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Abstract— We study “active” decision making over sensor
networks where the sensors’ sequential probing actions are
actively chosen by continuously learning from past observations.
We consider two network settings: with and without central
coordination. In the first case, the network nodes interact with
each other through a central entity, which plays the role of a
fusion center. In the second case, the network nodes interact in a
fully distributed fashion. In both of these scenarios, we propose
sequential and adaptive hypothesis tests extending the classic
Chernoff test. We compare the performance of the proposed
tests to the optimal sequential test. In the presence of a fusion
center, our test achieves the same asymptotic optimality of the
Chernoff test, minimizing the risk, expressed by the expected cost
required to reach a decision plus the expected cost of making a
wrong decision, when the observation cost per unit time tends
to zero. The test is also asymptotically optimal in the higher
moments of the time required to reach a decision. Additionally,
the test is parsimonious in terms of communications, and the
expected number of channel uses per network node tends to a
small constant. In the distributed setup, our test achieves the same
asymptotic optimality of Chernoff’s test, up to a multiplicative
constant in terms of both risk and the higher moments of the
decision time. Additionally, the test is parsimonious in terms
of communications in comparison to state-of-the-art schemes
proposed in the literature. The analysis of these tests is also
extended to account for message quantization and communication
over channels with random erasures.

Index Terms— Distributed detection, active/adaptive hypothe-
sis testing, Chernoff test, sequential testing, inference systems,
on-line learning, Internet of Things, sensor networks.

I. INTRODUCTION

W ITH the boom in the Internet of Things, sensor-network
based solutions for inference systems have become

increasingly popular [3]–[5]. This is mainly due to the decreas-
ing cost of the sensors, their increasing computational capabil-
ities, the availability of high-speed communication channels,
and the redundancy provided by the distributed nature of
the network [6]. Inference systems have two key functionali-
ties: decision making (viz. hypothesis testing) and estimation.
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We focus on designing optimal tests for sensor networks in
decision-making scenarios where the sensors actively choose
their probing actions by continuously learning from past
observations. Applications that fall in this framework include
intrusion and target detection, and object classification and
recognition [7]–[11].

Previous studies are broadly classified into two categories:
fusion-center based and distributed setting. In the first case,
all the nodes of the network are connected to a fusion
center — and two operative modalities are considered. In the
first modality, the network nodes simply deliver their obser-
vations to the fusion center, where the inference task is
performed. In the second modality, the nodes exploit their
computational capability to perform preliminary processing of
the observations, and only a limited amount of information is
delivered to the fusion center for making the final decision.
This reduces the communication overhead, but may also result
in a loss of performance. In the distributed setup, network
nodes are connected to each other via communication links,
typically forming a sparse network, and there is no central
processing unit. Thus, to perform an inference task, the net-
work nodes need to perform computations locally, share their
processed data with neighboring nodes, and collectively reach
a decision. A natural question in both settings is what kind
of local processing to perform at the nodes, and what fusion
scheme to adopt at the fusion center or at the network nodes,
in order to reduce the communication burden while keeping
a high level of performance. In this work, we address this
question and propose statistical tests for both settings.

Hypothesis tests can be broadly classified as sequential
or non-sequential tests, as well as adaptive or non-adaptive
tests. In a sequential test the number of observations needed
to reach a decision is not fixed in advance, but depends on
the realization of the observed data. The test proceeds to
collect and process data until a decision with a prescribed
level of reliability can be made, and an important performance
figure — in addition to the probability of correct decision
— is the average number of observations required to end
the test. In an adaptive test, the sensors’ probing actions are
chosen on the basis of the collected data in an on-line, causal
manner. Hence, the sensors learn from the past, and adapt
their future probing actions in a closed-loop fashion. In this
case, the sensors are said to be “active,” in the sense that
measurement observations are the consequence of the sensors’
chosen probing actions. Our focus here is on sequential and
adaptive tests.

We propose a Decentralized Chernoff Test (DCT) for the
fusion center based setup, and a Consensus-based Chernoff
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Test (CCT) for the distributed setup. We provide bounds on
the performance of the tests in terms of their risk, defined as
the expected cost required to reach a decision plus the expected
cost of making a wrong decision. We also provide converse
results showing the best possible performance of any adaptive
or non-adaptive sequential test over the network. We show
that DCT is asymptotically optimal in terms of both the risk
and the higher moments of the expected decision time, as the
observation cost per unit time tends to zero. Additionally,
DCT is parsimonious in terms of communication: when the
observation cost per unit time tends to zero, the expected
number of messages sent per node tends to a small constant.
Finally, we show that CCT also retains the asymptotic opti-
mality of Chernoff’s original solution, being order optimal up
to a multiplicative constant, in terms of both risk and higher
moments of decision time.

To ease the presentation, our initial analysis assumes ideal
communication links carrying real-valued messages without
errors. In a real network, messages are quantized into packets
of a fixed length, and subject to random erasures at each
transmission. In the second part of the paper, we extend our
results to this scenario.

The rest of the paper is organized as follows: Section II
discusses related work; Section III formulates the prob-
lem; Section IV reviews the standard Chernoff test;
Section V introduces the Decentralized Chernoff Test (DCT);
Section VI introduces the Consensus-based Chernoff Test
(CCT); Section VII presents theoretical results on DCT and
CCT; Section VIII presents simulation results; Section IX
extends the analysis to quantized messages and erasure chan-
nels; Section X concludes the work. The proofs of all results
appear in the Appendices. Preliminary results of this paper
appeared in the IEEE International Symposium on Informa-
tion Theory [1] and the IEEE Conference on Decision and
Control [2].

II. RELATED WORK

Sequential tests were first introduced by Wald in 1973 [12].
One of these tests, the Sequential Probability Ratio
Test (SPRT) has been proven optimal for binary hypothesis
testing in [13], and for multi-hypothesis testing in [14], [15].
The performance of sequential tests can be further improved
by combining them with adaptive schemes. These schemes
operate in closed-loop, adapting the choice of actions to past
observations. In the case of sequential and adaptive tests, Cher-
noff provided the optimal test for binary composite hypotheses
in [16]. Its asymptotic optimality for multi-hypothesis testing
was proven in [17]; see also [18] and references therein for
an application. Later, the sequentiality and adaptivity gains for
different classes of tests were studied, and it was established
that sequential adaptive tests outperform other classes of
tests [19], and that the gains can vary from application to
application [20]–[23]. All of these results were established in
the case a single agent performs the test.

Different works discuss the extension to an ensemble of
networked sensors independently making observations and
coordinating to reach a decision [24], [25]. Different tech-
niques for combining the information from different sensors
at a fusion center are considered in [6], [26]–[28]. In this case,

minimization of the risk, which depends on both the decision
time and the reliability of the decision, requires joint opti-
mization over both the node level computations and the fusion
center operations. Key challenges of this optimization problem
are discussed in [29], and asymptotically optimal sequential
(non-adaptive) tests have been developed in [30], [31].

Previous works have not considered the performance of
sequential, adaptive tests in a network setting. The DCT pro-
posed here fills this gap for star networks, namely for networks
in which each node is directly connected to a fusion center.
On the other hand, the CCT proposed here considers networks
having a general graph structure and no central entity. In this
more general case, different non-sequential tests have been
developed relying on gossip protocols for distributed compu-
tation [32]–[37]. These protocols can be broadly classified into
two categories: consensus protocols and running-consensus
protocols. In consensus protocols, a distributed computation
task is performed after the collection of all the measurements
at the network nodes [32], [33], [35], [36]. Necessary and
sufficient conditions for convergence are well studied, see
e.g., [38]. In running-consensus protocols, the collection of
the measurements from the environment and the computation
task are performed simultaneously at the network nodes [34],
[37]. Hypothesis testing schemes typically rely on consensus
over “belief vectors.” In this case, each network node holds a
belief vector, whose elements represent the probability that a
certain hypothesis is true, given all the information collected
by the node. Different strategies are then used to transmit
and combine the belief vectors over the network, leading to
asymptotic learning of the correct hypothesis [39]–[44]. For
example, a strategy based on distributed dual averaging was
proposed in [43], using an optimization algorithm from [45].
The work in [39] proposes usage of linear consensus strate-
gies to combine the belief vectors, and [40] extends the
results of [39] to the case of random time-varying networks.
Other works consider Bayesian strategies for updating and
combining the belief vectors at the nodes [44]. In [44] the
bounds on the asymptotic learning rate are presented in terms
of KL-divergences of the beliefs at the different network
nodes. Under the assumption that the log-likelihood ratio is
bounded, finite-time analysis of the KL-divergence cost has
been performed in [42]. Similar results have been obtained
for networks modeled as time-varying graphs [41], [46].

Despite this huge literature, only limited attention has
been given to distributed sequential hypothesis testing over
general networks, which requires designing an appropriate
stopping rule over the network and evaluating the corre-
sponding expected decision time and performance in terms
of risk. Recently, a sequential (non-adaptive) hypothesis test
which is asymptotically optimal among non-adaptive tests
has been proposed [47]. In the present work, we propose a
sequential as well as adaptive hypothesis test in the distributed
network setup. Unlike the previous literature, including [47],
the proposed test does not perform consensus over the belief
vector, and is parsimonious in terms of communication.
The stopping criterion proposed in [47] is not applicable
to our test. Our test is also asymptotically optimal among
all adaptive or non-adaptive sequential tests, under a broad
range of conditions. Finally, we point out that unlike our
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work, all of the above works do not consider the effect of
quantization and erasures occuring over the communication
links.

III. PROBLEM FORMULATION

Hypotheses Testing model: We consider an ensemble
L = {1, 2, . . . , L} of sensor nodes engaged in a
multi-hypothesis testing problem. The state of nature to be
detected is one of M exhaustive and mutually exclusive
hypotheses {hi}i∈[M ], where [M ] = {1, 2, . . .M}. Nodes are
connected by bi-directional communication links to form a
network. At each discrete time step n every node � ∈ L
can select a probing action un,� ∈ S, where S is a fixed set
of cardinality M . As a consequence of this action, the node
observes the realization of a real-valued random variable
Yn,� whose distribution is p

un,�

i,� and is known to node �
only. The node can then send one message over each of
its incident links, and receive one message from each link.
The probing actions and the messages sent at time n can
be selected based on all past observations, actions taken, and
messages sent and received up to time n − 1. It follows that
the observations at each node can be dependent across time.
On the other hand, given the state of nature, we assume that the
observations at different nodes are conditionally independent,
but not necessarily identically distributed.

Network model: We consider two network setups.
1) Star network. In this case, the network is composed

of the L sensors and of one special node acting as a
fusion center. Each sensor is connected to the fusion
center via a communication link, while there are no links
between the sensors. This setup is used to introduce our
Decentralized Chernoff Test (DCT).

2) General network. In this case, the network is represented
by a connected graph G(L, E), where L is the set of
vertices, and the edges {(�, j)} ∈ E , are such that �, j ∈
L, � �= j. Communication and information processing
tasks are fully distributed and there is no fusion center.
This setup is used to introduce our Consensus-based
Chernoff Test (CCT).

Communication model: We first assume an ideal communi-
cation model, where at each time step every node can send and
receive a vector composed of C real-values over each of its
incident links. The messages sent are received instantaneously
and without error. This synchronous model of communication
with no queueing delay and real vector channels has been
widely used in the literature of detection and estimation, see
e.g. [30]–[39], [41]–[44], [47].

We then refine the communication model by taking into
account that in a real packet-switched network, links can only
carry a finite number of bits at each transmission, rather than
real numbers. In this case, if there is a communication link
connecting nodes � and j, then we assume that at each time
step node � can transmit a packet of C bits to node j and at
the same time step node j can transmit a packet of C bits
to node �. This accounts for quantization of the real data
in the previous model. In information-theoretic terms, every
link behaves in each direction as a noiseless channel of finite
capacity C bits/transmission. As in the previous model, every

packet transmission occurs synchronously in one time step,
and there is no queuing delay. Although less popular than the
previous one, this refined model has been considered in the
context of quantized consensus in [48], and in the context of
estimation and detection in [6], [30], [31], [49]–[51].

Finally, we further extend the communication model by
considering random packet erasures. We assume that at any
time step any link in the network can fail independently
with probability ε. When a link fails, packets travelling
on both directions of the link are received as “erasures.”
In information-theoretic terms, every link behaves in this case
in both directions as a C-bit erasure channel without feedback,
having capacity (1− ε)C bits/transmission. As in the previous
case, transmissions are synchronous, and there is no queuing
delay. A related model, where links can fail at random times
but carry real numbers rather than quantized packets has been
used to study consensus in [52] and estimation and detection
in [42], [53]–[61].

Performance measure: Our objective is to design a scheme
to select at each step the nodes’ probing actions and the
messages to transmit, to eventually decide the state of nature
with sufficiently high reliability. To quantify the performance
of the proposed scheme, we let N be the random time at which
all the nodes have reached the same decision and halt the test.
We consider both the expectation and the higher moments of
this stopping time. Following [16], we also consider the risk,
expressed as the sum of the expected cost required to reach a
decision and the expected cost of making a wrong decision.
Namely, under the true hypothesis H∗ = hi, we let the risk
R

δ
i of a test δ be

R
δ
i = c E

δ
i [N ] + ωi P

δ
i (Ĥ �= hi), (1)

where c is the observation cost per unit time, Ĥ is the final
decision, Ei and Pi are the expectation and the probability
operators computed under H∗ = hi, and ωi is the cost of
a wrong decision. As in [16], we evaluate the risk for all
i ∈ [M ], as c→ 0.

Additional notation: We write log for natural logarithms,
unless otherwise indicated. For the general network case,
we denote by dG the diameter of the network, which is the
maximum shortest hop-distance between any pair of nodes of
G(L, E). We denote by hG the shortest height of all possible
spanning trees of G(L, E). Since the network is connected,
dG and hG are both finite. For all � ∈ [L], u ∈ S and
i, j ∈ [M ], the KL-divergence between hypotheses hi and
hj is denoted by D(pu

i,�||pu
j,�), and is assumed to be finite

over the entire action set S. We also assume that for all
� ∈ [L] and i, j ∈ [M ], there exists an action u ∈ S such
that D(pu

i,�||pu
j,�) > 0. This assumption entails little loss of

generality, rules out trivialities, and is commonly adopted in
the literature, see e.g., [16]. For all � ∈ [L], u ∈ S and i, j ∈
[M ], we also assume E[log(pu

i,�(Y ))/ log(pu
j,�(Y ))]2 < ∞.

If v1 = [v1,1, . . . vk,1] and v2 = [v1,2, . . . vk,2] are two vectors
of same dimension, then v1 � v2 implies that for all i ∈ [k],
vi,1 ≤ vi,2. Finally, we indicate with |v1| the vector of absolute
values of the entries of v1.
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IV. STANDARD CHERNOFF TEST

We start by describing the Standard Chernoff Test (SCT) for
a single sensor � attempting to detect the true hypothesis H∗,
having no interactions with other sensors in the network [16].
For all n > 1 we let yn

� = {y1,�, . . . , yn−1,�}, where yi,�

denotes the realization of the observation collected at time
step i, and let un

� = {u1,�, . . . , un−1,�}, where ui,� denotes
the realization of the action made at step i. For n = 1 we
initialize the set of previous actions un

� = ∅ and previous
observations yn

� = ∅, and let all posterior probabilities be the
same, namely P(H∗ = hi|yn

� , un
� ) = 1/M .

