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Abstract 

The third-generation thermodynamic database that adopts the physics-based models over a 

wide temperature range is being developed in an attempt to increase the predictability and 

reliability of the CALPHAD (Calculation of Phase Diagrams) method. As a case study, this 

work used the new CALPHAD models to reoptimize Cr, Ni, and the Cr-Ni system. For pure 

elements, the Gibbs free energy of solid phases was described by a model considering various 

physical contributions, and the amorphous and liquid phases were described together by the 

two-state model. For Cr-Ni solution phases, thermodynamic modeling of the magnetic phase 

diagram was supported by ab initio calculations. This work demonstrated the way of 

performing thermodynamic assessment using the third-generation Gibbs free energy functions 

with the improved description of magnetic properties. 
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1. Introduction 

Although the CALPHAD approach is an effective computational tool for materials design, the 

quality of the database determines the success of the CALPHAD-based method [1–8]. 

Meanwhile, a reliable and unified unary database is the basis for developing high-quality 

multicomponent thermodynamic databases. The widely adopted CALPHAD unary database so 

far is the second-generation released by the SGTE (Scientific Group Thermodata Europe) in 

1991 [9]. Semi-empirical polynomials, which lack sufficient physical meanings, are used to 

describe the heat capacity above the room temperature. Low-temperature thermodynamics 

below 298.15 K was not modeled considering practical applications. In the second-generation 

CALPHAD database, the contribution to the Gibbs free energy due to intrinsic ferromagnetism 

is calculated according to the IHJ (Inden-Hillert-Jarl) model [10,11]. As for the 

antiferromagnetism, an artificial factor (-1 for bcc structure; -3 for fcc and hcp structures) was 

adopted by Hertzman and Sundman [12] to scale the antiferromagnetic properties when 

modeling the Fe-Cr system based on an empirical factor suggested by Weiss and Tauer [13]. 

Recently, issues of the IHJ model and associated artifacts have been identified by Xiong et al. 

[14] with an improved model proposed. For the sake of convenience in discussion, we refer to 

it as the IHX (Inden-Hillert-Xiong) model in this work. 

The CALPHAD community realized the drawbacks of the SGTE database [9]. Since the 

Ringberg workshop in 1995 [15], attempts have been continuously made to develop the third-

generation database with improved thermodynamic models. For example, a model [16,17] that 

incorporates the contributions from the harmonic and anharmonic lattice vibrations, electronic 

excitations, and magnetism, is used to describe the heat capacity of a solid phase. The two-state 

model [18] is employed to model the Gibbs free energy of the liquid and amorphous phases, 

where they are assumed as one phase that consists of liquid-like and solid-like atoms. The IHX 

model, which treats the Curie and Néel temperatures separately and replaces the average with 

the effective magnetic moment, is applied to predict the magnetic ordering free energy. It can 

be expected that the adoption of these physically based models in the third-generation 

CALPHAD database will lead to a significantly improved thermodynamic description in an 

extended temperature range. Especially, the third-generation thermodynamic database with 

higher fidelity will accelerate materials discovery and design. 

So far, most of the published works about the development of the third-generation 

CALPHAD database focus on pure elements [17,19–27]. Several works have also been 

reported for binary systems such as Fe-Cr [28], Fe-Mn [29], Al-Zn [30], and Ti-V [27]. In this 



3 

work, a case study on the Cr-Ni binary is performed to stimulate more research related to the 

third-generation CALPHAD modeling. 

The Cr-Ni system is a critical subsystem of many industrial multicomponent alloys such 

as steels and superalloys. More importantly, both antiferromagnetism and ferromagnetism are 

possible to exhibit in Cr-Ni alloys with varying compositions. Therefore, this system is suitable 

for demonstrating how artifacts of magnetic phase diagrams are caused when using the IHJ 

model and how they are properly addressed by applying the IHX model. 

In this work, the third-generation CALPHAD models will be introduced at first. Second, 

physical quantities critical to developing the third-generation unary database will be 

summarized. Third, details about the literature review, ab initio calculations, and 

thermodynamic assessment will be introduced. Finally, the new descriptions of Cr, Ni, and Cr-

Ni will be presented and discussed. 

2. The third-generation thermodynamic models 

2.1. Solid phase 

This model uses the Einstein model to describe the harmonic vibrational heat capacity. 

Meanwhile, it considers the contributions from electronic excitation, anharmonic lattice 

vibration, dilatation correction, and magnetism [17]: 

𝐶𝑝 = 3𝑅(
𝜃𝐸
𝑇
)2

𝑒𝜃𝐸/𝑇

(𝑒𝜃𝐸/𝑇 − 1)2
+ 𝑎𝑇 + 𝑏𝑇4 + 𝐶𝑝

𝑚𝑎𝑔
 (1) 

where R is the gas constant, θE is the Einstein temperature, and 𝐶𝑝
𝑚𝑎𝑔

 is the contribution due 

to the intrinsic magnetism of the element. Although the Debye model better predicts the low-

temperature dependence of heat capacity (T3 law) than the Einstein model, the latter is adopted 

due to ease of integration. The linear term in Eq. (1) stands for the electronic heat capacity, and 

a is close to the electronic heat capacity coefficient. The third term accounts for the conversion 

between CV (heat capacity at constant volume) and Cp (heat capacity at constant pressure) and 

anharmonic lattice vibration. According to Chen and Sundman’s suggestion [17], only 𝑇4 

term is included here. However, more terms, like 𝑇2 and 𝑇3, may be added to fit the heat 

capacity data within the intermediate temperature range [19]. The Gibbs free energy of a solid 

phase below its melting point can be derived from Eq. (1): 

𝐺 = 𝐸0 + 1.5𝑅𝜃𝐸 + 3𝑅𝑇𝑙𝑛[1 − exp(−𝜃𝐸 𝑇⁄ )] −
𝑎

2
𝑇2 −

𝑏

20
𝑇5 + 𝐺𝑚𝑎𝑔  (2) 

where E0 is the cohesive energy at 0 K, which can be predicted by ab initio modeling. 

As for the Gibbs free energy beyond the melting point, Chen and Sundman [31] proposed 
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the following expression: 

𝐺 = 1.5𝑅𝜃𝐸 + 3𝑅𝑇𝑙𝑛[1 − exp(−𝜃𝐸 𝑇⁄ )] + 𝐻′ − 𝑆′𝑇 

+𝑎′𝑇(1 − 𝑙𝑛𝑇) −
𝑏′

30
𝑇−5 −

𝑐′

132
𝑇−11 + 𝐺𝑚𝑎𝑔  

(3) 

where 𝐻′, 𝑆′, 𝑎′, and 𝑏′ make sure that the enthalpy, entropy, heat capacity, and the first 

derivative of the heat capacity, respectively, are continuous around the melting point. The 𝑇−11 

term is added to prevent the solid phase from being stable again at very high temperatures. 

Recently, Sundman et al. [32] proposed another alternative to avoid discontinuous description 

of various thermodynamic properties, i.e., the so called equal-entropy criterion. They [32] 

suggested a direct extrapolation of Gibbs free energy function above the melting point but the 

solid phases that have entropy higher than the liquid phase should be removed during 

equilibrium calculation. This criterion has been implemented in the OpenCalphad software [33]. 

2.2. Liquid and amorphous phases 

The third-generation CALPHAD models consider the two states for the liquid phase, i.e., the 

amorphous-like state where atoms only have the vibrational degree of freedom, and the liquid-

like state where atoms also have the translational degree of freedom. At low temperatures, the 

amorphous-like state predominates, whereas at high temperatures, the liquid-like state 

predominates. The Gibbs free energy of the liquid phase is calculated by the two-state model 

[18,34]: 

𝐺 = 𝐺𝑎𝑚 − 𝑅𝑇𝑙𝑛[1 + exp⁡(−∆𝐺𝑑/𝑅𝑇)] (4) 

where 𝐺𝑎𝑚  stands for the Gibbs free energy when all atoms are amorphous-like. The 

expression of 𝐺𝑎𝑚  is similar to Eq. (2) but excludes the dilatational correction and 

anharmonic contribution: 

𝐺𝑎𝑚 = 1.5𝑅𝜃𝐸 + 3𝑅𝑇𝑙𝑛 [1 − exp (−
𝜃𝐸
𝑇
)] + 𝐷 + 𝐸𝑇2 + 𝐺𝑚𝑎𝑔  (5) 

where θE is the Einstein temperature of the amorphous phase. ∆𝐺𝑑 denotes the Gibbs free 

energy difference between these two states and is temperature-dependent: 

∆𝐺𝑑 = 𝐴 + 𝐵𝑇 + 𝐶𝑇𝑙𝑛𝑇 (6) 

B is assumed to be the negative entropy of melting [17]. C is used when the first two terms in 

Eq. (6) are not enough to satisfactorily fit the experimental data. Other parameters, including 

A, D, and E, are optimized using the melting point, the enthalpy and entropy of fusion, and the 

heat capacity of the liquid as well as amorphous phase if possible. 

