chadwick et al., 2019) and
flume experiments (Ganti et al., 2016b). Because L4 controls the
extent to which the delta progrades into the basin (Ganti et al.,
2016a), our results also suggest that delta size scales with the crit-
ical SER.

The model framework also involves the plan view evolution of
the delta (Fig. 3), which depends on the rate of fluvial sediment
delivery relative to the rate of wave-driven coastline smoothing
(see Section 2.1). Smaller wave heights lead to more rugose shore-
lines, as sediment is delivered to the coast more rapidly than
waves can spread it alongshore [‘river dominated’, Fig. 3A; Nien-
huis et al. (2015); Ratliff et al. (2018)]. With increasing wave in-
fluence, alongshore sediment transport redistributes the river sand
more rapidly, forming more cuspate to nearly flat, smooth shore-
lines (‘wave dominated’, Fig. 3C). Experiments using a wide range
of ratios between sediment delivery and wave-driven sediment re-
distribution, with relatively low wave heights (WH*, Table S1) for
river-dominated delta types (Fig. 3A) to relatively high wave in-
fluence for wave-dominated deltas (Fig. 3C), show that L4 is not
sensitive to the plan view dynamics (Fig. 2). The degree of wave in-
fluence does, however, impact how rapidly avulsions occur (Ratliff
et al,, 2018).

In model experiments featuring rising sea level, the bed ele-
vation at the river mouth rises along with sea level, causing an
increased diffusion and aggradation of the river profile upstream.
In addition, we assume that the elevation of the horizontal portion
of the delta plain, which approximates marshes that aggrade at the
rate of sea-level rise [even at high sea-level rise rates, given suf-
ficient sediment supply (Kirwan et al., 2016; Ratliff et al., 2015)],
also rises at the same rate. This causes the break in slope in the
floodplain profile to migrate up slope (Fig. 1D); however, the geo-
metric relationship of the river and floodplain profiles that drives
avulsions at the location of maximum floodplain curvature is not
qualitatively changed relative to the no sea-level rise condition,
and avulsions still occur at the migrating break in floodplain slope.

Natural and laboratory delta floodplains are unlikely to exhibit
a break in floodplain slope that is as pronounced as the one that
arises from our model assumptions (Fig. 1). Floodplain deposi-
tion (including crevasse splay deposition) will tend to diffuse the
landscape. In addition, nonuniform subsidence will influence topo-
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Fig. 2. Avulsion length (L4, measured in number of geometric backwater lengths, Lg) for critical SER = 1 (A) and 0.5 (B) for a range of wave influences (WH*) and range of
SLRR*. Envelopes represent range of values from five sets of numerical experiments, and lines represent average values. L, is slightly less than one backwater length Lg for
SER = 0.5 and between 1.5 and 2 Lp for SER = 1. Leftmost point on SLRR* represents experiments with no sea level rise (i.e., the axis is not in true log scale).
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Fig. 3. Planview morphology of deltas in a symmetric, diffusive wave climate with
increasing wave influence from top (A, river-dominated delta) to bottom (C, wave-
dominated delta), where WH* is wave height nondimensionalized by channel depth,
D. Critical SER = 1. Blue line represents the river cells, and the land formed behind
the shoreline of the prograding delta (seaward of the dashed line) represents the
wetland area.

graphic lows in floodplains relative to an aggrading river profile.
However, we find that the tendency for the floodplains of de-
positional river lobes to have vanishingly small slopes near the
river mouth is present on natural deltas (Fig. 4). The distal flood-
plain elevation profiles for both the Mississippi (Fig. 4A) and the
Brahmaputra (Fig. 4B) rivers show a distinct slope transition, sim-
ilar to the evolution of our model geometry and results. The ap-
proximate locations of the most recent major avulsions on both
rivers — the Lafourche avulsion site on the Mississippi (Aslan et
al., 2005; Chamberlain et al.,, 2018), and the Brahmaputra avul-
sion node on the upper delta plain of the Bengal Basin (Picker-
ing et al., 2014; Sincavage et al.,, 2018) - are also plotted. The

Mississippi River
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Fig. 4. Distal floodplain elevation profiles for (A) the Mississippi River and (B) the
Brahmaputra River. Distance upstream as noted in the profiles is from the Head of
Passes for the Mississippi River and from the river mouth of Meghna River for the
Brahmaputra River. Elevation data was extracted along 15 km buffer following the
river centerlines (see Section 2.2). Dots represent elevation datapoints, and solid
black lines represent the smoothed profiles using a Savitzky-Golay filter. Dashed
vertical lines indicate the location of the most recent major channel avulsion along
each river, and the background slope (BR, calculated using the elevations at the
upstream and downstream ends of each section up and downstream of the avulsion)
for each floodplain profile segment corresponds to its location above or below the
avulsion node.