At every step n ≥ 1, the test proceeds as follows:
1) A temporary decision is made, based on the maximum

posterior probability of the hypotheses, given the past
observations and actions of the sensor. Ties are resolved
at random. This temporary decision is in favor of hi∗n if

i∗n = arg max
i∈[M ]

P(H∗ = hi|yn
� , un

� ). (2)

2) A new action un,� is randomly chosen among the ele-
ments of the action set S, according to the Probability
Mass Function (PMF)

Q�
i∗n

= arg max
q∈Q

min
j∈Mi∗n

∑
u∈[M ]

q(u)D(pu
i∗n,�||pu

j,�), (3)

where Q denotes the set of all the possible PMFs over
the [M ] actions, and Mi∗n = [M ] \ {i∗n}.

3) As a consequence of this action, a new observation yn,�

is collected, and for all i ∈ [M ] the posterior probabilities
P(H∗ = hi|yn+1

� , un+1
� ) are updated.

4) The test stops if the worst case log-likelihood ratio
crosses a prescribed fixed threshold γ, namely if

log
P(H∗ = hi∗n,|yn+1

� , un+1
� )

maxj �=i∗n P(H∗ = hj |yn+1
� , un+1

� )
≥ γ, (4)

If the test stops, then the final decision is hi∗n , otherwise
n is incremented by one and the procedure continues
from 1).

V. DECENTRALIZED CHERNOFF TEST

We now extend the SCT to a DCT in the star network
configuration. We start by noticing that in the SCT the quantity

vi,� = max
q∈Q

min
j �=i

∑
u∈[M ]

q(u)D(pu
i,�||pu

j,�), (5)

is a measure of the capability of node � to detect hypothesis hi

(see [16] for a discussion), and plays a critical role for the
selection of the action in (3) that is performed at each step
and is adapted to the current belief. In a network setting,
the quantity

I(i) =
L∑

�=1

vi,�, (6)

represents a measure of the cumulative capability of the
network to detect hypothesis hi and can be used for the
selection of the threshold of each node in a coordinated fashion
to optimize the expected decision time. Accordingly, in DCT,
the fusion center collects vi,� for all i ∈ [M ] and � ∈ [L],

computes I(i) for all i ∈ [M ], and distributes this result to
all the nodes to enable their threshold selection. The nodes
then perform SCTs in parallel, until they all reach the same
decision and terminate the test. The three phases of the test
are as follows:

Initialization Phase:
1) Without performing any probing action, each node �

sends the vector v� = [v1,�, . . . , vM,�] to the fusion
center.

2) The fusion center sends the cumulative capability vector
I = [I(1), . . . , I(M)] back to each node, and upon
reception, each node � computes the vector ρ� =
[ρ1,�, . . . , ρM,�], representing its fraction of network
detection capability, namely for all i ∈ [M ], we have

ρi,� = vi,�/I(i). (7)

Test Phase: Proceeding in parallel, every node � performs
a SCT using the threshold

γ = ρi∗n,� |log c|. (8)

This threshold depends on both the current estimate of the
hypothesis and the node identity, while it was a constant in (4).
If the log-likelihood ratio in (4) exceeds the threshold, node �
sends its preference for hi∗n to the fusion center and continues
to run the test. Hence, rather than using it as a stopping
condition, the threshold is used here as a triggering condition
for the communication of a preference by node � to the fusion
center.

Stopping Phase: When the preferences expressed by all
the nodes are the same, the fusion center sends a halting
message to all the nodes, who stop the test and declare the
final decision.

The proposed DCT only requires the communication of
the messages in the initialization phase, the local preferences
from the nodes during the test phase, and the halting message
in the stopping phase. We show below that, while maintaining
the same asymptotic optimality of the Chernoff test, the
oscillations in the local preferences of the nodes in the test
phase vanish as c → 0 and, if C ≥ M , each sensor tends
to use the channel on average at most four times: two in the
initialization phase, one (on average) to communicate the local
preference, and one to receive the halting message. In the case
C < M , the test retains its asymptotic optimality, although
the expected number of channel uses per node increases from
four to a constant that is at most 2(M + 1), since in this case
multiple transmissions are needed to communicate each vector
in the initialization phase.

A. Informal Discussion of DCT

The key idea behind the proposed DCT is to first determine
the individual capabilities of the nodes for detecting the
hypotheses. These capabilities are captured by the vector v�,
whose ith element is a measure of node � capability to detect
the hypothesis hi. The fusion center gathers this information,
and utilizes it to control the threshold at each node through
the vector ρi,�. In this context, I(i) is the measure of the
cumulative detection capability of the network for hypothesis
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hi and ρi,� represents the fraction of this capability contributed
by node � for hypothesis hi. To minimize the expected time to
reach a decision, it is desirable to determine the threshold for
each node � such that all the nodes require roughly the same
time to reach the triggering condition in (8). This is achieved
by dividing the task of hypothesis testing among the nodes
based on their speed of performing the task, so that all the
nodes finish their share of the task at roughly the same time.

VI. CONSENSUS-BASED CHERNOFF TEST

We now describe CCT in a general network setup, without
a fusion center. The main idea is to generalize the DCT to a
fully distributed setting. CCT employs a consensus protocol
to agree on the cumulative capability of the network to detect
each hypothesis, performs individual SCTs, and then employs
another consensus protocol to finalize the decision. To ease
the presentation of CCT, similar to [39], [41]–[44], we now
assume that C ≥ M , so that consensus can be performed
by exchanging real vector messages of size M at every time
step. In the case C < M the test proceeds along the same
lines, but performing vector communications of size M now
requires multiple time-steps, and the test completion time must
be scaled accordingly. The three phases of the test are as
follows:

Initialization Phase: The nodes use a distributed protocol to
compute the vector I = [I(1), . . . , I(M)]. Using consensus,
they compute the arithmetic mean I/L, and then compute I
using their knowledge of L. For all � ∈ [L], we let the initial
estimate for I/L at every node be Î0

� = [v1,�, . . . , vM,�], which
can be computed locally using (5). Then, every node � runs
the following consensus protocol by iteratively exchanging
messages without performing any probing action: for n ≥ 0,

În+1
� = w�,�Î

n
� +

∑
j∈N�

w�,j Î
n
j , (9)

where În
� = [În

� (1), . . . , În
� (M)] is an estimate of I/L at

node � and at time n, w�,j is the weight assigned by node � to
the estimate received from node j, and N� = {j|{�, j} ∈ E} is
the set of neighbors of node � in G(L, E). We now rewrite (9)
in the matrix form as

În+1 = WÎn, (10)

where În is an L×M matrix whose �th row is În
� and W is

an L× L matrix whose elements satisfy

0 < w�,j < 1 if j ∈ N� ∪ {�}, otherwise w�,j = 0. (11)

The following theorem presents the necessary and sufficient
conditions for the consensus protocol (10) to converge to I/L,
as n→∞.

Theorem 1 [38, Theorem 1]: The consensus protocol (10)
converges to I/L as n→∞ if and only if

1T
L×1W = 1T

L×1, (12)

W1L×1 = 1L×1, (13)

and

R

(
W − 1L×111×L

L

)
< 1, (14)

Algorithm 1 Initialization Phase of CCT

Initialize n = 0, and for all � ∈ [L], În
� , rn

� = 0 and zn
� = 0

while True do
For all � ∈ [L], broadcast local information Î

(n)
� and zn

� .
Update the local cumulative capability using (9).
if n ≥ 1 then

zn
� = min{rn−1

� , minj∈N�∪{�} zn−1
j }+ 1

end if
if zn

� > L + 1 or m(1) = 1 is received then
În
� ← LÎn

�

Sensor � broadcasts m(1) = 1 and stops updating.
Break While;

end if
if maxj∈N�

|Î(n)
� − Î

(n)
j | � c11×M/L2 then

rn
� = rn−1

� + 1
else

rn
� = 0

end if
n = n + 1

end while

where R(·) denotes the spectral radius of a matrix, and
1A×B is a A × B matrix of all ones. Additionally, the rate
of convergence is proportional to the spectral radius in the
left-hand side of (14).

Based on the above theorem, the computation of the weights
in the matrix W can be formulated as a convex optimiza-
tion problem minimizing the spectral radius in (14), subject
to (11), (12) and (13), and can be determined using standard
techniques [38]. Hence, in the following we assume that,
in addition to (11), the matrix W verifies the conditions stated
in Theorem 1.

Although the consensus protocol converges to the correct
value I/L as n→∞, the initialization phase must terminate
in finite time and guarantee that consensus has been reached
in a suitable approximate fashion.

To characterize approximate consensus, we define a local
c-consensus status if for all � ∈ [L] and j ∈ N�, we have

|În
� − În

j | �
c

L2
11×M . (15)

We also define a global c-consensus status if for all �, j ∈ [L],
we have

|În
� − În

j | �
c

L
11×M . (16)

Since the diameter dG ≤ L, it should be clear that local
c-consensus implies global c-consensus.

We employ a stopping rule for the initialization phase
that guarantees global c-consensus, and is illustrated in
Algorithm 1. A similar rule has been previously studied
in [62]. In Algorithm 1, the variable rn

� indicates the number of
time steps since node � is in local c-consensus, namely satis-
fies (15). The variable zn

� is responsible for the percolation of
the consensus information across the network. If at any node �
we have zn

� > L + 1, then the network has reached global
c-consensus and node � sends a termination message m(1) = 1
to its neighbors, where the superscript indicates that this is the
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Algorithm 2 Test Phase of CCT

For all i ∈ [M ] and � ∈ [L], n = 0; Ĥn
� = NULL

Input: Termination message of stopping phase, i.e., m(3)

while Final decision is not made, namely m(3) �= 1 do
For all � ∈ [L], perform SCT with γ = ρ̂i∗n,� |log c|
If Ĥn

� �=NULL, then broadcast Ĥn
�

n = n + 1
end while

termination message of the initialization phase. When a node
receives a termination message, it halts the protocol, it scales
the final estimate by L, namely

În
� ← LÎn

� , (17)

and forwards the termination message to its neighbors. It fol-
lows that all the nodes receive a termination message at
most dG time steps after the first termination message has
been sent, and at the end of the initialization phase for all �,
j ∈ [L], we have

|În
� − În

j | � c11×M . (18)

In the following phases, we let Î� denote the estimate of
vector I at node � at the end of the initialization phase.

Test Phase: This phase is illustrated in Algorithm 2 and
begins following the termination of the initialization phase,
namely after receiving m(1) = 1. Every node � performs a
SCT using the threshold

γ = ρ̂i∗n,� |log c|, (19)

where ρ̂n
i∗n,� = vi∗n,�/Î�(i∗n). If the log-likelihood in (4) exceeds

the threshold, then node � updates its local preference Ĥn
� in

favor of the hypothesis hi∗n ; otherwise, it sets its local pref-
erence to NULL. Similar to DCT, the node � communicates
its preference Ĥn

� , if any, to its neighbors (instead than to the
fusion center) and continues to run the test. Hence, rather than
using it as a stopping condition, the threshold is used here as a
triggering condition for the communication of the preference
by node � to its neighbors in N�.

Stopping Phase: This phase is illustrated in Algorithm 3,
and runs in parallel with the test phase. This phase detects if
all the network nodes have reached the same preference, and
halts the test if the preferences are the same. At every time
step n ≥ 1, every node � ∈ [L] sends dn

� to its neighbors
which is defined as

dn
� = min

{
min

j∈N�∪{�}
dn−1

j , xn−1
�

}
+ 1, (20)

where d0
� = 0,

xn
� =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xn−1
� + 1 if ∀j ∈ N�, Ĥ

n
� = Ĥn

j , Ĥn
� = Ĥn−1

� ,

and Ĥn
� �= NULL,

1 if ∀j ∈ N�, Ĥ
n
� = Ĥn

j , Ĥn
� �= Ĥn−1

� ,

and Ĥn
� �= NULL,

0 otherwise,
(21)

and x0
� = 0.

Algorithm 3 Stopping Phase of CCT

For all � ∈ [L], initialize n = 0; d�,n = xn
� = 0, m(3) = 0;

while TRUE do
if m(3) = 1 is received from neighbor j then

Set the final decision, i.e., Ĥn
� = Ĥn−1

j

Broadcast m(3) and Ĥn
� .

Break;
end if
For all � ∈ [L], update xn

� according to (21).
For all � ∈ [L], update dn

� according to (20).
if dN

� > L + 1 then
m(3) = 1
For all � ∈ [L], broadcast m(3) and Ĥn

� .
else

For all � ∈ [L], broadcast dn
� and Ĥn

� .
end if
n = n + 1

end while

The rationale of (20) and (21) is as follows. Suppose
xn

� = k. Then, for the past k time steps the local preference
of the neighbors of node � was the same as the local pref-
erence Ĥn

� of node �. The value of dn
� is responsible for the

percolation of this information along the network. Using (21),
if node j ∈ N� does not report any local preference, then the
value xn

j = 0 is received by the neighbors of j. If at any
node � we have dN

� > L + 1, then there exists a time k ≤ N
at which the local decisions of all the nodes are the same,
namely minj∈[L] x

k
j ≥ 1 (see Lemma 13 in Appendix B-E).

This node � sends the final decision ĤN
� and the termination

message m(3) = 1 to its neighbors, where m(3) = 1 represents
the termination message for the stopping phase. When a node
receives the termination message and the final decision ĤN

� ,
it halts the test and forwards m(3) along with ĤN

� to its
neighbors. It follows that all nodes receives the termination
message and the final decision at most dG time steps after the
first termination message of the stopping phase has been sent.

A. Informal Discussion of CCT

As in DCT, the key idea behind CCT is to first determine
the individual capabilities of the nodes for detecting the
hypotheses. These capabilities are captured by the vector v�,
whose ith element is a measure of node’s � capability to
detect the hypothesis hi. However, in contrast to DCT, there
is no central entity to facilitate the sharing of this informa-
tion among different nodes, and a consensus algorithm is
used — in the first phase of CCT — to gain global knowledge
at each node of the capabilities of all the other nodes. If the
consensus algorithm stops at time N , then ρ̂N

i,� denotes the
estimated fraction of the capability contributed by node �
for hypothesis hi. To minimize the expected time to reach
a decision, it is desirable to determine this threshold for each
node � such that all the nodes require roughly the same time
to reach the triggering condition in (8). This is achieved
by dividing the task of hypothesis testing among the nodes
based on their speed of performing the task, so that all the
nodes finish their share of the task roughly at the same time.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 24,2021 at 21:46:13 UTC from IEEE Xplore.  Restrictions apply. 