2.3. The IHX magnetic model 
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The IHX magnetic model [14] accepts the modification proposed by Chen and Sundman [17] 

and calculates the magnetic ordering energy by adding one more expansion term to the 

magnetic heat capacity expressed by the IHJ model [10,11]: 

𝐺𝑚𝑜 = −
𝑅𝑇

𝐷
ln(𝛽 + 1) [0.63570895(

1

𝑝
− 1)(

𝜏3

6
+

𝜏9

135
+
𝜏15

600

+
𝜏21

1617
)] 

𝜏 =
𝑇

𝑇𝑡𝑟
≤ 1 (7) 

𝐺𝑚𝑜 = −
𝑅𝑇

𝐷
ln(𝛽 + 1) (

𝜏−7

21
+
𝜏−21

630
+
𝜏−35

2975
+
𝜏−49

8232
) 𝜏 =

𝑇

𝑇𝑡𝑟
> 1 (8) 

where β is the magnetic moment per atom. p is the portion of the magnetic enthalpy caused by 

short-range ordering, which is structure-dependent (0.37 for a bcc phase; 0.25 for a non-bcc 

phase). D is a constant related to p: 

𝐷 = 0.33471979 + 0.49649686(
1

𝑝
− 1) (9) 

𝑇𝑡𝑟 is the magnetic transition temperature, which is Curie temperature (𝑇𝐶) for a ferromagnetic 

phase and Néel temperature (𝑇𝑁) for an antiferromagnetic phase. 

The IHX model estimates the contribution from magnetic ordering to the Gibbs free energy 

of the nonmagnetic reference state. However, in Eq. (2), the 𝐺𝑚𝑎𝑔  term is added to the Gibbs 

free energy of the magnetic ground state. Therefore, before substituting Eqs. (7) and (8) into 

Eq. (2), the reference state of the magnetism needs to be converted: 

𝐺𝑚𝑎𝑔 = 𝐺𝑝𝑚 + 𝐺𝑚𝑜 = (𝐺𝑓𝑚/𝑎𝑓𝑚 + 𝐺𝑚𝑑𝑜(∞)) + 𝐺𝑚𝑜  (10) 

where 𝐺𝑝𝑚  is the Gibbs free energy of the paramagnetic state. 𝐺𝑓𝑚/𝑎𝑓𝑚 represents the Gibbs 

free energy of the ferromagnetic or antiferromagnetic state, which is calculated by Eq. (2) 

excluding the last term. The magnetic ordering energy, 𝐺𝑚𝑜, is calculated using Eqs. (7)-(8). 

𝐺𝑚𝑑𝑜(∞) describes the magnetic disordering energy at infinitely high temperatures: 

𝐺𝑚𝑑𝑜(∞) = −𝑅𝑙𝑛(𝛽 + 1)(𝑇 − 0.38438376
𝑇𝑡𝑟
𝑝𝐷

) (11) 

For a magnetic solution phase, the magnetic transition temperature and magnetic moment 

are composition-dependent. Their compositional dependence is described by the Redlich-

Kister polynomial [35]: 

𝑇𝑡𝑟
𝜑
=∑𝑥𝑖𝑇𝑡𝑟,𝑖

𝜑

𝑖

+ 𝑥𝑖𝑥𝑗∑ 𝑇𝑡𝑟
𝑛 (𝑥𝑖 − 𝑥𝑗)

𝑛

𝑛

 
(12) 

𝛽𝜑 =∑𝑥𝑖𝛽𝑖
𝜑

𝑖

+ 𝑥𝑖𝑥𝑗∑ 𝛽𝑛 (𝑥𝑖 − 𝑥𝑗)
𝑛

𝑛

 
(13) 
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where 𝑇𝑡𝑟
𝑛  and 𝛽𝑛  are constants obtained by fitting experimental data. 

According to the IHX model, the antiferromagnetic and ferromagnetic states should be 

modeled simultaneously. In order to do this, both antiferromagnetic and ferromagnetic states 

are assigned for a pure element. For example, if an element i is ferromagnetic with 𝑇𝐶,𝑖 

experimentally or theoretically determined, a hypothetical 𝑇𝑁,𝑖 with the value of −𝑇𝐶,𝑖 will 

also be defined for it. After that, both the Curie and Néel temperatures of a binary or multi-

component solution phase can be modeled separately using Eq. (12). 

In addition, considering the magnetic moment difference at different atomic sites, the IHX 

model uses the effective magnetic moment to calculate the magnetic free energy for a solution 

phase. The effective magnetic moment can be calculated from the local magnetic moment: 

𝛽 =∏ (𝛽𝑖 + 1)𝑥𝑖
𝑖

− 1 (14) 

where 𝛽𝑖 is the magnetic moment of atom i. 

3. Critical modeling inputs 

Since the third-generation CALPHAD models are physics-based, many model parameters can 

be directly derived from thermochemical and thermophysical quantities. In this section, some 

of the critical modeling inputs are discussed to facilitate future modeling.  

When modeling the Gibbs free energy using the third-generation models, critical inputs 

include: heat capacity, enthalpy and entropy of transition, electronic heat capacity coefficient, 

cohesive energy at ground state, Einstein temperature, magnetic moment, and magnetic 

transition temperature. The heat capacity, as well as enthalpy and entropy of transition, can be 

found from experimental reports, review papers about thermodynamic properties of pure 

elements, or handbooks compiled by Hultgren et al. [36,37], Robie and Hemingway [38], 

Chase [39], etc. The electronic heat capacity coefficient can be derived from the low-

temperature heat capacity data. The cohesive energy at the ground state can be calculated using 

the ab initio method. 

The Einstein temperature is derived from the high-temperature entropy Debye 

temperature θD(0) through an empirical relation θE = 0.714θD(0) [17]. θD(0) can be calculated 

from the low-temperature limit of the Debye temperature θD(-3) [31] through a ratio specific 

to each element. Here, θD(n) are Debye temperatures derived from the nth moment frequency 

for a Debye spectrum. θD(-3) can be measured by various experimental methods, including heat 

capacity measurement, X-ray and electron diffraction, and Mössbauer spectra. If large 

divergence exists among values obtained by different methods, values derived from low-

temperature heat capacity measurement are preferred since here the Debye temperature will be 
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used to model the heat capacity. θD(-3) of some elements can also be found from handbooks 

[40,41]. θD(-3) can also be obtained using ab initio calculations through the following 

expressions [42]: 

𝜃𝐷(−3) =
ℎ

𝑘
[
3𝑛

4𝜋
(
𝑁𝐴𝜌

𝑀
)]1/3𝑣𝑚 

(15) 

𝑣𝑚 = [
1

3
(
2

𝑣𝑡3
+

1

𝑣𝑙3
)]−1/3 

(16) 

𝑣𝑡 = (
𝐺

𝜌
)
1/2

, 𝑣𝑙 = (
3𝐵+4𝐺

3𝜌
)
1/2

 
(17) 

where h is Planck’s constant, k is Boltzmann constant, n is the number of atoms per formula, 

𝑁𝐴 is Avogadro constant, ρ is density, and M is molecular weight. 𝑣𝑚, 𝑣𝑡, and 𝑣𝑙 are average, 

transverse, and longitudinal sound velocity, respectively. The shear modulus G and bulk 

modulus B can be derived from ab initio calculated elastic constants. Another way to calculate 

θD(-3) for an unstable phase is using the entropy difference relative to the standard element 

reference state developed in the second-generation database [30]: 

𝑆𝛼 − 𝑆𝛽 = 3𝑅𝑙𝑛 (
𝜃𝐸

𝛼

𝜃𝐸
𝛽
) 

(18) 

where 𝑆𝛼 − 𝑆𝛽  is the entropy difference between an unstable phase α and a stable phase β, 

which can be taken from the SGTE database [9]. 𝜃𝐸
𝛼

 and 𝜃𝐸
𝛽

 are the Einstein temperatures 

of phase α and β, respectively. 

The magnetic moment and transition temperature can be determined through 

measurement of magnetization and susceptibility. Alternatively, the magnetic transition 

temperature can be evaluated from the anomaly in a material’s properties, for example, heat 

capacity, thermal expansion coefficient, electric resistivity, and thermoelectric power. It can 

also be calculated based on the Ising model [43] and Heisenberg Hamiltonian [44], but special 

care should be given when using these theoretically calculated results due to relatively large 

uncertainty. When it comes to thermodynamic modeling of binary and higher-order systems, 

the third-generation database pays more attention to accurate prediction of the magnetic phase 

diagrams. Local magnetic moments will be obtained from experiments such as neutron 

diffraction or ab initio calculations. They are then used to calculate the effective magnetic 

moment via Eq. (14). It needs to be emphasized that the primary purpose of introducing the 

effective magnetic moment into the IHX model [14] is to represent the magnetic heat capacity. 