‘background’ slopes of the floodplains upstream and downstream
of the avulsion node show a significant transition. For the Mis-
sissippi, the upstream slope is >6 times the delta plain slope,
and the upland slope of the Brahmaputra floodplain is approxi-
mately 2.5 times greater than the lobe floodplain slope. The slope
break occurs within the backwater zone of the Mississippi River
(Aslan et al., 2005; Chamberlain et al.,, 2018; Chatanantavet et al.,
2012), but the slope break identified in Fig. 4B is upstream of
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the backwater zone on the Brahmaputra River (Pickering et al.,
2014; Sincavage et al., 2018; Wilson and Goodbred, 2015). For
both the Mississippi and Brahmaputra Rivers, the most recent ma-
jor avulsions occurred at the break in floodplain slope, similar to
the floodplain geometry adjacent the preferred avulsion node in
our model. Note that the river channel profiles are not plotted
alongside floodplain profiles in Fig. 4 because the sinuosity of the
channels and its impact on the distal floodplain profile extracted as
described in Section 2.2 causes a mismatch between the floodplain
and channel profile lengths, making a direct comparison between
the two profiles (including both sides of the floodplain profiles)
over long portions of the river courses difficult. Floodplain pro-
files from the Yellow River and the Mekong River also exhibit slope
transitions (Fig. S1). The profiles and avulsion histories presented
here are not intended to represent a comprehensive comparison
for deltas across the globe, but rather to demonstrate that this
slope transition can, in fact, be present on field-scale deltas. These
initial comparisons highlight the need for future research.

4. Discussion and conclusions

The break in slope that develops in the distal floodplain in our
model experiments is an exaggeration relative to natural systems.
However, the aggradation of the river profile drives flooding, which
in turn drives floodplain deposition. So, deposition on the flood-
plain, at some distance from the river, likely lags behind aggra-
dation of the riverbed. The magnitude of this lag probably varies
in different systems and settings, but as long as the distal flood-
plain deposition rates are lower than that of the riverbed, then the
effective rate of longitudinal diffusion of the floodplain profile is
lower than that of the river profile. Thus, for prograding rivers or
those experiencing base-level rise, some zone along the fluvial pro-
file will exist in which the floodplain profile has a higher curvature
than the river profile. The break in slope in our model experiments
represents the zone of maximum curvature of a floodplain profile
that results from the interplay between previous river deposits and
sea level. Preliminary comparisons to large deltas (Fig. 4) suggest
that these dynamics are relevant on at least some natural deltas.

Recent numerical modeling work including backwater hydrody-
namics has shown using previously developed numerical models
that the geometrically-driven avulsion effect is a model artifact
that cannot persist beyond a few avulsion cycles (Chadwick et
al., 2019; Moodie et al., 2019). The differences between our re-
sults and the previous modeling results arise from fundamentally
different assumptions about floodplain deposition. The floodplain
deposition in the models from Chadwick et al. (2019) and Moodie
et al. (2019) is directly coupled to river aggradation, such that the
profiles of the rivers and the floodplains evolve towards the same
shape. In Chadwick et al. (2019), the river course and avulsions
are restricted to a set number of delta lobes, and just before an
avulsion, the profiles of previous/unoccupied lobes are less pro-
graded/aggraded than the present lobe. But, since the two profiles
have the same shape, the geometric effect that arises in our model,
which strongly favors avulsions at distances that scale with Lg over
many avulsion cycles, cannot occur in their modeling framework,
and avulsions can occur farther upstream under constant-discharge
scenarios.