RANGI et al.: DISTRIBUTED CHERNOFF TEST: OPTIMAL DECISION SYSTEMS OVER NETWORKS 2405

The decision phase is a distributed stopping criterion for the
Chernoff test, and ensures that the nodes stop the test as they
reach the same decisions.

VII. PERFORMANCE ANALYSIS

We now present the performance analysis of our tests. The
proofs of all theorems are deferred to the Appendices.

A. Lower Bounds for a Sequential and an Adaptive Test

In this section, we present lower bounds on two different
performance measures, namely risk and decision time, for any
sequential and adaptive test. The superscript δ is appended to
quantities that refer to a generic test and N indicates the time
required to take a decision.

Theorem 2 (Converse): For any hypothesis testing scheme
δ operating over a network as described in Section III, we have
that for all i ∈ [M ], if the probability of missed detection is

P
δ
i (Ĥ �= hi) = O(c | log c|), as c→ 0, (22)

then for all integers r ≥ 1, we have

E
δ
i [N

r] ≥
(

(1 + o(1))
|log c|
I(i)

)r

, as c→ 0. (23)

Using (23) with r = 1, we also have

R
δ
i ≥ (1 + o(1))

c |log c|
I(i)

, as c→ 0. (24)

The lower bounds provided by Theorem 2 hold for any
scheme operating in our problem formulation setting, in both
a star network or general network configuration. In the case
the network is composed of a single node and r = 1, these
results recover Chernoff’s original results [16].

B. Upper Bounds for Proposed DCT and CCT Schemes

We now provide upper bounds on the performance of our
schemes, starting with DCT. In the following theorems, the
superscript D refers to the DCT. Part (i) of Theorem 3 states
that the probability of making a wrong decision can be made
as small as desired by an appropriate choice of the observation
cost c. Part (ii) provides an upper bound on the expected time
to reach the final decision, and part (iii) bounds the risk as
an immediate consequence of parts (i) and (ii). Finally, part
(iv) presents an upper bound on the higher moments of the
decision time of DCT.

Theorem 3 (Direct): The following statements hold:
(i) For all c ∈ (0, 1) and i ∈ [M ], the probability that DCT
makes an incorrect decision is

P
D
i (Ĥ �= hi) ≤ min{(M − 1)c, 1}. (25)

(ii) For all � ∈ [L], i, j ∈ [M ] and u ∈ S,
if E

[
log pu

i,�(Y )/pu
j,�(Y )

]2
<∞, then we have

E
D
i [N ] ≤ (1 + o(1))

|log c|
I(i)

, as c→ 0. (26)

(iii) Combining (i) and (ii), we have

R
D
i ≤ (1 + o(1))

c |log c|
I(i)

, as c→ 0. (27)

(iv) For all � ∈ [L], i, j ∈ [M ], u ∈ S and all integers r ≥ 2,
if E

[|log pu
i,�(Y )/pu

j,�(Y )|r+1
]

<∞, then we have

E
D
i [N r] ≤

(
(1 + o(1))

c |log c|
I(i)

)r

, as c→ 0. (28)

In the above theorem, the bound on the expected decision
time in (ii) requires the second moment of the log-likelihood
ratio to be finite. Likewise, for all r ≥ 2, the bound on the
rth moment of the decision time requires the r + 1st moment
of the log-likelihood ratio to be finite.

The next result is a consequence of Theorems 2 and 3.
It shows the asymptotic optimality of DCT, and presents the
expected communication overhead, as c→ 0.

Theorem 4: For any hypothesis testing scheme δ operating
over a network as described in Section III, we have
(i) For all � ∈ [L], i, j ∈ [M ] and u ∈ S,
if E

[
log pu

i,�(Y )/pu
j,�(Y )

]2
<∞, then we have

lim
c→0

E
D
i [N ]

Eδ
i [N ]

≤ 1. (29)

Additionally,

lim
c→0

R
D
i

Rδ
i

≤ 1. (30)

(ii) For all � ∈ [L], i, j ∈ [M ], u ∈ S and all integers r ≥ 2,
if E

[|log pu
i,�(Y )/pu

j,�(Y )|r+1
]

<∞, then we have

lim
c→0

E
D
i [N r]

Eδ
i [N r]

≤ 1. (31)

(iii) Assuming C ≥ M , and letting the communication
overhead CO be the number of channel usages by each node,
we have

lim
c→0

E
D
i [CO] = 4. (32)

Combining Theorem 3 and Theorem 4, it follows that
DCT is asymptotically optimal in terms of stopping time and
risk, as the observation cost tends to zero. This asymptotic
optimality, expressed by (29), (30), and (31), holds for all
values of C, although in the case C < M the expected
number of channel uses per node in (32) increases from four
to a constant that is at most 2(M + 1), due to multiple
transmissions required to communicate each vector in the
initialization phase. We also point out that the performance
of DCT depends only on the cumulative capability I(i) of
the network to detect hypothesis hi, and is independent of
how the capabilities vi,� are distributed over the network.
If two networks have the same cumulative capabilities, then
the expected decision time will be the same for both of them.
These results hold irrespective of the number of nodes in the
network.

We now provide upper bounds on the performance of CCT.
We make use of the following well known lemma:
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Lemma 5 [63, Proposition 1]: For any connected graph
G(L, E) with weights assigned to the edges satisfying (11),
we have that

0 < η(WhG
) < 1, (33)

where

η(W ) = min
i�=j

L∑
k=1

min{wi,k, wj,k}, (34)

is the ergodic coefficient of the weight matrix W .
In the following theorems, the superscript C refers to the

CCT. Part (i) of Theorem 6 states that the probability of
making a wrong decision can be made as small as desired
by an appropriate choice of c. Part (ii) provides an upper
bound on the expected time to reach the final decision, and
part (iii) bounds the risk as an immediate consequence of
parts (i) and (ii). Finally, part (iv) presents an upper bound
on the higher moments of the decision time of CCT.

Theorem 6 (Direct): Assuming C ≥ M , the following
statements hold:
(i) For all c ∈ (0, 1) and i ∈ [M ], the probability that CCT
makes an incorrect decision is

P
C
i (Ĥ �= hi) ≤ min

{
(M − 1)c

1
1+c/I(i) , 1

}
. (35)

(ii) For all � ∈ [L], i, j ∈ [M ] and u ∈ S,
if E

[
log pu

i,�(Y )/pu
j,�(Y )

]2
<∞, then we have

E
C
i [N ]

≤ (1 + o(1))

(
hG | log(c/ maxj∈[L] I(j))|
| log

(
1− η(WhG )

)| +
|log c|

I(i)− c

)
,

(36)

as c→ 0.
(iii) Combining (i) and (ii), we have

R
C
i

≤ (1 + o(1))

(
hGc|log(c/ maxj∈[L] I(j))|
|log(1 − η(WhG ))| +

c|log c|
I(i)− c

)
,

(37)

as c→ 0.
(iv) For all � ∈ [L], i, j ∈ [M ], u ∈ S and all integers r ≥ 2,
if E

[|log pu
i,�(Y )/pu

j,�(Y )|r+1
]

<∞, then we have

E
C
i [N r]

≤
(
(1+o(1))

(
hG | log(c/ maxj∈[L] I(j))|
| log(1 − η(WhG ))| +

|log c|
I(i)− c

))r

,

(38)

as c→ 0.
The following result is a consequence of Theorems 2 and 6,

and shows that CCT is asymptotically optimal, up to a constant
factor, as the observation cost tends to zero.

Theorem 7: For any hypothesis testing scheme δ operating
over a network as described in Section III and assuming
C ≥M , we have:

(i) For all � ∈ [L], i, j ∈ [M ] and u ∈ S,
if E

[
log pu

i,�(Y )/pu
j,�(Y )

]2
<∞, then

lim
c→0

E
C
i [N ]

Eδ
i [N ]

≤
(

I(i)hG |log(1/ maxj∈[L] I(j))|
|log(1− η(WhG ))| + 1

)
. (39)

Additionally,

lim
c→0

R
C
i

Rδ
i

≤
(

I(i)hG |log(1/ maxj∈[L] I(j))|
|log(1− η(WhG ))| + 1

)
. (40)

(ii) For all � ∈ [L], i, j ∈ [M ], u ∈ S and all integers r ≥ 2,
if E

[|log pu
i,�(Y )/pu

j,�(Y )|r+1
]

<∞, then we have

lim
c→0

E
C
i [N r]

Eδ
i [N r]

≤
(

I(i)hG |log(1/ maxj∈[L] I(j))|
|log(1− η(WhG ))| +1

)r

.

(41)

While Theorems 6 and 7 provide bounds for the
case C ≥M , it should be clear from their proof that when
C < M CCT is still asymptotically optimal up to a constant
factor, as c → 0. In this case, the right-hand sides of (39)
and (40) are simply scaled by an additional factor that is upper
bounded by M , due to the multiple transmissions required to
complete each vector transmission. Similarly, the right-hand
side of (41) is scaled by a factor upper bounded by M r.

The decision time of CCT, refer (36) and (38), depends on
two terms: A1 and A2, where

A1 =
hG | log(c/ maxj∈[L] I(j))|
| log

(
1− η(WhG )

)| , (42)

A2 =
|log c|

I(i)− c
. (43)

Here, A1 corresponds to the expected time of the initial-
ization phase. Since this phase performs consensus over
the network, this time depends on the network parame-
ters hG and matrix W . Similarly, A2 corresponds to the
expected time of the test phase, where the Chernoff test
is performed independently at all the nodes. This time is
independent of the network parameters. Finally, since the
decision phase of CCT begins only after the termination of
the initialization phase and is dependent on the test phase,
the expected decision time of CCT depends on A1 + A2.
Thus, in Theorem 7, the ratio of the performance parame-
ters of CCT and of the optimal test converges to the con-
stant 1 + I(i)hG |log(1/ maxj∈[L] I(j))|/|log(1− η(WhG

))|.
It follows that the gap between the performance para-
meters of CCT and the optimal test is given by
I(i)hG |log(1/ maxj∈[L] I(j))|/|log(1− η(WhG

))|, and as the
expected time of initialization phase decreases this gap
decreases.

As a final remark, we point out that the star network
configuration is a special case of the distributed setup. In this
case, the cumulative capability vector I can be estimated (with
no error) in two time steps at all the nodes, namely for n = 2
and �, j ∈ [L], the equivalent of (16) is

|În
� − În

j | � 011×M , (44)
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Fig. 1. Performance of DCT: risk vs. cost c for different number of sensors L.

Fig. 2. Performance of DCT according to Theorem 3: risk vs. cost c for
different number of sensors L.

and is independent of the parameter c. In the regime of
vanishing cost c → 0, we have that A1 + A2 = 2 + A2,
which implies the asymptotic optimality of DCT.

VIII. NUMERICAL RESULTS

In this section, we evaluate the performance of both DCT
and CCT by simulations, and compare the results to the
theoretical bounds presented in the previous section. The
performance of these tests is evaluated for different sizes of
networks. In our experiments, the number of hypotheses is
M = 3. The probability distribution pu

i,� is Bernoulli with
parameter p, which is selected uniformly at random from
(0, 1/3),(1/3, 2/3) and (2/3, 1) for i = 1, 2 and 3 respectively.

Figure 1 shows the risk of DCT in a fusion center based
setup, as obtained by simulations. Figure 2 shows the corre-
sponding value of the risk, as predicted by Theorem 3. The
risk decreases as the observation cost c decreases. This is
because the threshold in the triggering condition (8) increases,
which ensures that the nodes have a greater confidence about
their local decision. On the other hand, the risk decreases

Fig. 3. An example of sensor network with L = 10 nodes.

by increasing the number of sensors L. This is because the
cumulative capability of the network to detect the hypothesis,
defined in (6), increases with L, and the task of hypothesis
testing is divided among a larger number of sensors. Hence,
the final decision can be reached more quickly, and this
decreases the risk. The trends are in agreement with the
theoretical results obtained for DCT.

Our simulations also confirm the prediction that, on the
average, only four channel usages are required, per single
sensor, see (32) in Theorem 4. The results of these simulations
are not reported here for the sake of brevity. We only mention
that, on rare occasions, for individual realizations it may
happen that the number of channel usages is substantially
larger than four —a manifestation of the long-run phenomenon
[64, p. 110]. In practice, this can be remedied by resorting
to a truncated version of the sequential test, for which the
maximum number of probing actions is fixed, see [65], [66]
and references therein for a discussion, and see [67] for a
simple implementation of truncation. A precise analysis of
DCT using truncated tests is out of the scope of the present
paper.

The performance of CCT is evaluated for two network
configurations. In the first configuration, given the number
of network nodes L, 
L/2� sensors are connected to form
a ring, and the remaining sensors are randomly connected to
the sensors in the ring. An example of network with L = 10 is
shown in Figure 3. In this case, the spanning height of the tree
is linear in L. In the second configuration, given the number
of network nodes L, the nodes are connected to form a binary
tree. In this case, the spanning height of the tree is O(log2 L).

Figure 4 shows the performance of CCT for the ring
with random attachments, obtained by computer simulations.
Figure 5 shows the value of risk according to Theorem 6.
Like in the case of DCT, the risk of CCT decreases as the
observation cost c decreases. Instead, the behavior as function
of L is different. Unlike DCT, the risk of CCT increases by
increasing the number of network nodes L. This effect can
be explained by observing that in CCT there is a trade-off
between the time required by the initialization phase and the
time required by the test phase. For the considered network G
and consensus matrix W , as the number of nodes L increases,
the consensus scheme in the initialization phase will require
more time in comparison to the test phase. Additionally,
the time required by the test phase decreases with L, for
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Fig. 4. Performance of CCT for the ring with random attachments: risk vs.
cost c for different number of sensors L.

Fig. 5. Performance of CCT according to Theorem 6 for the ring with
random attachments: risk vs. cost c for different number of sensors L.

the same reasons as in the DCT case. Figures 4 and 5 show
that the consensus between the sensors in the first phase of
CCT becomes the dominating factor in the decision time.
This is in agreement with the theoretical bounds provided in
Theorem 6.

Figures 6 and 7 show the performance of CCT for the
tree configuration, via simulations and using the theoretical
predictions of Theorem 6, respectively. The risk of CCT
decreases as c decreases. Unlike the ring configuration with
random attachments, the risk decreases by increasing L until
L = 15, and then increases. In this setup, for the initial values
of L, the time required by the test phase is larger than the time
for the initialization phase, hence, it is the dominating factor
in the decision time of CCT. On the contrary, for L = 20,
the time of the initialization phase becomes dominant, which
leads to the increase in the risk with L. Finally, comparing
Figures 6 and 7, we see that the theoretical values of the risk
are close to the results of numerical simulations.

Fig. 6. Performance of CCT for the tree: risk vs. cost c for different number
of sensors L.

Fig. 7. Performance of CCT according to Theorem 6 for the tree: risk vs.
cost c for different number of sensors L.