Therefore, if the effective magnetic moment derived from experiments or ab initio calculations 

fails to reproduce experimental heat capacity data, it can be adjusted accordingly [45]. 
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4. Literature review 

4.1. Cr 

4.1.1. Bcc phase 

The melting point of Cr is hard to measure with high precision because of its high vapor 

pressure near the melting point. Therefore, there is a large discrepancy between values reported 

in literature [36–39,46–50]. The SGTE database [9] accepted the melting point of Cr to be 2180 

K, as recommended by Gurvich et al. [47]. However, Xiong et al. [51] found this value is too 

high when modeling the Fe-Cr phase diagram. They [51] also found similar problems exist in 

other Cr-based binary systems, such as Cr-Fe, Cr-C, and Cr-Hf. Therefore, they suggested to 

adopt a lower value, 2136 K [37,52], for the melting point of Cr. In Rudy’s report [53] of 

transition metal phase diagrams, the melting point of Cr was measured as 2133 K with an 

uncertainty of ±4 K. The rationale of 2136 K was also presented by a recent experimental report 

from Josell et al. [49], which used the pulsed heating technique. To better reproduce 

experimental phase equilibria data in Cr-containing binary or even high-order systems during 

future thermodynamic assessments, the value 2136 K was adopted as the melting point for bcc 

Cr in this work. In the future, efforts towards determining the melting point of pure Cr with a 

high precision are still desired. 

According to Chen and Sundman [31], the ratio of θD(0) to θD(-3) is 0.79 for Cr. θD(-3) of 

bcc Cr has been derived from the low-temperature heat capacity [54–58], the intensity of X-

ray and electron diffraction patterns [59–61], the center shift of the Mössbauer spectra [62], 

elastic constants [63,64], and vibrational entropy [65], as summarized in Table 1. It can be 

found that the θD(-3) obtained through different methods shows a large scatter. Dubiel et al. 

[66] proposed that it is more reasonable to compare the θD(-3) of a pure element measured by 

different researchers but with the same method since different methods rely on different 

mechanisms to determine the θD(-3). In this paper, θD(-3) is used to fit the heat capacity data, 

so only values derived from the low-temperature heat capacity data should be adopted. Clusius 

and Franzosini [55] derived the θD(-3) as 580 K via the heat capacity measurements at 10 – 273 

K. According to the heat capacity reported by Heiniger [57], θD(-3) is 630 K, which was 

accepted by several studies [58,67,68]. From considerable heat capacity data of bcc Cr at liquid 

helium temperatures compiled by Phillips [69], White et al. [58] calculated the θD(-3) as 600 ± 

30 K. This value is accepted in this paper, from which the θE of Cr is calculated as 338 K. 

From the linear term of the temperature dependence of low-temperature heat capacity data, 

the electronic heat capacity coefficient of bcc Cr is determined as 1.45 ± 0.05 mJ/(molK2) by 
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several groups [57,58,67,69]. Therefore, it is used in this work.  

The magnetic ground state of bcc Cr is complex antiferromagnetism coupled with spin 

density wave. A good agreement has been achieved among experimental studies about its Néel 

temperature according to the anomaly in heat capacity [57,70,71], neutron diffraction intensity 

[72,73], elastic constants [74,75], magnetic susceptibility [76], electric resistivity [71,77,78], 

and thermoelectric power [79]. Bacon [72] and Shull [80] reported the magnetic moment β of 

bcc Cr as 0.4 and 0.45 μB, respectively, by integrating the intensity of all neutron diffraction 

peaks. Their results were questioned by Arrott and Werner [81], who analyzed the neutron 

intensity along different wave vectors and stated that 0.42 μB is only the β of the commensurate 

magnetic structure. If all possible magnetic domains are considered, β of bcc Cr should be 0.62 

μB. This value is consistent with that determined by Ishikawa [82] using the same method and 

by Evans [83] using the X-ray diffractometer equipped with the focusing optics. The 

magnetism of Cr has also been studied using ab initio methods [84–88]. However, the density-

functional theory (DFT) fails to predict the spin density wave ground state for Cr [86,87], which 

is contradictory to the experimental results. As for DFT results about the antiferromagnetic 

state of Cr, it was found that the local-density approximation underestimates the equilibrium 

lattice constant of Cr but yields magnetic moment (0.63 μB [85]) closer to experimental results 

when the experimental lattice constant is used in calculation. In contrast, the generalized 

gradient approximation can satisfactorily predict the equilibrium lattice constant but 

overestimates the magnetic moment (1.16 μB [85]). However, both the experimental measured 

and theoretically calculated magnetic moments are too large to properly fit the intensity of the 

“λ” peak of the heat capacity curve of bcc Cr. As suggested by Andersson [89], a hypothetical 

value, 0.0135 μB, should be used to fit the heat capacity data. This value, which is also called 

the “thermodynamic β”, is adopted in this work. 

The heat capacity of bcc Cr below 300 K has been studied by several researchers 

[54,55,90,91] and the results agree well with each other. Based on the critical evaluation of 

these data, researchers [37–39] integrated the Cp vs. T curve to yield the Ho(298.15 K) – H (0 

K) = 4850 J/mol and the Cp/T vs. T curve to yield the S(298.15 K) = 23.62 J/(molK), which 

are adopted in this work. The heat capacity data near the Néel temperature [70,92,93] are also 

consistent with each other. As for the high-temperature heat capacity, a good agreement is 

achieved among data reported by Armstrong and Grayson-Smith [94], Krauss [95], and 

Kohlhaas et al. [96]. The heat capacity data above 1873 K in the study of Umino [97] are less 

reliable since the purity of the sample is low (95.39 wt.%), and the melting point of bcc Cr is 
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highly underestimated (1873 K). Data reported by Bendick [67] and Jaeger [98] deviate from 

others’ data [94–96], especially above 1000 K. 

4.1.2. Fcc phase 

θD(-3) of fcc Cr was derived from the theoretically calculated bulk modulus as 626 K [99]. 

Assuming that the ratio of θD(0) to θD(-3) for fcc Cr is the same as for bcc Cr [17], θD(0) is 495 

K, and θE is 353 K for fcc Cr. Large discrepancy exists between the lattice stability of fcc Cr 

calculated by the ab initio method [100] and that evaluated in the SGTE database [9]. Since 

the lattice stability calculated using the ab initio method is valid at 0 K, whereas that determined 

by the CALPHAD approach comes from extrapolation of high-temperature phase equilibria 

data, the latter is preferred during thermodynamic optimization [101]. Due to the unstable 

nature of fcc Cr, the reliability of the ab initio calculated energy at 0 K is uncertain. Following 

the suggestions of Grimvall [101], the lattice stability of unstable fcc Cr extrapolated by the 

CALPHAD community from binary and high-order systems is preferred during the present 

thermodynamic optimization. 

According to the SGTE database [9], fcc Cr is antiferromagnetic with a Néel temperature 

of 367 K and a magnetic moment of 0.82 μB. Owing to a lack of experimental results and 

atomistic simulations, the magnetism of fcc Cr was estimated based on the extrapolation from 

binary systems by Chin et al. [102]. However, these extrapolated magnetic properties were 

questioned by Xiong et al. [14] and in fact need to be further confirmed before used in 

thermodynamic modeling. The spin-polarization calculation results indicated that neither 

ferromagnetic nor antiferromagnetic state is energetically favorable for fcc Cr [99]. Ab initio 

calculations in this study also demonstrated that fcc Cr is nonmagnetic at 0 K. Thus, the 

magnetic contribution is not included for fcc Cr in this work. 

4.1.3. Liquid and amorphous phases 

According to Grimvall’s suggestion [103], θD(-3) for the amorphous phase is 70 – 85% of that 

stable crystalline phase. Since there is no experimental information about θD(-3) of amorphous 

Cr, this empirical relation is adopted, from which the θE is calculated equal to 237 – 288 K. 

The enthalpy of liquid Cr was measured by Lin and Frohberg [48] using levitation calorimeter, 

from which they derived a constant value (50.71 J/(molK)) as the heat capacity of liquid Cr. 

The enthalpy and entropy of fusion for Cr were also reported in the above work [48]. 

4.2. Ni 

4.2.1. Fcc phase 

As presented in Table 3, θD(-3) and the electronic heat capacity coefficient of fcc Ni reported 
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by different researchers [104–112] are in relatively good agreement with each other. All of 

these data were derived from the low-temperature heat capacity measurement. Desai [113] 

presented a comprehensive review of literature about the thermodynamic properties of Ni 

before 1987, from which θD(-3) and the electronic heat capacity coefficient of fcc Ni were 

evaluated as 472 K and 7.055 mJ/(molK2), respectively. Taking the ratio θD(0)/θD(-3) for fcc 

Ni as 0.84 [31], the θE is 283 K. 