In the models where localized avulsions that scale with the
backwater length only persist if variable discharges are included,
the assumption that the surrounding floodplain gains elevation at
exactly the same rate as the riverbed during progradation repre-
sents an endmember. In contrast, the corresponding assumption
in our model represents the opposite endmember: that floodplain
deposition can lag significantly behind the river aggradation that
drives it. Under these conditions, as the delta lobe progrades, a
transition in slope will naturally arise between the recently created
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land near the river mouth (land that would only be slightly above
sea level) and the older landscape farther upstream that has ex-
perienced floodplain deposition for a longer period. Although the
slope transition that arises in our model results is more abrupt
than is likely under natural conditions, the fundamental dynamics
leading to backwater-scaled avulsions only depend on the exis-
tence of some degree of slope transition - a zone of maximum cur-
vature - in the floodplain profile. We believe that the assumptions
underlying the dynamics in our model, including the development
of the floodplain profile, are just as reasonable as the assumptions
made in the models that have been motivated by laboratory ex-
periments, where floodplain deposition is modeled as remaining in
lockstep with channel aggradation. In reality, floodplain deposition
processes on natural deltas must lie somewhere in between these
endmember model assumptions (and likely vary among deltas of
different types).

Currently, information is lacking about floodplain deposition
processes, particularly over large spatial scales and at locations
farther from the active channel belt. Moreover, floodplain deposi-
tion patterns, relative to channel aggradation, differ widely among
different settings [e.g., confined valley vs. open delta plain, fan
delta with mobile channels vs. vegetated deltas with stable chan-
nels; J. P. M. Syvitski et al. (2012)]. The fact that our model and
the previous models utilize such contrasting assumptions illumi-
nates needs for future research, both observational and modeling.
Future work with the RAFEM-CEM coupled model will focus on
varying how tightly coupled floodplain deposition is to riverbed
aggradation rates, and how far laterally this coupling extends. We
hypothesize that in the limit of complete coupling over very large
lateral distances, the results of our model will converge with oth-
ers (Chadwick et al, 2019; Moodie et al., 2019), although some
differences may persist related to how these models treat the lat-
eral/alongshore direction.

The relationship between L4 and SER in laboratory experiments
(Chatanantavet et al., 2012; Ganti et al., 2014, 2016b) is consis-
tent with the relationship in our model. However, the floodplain-
deposition assumptions in models featuring backwater hydrody-
namics (Chadwick et al., 2019; Moodie et al., 2019), which were
motivated by conditions observed in laboratory experiments (Ganti
et al,, 2016a, 2016b), likely represent laboratory deltas better than
the floodplain-deposition assumptions in our model. Given that
channels are highly mobile and that flow that is not thoroughly
confined in channels (Ganti et al., 2016a, 2016b), floodplain depo-
sition likely keeps pace with the aggrading river profile more effec-
tively than it does in our model. Because these laboratory dynam-
ics are more in line with the model assumptions from Chadwick et
al. (2019) and Moodie et al. (2019), the hydrodynamic backwater
explanation may well be more relevant in the laboratory case than
the geometrical explanation. However, many natural rivers do not
exhibit the same degree of floodplain connectivity, and their chan-
nels in many settings are more confined (i.e., vegetated) and less
mobile than in laboratory studies. This is particularly true where
anthropogenic modifications of river courses have minimized or
even prevented overbank sedimentation (J. P. Syvitski and Kettner,
2011). These ‘hard’ engineering controls cause channels to become
super-elevated more rapidly, especially where subsidence rates are
high (Jankowski et al., 2017), which can cause channels to be more
prone to avulsions.

In both geometrically-constrained and variable-flow-driven avul-
sions, the avulsion location and delta size scale with the critical
SER. A better understanding of what drives this critical value in
natural rivers (where measured values have spread more than an
order of magnitude) will improve predictions of where avulsions
are most likely to occur. Further, more research is needed to con-
strain floodplain deposition rates over large space and time scales
and to elucidate how tightly coupled these deposition rates are



K.M. Ratliff, EW.H. Hutton and A.B. Murray

to river channel aggradation rates in different systems. These in-
sights will also be useful for planning targeted sediment diversions
along river channels, which aim to restore deteriorating wetlands
and mitigate land loss (Elsey-Quirk et al., 2019). An added benefit
of these managed diversions may be reducing the risk of channel
avulsions through increasing floodplain elevations (and decreasing
channel superelevation) in locations where a river may be more
prone to avulsion without the construction of additional hard en-
gineering works.
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