IX. EXTENSION TO CHANNELS WITH QUANTIZED

MESSAGES AND LINK FAILURES

In the previous sections, we have assumed a communication
model carrying real numbers over ideal links, without errors.
This models a situation where transmission are finely quan-
tized and adequately protected against errors. We now wish
to explicitly take into account the effect of data quantization,
and of link failures leading to packet erasures.

A. Channels With Quantized Messages

We start by considering channels supporting quantized
messages, rather than real numbers, as described in Section III.
We extend our previous results by describing the key changes
to both DCT and CCT formulations.

1) DCT With Quantized Messages: In the initialization
phase, the vectors v� and I need to be quantized using C
bits before transmission. Accordingly, at the sensor nodes we
construct the quantized vector �v�� = [�v1,��, . . . , �vM,��] and
at the fusion center we construct the corresponding vector
�I� = [�I(1)�, . . . , �I(M)�]. Using (6), for all i ∈ [M ] and
� ∈ [L], we have that vi,� ≤ I(i). It follows that to construct

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 24,2021 at 21:46:13 UTC from IEEE Xplore.  Restrictions apply. 



RANGI et al.: DISTRIBUTED CHERNOFF TEST: OPTIMAL DECISION SYSTEMS OVER NETWORKS 2409

the first vector we can divide the interval [0, maxi I(i)]
uniformly into Q sub-intervals, where Q = 2C/M , and let
�vi,�� be the nearest value among the Q quantization levels
smaller than vi,�. In this way, the difference between any two
contiguous quantization levels for vi,� is

Δ
(

max
i

I(i), Q
)

=
maxi I(i)

Q
. (45)

The quantized vector �v�� = [�v1,��, . . . , �vM,��] is then sent
by each node to the fusion center using M log2 Q = C bits
in one transmission. On the other hand, for the second vector
we let, for all i ∈ [M ]

�I(i)� =
L∑

�=1

�vi,��. (46)

Since �vi,�� lies in the interval [0, maxi I(i)] and
∑L

�=1 vi,� =
I(i), then �I(i)� also corresponds to a quantization level of
the interval [0, maxi I(i)] when this is uniformly divided into
Q sub-intervals. It follows that the fusion center can send the
vector �I� to each node using C bits in one transmission.

Upon reception of �I� from the fusion center, every node �
computes a vector ρ� = [ρ1,�, . . . , ρM,�], where for all i ∈ [M ]

ρi,� =
vi,�∑L

�̃=1�vi,�̃�
=

vi,�

�I(i)� , (47)

and uses it in the test phase for the determination of the
threshold in (8). In the test phase, each local preference can be
communicated using log2 M bits and in the stopping phase,
the halting message can be communicated using a single bit.

2) CCT With Quantized Messages: In the initialization
phase, we need to send zn

� and În
� over the channel at

each transmission using C bits. Since the initialization phase
terminates when zn

� > L + 1 (see Algorithm 1), it follows
that at most log2(L + 2) bits are needed to communicate zn

� .
The remaining C̃ = C − log2(L + 2) bits can then used to
communicate the vector În

� . Similar to DCT, we divide the
interval [0, maxi I(i)] uniformly into Q̃ = 2C̃/M sub-intervals
so that the difference between any two adjacent quantization
levels is

Δ
(

max
i

I(i), Q̃
)

=
maxi I(i)

Q̃
. (48)

We let the initial estimate Î0
� = [�v1,��, . . . , �vM,��], where

�vi,�� is the nearest lower value among the Q̃ quantization
levels representing vi,�. The consensus protocol is then mod-
ified as follows

În+1
� =

⌊
w�,�Î

n
� +

∑
j∈N�

w�,j Î
n
j

⌋
. (49)

It follows that every node � performs a convex combination
of the quantized self-estimate În

� and the quantized estimates
{În

j }j∈N�
from its neighbors and the updated estimate În+1

� is
a quantized version of this convex combination. The stopping
rule of the initialization phase remains the same as stated
in Algorithm 1. In the following phases, we let �Î�� =
[�Î�(1)�, . . . , �Î�(M)�] denote the estimate of the vector I
using (49) at node � at the end of the initialization phase.

In the test phase of CCT, the SCT is performed locally using
the result of the consensus algorithm to select the threshold,
namely γ = ρ̂i∗n,�| log c| and ρ̂i∗n,� = vi∗n,�/�Î�(i∗n)�. Finally,
in the stopping phase of CCT, presented in Algorithm 3,
the variable dn

� and the local decision Ĥn
� are communicated

over the channel. Since the stopping phase terminates when
dn

� > L+1, no more than log2(L+2) bits are needed to com-
municate dn

� . The local preference Ĥn
� can be communicated

by log2 M bits.

B. Performance Analysis for Channels With Quantized
Messages

In this section, we extend the results in Theorem 3 and
Theorem 6 to channels with quantized messages.

Theorem 8 (Direct): Letting

f(Q) =
L maxi I(i)

Q
, (50)

and assuming C is sufficiently large such that for all i ∈ [M ],
we have f(Q) < I(i), the following statements hold for DCT:
(i) For all c ∈ (0, 1) and i ∈ [M ], the probability that the DCT
takes an incorrect decision is

P
D
i (Ĥ �= hi) ≤ min{(M − 1)c, 1}. (51)

(ii) For all � ∈ [L], i, j ∈ [M ] and u ∈ S,
if E

[
log pu

i,�(Y )/pu
j,�(Y )

]2
< ∞, then the expected decision

time is

E
D
i [N ] ≤ (1 + o(1))

|log c|
I(i)− f(Q)

, as c→ 0. (52)

(iii) Combining (i) and (ii), the risk defined in (1) is

R
D
i ≤ (1 + o(1))

c |log c|
I(i)− f(Q)

, as c→ 0. (53)

(iv) For all � ∈ [L], i, j ∈ [M ], u ∈ S and all integers r ≥ 2,
if E

[|log pu
i,�(Y )/pu

j,�(Y )|r+1
]

<∞, then the rth moment of
the decision time N is

E
D
i [N r] ≤

(
(1 + o(1))

c |log c|
I(i)− f(Q)

)r

, as c→ 0. (54)

By Theorem 8, it follows that the performance of DCT
depends on the number of quantization levels through the
function f(Q). As Q → ∞, we have that f(Q)→ 0 and the
results of Theorem 3 are recovered. As Q→∞, real numbers
can be communicated perfectly over the channels, hence DCT
incurs no loss of asymptotic performance. We can then view
f(Q) as quantifying the loss in the performance of DCT due to
quantization. This is also evident by combining (45) and (46),
which show that the quantization error |I(i) − �I(i)�| is at
most f(Q). By assuming that f(Q) < I(i), our theorem
statement ensures that this quantization error is smaller than
I(i). Since Q = 2C/M , this constraint can be satisfied by
having C sufficiently large.

Next, we consider the CCT case. We make the following
assumptions that are commonly adopted in the literature of
consensus over channels with quantized messages.

Assumption 1 [48, Assumption 1]: The matrix W is doubly
stochastic, namely (12) and (13) holds, with positive diagonal
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entries. In addition, there exists a constant α > 0 such that if
wi,j > 0, then wi,j > α.

The double stochastic assumption on the weight matrix
W guarantees that the average of the sensor values remains
the same at each consensus iteration. The second part of
Assumption 1 ensures that each sensor gives a non-negligible
weight to its values and to the values of its neighbors at each
time.

Assumption 2 [48, Assumption 4]: For all � and i, we have
that vi,� is a multiple of M/Q̃.

The above assumption states that the values of vector Î0
�

are already quantized, namely Î0
� = [�v1,��, . . . , �vM,��] =

[v1,�, . . . , vM,�].
Theorem 9 (Direct): Let

g(Q, c, α) =
L

Q

(
2L2

α
log(min(Q2, L4/c2)max

j
I2(j)) + 1

+ hG
(

− log(dG)
log

(
1− η(WhG )

) + 1

)
+ L + 1

)
. (55)

Assume that C is sufficiently large such that for all i ∈ [M ],
we have g(Q, c, α) < I(i) and C > log2(L + 2) + log2 M ,
and Assumptions 1 and 2 hold. Then, the following statements
hold for CCT:
(i) For all c ∈ (0, 1) and i ∈ [M ], the probability that CCT
takes an incorrect decision is

P
C
i (Ĥ �= hi) ≤ min

{
(M − 1)c

I(i)
I(i)+g(Q̃,c,α) , 1

}
. (56)

(ii) For all � ∈ [L], i, j ∈ [M ] and u ∈ S,
if E

[
log pu

i,�(Y )/pu
j,�(Y )

]2
< ∞, then the expected decision

time is

E
C
i [N ]

≤ (1 + o(1))

(
Q̃g(Q̃, c, α) +

|log c|
I(i)− g(Q̃, c, α)

)
, (57)

as c→ 0.
(iii) Combining (i) and (ii), the risk defined in (1) is

R
C
i

≤ (1 + o(1))

(
Q̃g(Q̃, c, α)

c
+

1
I(i)− g(Q̃, c, α)

)
c |log c|,

(58)

as c→ 0.
(iv) For all � ∈ [L], i, j ∈ [M ], u ∈ S and all integers r ≥ 2,
if E

[|log pu
i,�(Y )/pu

j,�(Y )|r+1
]

<∞, then the rth moment of
the expected decision time is

E
C
i [N r]

≤
(
(1+o(1))

(
Q̃g(Q̃, c, α) +

|log c|
I(i)− g(Q̃, c, α)

))r

, (59)

as c→ 0.
By Theorem 9, it follows that the performance of CCT

depends on the number Q̃ of quantization levels through the
function g(Q̃, c, α). As Q→∞, Q̃→∞ and g(Q̃, c, α)→ 0.
The time required by the initialization phase is given by

Q̃g(Q̃, c, α) = O(| log(c)|) as Q→∞, which is of the same
order as hG | log(c/ maxj∈[L] I(j))|/log

(
1− η(WhG

)
)

=
O(| log(c)|) appearing in Theorem 6. As Q→∞, Theorem 9
recovers the same optimality of CCT expressed by Theorem 7.
In conclusion, g(Q̃, c, α) quantifies, in terms of the relevant
system parameters, the loss in asymptotic performance of CCT
due to quantization. In this case, the error for |I(i)− �Î�(i)�|
is at most g(Q̃, c, α) and our theorem assumes that this error
is smaller than I(i). Since Q̃ = 2C̃/M , this constraint can be
satisfied by having C sufficiently large. The additional capacity
constraint C > log2(L + 2) + log2 M in the statement of
the theorem is due to the transmission of dn

� and the local
preference Ĥn

� .

C. Channels With Quantized Messages and Erasures

In this section, we consider both quantized channels and
ε-random packet erasures, as described in Section III.
We extend our previous results by describing key changes to
both DCT and CCT.

1) DCT With Quantization and Erasures: In the initializa-
tion phase each node � communicates the vector �v�� to the
fusion center using a packet of C bits. The expected time
for successful transmission of the packet is 1/(1 − ε). After
receiving the vector �v�� from all the nodes, the fusion center
communicates the vector �I� = [�I(1)�, . . . , �I(M)�] back to
each node �, which requires an expected time 1/(1 − ε) as
well.

In the test phase, each local preference is communicated
using a packet of log2 M bits to the fusion center, also with
an expected time 1/(1− ε).

The final decision Ĥ at the fusion center is made in favor
of hypothesis hi when the local decisions received from all
the network nodes are in favor of the hypothesis hi. Given the
local decision hi is reached at all the nodes, the expected time
for reaching the final decision Ĥ is 1/(1−ε)L, as it is required
that all the links are simultaneously active. Upon taking the
final decision, the fusion center sends a halting message to
each node �.

2) CCT With Quantization and Erasures: In this case,
at each time step n, we consider the time-varying graph
G(L, E(n)), where E(n) ⊆ E denotes the set of communi-
cation links where a packet can be sent successfully.

In the initialization phase of CCT, since the graph is time-
varying, the weight matrix W = W (n) also varies over time.
This matrix can be expressed as [52]

W (n) = UL×L − βL̄(n), (60)

where β is a design parameter, UL×L is the identity matrix of
dimension L × L, L̄(n) is the L × L dimensional Laplacian
matrix of G(L, E(n)) [52], with entries:

l̄i,j(n)=

⎧⎪⎨
⎪⎩
∑

j′ �=i 1((i, j′) ∈ E(n)) if i = j,

−1 if (i, j) ∈ E(n),
0 otherwise,

(61)

where 1(·) denotes the indicator function. Each node i can
compute locally the values l̄i,j(n), based on whether a packet
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is received from node j at time n. Since l̄i,j(n) = l̄j,i(n),
it follows that W (n) is a symmetric matrix, where [52]

wi,j(n)=

⎧⎪⎨
⎪⎩

1− β
∑

j′ �=i 1((i, j′) ∈ E(n)) if i = j,

β if (i, j) ∈ E(n),
0 otherwise.

(62)

Then, as in (49), node � updates its quantized estimate at time
step n as

În+1
� =

⌊
w�,�(n)În

� +
∑
j∈N�

w�,j(n)În
j

⌋
. (63)

Whenever links are active, the information communicated over
the channels is of the same form as that over channels with
quantized messages. The stopping rule of this phase remains
the same as stated in Algorithm 1. In the following phases,
we let �Îε

� � = [�Îε
� (1)�, . . . , �Îε

� (M)�] denote the estimate of
vector I using (63) at node � at the end of the initialization
phase in this channel model.

In the test phase of CCT, the SCT is performed locally using
the result of the consensus algorithm to select the threshold,
namely γ = ρ̂ε

i∗n,�| log c| and ρ̂ε
i∗n,� = vi∗n,�/�Îε

� (i
∗
n)�.

Finally, in the stopping phase of CCT, presented in
Algorithm 3, the variable dn

� and the local decision Ĥn
� are

communicated over channel by log2(L + 2) + log2 M bits.
Of course, these communications are successful only when the
link between the nodes is active.

D. Performance Analysis for Channels With Quantized
Messages and Erasures

In this section, we extend the results of Theorem 8 and
Theorem 9 to channels with quantized messages and erasures.

Theorem 10: In the presence of channel with quantized
messages and ε-random packet erasures, Theorem 8 holds
unmodified.

Intuitively, the reason why the results of Theorem 8 hold
unmodified is as follows. Link failures only delay the commu-
nication of the quantized information over the channel, which
impacts the decision time. Note that the expected time for
communication of �v�� from all the nodes is at most L/(1−ε),
as is the expected time to communicate the response vector
to all the nodes. Given the same local decision is reached
at the nodes, the expected time to reach the final decision
is 1/(1 − ε)L. Likewise, the expected time to communicate
the halting message is L/(1− ε). All these delays introduced
by the ε-erasure channel are finite and independent of c, and
are embodied in the terms o(1) appearing in the statement of
Theorem 10.

Next, we give a lemma needed to provide the performance
guarantees of CCT.

Lemma 11: For all n and 0 < β < 1/(2|E|), the following
holds:
(i) W (n) is a doubly stochastic matrix, namely (12) and (13)
holds.
(ii) For all i, j ∈ [L], if wi,j(n) > 0, then wi,j(n) >
min (1−D(G)β, β), where D(G) = maxs

∑
j �=s 1((j, s) ∈

E) is the maximum node degree in the graph G(V , E).