The fcc Ni is ferromagnetic. Its magnetic properties reported in the literature are listed in 

Table 4. From the magnetization vs. T curve, Crangle and Hallam [114] extrapolated the Curie 

temperature of fcc Ni as 633 K. Other measurements, including magnetic behaviors [115,116], 

heat capacity [112,117,118], thermoelectric properties [119], and thermal expansion [120], also 

suggested the Curie temperature of fcc Ni is 6337 K. The experimental [115,116,121] and 

theoretically calculated [122,123] magnetic moments of fcc Ni are quite consistent (Table 4). 

However, none of these values (around 0.6 μB) can satisfactorily fit the intensity of the “” 

peak of the Cp curve. Therefore, the thermodynamic β of fcc Ni is assumed to be 0.52 μB, as 

suggested by the SGTE database [9]. 

The heat capacity of fcc Ni has been extensively studied [97,104,112,119,124–136] and 

there is a good agreement among most of the results. Desai [113] performed a comprehensive 

literature review about experimental results of heat capacity, Ho(298.15 K) – H(0 K), S(298.15 

K), enthalpy of fusion, and entropy of fusion for pure Ni before 1984. These data were directly 

used in thermodynamic assessment of Ni by this work. 

4.2.2. Bcc phase 

Following the assumption of Chen and Sundman [17] that the same θE can be chosen for fcc 

and bcc Fe, θE of bcc Ni is assumed to be the same as θE of fcc Ni since the former is not 

available. The cohesive energy difference between bcc and fcc Ni, which is calculated using 

the ab initio approach, is consistent with the lattice stability recommended by the SGTE 

database [9]. 

The bcc Ni is ferromagnetic. Tian et al. [137] successfully synthesized the metastable bcc 

Ni thin films on the GaAs(001) substrate via the molecular beam epitaxy method and 

extrapolated the Curie temperature of bulk bcc Ni as 456 K from the Curie temperature vs. thin 

film thickness curve. Tian et al. [137] also determined the magnetic moment of bcc Ni is 

0.520.08 μB according to magnetization measurements, which is in good agreement with the 

theoretically calculated values by other researchers [123,138–140]. 

4.2.3. Liquid and amorphous phases 
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θD(-3) for amorphous Ni was determined as 272 K [141] through the extrapolation from 

measured θD(-3) for Ni-Zr amorphous alloys with different compositions [142]. Assuming the 

same ratio of θD(0) to θD(-3) as fcc Ni [17], θD(0) of amorphous Ni is 228 K, and θE is 163 K. 

The amorphous Ni has been synthesized through the mechanical alloying followed by chemical 

leaching [143] and prepared by the sonochemical process [144]. Both works demonstrated that 

it is paramagnetic. The experimental heat capacity data for liquid Ni is not available in the 

literature. Therefore, this work adopts the constant value evaluated by Desai [113]. 

4.3. Cr-Ni 

4.3.1. Previous thermodynamic assessments 

Early thermodynamic assessments [145–148] of the Cr-Ni system only included three solution 

phases, i.e., liquid, bcc, and fcc. In Kaufman and Nesor’s work [145], the liquid phase was 

modeled as a regular solution, and the magnetic contribution was incorporated into the excess 

Gibbs free energy term. Meanwhile, thermodynamic modeling of this work [145] was not 

performed on the basis of the SGTE database, which had not been established at that time. In 

the study of Kajihara [147], the SGTE unary database was applied to model the Cr-Ni system, 

and the IHJ model was employed to express the magnetic contribution. Lee [148] updated the 

thermodynamic descriptions of Cr-Ni when modeling Cr carbides, which were adopted in the 

SSOL2 and BIN databases [149]. Later, the phase CrNi2, which forms through a peritectic 

reaction between bcc and fcc, was suggested to be included in the Cr-Ni phase diagram. On the 

basis of thermodynamic parameters optimized by Lee [148], Turchi et al. [150] and Chan et al. 

[151] modeled CrNi2 as a line compound and used the formation enthalpy calculated by the ab 

initio method as input. However, the predicted formation temperatures of the CrNi2 phase (807 

K and 820 K in the work [150] and [151], respectively) are inconsistent due to the difference 

in the calculated formation energy. The most recent thermodynamic assessment of the Cr-Ni 

system was reported by Tang and Hallstedt [152], as shown in Fig. 12. They [152] considered 

the latest measurements [153,154] of the enthalpy of mixing for the liquid phase and adopted 

the experimental enthalpy of formation [155] to optimize the CrNi2 phase. The predicted 

peritectic temperature (611 K) is in accordance with that evaluated by Nash [156]. Meanwhile, 

because of the magnetic transition, a Nishizawa horn [157] appears at 257 K in Fig. 12. 

4.3.2. Phase equilibria, thermochemical and magnetic properties 

From Fig. 12, it is obvious that the Cr-Ni phase diagram is characterized by a eutectic reaction 

that occurs at 1618 K [158,159]. The equilibrium composition for the liquid, bcc, and fcc 

phases are 0.46, 0.38, and 0.50 at.% Ni, respectively [12]. The CrNi2 phase with the 
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orthorhombic structure was reported to exhibit long-range ordering below 863 K [160,161]. 

Since the ordering process is first-order, Nash [156] proposed that the CrNi2 phase forms from 

a peritectic reaction, which was accepted during thermodynamic modeling [150–152]. 

Thermal analyses were applied to determine the solidus and liquidus of the Cr-Ni phase 

diagram by two groups [158,159]. On the Cr-rich side, since the samples prepared by Jenkins 

et al. [158] suffered from contamination, data reported by Sveshinikov and Pan [159] are more 

reliable. On the Ni-rich side, data measured by Jenkins et al. [158] were given more weight 

during optimization because extrapolating the liquidus temperature of Ni-rich alloys reported 

by Sveshinikov and Pan [159] will lead to a melting point higher than 1728 K for pure Ni. The 

bcc solvus was investigated by X-ray diffraction (XRD) [162], adiabatic calorimeter [163], and 

electron microscopy [164], which show great consistency. The fcc solvus has been extensively 

studied using XRD [162,165–167], among which the data from Jette et al. [162] deviate too 

much from others’ results. The fcc solvus reported by Pugliese and Fitterer [168] is based on 

the activity measurement and shows a large uncertainty. Collins [164] used the energy 

dispersive X-ray spectroscopy (EDX) to determine the phase composition, which is less 

accurate than the XRD analysis. 

The variation of the ordering temperature with the composition in the vicinity of 66.7 at.% 

Ni was studied by XRD [166,167] and neutron diffraction [160,161]. These studies all indicated 

that the CrNi2 phase is not stoichiometric but has a homogeneity range. Karmazin [167] found 

that a large degree of undercooling is required to promote the formation of CrNi2 and the 

formation temperature is 37 K lower than the decomposition temperature. Due to the very slow 

formation kinetics, the phase boundaries of CrNi2 reported by several experimental studies 

[160,161,166,167] are quite different. 

The enthalpy of mixing of the liquid phase on the Ni-rich side was studied by several 

groups [153,154,169]. The data from Batalin et al. [169] showed an unreasonably large 

demixing tendency in the liquid phase. Both Thiedemann et al. [153] and Saltykov et al. [154] 

found the liquid phase is a regular solution, and the enthalpy of mixing is negative on the Ni-

rich side. On the Cr-rich side, the enthalpy of mixing in the liquid phase was measured by 

Sudavtsova [170]. This study reported very negative values and the data on the Ni-rich side 

diverge from other studies [153,154]. For the enthalpy of mixing in the bcc and fcc phases, 

good agreement was achieved among published studies [163,171,172]. 

Measurements [170,173–175] of the activity of Cr in liquid Cr-Ni alloys are relatively 

consistent with each other. Several researchers [168,176–181] studied the activity of Cr in solid 

phases, but the results exhibit large scatter. The data from Grube and Flad [176] show a negative 
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deviation from ideality and disagree greatly with other reports [168,179]. The data reported by 

Panish et al. [177] and Kubaschewski et al. [178] possess a large uncertainty (1 – 10% and 9%, 

respectively). Pugliese and Fitterer [135] employed the two-step, half-cell technique to measure 

the activity of Cr, but the accuracy of this technique has been questioned by several researchers 

[152,179,180]. The data obtained by Pugliese and Fitterer [135] are too large, and the derived 

enthalpy of mixing is inconsistent with that measured by Dench [163]. Values reported by Rao 

and Flores-Magon [180] were calculated from the results of Vintaikin and Urushadze [135], 

thus large errors were introduced during this process. Measurements by Mazandarany and 

Pehlke [179] and by Davies and Smeltzer [181] are relatively reliable, with the reported error 

of 2% and 1%, respectively. 

Studies about the Curie temperature [116,182–186] and the magnetic moment 

[116,121,182,184,185] of the fcc solution phase satisfactorily agree with each other. The 

compositional dependence of the Néel temperature of the bcc solution phase was measured by 

Fukamichi and Saito [187]. 

