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Abstract

Episodes of heat waves combined with drought can have a devastating impact on agricultural production worldwide.
These conditions, as well as many other types of stress combinations, impose unique physiological and develop-
mental demands on plants and require the activation of dedicated pathways. Here, we review recent RNA sequencing
studies of stress combination in plants, and conduct a meta-analysis of the transcriptome response of plants to dif-
ferent types of stress combination. Our analysis reveals that each different stress combination is accompanied by its
own set of stress combination-specific transcripts, and that the response of different transcription factor families is
unique to each stress combination. The alarming rate of increase in global temperatures, coupled with the predicted
increase in future episodes of extreme weather, highlight an urgent need to develop crop plants with enhanced tol-
erance to stress combination. The uniqueness and complexity of the physiological and molecular response of plants
to each different stress combination, highlighted here, demonstrate the daunting challenge we face in accomplishing
this goal. Dedicated efforts combining field experimentation, omics, and network analyses, coupled with advanced
phenotyping and breeding methods, will be needed to address specific crops and particular stress combinations rele-
vant to maintaining our future food chain secured.

Key words: Abiotic stress, drought, global warming, heat stress, network, stomata, stress combination, transcription factor,
transcriptomics.

Global climatic changes and the physiology of stress combination

Heat waves, combined with acute periods of drought stress,
have previously occurred in many regions of our planet, re-
sulting in devastating outcomes to agriculture, plant and animal
life, and economic stability (Mittler, 2006; https://www.ncdc.
noaa.gov/billions/). Such catastrophic episodes have been
a major driving force in the attempt by classical breeders to
develop crops such as maize (Zea mays) and soybean (Glycine
max) with enhanced tolerance to a combination of drought
and heat stress (Mittler and Blumwald, 2010; Suzuki et al.,
2014). Although progress has been made in the past by dif-
ferent breeders on this front, the constant and steady increase

in global average temperatures, driven by the increase in green-
house gases (i.e. global warming), could make future events
of stress combinations, such as drought and heat waves, much
more intense and frequent (http://www.ipcc.ch/; Teuling,
2018). In addition to drought combined with high temper-
atures, the intensity and frequency of other abiotic and biotic
stresses, as well as their combinations, could also increase in the
future. These include combinations of heat stress with attack by
different insects or pathogens, high soil salinity, nutrient stress,
flooding, and other stressors that are predicted to become more
pronounced in the future (Choudhury et al.,2017; Noctor and
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Mhamdi, 2017; Zhang and Sonnewald, 2017). The alarming
rate at which global warming is currently progressing makes
the development of many plants and crops with enhanced
tolerance to stress combination a high priority in agriculture,
especially considering the predicted future increase in global
population and the decrease in resources such as good quality
agricultural land and freshwater supply.

As highlighted by many recent studies, reviews, and spe-
cial issues on the subject (e.g. Huber and Bauerle, 2016;
Suzuki, 2016; Chaturvedi et al., 2017; Choudhury et al., 2017,
Loudet and Hasegawa, 2017; Mao et al., 2017; Zhang and
Sonnewald, 2017; Chojak-KoZniewska et al., 2018; Elferjani
and Soolanayakanahally, 2018; Lawas et al., 2018, 2019; Sehgal
et al., 2018, 2019; Zandalinas et al., 2018; Zhang et al., 2018;
Yuan et al., 2018; Balfagbn et al., 2019;Fabian et al., 2019;
Ibrahim ef al., 2019; Jumrani and Bhatia, 2019; Mahalingam
and Bregitzer, 2019; Nieves-Cordones ef al.,2019; Rivero et al.,
2019;Trachsel et al.,2019; Zhou et al.,2019), the co-occurrence
of two or more different stresses (be it abiotic and/or biotic)
can pose a special challenge to plants. This challenge may be
resolved by additive, subtractive, and/or combinatorial effects
of different pathways, networks, and mechanisms that are ac-
tivated by each of the different stresses, or by the activation
of new and dedicated pathways and genes that are explicitly
activated during the stress combination. Recent advances
in using omics tools such as metabolomics, proteomics, and
transcriptomics, coupled with machine learning and improved
phenotyping and breeding methods, could make it possible to
dissect, identity, and use different pathways and genes for the
improvement of tolerance to stress combination in different
crops. However, to understand the different challenges facing
such endeavors we must first understand the physiological, de-
velopmental, and anatomical challenges plants may face during
different types of stress combinations. For example, different
stresses may require different stomatal responses to mitigate
their impact and these could be conflicting (Fig. 1A). While
previous studies have shown that a combination of drought
(that requires stomatal closure to prevent water loss) and heat
(that requires stomatal opening to cool leaves by transpiration)
resulted in an overall response of stomatal closure (Rizhsky
et al., 2004), a new study has shown that during a combination
of heat and high light stress (that requires stomata to close;
Devireddy et al., 2018), stomata remained open (Balfagdn
et al., 2019). Changes in stomatal aperture are also a major
player in responses to bacterial pathogens (require a closure re-
sponse to prevent infection; Kollist et al.,2019), and these could
also be conflicting with responses to heat or high CO, levels
(Fig. 1A). Because stomata play such as key role in regulating
transpiration, leaf temperature, and photosynthesis (Sussmilch
et al., 2019), stomata represent an excellent example of con-
verging pathways during stress combination. Future studies of
stress combinations should therefore include a reference to, or
a focus on, stomatal responses and their underlying mechan-
isms. Photosynthesis and respiration during stress combination
are two other physiological processes that require attention,
especially since both could be drastically affected by heat, or
stress combinations that involve extreme temperatures as one
of their components (Mittler, 2006). The effect of high light
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and heat stress was recently shown, for example, to result in en-
hanced photoinhibition that was coupled with the inability of
plants to recover photosynthesis following recovery from the
stress combination episode (Balfagén et al., 2019). This phe-
nomenon could be the result of high light damaging PSII, with
heat stress simultaneously making it harder to repair the D1
protein of PSII (Balfagén et al., 2019).