(iii) The spectral radius verifies

R

(
W (n)− 1L×111×L

L

)
< 1. (64)

Theorem 12 (Direct): Let ε < 1/|E|,

h(Q, c, α, ε) =
g(Q, c, α)(2− |E|ε)

(1− |E|ε)2 , (65)

q(Q, c, α, ε) =
Qg(Q, c, α)
L(2− |E|ε) , (66)

and 0 < β < 1/(2|E|). Assume that C is suf-
ficiently large such that for all i ∈ [M ], we have
h(Q̃, c, min (1 −D(G)β, β), ε) < I(i) and C > log2(L +
2) + log2 M , and Assumption 2 holds. Then the following
statements hold for CCT:
(i) For all c ∈ (0,

√
(1− |E|ε)/2) and i ∈ [M ], the probability

that CCT takes an incorrect decision is

P
C
i (Ĥ �= hi)

≤ min{(M − 1)(1− exp(−2q(Q̃, c, min (1−D(G)β, β), ε))

cI(i)/(I(i)+h(Q̃,c,min (1−D(G)β,β),ε))

+ exp(−2 q(Q̃, c, min (1 −D(G)β, β), ε), 1}. (67)

(ii) For all � ∈ [L], i, j ∈ [M ] and u ∈ S,
if E

[
log pu

i,�(Y )/pu
j,�(Y )

]2
< ∞, then the expected decision

time is

E
C
i [N

∣∣{�Îε
��}�∈[L]]

≤ (1 + o(1))

(
Q̃h(Q̃, c, min (1−D(G)β, β), ε)

+
|log c|

min�∈[L]�Îε
� (i)�

)
(68)

≤ (1 + o(1))

(
Q̃h(Q̃, c, min (1−D(G)β, β), ε)

+
|log c|

I(i)− h(Q̃, c, min (1 −D(G)β, β), ε)

)
, (69)

with probability at least

1− exp (−2q(Q̃, c, min (1− D(G)β, β), ε)), as c→ 0. (70)

(iii) Combining (i) and (ii), the risk is

R
C
i ≤(1 + o(1))

(
Q̃h(Q̃, c, min (1−D(G)β, β), ε)

c
(71)

+
1

I(i)− h(Q̃, c, min (1−D(G)β, β), ε)

)
c|log c|,

(72)

with probability at least

1− exp (−2q(Q̃, c, min (1−D(G)β, β), ε)), as c→ 0. (73)

(iv) For all � ∈ [L], i, j ∈ [M ], u ∈ S and all integers r ≥ 2,
if E

[|log pu
i,�(Y )/pu

j,�(Y )|r+1
]

<∞, then the rth moment of
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the expected decision time is

E
C
i [N r

∣∣{�Îε
� �}�∈[L]]

≤
(
(1 + o(1))

(
Q̃h(Q̃, c, min (1−D(G)β, β), ε)

+
|log c|

I(i)− h(Q̃, c, min (1−D(G)β, β), ε)

))r

, (74)

with probability at least

1− exp (−2q(Q̃, c, min (1−D(G)β, β), ε)), as c→ 0. (75)

We point out that when estimating the vector �Îε
�� in

the initialization phase of CCT, the ε-random erasure model
introduces additional randomness. For this reason, (68) repre-
sents the conditional expected decision time given {�Îε

��}�∈[L].
To obtain (69), we use the fact that for all � ∈ [L], we have
that the random variable

�Îε
� (i)� ∈ [I(i)− h(Q̃, c, min (1−D(G)β, β), ε),

I(i) + h(Q̃, c, min (1 −D(G)β, β), ε)], (76)

with probability at least

1− exp (−2q(Q̃, c, min (1−D(G)β, β), ε)), (77)

shown in (161) in Appendix B-J.
In Theorem 12, the performance guarantees are

provided with high probability, and this probability
depends on the number of quantization levels and on
the packet erasures through q(Q̃, c, min (1−D(G)β, β), ε).
As c → 0 and Q → ∞ (in arbitrary order), we have that
q(Q̃, c, min (1−D(G)β, β), ε) → ∞ and 1 − exp(−2q(Q̃, c,
min (1−D(G)β, β), ε)) converges to one. Additionally,
the performance of CCT also depends on h(Q̃, c,
min (1−D(G)β, β), ε). As Q→∞, we have g(Q̃, c, α)→ 0,
which implies h(Q̃, c, min (1−D(G)β, β), ε) → 0. Finally,
the time required to complete the initialization phase is
given by Q̃h(Q̃, c, min (1−D(G)β, β), ε) = O(| log(c)|) as
Q→∞.

As Q → ∞, Theorem 12 recovers the same
optimality of CCT expressed in Theorem 7. The quantity
h(Q̃, c, min (1−D(G)β, β), ε) quantifies the loss in perfor-
mance of CCT due to both quantization and random packet
erasures. In this case, since �Îε

� � is a random variable, the error
for |I(i)− �Îε

� (i)�| is at most h(Q̃, c, min (1−D(G)β, β), ε)
with high probability, and our theorem assumes that this error
is smaller than I(i). Since Q̃ = 2C̃/M , this constraint can be
satisfied by having C sufficiently large. The additional capacity
constraint C > log2(L + 2) + log2 M in the statement of
the theorem is due to the transmission of dn

� and the local
preference Ĥn

� .

X. SUMMARY

Networked sensor systems are becoming increasingly
popular for inference problems due to their improved robuste-
ness, scalability, versatility, and performance. Initial imple-
mentations were based on inexpensive small sensors, with
extremely limited hardware/software capabilities. Progres-
sively, these devices acquired more and more functionalities,

and are nowadays capable of active sensing, namely they can
adapt the probing signal on the basis of previous measure-
ments, in order to optimize their sensing capability. Thus,
individual sensors have become intelligent devices which
continuously learn from the past and can decide their future
actions, in a closed-loop adaptive scheme.

We considered two network configurations of these
“intelligent” sensors: a star network configuration with a
fusion center, and a general network configuration that is
fully distributed. In the first configuration, the fusion center
coordinates the actions of the remote nodes, and takes the final
decision. The second configuration does not have a central
coordination, and all the processing takes place at the nodes:
they actively collect measurements, exchange information with
immediate neighbors, and collectively take a decision.

For the first configuration we proposed a sequential adaptive
decision system — referred to as DCT — which operates
in three phases. First, there is a round of communication
between the fusion center and the remote nodes, needed
to define the relative capability of each node to detect the
hypotheses. This capability is then used to divide the decision
task among the nodes. Each node begins to continuously sense
the environment, and makes the central entity aware about
decisions that are locally believed to be sufficiently reliable.
The final decision is taken by the fusion center on the basis
of these local suggestions about the true hypothesis.

We provided a theoretical analysis of detection performance
and expected time to reach a decision. We show that the test
is asymptotically optimal in terms of detection performance
(risk), as the observation cost per unit time tends to zero.

For the second configuration, we exploit ideas from the
DCT implementation, combined with gossip protocols that use
consensus techniques, to design a fully distributed adaptive
sequential decision system, which is referred to as CCT. Our
approach is markedly different from those usually exploited in
the literature, where real-valued belief vectors are continuously
exchanged over the network to reach consensus.

Our CCT works in three phases. In the first phase, a consen-
sus about the relative capability of the nodes to detect the state
of nature is achieved by means of gossip protocols with local
information exchange. In the second phase, nodes implement
the Chernoff test and, once all the network nodes reach their
preference, the final decision is reached in a distributed way in
the third phase of operation, by diffusing messages across the
network that percolate the information of whether the other
sensors have terminated their share of task. We prove the
asymptotic optimality of CCT, up to a multiplicative factor
in terms of both risk and higher moments of the decision
time.

APPENDIX A
PROOF OF THEOREM2

Proof: Let H∗ = hi be the true hypothesis. The proof
of Theorem 2 consists of two parts. First, for all 0 < ε < 1,
we show that for the probability of error to be close to zero,
the log-likelihood ratio between hi and all hm �= hi, should
be greater than −(1− ε) log c with high probability as c→ 0.
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Namely, the inequality

SN(hi, hm) =
L∑

�=1

N∑
k=1

log
p

uk,�

i,� (yk,�)

p
uk,�

m,� (yk,�)
≥ −(1−ε) log c, (78)

must hold with high probability, as c → 0. Second, we show
that for all 0 < ε < 1 and n < −(1 − ε) log c/I(i), it is
unlikely that such inequality is satisfied for some hypothesis
hm �= hi.

We start by defining two sets of hypotheses H′
0 = {hi}

and H′
1 = {hm}m �=i. By (22), both type I and type II error

probabilities of the hypothesis test H′
0 vs. H′

1 are O(−c log c).
Thus, by [16, Lemma 4], for all hypotheses hm �= hi and
0 < ε < 1, we have

Pi

(
SN (hi, hm) ≤ −(1− ε) log c

)
= O(−cε log c). (79)

Therefore, as c→ 0, the probability in (79) tends to 0, which
concludes the first part of the proof.
Now, we show that for all ε > 0, we have

lim
n′→∞

Pi

(
max

1≤n≤n′
min
m �=i

Sn(hi, hm) ≥ n′(I(i) + ε)
)

= 0.

(80)

We have

Sn(hi, hm) =
L∑

�=1

n∑
k=1

(
log

p
uk,�

i,� (yk,�)

p
uk,�

m,� (yk,�)

−D(puk,�

i,� ||puk,�

m,� )

)

+
L∑

�=1

n∑
k=1

D(puk,�

i,� ||puk,�

m,� )

= Mn
1 + Mn

2 , (81)

where

Mn
1 =

L∑
�=1

n∑
k=1

(
log

p
uk,�

i,� (yk,�)

p
uk,�

m,� (yk,�)
−D(puk,�

i,� ||puk,�

m,� )

)
, (82)

is a martingale with mean 0, and

Mn
2 =

L∑
�=1

n∑
k=1

D(puk,�

i,� ||puk,�

m,� ). (83)

Then, for all 1 ≤ n ≤ n′, we have

min
m �=i

Mn
2 = min

m �=i

L∑
�=1

n∑
k=1

D(puk,�

i,� ||puk,�

m,� )

(a)

≤
L∑

�=1

n∑
k=1

vi,�

(b)
= nI(i)
(c)

≤ n′I(i), (84)

where (a) follows from the definition of vi,� in (5), (b) follows
from the definition of I(i) in (6), and (c) follows from n ≤ n′.

Now, using (84), if the event in (80) occurs for a fixed n1,
namely

min
m �=i

(Mn1
1 + Mn1

2 ) ≥ n′(I(i) + ε
)
, (85)

then there exists a hypothesis hm such that Mn1
1 ≥ n′ε. Thus,

there exists a constant K ′ > 0 such that the probability in (80)
becomes

Pi

(
max

1≤n≤n′
min
m �=i

Sn(hi, hm) ≥ n′(I(i) + ε)
)

≤
∑
m �=i

Pi

(
max

1≤n≤n′
Mn

1 ≥ n′ε
)

(a)

≤ (M − 1)K ′

n′ε2
, (86)

where (a) follows from the fact Mn
1 is a martingale with

mean zero and using the Doob-Kolmogorov extension of
Chebyshev’s inequality [68]. Thus, (80) follows. As discussed
in [16, Theorem 2], for n0 = −(1 − ε) log c/(I(i) + ε), we
have

Pi(N ≤ n0)

≤ Pi

(
N ≤ n0 and ∀m �= i :

SN (hi, hm) ≥ n0(I(i) + ε)
)

+ Pi

(
∃m �= i : SN(hi, hm) ≤ n0(I(i) + ε)

)
≤ Pi

(
max

1≤n≤n0
min
m �=i

Sn(hi, hm) ≥ n0(I(i) + ε)
)

+ Pi

(
∃m �= i : SN(hi, hm) ≤ n0(I(i) + ε)

)
. (87)

The first and the second terms at the right-hand side of (87)
approach zero by (80) and (79) respectively. Now, using (87),
we also have

Pi(N r ≤ nr
0) = Pi(N ≤ n0)→ 0, (88)

as c → 0. (23) follows upon observing that as c → 0,
Ei[N r] ≥ nr

0 which is

Ei[N r] ≥
(

(1 + o(1))
|log c|
I(i)

)r

.

The proof of (24) is straightforward.

APPENDIX B
PROOFS FOR DCT AND CCT

A. Proof of Theorem 3

Proof: To prove Theorem 3, we need some additional
notation. Let An,j be the set of sample paths where the
decision made by the fusion center is in favor of hj at
the nth step, and we indicate a single sample path as
{(un

1 , yn
1 ) . . . (un

L, yn
L)}. We indicate by An,j,� the set of

sample paths in An,j corresponding to the �th node. Finally,
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we define

Ni,�

=inf

{
n:log

P(H∗ = hi∗n,|yn+1
� , un+1

� )
maxj �=i∗n P(H∗ = hj |yn+1

� , un+1
� )

≥ ρi,� |log c|
}

= inf

{
n :

n∑
k=1

log
p

uk,�

i,� (yk,�)

maxj �=i p
uk,�

j,� (yk,�)
≥ ρi,� |log c|

}
.

The proof consists of two parts. First, we write P
D
i (Ĥ �= hi)

as the probability of a countable union of disjoint sets of
sample paths. An upper bound on this probability then follows
from an upper bound on the probability of these disjoint sets,
in conjunction with the union bound. Second, we upper bound
E
D
i [N ] by the sum of the expected time required to reach the

threshold in (8) at node � for H∗ = hi, and the expected
delay between the time of reaching the threshold and the time
when the final decision is taken in favor of hypothesis hi at
the fusion center. We then show that these expectations are
the same at all the nodes, so that (26) follows.

Consider the probability P
D
i (Ĥ = hj). This is the same as

the probability of the countable union of disjoint sets An,j .
Thus, for all j �= i, we have

P
D
i (An,j)

=
∫

An,j

L∏
�=1

n∏
k=1

p
uk,�

i,� (yk,�) dy1,�(u1,�) . . . dyn,�(un,�)

(a)
=

L∏
�=1

∫
An,j,�

n∏
k=1

p
uk,�

i,� (yk,�) dy1,�(u1,�)..... dyn,�(un,�)

(b)

≤
L∏

�=1

∫
An,j,�

cρj,�

n∏
k=1

p
uk,�

j,� (yk,�) dy1,�(u1,�) . . . dyn,�(un,�)

(c)
= c

L∏
�=1

∫
An,j,�

n∏
k=1

p
uk,�

j,� (yk,�) dy1,�(u1,�) . . . dyn,�(un,�)

= c

L∏
�=1

P
D
j (Ĥ = hj at sample n at �th sensor)

= c P
D
j (Ĥ = hj at sample n), (89)

where (a) follows from the definition of An,j,�; (b) follows
from the definition of Ni,�; (c) follows from

∑L
�=1 ρj,� = 1.