5. Computational Modeling 

5.1. Ab initio calculations 

Due to the lack of experimental measurements, ab initio calculations were applied to estimate 

the magnetic transition temperatures and magnetic moments. Besides, the homogeneity range 

of the CrNi2 phase was also estimated through the ab initio modeling. The calculations were 

done by the exact muffin-tin orbital (EMTO) method [188–190] as it is implemented in the 

Lyngby version of the code [191,192]. The details of the ab initio calculations, the description 

of the Ising Hamiltonian and the corresponding interactions, which have been used in 

thermodynamic Monte Carlo simulations, can be found in Ref. [193]. To determine the 

compositional dependence of the Curie temperature in the fcc solution phase, we used classical 

Heisenberg Hamiltonian: 

𝐻 = −∑ ∑ ∑ 𝐽𝑝
𝛼𝛽
𝑐𝑖
𝛼𝑐𝑗

𝛽
𝑒𝑖𝑒𝑗

𝛼,𝛽=𝐹𝑒,𝑁𝑖𝑖,𝑗∈𝑝𝑝

 
(19) 

Here, 𝐽𝑝
𝛼𝛽

 are the magnetic exchange interactions between Cr and Ni for coordination shell p, 

and 𝑒𝑖 is the direction of the spin at site i. 𝑐𝑖 takes on value 1 or 0 depending if Ni or Cr 

atoms occupy site i [192]. The magnetic exchange interactions were determined in the 

ferromagnetic state to simplify the modeling. The magnetic exchange interactions between 

different Ni-Ni, Ni-Cr, and Cr-Cr pairs have been calculated using the magnetic force theorem 

[44] by the EMTO method [194]. The self-consistent electronic structure calculations of 
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random alloys have been done using coherent potential approximations [190] within local 

density approximations at the experimental lattice constant of ~3.522 Å. Other details of the 

EMTO calculations can be found in Ref. [195]. The Heisenberg Monte Carlo simulations were 

performed for Ni, Ni97.5Cr2.5, Ni95Cr5, and Ni90Cr10 random alloys using 8 × 8 × 8  fcc 

simulation box and magnetic exchange interactions up to the 4th coordination shell. 

5.2. Thermodynamic optimization 

Parameter optimization for the Gibbs free energy of different phases was performed using the 

PARROT module of the Thermo-Calc software [149]. For pure elements, thermodynamic 

parameters related to thermophysical properties, as discussed in Section 3, were first fixed and 

then slightly adjusted during optimization. Other parameters were optimized to fit experimental 

heat capacity and thermodynamic data. For the Cr-Ni system, parameters in Eqs. (12) – (13) 

were first optimized to fit experimental or ab initio calculated Curie temperature, Néel 

temperature, and effective magnetic moment of bcc and fcc solution phases. After that, 

interaction parameters were optimized to reproduce the phase equilibria and thermodynamic 

data. Different weights were assigned to each data point according to its uncertainty, which is 

evaluated during the literature review. A final run was conducted to optimize all interaction 

parameters together with all reliable experimental data included. Considering the homogeneity 

range of the CrNi2 phase, a two-sublattice model (Cr, Ni)1(Cr, Ni)2 was used in this work. The 

reciprocal relationship is assumed when modeling the end-members of CrNi2: 𝐺𝑁𝑖:𝐶𝑟
𝐶𝑟𝑁𝑖2𝑜 =

𝐺𝐶𝑟:𝐶𝑟
𝐶𝑟𝑁𝑖2𝑜 + 𝐺𝑁𝑖:𝑁𝑖

𝐶𝑟𝑁𝑖2𝑜 − 𝐺𝐶𝑟:𝑁𝑖
𝐶𝑟𝑁𝑖2𝑜 . 

6. Results and discussion 

6.1. Thermodynamics of Cr and Ni 

Table 5 lists the updated Gibbs free energy expressions for Cr and Ni using the third-generation 

thermodynamic models. As shown in Fig. 1, the calculated heat capacities of bcc and liquid Cr 

agree satisfactorily with the experimental results and change continuously within the whole 

temperature range. The heat capacity of liquid Cr first decreases and then increases in the 

vicinity of the melting point. Similar behavior was also found for other metals [17,19,25] as a 

possible attribute of the two-state model [30]. From Fig. 1, it can be expected that the heat 

capacity of liquid Cr will exceed that of bcc Cr above 6000 K, which prevents the 

restabilization of the bcc phase at very high temperatures. For the sake of readability, the heat 

capacity of the unstable fcc structure is not presented here since it is almost the same as that of 

bcc Cr. 
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Figure 2 compares the predicted heat capacity of bcc Cr using the second- and third-

generation databases. It is obvious that the second-generation database is valid above the room 

temperature, while the third-generation database can make reasonable prediction starting from 

0 K. In addition, the present descriptions avoid the kink of the calculated heat capacity around 

the melting point, which will prevent the abrupt change of other thermodynamic properties. 

From the calculated lattice stabilities of Cr by the second-generation and third-generation 

databases, as shown in Fig. 3, it can be observed that the melting point of Cr is changed from 

2180 K to 2136 K in this work, based on the reason mentioned in Section 4.1.1. 

It can be found in Fig. 4 that the improved thermodynamic descriptions of bcc Cr 

reproduce reasonably the experimental heat content, except for two experimental data points, 

which are larger than the calculated results. These two data points from the work of Umino [97] 

are not reliable since the melting point of Cr was highly underestimated as 1873 K. The 

predicted heat content of liquid Cr was not exactly fitted to data reported by Lin et al.[48] 

because overfitting these data will make the calculated entropy considerably higher than the 

evaluated results [37–39]. As presented in Fig. 5(a), the calculated entropy of bcc Cr is in 

agreement with the evaluated values [37–39]. The predicted entropy of liquid Cr deviates 

slightly from the evaluated values [37–39] since more efforts were made to fit the heat content 

data from experiments. Figure 5(b) demonstrates that the third-generation thermodynamic 

models comply with the third law of thermodynamics and are valid below the room temperature. 

The calculated heat capacities for different structures of Ni in this work are illustrated in 

Fig. 6. Due to strong ferromagnetism, there is a sharp peak in the heat capacity curve of fcc 

and bcc Ni. Since the fcc and bcc Ni have different Curie temperatures, their heat capacity 

curves separate in the vicinity of the Curie temperatures, with other parts of the curves 

overlapping. Above the melting point, the calculated heat capacity of liquid Ni is in accordance 

with the constant value suggested by Desai [113]. Similarly, the heat capacity of liquid Ni 

exceeds that of fcc Ni at very high temperatures. Figure 7 demonstrates again that the calculated 

heat capacity of fcc Ni is continuous with varying temperature and agrees well with 

experimental results below 300 K. From Fig. 8, it can be found that the magnetic heat capacity 

calculated by the IHX model fits better with experimental data than the IHJ model, owing to 

the refined value of p in Eqs. (7) – (8). As presented in Fig. 9, the calculated Gibbs free energy 

differences of liquid Ni relative to fcc Ni using the second- and third-generation CALPHAD 

models are similar. By contrast, the calculated lattice stability of bcc Ni with reference to fcc 

Ni in this work is different from that in the SGTE database since this work used the ab initio 

calculated cohesive energy at 0 K [100] as input whereas the SGTE database estimated the 



17 

lattice stability based on extrapolation from binary systems. It can be indicated by Fig. 10 and 

Fig. 11(a) that the updated Gibbs free energy functions of Ni can satisfactorily reproduce the 

experimental heat content and evaluated entropy data [36,38,39,113]. From Fig. 11(b), it is 

proven again that the third-generation database leads to zero entropy for different phases of Ni 

at 0 K. 

6.2. Magnetic phase diagram of the Cr-Ni system 

The difference between the magnetic model adopted in the second- and third-generation 

database is demonstrated in Fig. 13. It can be found that the calculated magnetic transition 

temperatures of the bcc and fcc phases by the IHX model are in better accordance with 

experimental results than the IHJ model. As shown in Fig. 13(b)(d), the IHX model that is 

adopted in the third-generation database uses two independent polynomials in the form of Eq. 

(12) to model the experimental Curie and Néel temperatures for the bcc and fcc phase. When 

calculating the magnetic ordering energy, only the positive magnetic transition temperature is 

used. Therefore, the lines below 0 K in Fig. 13(b)(d) are merely introduced to model the Curie 

and Néel temperatures over the whole composition range and to avoid artificially induced 

magnetism. By contrast, the IHJ model uses a single polynomial to calculate both the Curie 

and Néel temperatures. During the calculation of the magnetic ordering energy, the Néel 

temperature is converted to the Curie temperature through the Weiss factor (-1 for bcc phase, -

3 for non-bcc phase). The Weiss factor for scaling will introduce artificial magnetic 

contribution for the Cr-rich fcc phase (Fig. 13(a)) and for the bcc phase within the intermediate 

composition range (Fig. 13(c)). The same problem of the IHJ model can also be manifested in 

the calculation of the magnetic moment, as shown in Fig. 14. The predicted magnetic moment 

of Cr-rich fcc and bcc phases by the IHJ model deviates greatly from the ab initio calculated 

results. Meanwhile, the IHJ model fails to satisfactorily reproduce the theoretically calculated 

magnetic moment of Ni-rich bcc phase. 

Owing to the inaccurate description of magnetic properties, the IHJ model introduces 

unrealistic magnetic ordering energy in both fcc and bcc phases, especially at low temperatures, 

as shown in Fig. 15(c) and (d). By contrast, according to the IHX model, the magnetic 

contribution will be added to the Gibbs free energy only at compositions that exhibit magnetism, 

as presented in Fig. 15(a) and (b). Therefore, compared with the IHJ model, the IHX model 

used in the third-generation database gives a more accurate description of the magnetic phase 

diagram as well as magnetic ordering energy. 

6.3. Thermodynamics of the Cr-Ni system 



18 

Based on the third-generation thermodynamic descriptions of Cr and Ni, the thermodynamic 

parameters of the Cr-Ni system were reoptimized, as listed in Table 7. The calculated phase 

diagram is presented in Fig. 16, which shows that most experimental data can be well 

reproduced. Some of the phase boundary data cannot be fitted due to large uncertainty. For 

example, the fcc liquidus determined by Svechnikov and Pan [159] is unreasonable because 

the extrapolated melting point of Ni is too high. In the work of Pugliese and Fitterer [168] and 

Collins [164], the fcc solvus was determined by experimental techniques with low accuracy. 

The calculated eutectic temperature is 1618 K, which agrees with the reported value in 

literature [158,159]. According to our calculation, the CrNi2 phase forms from a peritectoid 

reaction at 863 K. As shown in Fig. 16(b), the calculated phase region of CrNi2 is narrower 

than that determined from experiments or Monte Carlo simulations. Actually, due to the 

sluggish formation of CrNi2, its phase region is impossible to be accurately measured by 

experiments, and thus the phase boundaries reported by different researchers [160,161,166,167] 

exhibit a large scatter. On the other hand, the Monte Carlo simulations tend to overestimate the 

stability range of an ordered phase and can only provide the farthest possible phase boundaries 

[196]. Therefore, higher weights were given to the experimental enthalpy of formation of CrNi2 

[155] and the peritectoid temperature [156] during thermodynamic optimization. 

As indicated in Fig. 17(a), the calculated enthalpy of mixing in the liquid phase agrees 

with those reported by Thiedemann et al. [153] and Saltykov et al. [154], whereas the results 

in the work of Batalin et al. [169] and Sudavtsova [170] are not reproduced because they are 

problematic as mentioned in Section 4.3.2. From Fig. 17(b), it is shown that the available 

datasets [163,171,172] regarding the enthalpy of mixing in the solid phases are consistent, and 

the calculated values can reproduce them reasonably. The calculated activity of Cr in the liquid 

phase can reproduce the experimental results [170,173–175], as shown in Fig. 18(a). As for the 

activity of Cr in solid solutions, the calculated results are close to the values measured by 

Mazandarany [179] (Fig. 18(b)). The data reported by Grube and Flad [176] and Rao and 

Flores-Magon [180] are not well reproduced due to their large uncertainty. 

7. Conclusions 

In this work, the Cr-Ni system was used as a case study to introduce the way of performing a 

binary assessment using the third-generation Gibbs free energy functions and to demonstrate 

the advantage of the third-generation over the second-generation thermodynamic modeling. 

Emphasis was also given to the IHX model used for describing the magnetic phase diagram. 

Overall, we can conclude that: 
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(1) Thermodynamic properties of pure elements can be accurately described over the entire 

temperature range using the third-generation thermodynamic models, especially for the 

low temperature range below 298.15 K. 

(2) The calculated phase diagram and thermodynamic properties of the Cr-Ni binary agree 

well with reliable experimental results. The calculated phase boundaries of CrNi2 are in 

accordance with the homogeneity limit estimated by atomistic modeling and experiments. 

(3) The IHX model can avoid artificial magnetism in the magnetic phase diagrams and thus 

reasonably predict the magnetic ordering energy. The current case study calls for more 

research activities towards thermodynamic modeling of magnetic phase diagrams. 

(4) In order to develop a new unary database better than the SGTE pure element database 

released in 1991 [9], the CALPHAD community needs to make efforts together.  
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Figure captions 

Figure 1. Comparison of the calculated heat capacities of bcc and liquid Cr in this work with 

experimental datapoints [48,54,55,67,70,90–98] and evaluation by handbooks [37,39]. 

Figure 2. Comparison between the calculated heat capacity of bcc Cr by this work and the 

SGTE database [9] with experimental results [54,55,67,70,90–98]. The low-temperature heat 

capacity at 0 – 300 K is magnified in the inset. 

Figure 3. Comparison between the calculated Gibbs free energy differences of liquid and fcc 

Cr relative to bcc Cr in this work and by the SGTE database [9]. 

Figure 4. Comparison of heat content for bcc and liquid Cr between calculation in this work 

and experiments [48,97,98,197,198]. 

Figure 5. (a) Comparison between the calculated and evaluated [37–39] entropy for bcc and 

liquid Cr; (b) Comparison between the calculated low-temperature entropy for bcc and liquid 

Cr by this work and the SGTE database [9]. 

Figure 6. Comparison of the calculated heat capacities for fcc, liquid, and bcc Ni in this work 

with experimental datapoints [97,104,112,119,124–136] and evaluation by handbooks 

[36,39,113]. 

Figure 7. Comparison between the calculated heat capacity of fcc Ni in this work and by the 

SGTE database [9] with experimental results [97,104,112,119,124–136]. The low-temperature 

heat capacity from 0 to 300 K is magnified in the inset. 

Figure 8. Comparison between the calculated magnetic heat capacity for fcc Ni using the IHX 

and IHJ models [9]. Datapoints are derived from experiments by Chen and Sundman [17]. 

Figure 9. Comparison between the calculated Gibbs free energy differences of liquid and bcc 

Ni relative to fcc Nir in this work and by the SGTE database [9]. 

Figure 10. Comparison between the calculated and evaluated [36,38,39,113] heat content for 

fcc and liquid Ni. 

Figure 11. (a) Comparison between the calculated and evaluated [36,38,39,113] entropy for 

fcc and liquid Ni; (b) Comparison between the calculated low-temperature entropy for fcc and 

liquid Ni by this work and the SGTE database [9]. 

Figure 12. The calculated Cr-Ni phase diagram by Tang and Hallstedt [152]. 

Figure 13. (a) Comparisons of the calculated magnetic transition temperature by the IHX and 

IHJ [148] models with experimental results [116,182–186] for the fcc Cr-Ni phase; (b) 

Demonstration of numerical treatment using both IHJ and IHX models for Curie and Néel 

temperatures of the fcc alloys; (c) Comparisons of the calculated magnetic transition 
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temperature by the IHX and IHJ [148] models with experimental results [187] for the bcc Cr-

Ni phase; (d) Demonstration of numerical treatment using both IHJ and IHX models for Curie 

and Néel temperatures of the bcc alloys. 

Figure 14. Comparisons between the calculated magnetic moment in this work using the IHX 

model and by Lee [148] using the IHJ model for (a) the fcc; and (b) the bcc solution phases. 

Experimental magnetic moment data for the fcc phase are taken from [116,121,182,184,185]. 

Figure 15. Comparisons between the calculated magnetic ordering energy in this work using 

the IHX model and by Lee [148] using the IHJ model for (a)(b) the fcc phase; (c)(d) the bcc 

phase at 0, 500, and 1000 K. 

Figure 16. (a) Comparison between the calculated and experimental [158–168] Cr-Ni phase 

diagram; (b) Magnification of the CrNi2 phase region. 

Figure 17. (a) Comparison between the calculated and experimental [153,154,169,170] 

enthalpy of mixing for the liquid phase at 1990 K. The reference state is liquid Cr and liquid 

Ni. (b) Comparison between the calculated and experimental [163,171,172] enthalpy of 

formation for the solid phases at 1538 K. The reference state is bcc Cr and fcc Ni. 

Figure 18. (a) Comparison between the calculated and experimental [170,173–175] activity of 

Cr at 1873 K, relative to liquid Cr; (b) Comparison between the calculated and experimental 

[168,176,179,180] activity of Cr at 1273 K, relative to bcc Cr. 
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Tables 

Table 1. The low temperature limit of the Debye temperature θD(-3) for bcc Cr. 

θD(-3), K Method Temperature, K Refs. 