Now, we can bound P
D
i (Ĥ �= hi) as follows

P
D
i (Ĥ �= hi) =

∑
j �=i

P
D
i (Ĥ = hj) =

∑
j �=i

∞∑
n=1

P
D
i (An,j)

≤
∑
j �=i

∞∑
n=1

c P
D
j (Ĥ = hj at sample n)

=
∑
j �=i

c P
D
j (Ĥ = hj) ≤ c (M − 1), (90)

where the first inequality follows from (89). This proves
part (i) of the theorem.

Let us now define

τ(Ni,�) = sup
{

n :
Ni,�+n∑

k=Ni,�+1

log
p

uk,�

i,� (yk,�)

maxj �=i p
uk,�

j,� (yk,�)
< 0

}
.

The condition in (4) is satisfied for threshold in (8) at the �th

node for all n > Ni,� + τ(Ni,�), yielding

N ≤ max
1≤�≤L

(Ni,� + τ(Ni,�) + 3(M + 1))

≤ max
1≤�≤L

Ni,� +
L∑

�=1

τ(Ni,�) + 3(M + 1), (91)

where if C ≥ M , then three time steps are needed to
communicate v�, I and the halting message; otherwise at
most 3(M + 1) time steps are needed to communicate this
information.

Taking the expectation of both sides, we have

E
D
i [N ] ≤ Ei

[
max

1≤�≤L
Ni,�

]
+

L∑
�=1

Ei[τ(Ni,�)]+3(M+1). (92)

We now bound the terms on the right-hand side of (92).
Since each node performs the Chernoff test individually, for
all � ∈ [L] and i ∈ [M ], there exist two constants Ki,� > 0 and
bi,� > 0 such that for all ε > 0 and n ≥ (1 + ε)|log(c)|/I(i),
we have [16, Lemma 2]

Pi(Ni,� ≥ n) ≤ Ki,�e
−bi,�n. (93)

Thus, we have

Ei[Ni,�] = (1 + o(1))
|log c|
I(i)

, (94)

which is independent of �. Using (93), for all ε > 0 and
n ≥ (1 + ε)|log(c)|/I(i), we also have that

Pi

(
max

1≤�≤L
Ni,� ≥ n

)
≤

L∑
�=1

Pi(Ni,� ≥ n)

≤ LKie
−bin, (95)

where Ki = max� Ki,� and bi = min� bi,�. For all r ≥ 1,
we have the bound on the rth moment of max1≤�≤L Ni,� ,i.e.

Ei

[(
max

1≤�≤L
Ni,�

)r
]
≤

(
(1 + o(1))

|log c|
I(i)

)r

. (96)

Now, we bound the higher moments of τ(Ni,�). Let N∗ be
the time instance such that for all n ≥ N∗, the local decision
Ĥ� at node � is h∗, i.e., Ĥ� = h∗. Using [16, Lemma 1], there
exists K > 0 and b > 0 such that

Pi(N∗ ≥ n) ≤ k exp (−bn), (97)

which implies Pi(N∗ < ∞) = 1. Then, node � following
time N∗ selects the actions in an i.i.d. fashion according to
the probability mass function given by (3).

Let Gn,� be the joint cumulative distribution function of the
variables (yn,�, un,�) at round n and node � for the Chernoff
test. Also, let F� be the joint cumulative distribution function
of (yn,�, un,�) under the true hypothesis h∗ when the actions
are selected according to Q�

h∗ (see (3)) at each round at
sensor �. Then, for all n > N∗, we have Gn,� = F�. Since
Pi(N∗ < ∞) = 1, it follows that the distribution Gn,�

converges to F�.
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Given that for all n, (yn, un) ∼ F� are i.i.d. random
variables, we have that

Ei

[
log(pui,�

i,� (yk,�)/max
j �=i

p
ui,�

j,� (yk,�))
]

= vi,� > 0. (98)

Additionally, using (98), finiteness of the r + 1st moment
of log-likelihood ratio for r ≥ 1, and by Corollary 14.1,
Lemma 15 and (194) in Appendix C, we have that

Ei[τ(Ni,�))r ] <∞, (99)

where the expectation is with respect to F�.
We now note that (99) also holds when the expectation

is with respect to Gn,�. To show this claim, first observe
that Ei[τ(Ni,�))r] is upper bounded by the two terms at
the right-hand side of (174) in Corollary 14.1. The first
term is bounded, since the KL-divergence between any two
probability measures is finite. The second term can be split
into two summations, one for 1 ≤ n ≤ N∗, and the other for
n ≥ N∗ + 1. The first summation is finite since N∗ < ∞
a.s., and the probability is at most one. By using Lemma 15
in Appendix C and Gn,� = F�, the second summation is also
finite. It follows that (99) holds for the SCT.

Since E[log(pui,�

i,� (yk,�)/maxj �=i p
ui,�

j,� (yk,�))]2 is finite,
using (99), the term Ei[τ(Ni,�)] on the right-hand side
of (92) is finite and independent of c. Now, combining
equation (92), (96) and the finiteness of Ei[τ(Ni,�)],
as c → 0, we get (26). Thus, part (ii) of the theorem is
proved.

Now,

E
D
i [N r] ≤ Ei

[(
max

1≤�≤L
Ni,� +

∑
�∈[L]

τ(Ni,�) + 1
)r]

. (100)

The moments of
∑

�∈[L] τ(Ni,�) are finite and independent
of c. Hence, the dominant term, dependent on c, in the
expansion of the right-hand side of (100) is given only by
max1≤�≤L Ni,�. Using (99) and (96), it follows that as c→ 0,
we have

E
D
i [N r] ≤

(
(1 + o(1))

|log c|
I(i)

)r

, (101)

which proves part (iv) of the theorem.

B. Proof of Theorem 4

Proof: Combining Theorems 2 and 3, we have that (29),
(30) and (31) follow immediately. We then turn to the proof
of (32).

For all � ∈ [L], given that hypothesis hi is true, we have
that as c → 0, the probability of incorrect detection tends to
zero. It follows that Ĥ = hi and

E
D
i [N ] = (1 + o(1))

|log c|
I(i)

= E
D
i [Ni,�], (102)

where the last equality follows from (94). Thus, as c → 0,
all the nodes reach the same local decision, on average, at the
same time, and the average number of messages that each
node sends to the fusion center to communicate this local

decision is one. It follows that, as c → 0, the total expected
communication overhead is four: two in the initialization
phase, one to communicate the local decision, and one to
receive the halting message.

C. Proof of Theorem 6

Proof: Let Bn,j be the set of sample paths where the
final decision Ĥ is initiated in favor of hj at the nth step, and
we indicate a single sample path as {(un

1 , yn
1 ) . . . (un

L, yn
L)}.

We indicate by Bn,j,� the set of sample paths in Bn,j cor-
responding to the �th node. N c denotes the time taken to
terminate the initialization phase of CCT. Now, we define the
two times associated with the test phase of CCT:

Ti,�

=inf

{
n:log

P(H∗ = hi∗n,|yn+1
� , un+1

� )
maxj �=i∗n P(H∗=hj |yn+1

� , un+1
� )

≥ρ̂
(Nc)
i,� |log c|

}

= inf

{
n :

n∑
k=1

log
p

uk,�

i,� (yk,�)

maxj �=i p
uk,�

j,� (yk,�)
≥ ρ̂

(Nc)
i,� |log c|

}
,

and

τ(Ti,�) = sup
{
n :

Ti,�+n∑
k=Ti,�+1

log
p

uk,�

i,� (yk,�)

maxj �=i p
uk,�

j,� (yk,�)
< 0

}
.

The proof consists of two parts. First, we write P
C
i (Ĥ �= hi)

as the probability of a countable union of disjoint sets of
sample paths. An upper bound on this probability then follows
from an upper bound on the probability of these disjoint
sets, in conjunction with the union bound. Second, E

C
i [N ]

is dependent on the time required to reach and detect the
consensus during the initialization phase, the time required
to reach the threshold in (19) in the test phase, and the time
required to reach and detect that the nodes have reached a
common preference about a hypothesis in the stopping phase.
The stopping time N can be bounded as

N ≤ N c + max
1≤�≤L

(Ti,� + τ(Ti,�)) + Ns, (103)

where Ns is the time taken to detect the common preference
about the hypothesis in the stopping phase of CCT.

Consider the probability P
C
i (Ĥ = hj). This is the same as

the probability of the countable union of disjoint sets Bn,j .
Thus, for j �= i, we can write

P
C
i (Bn,j)

=
∫

Bn,j

L∏
�=1

n∏
k=1

p
uk,�

i,� (yk,�) dy1,�(u1,�) . . . dyn,�(un,�)

(a)
=

L∏
�=1

∫
Bn,j,�

n∏
k=1

p
uk,�

i,� (yk,�) dy1,�(u1,�)..... dyn,�(un,�)

(b)

≤
L∏

�=1

∫
Bn,j,�

cρ̂
(n)
j,�

n∏
k=1

p
uk,�

j,� (yk,�) dy1,�(u1,�) . . . dyn,�(un,�)

(c)

≤ cI(i)/(I(i)+c)
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L∏
�=1

∫
Bn,j,�

n∏
k=1

p
uk,�

j,� (yk,�) dy1,�(u1,�) . . . dyn,�(un,�)

= cI(i)/(I(i)+c)
L∏

�=1

P
C
j (Ĥ = hj at sample n at �th sensor)

= cI(i)/(I(i)+c)
P
C
j (Ĥ = hj at sample n), (104)

where (a) follows from the definition of Bn,j,�; (b) follows
from the definition of Ti,�; (c) follows from the facts that using
Theorem 1 and (18), we have

I(i)/(I(i) + c) ≤
L∑

�=1

ρ̂
(n)
j,� ≤ I(i)/(I(i)− c), (105)

and c < 1. Now, we can bound P
C
i (Ĥ �= hi) as follows

P
C
i (Ĥ �= hi) =

∑
j �=i

P
C
i (Ĥ = hj) =

∑
j �=i

∞∑
n=1

P
C
i (Bn,j)

≤
∑
j �=i

∞∑
n=1

cI(i)/(I(i)+c)
P
C
j (Ĥ = hj at sample n)

= cI(i)/(I(i)+c) (M − 1), (106)

where the inequality in the chain follows by (104). This proves
part (i) of the theorem.

Let us bound the time N c required to terminate the
initialization phase. Since matrix W in (10) is row stochastic
using (13) and the graph G(N , E) is connected, the ergodic
coefficient η(W ) ∈ (0, 1) using Lemma 5. It follows from [63]
that for all k, n ∈ N and �, j ∈ [L], we have

ek+n
�,j �

(
1− η(Wn)

)
ek

�,j, (107)

where ek
�,j = |Îk

� − Îk
j |. Now, if the initialization phase

reaches uniformly local c-consensus at time instance k0, then
using (18), for all �, j ∈ [L], we have

ek0
�,j � c11×M . (108)

Thus, there exists k′ ∈ N such that hGk′ ≤ k0 ≤ hG(k′ + 1).
Using (107), for all �, j ∈ [L], we have

ek0
�,j � ehGk′

�,j

(a)

�
(
1− η

(
WhG))k′

e0
�,j

(b)

�
(
1− η

(
WhG))k′

I, (109)

where (a) follows from ÎhGk′
= WhG

ÎhG(k′−1) and Lemma 5,
and (b) follows from the fact that for all �, j ∈ [L], we have
e0

�,j � I . Since for all �, j ∈ [L], we have ek0
�,j � c11×M ,

using (109), we have

(
1− η(WhG

)
)k′

I � c, (110)

and

k
′ ≤ log(c/ maxj∈[L] I(j))

log
(
1− η(WhG )

) . (111)

Since k0 ≤ hG(k′ + 1), we have

k0 ≤ hG
(

log(c/ maxj∈[L] I(j))
log

(
1− η(WhG )

) + 1

)
. (112)

Now, let kd be the time to detect the local c-consensus.
From [62], we have

kd ≤ hG
(

− log(dG)
log

(
1− η(WhG )

) + 1

)
+ L + 1. (113)

Now, the time N c for initialization phase is bounded as follows

N c ≤ k0 + kd

≤ hG
(

log(c/ maxj∈[L] I(j))
log

(
1− η(WhG )

) + 1

)

+ hG
(

− log(dG)
log

(
1− η(WhG )

) + 1

)
+ L + 1. (114)

The expected time of the test phase of CCT is bounded
above by Ei [max1≤�≤L(Ti,� + τ(Ti,�))]. Combining (96),
(99), and the fact that |Î�(i) − I(i)| ≤ c using Theorem 1
and (18), as c→ 0, we have

Ei

[
max

1≤�≤L
(Ti,� + τ(Ti,�))

]
≤ (1 + o(1))

|log c|
I(i)− c

. (115)

Now, we compute the time for the decision phase of
CCT. The network will reach the final decision for all n >
max1≤�≤L τ(Ti,�) + kr, where kr is the time taken by the
termination message m

(3)
t to reach every node after its initia-

tion at any node. Thus, the time Ns of the decision phase is
bounded above as

Ns ≤ max
1≤�≤L

τ(Ti,�) + kr.

Therefore, we have

Ei[Ns] ≤
L∑

�=1

Ei[τ(Ni,�)] + Ei[kr]. (116)

Using (99), the term Ei[τ(Ti,�)] at the right-hand side of (116)
is finite and independent of c. Additionally, kr < dG+1. Thus,
Ei[Ns] is finite and independent of c.

Combining equations (114), (115), and the finiteness of
Ei[Ns], we get that (36) holds as c → 0, proving part (ii)
of the theorem.

Now we derive the bounds for the higher moments of the
decision time N . We have

N ≤ N c + max
1≤�≤L

(Ti,� + τ(Ti,�)) + Ns

≤ N c + max
1≤�≤L

(Ti,�) + 2 max
1≤�≤L

τ(Ti,�) + kr

≤ N c + max
1≤�≤L

(Ti,�) + 2
∑
�∈[L]

τ(Ti,�) + kr. (117)

Now, we present the bound on the rth moment of each term
in the right-hand side of (117). Using (114), N c is bounded
above by a constant. As c→ 0, we have

(N c)r ≤
(

(1 + o(1))
hG log(c/ maxj∈[L] I(j))

log(1− η(WhG )

)r

. (118)
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Using (96) and the fact that |Î�(i)− I(i)| ≤ c, we have

Ei

[
max

1≤�≤L
T r

i,�

]
=

(
(1 + o(1))

|log c|
I(i)− c

)r

. (119)

Using (99), the higher moments of the third term in the
right-hand side of (117) are finite and independent of c by
definition of τ(Ti,�). Additionally, kr ≤ L + 1 <∞. Now,

E
C
i [N r] ≤ Ei

[
N c + max

1≤�≤L
(Ti,�) + 2

∑
�∈[L]

τ(Ti,�) + kr

]r

.