630 Heat capacity measurement < 4.2 [54] 

453 Calculation from Young’s modulus 298 [63] 

580 Heat capacity measurement 14-22 [55] 

606 Heat capacity measurement 0-22 [56] 

630 Heat capacity measurement < 5 [57] 

570 Calculation from elastic constant 298 [64] 

429 Electron diffraction 298 [61] 

498±6 X-ray diffraction 77-296 [59] 

529 Calculation from vibrational entropy 1400 [65] 

600±30 Heat capacity measurement > 4.2 [58] 

550±23 X-ray diffraction 298 [60] 

477±55 Mössbauer spectroscopy 78-300 [62] 
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Table 2. Experimental investigations of the heat capacity of Cr. 

Temperature range, K Purity, wt.% Experimental technique Refs. 

1641 – 2395 99.5 Levitation calorimeter [48] 

1.8 – 4.2 99.8 Mechanical heat switch calorimeter [54] 

10 – 273.2 99.9 – [55] 

325 – 1676 99.996 Adiabatic calorimeter [67] 

268 – 324 99.998 Adiabatic calorimeter [70] 

56.1 – 291.1 99.35 Vacuum calorimeter [90] 

60 – 300 99.98 – [91] 

262 – 345 99.995 Differential scanning calorimeter [92] 

205 – 380 99.96 Adiabatic calorimeter [93] 

373 – 1913 95.39 Drop calorimeter [97] 

673 – 1339 – Drop calorimeter [98] 

273 – 1073 99.9 Adiabatic calorimeter [94] 

964 – 1598 99.8 Adiabatic calorimeter [95] 

320 – 1800 – Adiabatic calorimeter [96] 
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Table 3. Comparison between the experimental and optimized Einstein temperature θE 

and electronic heat capacity coefficient γ for fcc Ni. All θD(-3) is derived from the heat 

capacity measurements. 

θD(-3), K θD(0)a, K θE
b, K γ, mJ/(mol*K2) Refs. 

413 347 248 7.297 [104] 

348±15 292 209 6.70±0.05 [105] 

334 281 200 7.20±0.01 [106] 

476 400 285 – [107] 

472 396 283 7.053±0.031 [108] 

462±19 388 277 7.12±0.02 [109] 

– – – 7.02 [110] 

444 373 266 7.034±0.003 [111] 

476 400 285 7.017 [112] 

480 403 288 7.151 This work 

a θD(0) = 0.84θD(-3) [31] 

b θE = 0.714θD(0) [103] 
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Table 4. The reported Curie temperature TC and magnetic moment β of fcc Ni. 

Properties Value Method Refs. 

TC, K 

633 Heat capacity measurement [112] 

633 Magnetization measurement [114] 

627.2 Susceptibility measurement [115] 

631 Magnetization measurement [116] 

628.5 Heat capacity measurement [117] 

625.25 Heat capacity measurement [118] 

626 Thermoelectric measurement [119] 

628.5 Thermal expansion measurement [120] 

632 Optical absorption spectrum measurement [199] 

686 Renormalized random-phase approximation [140] 

β, μB 

0.606 Magnetization measurement [115] 

0.62 Magnetization measurement [116] 

0.62 Magnetization measurement [121] 

0.60 Linear Muffin-Tin Orbital band method [122] 

0.60 Projector-augmented wave method [123] 
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Table 5. The relationship between parameters of the third-generation CALPHAD models 

and physical/thermodynamic properties of a pure element. 

Properties Unit Related parameters 

Low-temperature limit of the Debye temperature, θD(-3) K θE 

Electronic heat capacity coefficient, γ J/(mol*K2) a (Eqs. (1) – (2)) 

Curie/Néel temperature, TC/TN K TC/TN (Eqs. (8) – (11)) 

Magnetic moment, β μB β (Eqs. (8) – (11)) 

Ho(298.15 K) – H(0 K) J/mol E0 (Eq. 2) 

S(298.15 K) J/(mol*K) – 

Heat capacity, Cp J/(mol*K) – 

Melting point, Tm K – 

Enthalpy of fusion, ∆Hm J/mol H' (Eq. 3), A (Eq. 6) 

Entropy of fusion, ∆Sm J/(mol*K) S' (Eq. 3), B (Eq. 6) 
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Table 6. The third-generation Gibbs free energy functions for different structures of Cr 

and Ni. 

Cr: 

Bcc 

𝑇𝑁 = 311.5, 𝛽 = 0.0135, 𝑝 = 0.37  

−8.38046986𝐸 + 03 − 7.28682048𝐸 − 04 ∗ 𝑇2 − 1.06068156𝐸 − 06 ∗ 𝑇3 + 𝐺𝐸𝐼𝑁(344) +

𝐺𝑀𝐷𝑂(∞) + 𝐺𝑀𝑂                                                      0 < 𝑇 < 2136 

−6.62308650𝐸 + 04 + 2.72730977𝐸 + 02 ∗ T + 3.78124734𝐸 + 01 ∗ 𝑇 − 3.78124734𝐸 + 01 ∗

𝑇 ∗ 𝐿𝑁(𝑇) − 2.52807159𝐸 + 17 ∗ 𝑇−5 + 3.92481496𝐸 + 38 ∗ 𝑇−11 + 𝐺𝐸𝐼𝑁(344) +

𝐺𝑀𝐷𝑂(∞) + 𝐺𝑀𝑂                                                   2136 < 𝑇 < 6000 

Fcc 

−2.81013100𝐸 + 03 − 7.28682048𝐸 − 04 ∗ 𝑇2 − 1.06068156𝐸 − 06 ∗ 𝑇3 + 𝐺𝐸𝐼𝑁(356)  

0 < 𝑇 < 2136 

−6.06608960𝐸 + 04 + 2.72732303𝐸 + 02 ∗ T + 3.78126465𝐸 + 01 ∗ 𝑇 − 3.78126465𝐸 + 01 ∗

𝑇 ∗ 𝐿𝑁(𝑇) − 2.52807159𝐸 + 17 ∗ 𝑇−5 + 3.92481496𝐸 + 38 ∗ 𝑇−11 + 𝐺𝐸𝐼𝑁(356)  

2136 < 𝑇 < 6000 

Liquid and amorphous 

1.53043907𝐸 + 04 − 3.05280790𝐸 − 03 ∗ 𝑇2 + 𝐺𝐸𝐼𝑁(260) + 𝐺2𝑆𝑇(4.09741845𝐸 + 04 −

13.89 ∗ 𝑇 − 1.90447362𝐸 − 01 ∗ 𝑇 ∗ 𝐿𝑁(𝑇))                                0 < 𝑇 < 6000 

Ni: 

Fcc 

𝑇𝐶 = 633, 𝛽 = 0.52, 𝑝 = 0.25 

−8.38106180𝐸 + 03 − 3.57550000𝐸 − 03 ∗ 𝑇2 − 6.74033504𝐸 − 15 ∗ 𝑇5 + 𝐺𝐸𝐼𝑁(288) +

𝐺𝑀𝐷𝑂(∞) + 𝐺𝑀𝑂                                                      0 < 𝑇 < 2136 

−2.96324682𝐸 + 04 + 1.19928191𝐸 + 02 ∗ T + 1.76705304𝐸 + 01 ∗ 𝑇 − 1.76705304𝐸 + 01 ∗

𝑇 ∗ 𝐿𝑁(𝑇) + 5.47045839𝐸 + 18 ∗ 𝑇−5 − 1.10045747𝐸 + 37 ∗ 𝑇−11 + 𝐺𝐸𝐼𝑁(288) +

𝐺𝑀𝐷𝑂(∞) + 𝐺𝑀𝑂                                                   2136 < 𝑇 < 6000 

Bcc 

𝑇𝐶 = 456, 𝛽 = 0.52, 𝑝 = 0.37 

7.68938202𝐸 + 02 − 3.57550000𝐸 − 03 ∗ 𝑇2 − 6.74033504𝐸 − 15 ∗ 𝑇5 + 𝐺𝐸𝐼𝑁(288) +

𝐺𝑀𝐷𝑂(∞) + 𝐺𝑀𝑂                                                      0 < 𝑇 < 2136 

−2.04891168𝐸 + 04 + 1.19956846𝐸 + 02 ∗ T + 1.76743753𝐸 + 01 ∗ 𝑇 − 1.76743753𝐸 + 01 ∗

𝑇 ∗ 𝐿𝑁(𝑇) + 5.47045839𝐸 + 18 ∗ 𝑇−5 − 1.10045747𝐸 + 37 ∗ 𝑇−11 + 𝐺𝐸𝐼𝑁(288) +

𝐺𝑀𝐷𝑂(∞) + 𝐺𝑀𝑂                                                   2136 < 𝑇 < 6000 

Liquid and amorphous 

8.87543536𝐸 + 03 − 1.66245786𝐸 − 03 ∗ 𝑇2 + 𝐺𝐸𝐼𝑁(163) + 𝐺2𝑆𝑇(+4.59824721𝐸 + 04 −

10.11𝐸 + 00 ∗ 𝑇 − 4.38342374𝐸 − 01 ∗ 𝑇 ∗ 𝐿𝑁(𝑇))                            0 < 𝑇 < 6000 
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Auxiliary functions: 

𝐺𝐸𝐼𝑁(𝜃) = 1.5 ∗ 𝑅 ∗ 𝜃 + 3 ∗ 𝑅 ∗ 𝑇 ∗ 𝐿𝑁[1 − 𝐸𝑋𝑃(−𝜃/𝑇)] 

𝐺2𝑆𝑇(∆𝐺𝑑) = −𝑅 ∗ 𝑇 ∗ 𝐿𝑁[1 + 𝐸𝑋𝑃(−∆𝐺𝑑/(𝑅𝑇))] 

Note: All quantities are with SI units. 𝐺𝑀𝐷𝑂(∞) and 𝐺𝑀𝑂 are calculated by Eq. (11) and Eqs. (7) – (8), 

respectively. 
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Table 7. Optimized thermodynamic parameters of each phase in the Cr-Ni system based 

on the third-generation lattice stabilities for Cr and Ni. 