(120)
The moments of

∑
�∈[L] τ(Ti,�) + kr are finite and inde-

pendent of c. The dominant terms, dependent on c, in the
expansion of the right-hand side of (120) depend only on
N c + max1≤�≤L(Ti,�). Therefore, as c→ 0, we have

E
C
i [N r]

≤
(

(1 + o(1))

(
hG log(c/ maxj∈[L] I(j))

log(1− η(WhG ))
+
|log c|

I(i)− c

))r

,

(121)

which proves part (iv) of the theorem.

D. Proof of Theorem 7

Proof: Combining Theorems 2 and 6, we have (39), (40)
and (41) follow immediately.

E. Decision Phase of CCT

Lemma 13: If dN
� > L +1, then there exists a time k ≤ N

at which the local decision of all the nodes are the same,
i.e., minj∈[L] x

k
j ≥ 1. This decision is the same as the local

decision ĤN
� of node � at time N .

Proof: At time N and node �, if dN
� > L+1, then for all

k ∈ N�, we have dN−1
k > L and xN−2

k ≥ L. If the shortest
distance between the node � and j is s�,j , then we have

d
N−s�,j

j > L− s�,j + 1. (122)

Thus, for all j ∈ [L], we have

dN−dG
j > d

N−s�,j

j + s�,j − dG > 1, (123)

since s�,j ≤ dG ≤ L. This implies that for all j ∈ [L], we have

xN−dG−1
j ≥ 1. (124)

Thus, the first statement of the claim follows.
Now, we prove the second statement by contradiction. For

all j ∈ [L], let the decision at time N−dG−1 be ĤN−dG−1
j =

h′ which is different from ĤN
� . At sensor �, let the decision

change from h′ to ĤN
� at time n. Then,

N − dG − 1 < n ≤ N. (125)

Therefore, xn
� = 1, which implies

dn+1
� ≤ 2. (126)

Now,

dN
� ≤ dn+1

� + N − n− 1

≤ 2 + N − n− 1

< 2 + dG

≤ 2 + L. (127)

However, dN
� ≥ L+2 by the statement of the Lemma. Hence,

by contradiction, we conclude that the second statement of our
claim holds.

F. Proof of Theorem 8

Proof: The proof of the theorem is exactly along the same
lines as the proof of Theorem 3. The key difference lies in the
computation of the constant ρi,�. Due to quantization into Q
sub-intervals, we have

vi,� −Δ(max
i

I(i), Q) ≤ �vi,�� ≤ vi,�, (128)

which implies

vi,� − f(Q)/L ≤ �vi,�� ≤ vi,�. (129)

Using (129), we have that �I(i)� is

I(i)− f(Q) ≤ �I(i)� ≤ I(i), (130)

which implies that ρi,� in (47) verifies

vi,�

I(i)
≤ ρi,� ≤ vi,�

I(i)− f(Q)
. (131)

For part (i), using the lower bound from (131) in (89),
we have

P
D
i (An,j) ≤ c

�
� vi,�/I(i)

P
D
j (Ĥ = hj at sample n)

= c P
D
j (Ĥ = hj at sample n). (132)

Now, the result in part (i) follows similar to (90).
For part (ii), (iii) and (iv), since C > log2 M , the local

decisions can be communicated at each time instance. Using
(130) and the assumption that f(Q) ≤ I(i), for all r ≥ 1,
similar to (96), we have

Ei

[(
max

1≤�≤L
Ni,�

)r
]
≤

(
(1 + o(1))

|log c|
�I(i)�

)r

≤
(

(1 + o(1))
|log c|

I(i)− f(Q)

)r

. (133)

Now, similar to (101), we have

E
D
i [N r] ≤

(
(1 + o(1))

|log c|
I(i)− f(Q)

)r

. (134)

Hence, part (ii), (iii) and (iv) follows.
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G. Proof of Theorem 9

Proof: The proof of the theorem is along the same lines
as Theorem 6. The key difference lies in the computation of
the constant ρ̂i,�.

Firstly, we will upper bound and lower bound ρ̂i,� in terms
of I(i) and g(Q̃, c, α). Since Assumptions 1 and 2 hold, and
the graph G is strongly connected, using [48, Proposition 5],
the time k0 to reach local c-consensus is

k0 ≤ 2
L2

α
log(min(Q̃2, L4/c2)max

j
I2(j)) + 1. (135)

Using C > log2(L + 2) and (113), time kd to detect the
consensus is

kd ≤ hG
(

− log(dG)
log

(
1− η(WhG )

) + 1

)
+ L + 1. (136)

Now, using [48, Proposition 7] and the fact that the average
decreases by at most 1/Q̃ in each iteration of consensus, for
all i ∈ [M ] and � ∈ [L], the error in estimation �Î�(i)� at the
end of initialization phase is at most

|�Î�(i)� − I(i)| ≤ L

Q̃
(k0 + kd),

≤ L

Q̃

(
2
L2

α
log(min(Q̃2, L4/c2)max

j
I2(j)) + 1

)

+
L

Q̃

(
hG

(
− log(dG)

log
(
1− η(WhG )

) + 1

)
+ L + 1

)

= g(Q̃, c, α). (137)

This implies

vi,�

I(i) + g(Q̃, c, α)
≤ ρ̂i,� ≤ vi,�

I(i)− g(Q̃, c, α)
. (138)

Thus, for part (i), using the lower bound from (138)
in (104), we have

P
C
i (Bn,j) ≤ cI(i)/(I(i)+g(Q̃,c,α))

P
C
j (Ĥ = hj at sample n).

(139)

The result in part (i) follows similar to (106).
For part (ii), (iii) and (iv), the time required in the

initialization phase is at most k0+kd and can be bounded using
(135) and (136). For test phase, using (138) and the assumption
that g(Q̃, c, α) < I(i), for all r ≥ 1, similar to (119), we have

Ei

[
max

1≤�≤L
T r

i,�

]
=

(
(1 + o(1))

|log(c)|
min�∈[L] Î�(i)

)r

≤
(

(1 + o(1))
|log(c)|

I(i)− g(Q̃, c, α)

)r

. (140)

For decision phase, since C > log2(L+2)+log2 M , the local
decisions and dn

� can be communicated at each time instance.
Hence, the time Ns of decision phase is finite from Theorem 6.
Similar to (121), the result follows by combining the time for
all the three phases of CCT.

H. Proof of Theorem 10

Proof: For part (i), since the vectors v� and I are
communicated using Q levels of quantization, the proof is
exactly same as that of part (i) in Theorem 8.

For part (ii), (iii) and (iv), the additional delays in compar-
ison to the setting in Theorem 8 are the time to communicate
the vectors �v�� to the fusion center, the time to communicate
vector �I� to the nodes, and time to make a final decision
given the same preferences about the hypothesis are reached
at the nodes. Since each link is active with probability 1− ε,
the expected time to communicate the vectors �v�� and �I� is
at most

2L

1− ε
. (141)

Given that all the local preferences are reached at the nodes,
i.e., n > maxi τ(Ni,�), the probability that all these prefer-
ences are received at the same time instances at the fusion
center is (1 − ε)L, which corresponds to all the links being
active at the same time. The expected decision time following
n > maxi τ(Ni,�) is

1
(1− ε)L

. (142)

Combining the delays in (141) and (142), and the results in
Theorem 8, the statement of the theorem follows.

I. Proof of Lemma 11

Proof: For part (i), for all � ∈ [L], we have

L∑
j=1

w�,j(n) = w�,�(n) +
∑
j �=�

w�,j(n)

= 1− β
∑
j �=�

1((j, �) ∈ E(n))

+ β
∑
j �=�

1((j, �) ∈ E(n))

= 1. (143)

Since wi,j(n) = wj,i(n), we have

L∑
�=1

w�,j(n) = 1. (144)

Hence, W (n) is doubly stochastic.
For part (ii), for all (i, j) ∈ E(n), we have

wi,j(n) ≥ min (β, 1 − β
∑
� �=i

1((i, �) ∈ E(n))). (145)

Thus, for all (i, j) ∈ E(n), we have

wi,j(n) > min (1−D(G)β, β), (146)

where D(G) = maxs

∑
j �=s 1((j, s) ∈ E).

For part (iii), note that the eigenvalues of L̄(n) are
non-negative and recall that the sum of the diagonal elements
of L̄(n) is equal to the sum of the its eigenvalues [69]. Let λ
is an eigenvalue of L̄(n). Then, we have

λ ≤ 2|E|, (147)
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because |E(n)| ≤ |E|. The eigenvalues of W (n) are of the
form 1 − βλ. Since 0 < λ ≤ 2|E|, for all 0 < β < 1/(2|E|),
we have

0 < 1− βλ < 1, (148)

which implies R(W (n)) < 1. To show (64), let λ̄ be an
eigenvalue of W (n) − (1L×111×L)/L and not an eigenvalue
of W (n). We have

det

(
λ̄UL×L −W (n) +

1L×111×L

L

)
(a)
= det(λ̄UL×L−W (n))

(
1+

11×L(λ̄UL×L−W (n))−11L×1

L

)
(b)
= det(λ̄UL×L −W (n))

(
1 +

11×L1L×1

(λ̄ − 1)L

)

=det(λ̄UL×L −W (n))
(

1 +
1

(λ̄− 1)

)
, (149)

where det(·) denotes the determinant of a matrix, (a) follows
from the fact that (λ̄UL×L −W (n)) is non-singular because
λ̄ is not an eigenvalue of W (n), and exploits the matrix
determinant lemma [69], namely if A is a non-singular matrix
of dimension L × L and c and d are column vectors of
dimension L× 1, then

det(A + cdT ) = det(A)(1 + dT A−1c), (150)

(b) follows from the fact that (λ̄UL×L−W (n)) is non-singular
and doubly stochastic, which implies

(λ̄UL×L −W (n))1L×1 = λ̄1L×1 − 1L×1

= (λ̄− 1)1L×1. (151)

Since λ̄ is an eigenvalue of W (n)−(1L×111×L)/L, we have(
1 +

1
(λ̄− 1)

)
= 0, (152)

which implies λ̄ = 0. Combining the facts that λ̄ < 1 and
R(W (n)) < 1, the claim in (iii) follows.

J. Proof of Theorem 12

Proof: The proof of the theorem is along the same lines
as the proof of Theorem 9. The key difference is that, unlike
ρ̂i,�, in this case ρ̂ε

i,� is a random variable, and the randomness
is introduced by the time-varying configuration of the network
due to ε-random packet erasures.

We derive the upper and lower bound on ρ̂ε
i,� with high prob-

ability in terms of I(i) and h(Q̃, c, min (1−D(G)β, β), ε).
First, for all n, we establish that W (n) satisfies Assumption 1.
Second, for all n, we show that the resulting graph G(V , E(n))
is strongly connected with probability at least 1− |E|ε. Using
these two results, similar to Theorem 9, we bound the time to
reach consensus K0 + Kd, which is now a random variable
(see (135) and (136)), and the estimation error (see (137)).
The rest of the proof is similar to that of Theorem 9.

For all n, given an edge e ∈ E , the probability that
e /∈ E(n) is ε since the link failures are independent and
identically distributed across time and independent of other

links. Thus, the probability that the graph G(V , E(n)) is
strongly connected is

P(G(V , E(n)) is strongly connected)
≥ P(For all e ∈ E , we have e ∈ E(n))

≥ (1− ε)|E|

≥ 1− |E|ε. (153)

Since Assumptions 1 and 2 hold, and the graph G(V , E(n))
is strongly connected with probability at least 1− |E|ε, using
Lemma 11, [48, Proposition 5] and (135), the number of time
steps satisfying the property that G(V , E(n)) is strongly con-
nected and that are required to converge to local c-consensus
is at most

2L2 log(min(Q̃2, L4/c2)maxj I2(j))
min (1−D(G)β, β)

+ 1. (154)

This along with (153) implies that E[K0] to reach local
c-consensus is

E[K0]≤ 1
(1−|E|ε)

(
2L2 log(min(Q̃2,L4/c2)maxjI

2(j))
min (1 −D(G)β, β)

+ 1
)
.

(155)

Now, similar to (136), we have that E[Kd] to detect consensus
is

E[Kd]≤ 1
(1 − |E|ε)

(
hG

(
− log(dG)

log
(
1− η(WhG )

)+1

)
+L + 1

)
.

(156)

To obtain the high probability bound on the estimation error
of the vector I , let us introduce a sequence of Bernoulli
i.i.d random variables {Zn}∞n=1 with probability of success
P(Zn = 1) = 1− |E|ε. Then, with probability one, we have

K0 ≤ min
{

n ≥ 1 :
n∑

k=1

Zk >

2 L2 log(min(Q̃2, L4/c2)maxj I2(j))
min (1−D(G)β, β)

+ 1
}

. (157)

Let δ = 1/(1− |E|ε), and

N0=
1

(1− |E|ε)
(

2L2 log(min(Q̃2, L4/c2)maxj I2(j))
min (1− D(G)β, β)

+1
)

.

Using Hoeffding’s inequality [70], we have

P

(
K0 ≥ N0(1 + δ)

)
(a)

≤ P

(N0(1+δ)∑
n=1

Zn≤ 2L2 log(min(Q̃2, L4/c2)maxj I2(j))
min (1−D(G)β, β)

+1
)

=P

(N0(1+δ)∑
n=1

Zn−N0(1 + δ)(1 −|E|ε)≤−N0(1+δ)(1−|E|ε)

2L2 log(min(Q̃2, L4/c2)maxj I2(j))
min (1 −D(G)β, β)

+ 1
)

(b)
= P

(N0(1+δ)∑
n=1

Zn−N0(1 + δ)(1 − |E|ε)≤−N0δ(1 − |E|ε)
)
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≤ exp (−2δ2(1− |E|ε)2 N0(1 + δ)/(1 + δ)2)

= exp (−2δ2(1− |E|ε)2 N0/(1 + δ))
= exp (−2(1− |E|ε)N0/(2− |E|ε)), (158)

where (a) follows from (157), and (b) follows from the
definition of N0.

Similarly, we can show that for δ = 1/(1− |E|ε) and

N ′
0 =

1
(1− |E|ε)

(
hG

( − log(dG)
log

(
1− η(WhG )

) + 1
)

+ L + 1
)

,

we have

P(Kd > N ′
0(1 + δ)) ≤ exp (−2(1− |E|ε)N ′

0/(2− |E|ε)).
(159)

Thus, similar to (137), using (158) and (159), we have that
with probability one, the error in the estimation of �Îε

� (i)� at
the end of initialization phase is

|�Îε
� (i)� − I(i)| ≤ L

Q̃
(K0 + Kd). (160)

This implies that using (158) and (159), we have

|�Îε
� (i)� − I(i)|
≤ L

Q̃
(K0 + Kd)

≤ L(1 + δ)
Q̃(1− |E|ε)

(
2 L2 log(min(Q̃2, L4/c2)maxj I2(j))

min (1 −D(G)β, β)
+ 1

+ hG
(

− log(dG)
log

(
1− η(WhG )

) + 1

)
+ L + 1

)

= g(Q̃, c, min (1−D(G)β, β))(2 − |E|ε)/(1− |E|ε)2
= h(Q̃, c, min (1−D(G)β, β), ε), (161)

with probability at least

1−exp

(
− 2

(2−|E|ε)
2 L2 log(min(Q̃2, L4/c2)maxj I2(j))

min (1−D(G)β, β)

)

exp

(
− 2

(2−|E|ε)
(

hG
(

− log(dG)
log

(
1−η(WhG )

)+ 1

)
+L+2

))

= 1− exp (−2Q̃g(Q̃, c, min (1−D(G)β, β))/L(2− |E|ε))
= 1− exp(−2 q(Q̃, c, min (1−D(G)β, β), ε), (162)

since K0 and Kd are independent.
Now, for part (i), using the lower bound from (161) in (104),

we have P
C
i (Bn,j) is at most

(1− exp(−2 q(Q̃, c, min (1−D(G)β, β), ε))

cI(i)/(I(i)+h(Q̃,c,min(1−D(G)β,β),ε))
P
C
j (Ĥ = hj at samplen)

+ exp(−2 q(Q̃, c, min (1−D(G)β, β), ε)

P
C
j (Ĥ = hj at sample n). (163)

The result in part (i) follows similar to (106).
Consider next parts (ii), (iii) and (iv). For the con-

sensus phase, the expected time E[K0 + Kd] required
is upper bounded by the right-hand sides of (155)
and (156). For the test phase, using the assumption

h(Q̃, c, min (1 −D(G)β, β), ε) < I(i), for all r ≥ 1, we have
that (119) becomes

Ei

[
max

1≤�≤L
T r

i,�

∣∣∣∣{�Îε
��}�∈[L]

]

=

(
(1+o(1))

|log(c)|
min�∈[L]�Îε

� (i)�

)r

(a)

≤
(

(1+o(1))
|log(c)|

I(i)− h(Q̃, c, min (1−D(G)β, β), ε)

)r

,

(164)

with probability at least

(1 − exp (−2q(Q̃, c, min (1−D(G)β, β), ε))), (165)

where (a) follows from (161). For the stopping phase, since
C > log2(L+2)+log2 M , the local decisions and dn

� can be
communicated at each time instance. Hence, the time Ns of
the decision phase is finite from Theorem 6 and the fact that
the probability the graph is strongly connected at each time
instance is at least (1− |E|ε) > 0. Similar to (121), the result
follows by combining the time for all the three phases
of CCT.

APPENDIX C
PROOFS OF MISCELLANEOUS RESULTS

In this section, we present results used to bound the time
τ(Ni,�) in Theorem 3 and 6 (see (99)). Let X1 . . . Xn be i.i.d.
random variables and let the time

T = sup
{
n :

n∑
k=1

Xk > 0
}
. (166)

This is the last n at which

Sn > 0, (167)

where Sn =
∑n

k=1 Xk, n ≥ 1, and S0 = 0.
Lemma 14: For all r ≥ 1, if E

[|X1|r+1
]

< ∞ and
E
[
X1

] ≤ −μ0 < 0, then we have

E[T r] ≤ r

(
2
μ0

)r

E[(S∗)r]

+
∞∑

k=1

rkr−1
P
(
Sk + kμ0/2 > 0

)
, (168)

where S∗ = maxj≥0 Sj .
Proof: We have

E[T r]

≤
∞∑

k=1

rkr−1
P(T ≥ k)

=
∞∑

k=1

rkr−1
P(max

j≥k
Sj > 0)

=
∞∑

k=1

rkr−1
P

(
max
j≥k

(
Sj − Sk

)
+ Sk > 0

)

=
∞∑

k=1

rkr−1
P

(
S∗ + Sk > 0

)
, (169)
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where S∗ is an independent copy of maxj≥0 Sj , therefore we
loosely use the same symbol.

Now, along the same lines of proof as in [71, Theor. D],
we have
∞∑

k=1

rkr−1
P

(
S∗ + Sk > 0

)

=
∫ ∞

0

�2ξ/μ0�∑
k=1

rkr−1
P
(
Sk > −ξ

)
dP

(
S∗ ≤ ξ

)

+
∫ ∞

0

∞∑
k=�2ξ/μ0�+1

rkr−1
P
(
Sk+μ0k/2>μ0k/2−ξ

)
dP

(
S∗ ≤ ξ

)
.

(170)

The first integral at the right-hand side of (170) can be bounded
as ∫ ∞

0

�2ξ/μ0�∑
k=1

rkr−1
P
(
Sk > −ξ

)
dP

(
S∗ ≤ ξ

)

≤
∫ ∞

0

�2ξ/μ0�∑
k=1

rkr−1 dP
(
S∗ ≤ ξ

)

≤
∫ ∞

0

r (2ξ/μ0)
r dP

(
S∗ ≤ ξ

)
= r

(
2
μ0

)r

E
[
(S∗)r

]
. (171)

The second integral at the right-hand side of (170) can be
bounded as∫ ∞

0

∞∑
k=�2ξ/μ0�+1

rkr−1
P
(
Sk+μ0k/2 > μ0k/2−ξ

)
dP

(
S∗≤ξ

)

≤
∫ ∞

0

∞∑
k=�2ξ/μ0�+1

rkr−1
P
(
Sk + μ0k/2 > 0

)
dP

(
S∗ ≤ ξ

)

≤
∫ ∞

0

∞∑
k=1

rkr−1
P
(
Sk + μ0k/2 > 0

)
dP

(
S∗ ≤ ξ

)

≤
∞∑

k=1

rkr−1
P
(
Sk + μ0k/2 > 0

)
, (172)

where the first inequality follows from the fact that integration
variable verifies ξ ≤ μ0 k/2.

The claim of the Lemma now follows by (171)
and (172).

Corollary 14.1: Let X1, . . . , Xn be i.i.d. random variables
such that E[|X1|r+1] < ∞ and E[X1] ≥ μ0 > 0. Also, let
S0 = 0, Sn =

∑n
k=1 Xk, n ≥ 1, and

T = sup
{
n :

n∑
k=1

Xk < 0
}
. (173)

Then, for all r ≥ 1, we have

E[T r] ≤ r
( 2

μ0

)r

E

[(
−min

j≥0
Sj

)r
]

+
∞∑

k=1

rkr−1
P
(
Sk − kμ0/2 < 0

)
. (174)

Proof: The proof follows from replacing Xk by −Xk in
Lemma 14.

Lemma 15: Let X1, . . . , Xn be a sequence of independent
and identically distributed random variables with zero mean
and finite (r + 1)th absolute moment, namely for all r ≥ 1,
we have E[|X |r+1] <∞. Then, for all r ≥ 1, we have

∞∑
n=1

nr−1
P

(∣∣∣ n∑
k=1

Xk

∣∣∣ > n
)

<∞. (175)

Proof: The proof technique is borrowed from [72]. Event
A = {|∑n

k=1 Xk| > n} is written as a subset of the union
of three events i.e. A ⊂ A

(1)
n ∪ A

(2)
n ∪ A

(3)
n . We bound the

probability of these three events, and show that for all i ∈ [3],
we have ∞∑

n=1

nr−1
P(A(i)

n ) <∞. (176)

Thus, (175) follows from (176).
Let 2i ≤ n < 2i+1, with i ≥ 0. The events A

(1)
n , A

(2)
n and

A
(3)
n are defined as follows:

A(1)
n = {There exists k ≤ n such that |Xk| > 2i−2},

A(2)
n ={There exists at least two integers k1, k2≤n such that

|Xk1 | > n4/5and |Xk2 | > n4/5},
A(3)

n =
{∣∣∣ ∑

k∈N ′
Xk

∣∣∣ > 2i−2
}

,

where N ′ = [n]\{k ≤ n : |Xk| > n4/5}. If the event A
(1)
n ∪

A
(2)
n ∪A

(3)
n does not occur, then we have∣∣∣∣

n∑
k=1

Xk

∣∣∣∣ ≤ 2i−2 + 2i−2 < n. (177)

Hence, A ⊂ A
(1)
n ∪ A

(2)
n ∪ A

(3)
n , and P(A) ≤ P(A(1)

n ) +
P(A(2)

n ) + P(A(3)
n ). Therefore,

∞∑
n=1

nr−1
P(A) ≤

∞∑
n=1

nr−1
P(A(1)

n ) +
∞∑

n=1

nr−1
P(A(2)

n )

+
∞∑

n=1

nr−1
P(A(3)

n ). (178)

Now, we bound the probability of all three events at the
right-hand side of the above equation.

Let ai = P(|Xk| > 2i). We have

∞∑
i=0

2i(r+1)−1ai

(a)

≤
∞∑

i=0

2i(r+1)(ai − ai+1)

(b)

≤ E[|Xk|r+1]
(c)
< ∞, (179)

where (a) follows from the fact that

1
2

∞∑
i=0

2i(r+1)ai ≥ 1
2r+1

∞∑
i=1

2i(r+1)ai =
∞∑

i=0

2i(r+1)ai+1,

(180)
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which implies
∞∑

i=0

2i(r+1)ai − 1
2

∞∑
i=0

2i(r+1)ai ≥
∞∑

i=0

2i(r+1)ai+1, (181)

(b) follows from the definitions of ai and E[|Xk|r+1], after
exploiting

∫ y2

y1
ydy ≥ ∫ y2

y1
y1dy, and (c) follows from the

assumption of the lemma. Thus, using (179), we have
∞∑

i=0

2i(r+1)ai <∞. (182)

Now, we bound the probability of the event at the right-hand
side of (178) that involves A

(1)
n

∞∑
n=1

nr−1
P(A(1)

n )

=
∞∑

n=1

nr−1
P(∃k≤n:|Xk|>2i−2 where i verifies 2i≤n<2i+1)

(a)

≤
∞∑

n=1

nr
P(|Xk| > 2i−2 where i verifies 2i ≤ n < 2i+1)

=
∞∑

i=0

∑
2i≤n<2i+1

nrai−2

≤
∞∑

i=0

∑
2i≤n<2i+1

2(i+1)rai−2

=
∞∑

i=0

2i(r+1)+rai−2

<∞, (183)

where (a) follows from the union bound and the fact that Xk

are i.i.d, and the last inequality follows from (182).
Since the (r+1)st absolute moment is finite, for all k ∈ N,

there exists a finite constant K > 0 such that

P(|Xk| ≥ u) ≤ K/ur+1. (184)

Now, we bound the probability of event A
(2)
n

P(A(2)
n )

(a)

≤
∑

1≤k1<k2≤n

P(|Xk1 | > n4/5and |Xk2 | > n4/5)

(b)

≤ n2
P(|X1| > n4/5) P(|X2| > n4/5)

(c)

≤ K2n2n−4(r+1)/5n−4(r+1)/5, (185)

where (a) follows from the definition of the event and the
union bound, (b) follows from the independence of the random
variables and a bound on the number of possible combinations
of k1 and k2, and (c) follows from (184). Therefore, we have

∞∑
n=1

nr−1
P(A(2)

n )
(a)

≤
∞∑

n=1

K2nr−1n2n−8(r+1)/5

=
∞∑

n=1

K2n−3r/5−3/5

(b)
< ∞, (186)

where (a) follows from (185), and (b) follows as r ≥ 1.

Now, we bound the probability of event A
(3)
n . Let

X+
k =

{
Xk |Xk| < n4/5,

0 otherwise.
(187)

There exist finite positive constants K(1), K(2), such that

E

[∣∣∣ n∑
k=1

X+
k

∣∣∣2r
]

(a)

≤ E

[ n∑
k=1

|X+
k |2r

]
+

∑
1≤k1,k2≤n

E
[|X+

k1
|2r−1

]
E
[|X+

k2
|] + . . .

(b)

≤ E

[ n∑
k=1

n4(r−1)/5|X+
k |r+1

]

+
∑

1≤k1,k2≤n

E
[
n4(r−2)/5|X+

k1
|r+1

]
E
[|X+

k2
|] + . . .

(c)

≤ K(1)n4r/5r2r

(
n−4/5 + n−8/5 + . . .

)

(d)

≤ K(1)n4r/5r2r n−4/5

1− n−4/5

≤ K(2)n4(r−1)/5, (188)

where (a) follows from the multinomial expansion of
(
∑n

k=1|X+
k |)2r, and the independence of the random vari-

ables, (b) follows from (187), (c) follows from the following
facts that

• (r + 1)st absolute moment of X+
k is finite;

• the coefficient of multinomial expansion is of the form
2r!/(k1! . . . kn!) such that k1 + . . .+kn = 2r and can be
bounded as O(2r2r) independent of n;

• the largest coefficient of n in the expansion is n4r/5

present in the first term in (b);
• the remaining coefficient of n will form a finite geometric

progression, i.e. n−4/5, n−8/5, . . .;

and (d) follows from the fact that sum of the geometric
progression n−4/5, n−8/5, . . . can be bounded by n−4/5/
(1− n−4/5).

Thus, using (188), there exists K(3) > 0 such that

P

(∣∣∣ n∑
k=1

X+
k

∣∣∣ > n/8
)
≤ K(3)n4(r−1)/5

n2r
, (189)

and

P(A(3)
n ) = P

(∣∣∣ n∑
k=1

X+
k

∣∣∣ > 2i−2

)

(a)

≤ P

(∣∣∣ n∑
k=1

X+
k

∣∣∣ > n/8
)

(b)

≤ K(3)n4(r−1)/5n−2r, (190)
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where (a) follows by n/8 < 2i−2, and (b) follows from (189).
Thus, we have

∞∑
n=1

nr−1
P(A(3)

n )

(a)

≤
∞∑

n=1

nr−1K(3)n4(r−1)/5n−2r

=
∞∑

n=1

K(3)n−r/5n−9/5
(b)
< ∞, (191)

where (a) follows from (190), and (b) from the convergence
of summation for r ≥ 1. Finally, using (183), (186) and (191),
we have that (175) follows.

Now, we combine the results in Corollary 14.1 and
Lemma 15. Let X1, . . . , Xn be i.i.d. random variables with
E[X1] = μx > 0, and E[|X1|r+1] < ∞ for all r ≥ 1. Let

S0 = 0, Sn =
∑n

k=1 Xk for n ≥ 1, and T = sup
{
n : Sn <

0
}

. Using (174), we have

E[T r] ≤ r
( 2

μx

)r

E

[(
−min

j≥0
Sj

)r
]

+
∞∑

k=1

rkr−1
P
(
Sk − kμx/2 < 0

)
. (192)

The first term at the right-hand side of (192) is finite because
of the assumptions μx > 0 and E[|X1|r+1] < ∞ [71].
The second term can be bounded as follows

∞∑
k=1

rkr−1
P
(
Sk − kμx/2 < 0

)

=
∞∑

k=1

rkr−1
P
(
2 k − 2 Sk/μx > k

)

≤
∞∑

k=1

rkr−1
P

(∣∣∣2k − 2Sk/μx

∣∣∣ > k
)

<∞, (193)

where the last inequality follows by Lemma 15 applied to the
zero-mean i.i.d. variables {2− 2 Xi/μx}∞i=1. Thus, we arrive
at

E[T r] <∞. (194)
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