Phase Model Thermodynamic parameters (J/mol·atom) 

Liquid (Cr, Ni) 𝐿𝐶𝑟,𝑁𝑖
𝐿𝑖𝑞𝑢𝑖𝑑0 = −14405 + 3.035 ∗ 𝑇 

𝐿𝐶𝑟,𝑁𝑖
𝐿𝑖𝑞𝑢𝑖𝑑1 = 1143 

Bcc (Cr, Ni)1(Va)3 𝐿𝐶𝑟,𝑁𝑖:𝑉𝑎
𝐵𝑐𝑐0 = 11748 − 12.38 ∗ 𝑇 

𝐿𝐶𝑟,𝑁𝑖:𝑉𝑎
𝐵𝑐𝑐1 = 40661 − 13.099 ∗ 𝑇 

𝑇𝐶𝐶𝑟,𝑁𝑖:𝑉𝑎
𝐵𝑐𝑐0 = −11127.98 

𝑇𝑁𝐶𝑟,𝑁𝑖:𝑉𝑎
𝐵𝑐𝑐0 = −10967.41 

𝛽𝐶𝑟,𝑁𝑖:𝑉𝑎
𝐵𝑐𝑐0 = −12.24 

Fcc (Cr, Ni)1(Va)1 𝐿𝐶𝑟,𝑁𝑖:𝑉𝑎
𝐹𝑐𝑐0 = 8419 − 9.413 ∗ 𝑇 

𝐿𝐶𝑟,𝑁𝑖:𝑉𝑎
𝐹𝑐𝑐1 = 25557 − 12.933 ∗ 𝑇 

𝑇𝐶𝐶𝑟,𝑁𝑖:𝑉𝑎
𝐹𝑐𝑐0 = −5210.09 

𝛽𝐶𝑟,𝑁𝑖
𝐹𝑐𝑐0 = −4.28 

CrNi2 (Cr, Ni)1(Cr, Ni)2 𝐺𝐶𝑟:𝐶𝑟
𝐶𝑟𝑁𝑖2𝑜 = 21081 + 3 ∗ 𝐺𝐶𝑟

𝑏𝑐𝑐𝑜  

𝐺𝑁𝑖:𝑁𝑖
𝐶𝑟𝑁𝑖2𝑜 = 88105 + 3 ∗ 𝐺𝑁𝑖

𝑓𝑐𝑐𝑜  

𝐺𝐶𝑟:𝑁𝑖
𝐶𝑟𝑁𝑖2𝑜 = −14849 + 6.277 ∗ 𝑇 + 𝐺𝐶𝑟

𝑏𝑐𝑐𝑜 + 2 ∗ 𝐺𝑁𝑖
𝑓𝑐𝑐𝑜  

𝐺𝑁𝑖:𝐶𝑟
𝐶𝑟𝑁𝑖2𝑜 = 124035 − 6.277 ∗ 𝑇 + 𝐺𝑁𝑖

𝑓𝑐𝑐𝑜 + 2 ∗ 𝐺𝐶𝑟
𝑏𝑐𝑐𝑜  

𝐿∗:𝐶𝑟,𝑁𝑖
𝐶𝑟𝑁𝑖20 = 31662 

𝐿𝐶𝑟,𝑁𝑖:∗
𝐶𝑟𝑁𝑖20 = −88982 
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Figure 1. Comparison of the calculated heat capacities of bcc and liquid Cr in this work with 

experimental datapoints [48,54,55,67,70,90–98] and evaluation by handbooks [37,39]. 

Temperature, K

H
e
a

t 
c
a

p
a
c
it
y,

 J
/(

m
o
l·

K
)

bcc

liquid

T
m

=
2

1
3

6
 K

Cr
Experimental data: 

Evaluation in handbooks



47 

 

Figure 2. Comparison between the calculated heat capacity of bcc Cr by this work and the 

SGTE database [9] with experimental results [54,55,67,70,90–98]. The low-temperature heat 

capacity at 0 – 300 K is magnified in the inset. 
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Figure 3. Comparison between the calculated Gibbs free energy differences of liquid and fcc 

Cr relative to bcc Cr in this work and by the SGTE database [9]. 
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Figure 4. Comparison of heat content for bcc and liquid Cr between calculation in this work 

and experiments [48,97,98,197,198]. 
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Figure 5. (a) Comparison between the calculated and evaluated [37–39] entropy for bcc and 

liquid Cr; (b) Comparison between the calculated low-temperature entropy for bcc and liquid 

Cr by this work and the SGTE database [9]. 
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Figure 6. Comparison of the calculated heat capacities for fcc, liquid, and bcc Ni in this work 

with experimental datapoints [97,104,112,119,124–136] and evaluation by handbooks 

[36,39,113]. 
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Figure 7. Comparison between the calculated heat capacity of fcc Ni in this work and by the 

SGTE database [9] with experimental results [97,104,112,119,124–136]. The low-temperature 

heat capacity from 0 to 300 K is magnified in the inset. 
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Figure 8. Comparison between the calculated magnetic heat capacity for fcc Ni using the IHX 

and IHJ models [9]. Datapoints are derived from experiments by Chen and Sundman [17].
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Figure 9. Comparison between the calculated Gibbs free energy differences of liquid and bcc 

Ni relative to fcc Nir in this work and by the SGTE database [9]. 
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Figure 10. Comparison between the calculated and evaluated [36,38,39,113] heat content for 

fcc and liquid Ni. 
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Figure 11. (a) Comparison between the calculated and evaluated [36,38,39,113] entropy for 

fcc and liquid Ni; (b) Comparison between the calculated low-temperature entropy for fcc and 

liquid Ni by this work and the SGTE database [9].
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Figure 12. The calculated Cr-Ni phase diagram by Tang and Hallstedt [152]. 
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Figure 13. (a) Comparisons of the calculated magnetic transition temperature by the IHX and 

IHJ [148] models with experimental results [116,182–186] for the fcc Cr-Ni phase; (b) 

Demonstration of numerical treatment using both IHJ and IHX models for Curie and Néel 

temperatures of the fcc alloys; (c) Comparisons of the calculated magnetic transition 

temperature by the IHX and IHJ [148] models with experimental results [187] for the bcc Cr-

Ni phase; (d) Demonstration of numerical treatment using both IHJ and IHX models for Curie 

and Néel temperatures of the bcc alloys.  
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Figure 14. Comparisons between the calculated magnetic moment in this work using the IHX 

model and by Lee [148] using the IHJ model for (a) the fcc; and (b) the bcc solution phases. 

Experimental magnetic moment data for the fcc phase are taken from [116,121,182,184,185]. 
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Figure 15. Comparisons between the calculated magnetic ordering energy in this work using 

the IHX model and by Lee [148] using the IHJ model for (a)(b) the fcc phase; (c)(d) the bcc 

phase at 0, 500, and 1000 K. 
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Figure 16. (a) Comparison between the calculated and experimental [158–168] Cr-Ni phase 

diagram; (b) Magnification of the CrNi2 phase region. 
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Figure 17. (a) Comparison between the calculated and experimental [153,154,169,170] 

enthalpy of mixing for the liquid phase at 1990 K. The reference state is liquid Cr and liquid 

Ni. (b) Comparison between the calculated and experimental [163,171,172] enthalpy of 

formation for the solid phases at 1538 K. The reference state is bcc Cr and fcc Ni. 

 

Mole fraction Ni

E
n
th

a
lp

y
 o

f 
m

ix
in

g
, 
k
J
/m

o
l

1990 K

Mole fraction Ni

E
n
th

a
lp

y
 o

f 
fo

rm
a
ti
o

n
, 
k
J
/m

o
l

1538 K(a) (b)

NiCr NiCr



63 

 

Figure 18. (a) Comparison between the calculated and experimental [170,173–175] activity of 

Cr at 1873 K, relative to liquid Cr; (b) Comparison between the calculated and experimental 

[168,176,179,180] activity of Cr at 1273 K, relative to bcc Cr. 
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