Among the many experimental tools available for us to dissect
the response of plants to stress combination, transcriptomics is
becoming more affordable and accessible. Pending the proper
application of stresses and their combination, the right choice
of tissues and cell types, and the coupling of RNA sampling
with physiological, biochemical, and yield measurements,
transcriptomics could become very useful in the analysis of
plant responses to stress combination. Below we will discuss
some of the recent advances in the study of stress combination
by transcriptomics.

Transcriptomics of stress combination

The field of stress combination in plants has seen a recent in-
crease in the number of transcriptomics studies attempting to
dissect the response of plants to different types of abiotic and/
or biotic stress combinations. These studies include stress com-
binations such as light and heat (Balfagén ef al., 2019), salinity,
drought, and heat (Shaar-Moshe et al., 2017), salinity and heat
(Suzuki et al., 2016), water stress combined with S deficiency
(Henriet et al., 2019), drought or flooding combined with
herbivore attack (Nguyen et al., 2016), drought and salinity
(Osthoft et al., 2019), drought and heat (Ashoub et al., 2018;
Liu et al., 2018; Wang et al., 2018), cold and drought (Zheng
et al., 2016), salinity and ozone (Natali er al., 2018), drought
and pathogen (Sinha ef al., 2017), high temperature and ni-
trogen (Yang et al., 2015), and heat, drought, and virus infec-
tion (Prasch and Sonnewald, 2013). A variety of plants were
used in these studies, including rice (Oryza sativa), soybean, pea
(Pisum sativum), and Arabidopsis. In addition, different plant tis-
sues such as roots, leaves, and reproductive tissues were used.
In almost all of these studies, additive effects between the two
different stresses were observed during stress combinations. In
addition, in almost all of the studies listed above, as well as in
the initial transcriptomics studies on drought and heat com-
bination (Rizhsky et al., 2004), the simultaneous application
of two different stresses resulted in the altered expression of
many transcripts that were unique to the stress combination
and were not expressed when each of the different stresses
was applied individually. These findings highlight the pos-
sible existence of dedicated pathways and genes that may have
evolved to mitigate the effects of stress combination. Within
this growing reservoir of transcriptomics data sets, several an-
swers to key questions related to stress combination in plants
may lie hidden. For example, how do different transcription
factor (TF) families respond to stress combination? How do
they regulate transcript expression during stress combination?
To begin addressing some of these questions, we performed
a meta-analysis of three transcriptomics studies conducted in
our laboratory on stress combination, all including heat stress
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Fig. 1. Regulation of stomata during stress combination and overlap between abiotic stress-specific transcripts. (A) The opposing demands on stomatal
aperture regulation during different types of stress combination. (B) Venn diagram showing the overlap between stress combination-specific transcripts
up-regulated during different types of stress combination. (C). Same as (B) but for all transcripts up-regulated during different types of stress combination.
Drought and heat (D+H); salinity and heat (S+H); and high light and heat stress (L+H). Data were obtained from Rizhsky et al. (2004), Suzuki et al. (2016),
and Balfagon et al. (2019), and subjected to meta-analysis as described in Zandalinas et al. (2019).

as one of their components (Rizhsky et al., 2004; Suzuki et al.,
2016; Balfagon et al., 2019).

Unique transcriptomic responses to stress
combination

To compare the transcriptomic response of plants to different
stress combinations, we used three transcriptomic data sets gen-
erated in our laboratory over the years. These were drought and
heat stress (Rizhsky ef al.,2004), salinity and heat stress (Suzuki
et al., 2016), and high light and heat stress (Balfagbon et al.,
2019). Because all stress combinations included heat stress as
one of their components, we expected some degree of overlap
among the transcripts unique to each of the different stress
combinations. Nonetheless, as shown in Fig. 1B, not even one
transcript was found to be common among all three groups of
stress combination-specific transcripts. This finding highlights
the uniqueness of the plant response to stress combination
and its dependency on the particular stress combination the
plant experiences. Interestingly, several TF families, including
heat shock factors (HSFs), MYBs, and ethylene response fac-
tors (ERFs), were represented in each of the different groups
of stress combination-specific transcripts (Supplementary Fig.

S1; Supplementary Table S1 at JXB online). Because transcrip-
tional regulators such as HSFs, MYBs, and ERFs belong to
large gene families in Arabidopsis, we examined whether the
pattern of expression of these gene families during stress com-
bination could shed new light on how the transcriptome of
plants is modulated during stress combination.

Regulation of different TF families during
stress combination

Transcriptional regulators and the transcriptional networks
they control play a major role in plant acclimation to stress.
To study the regulation of different TF families in Arabidopsis
during different stress combinations, we expanded our meta-
analysis to all transcripts up-regulated in plants during stress
combination. As shown in Fig. 1C, an overlap of 340 transcripts
was found among all transcripts up-regulated in response to
each of the different stress combinations. This finding sug-
gests that although none of the stress combination-specific
responses had an overlap with the other (Fig. 1B), some re-
sponses to stress combination, that were not stress combin-
ation specific, did occur in response to all stress combinations
(Fig. 1C; Supplementary Fig. S2). These included transcripts

120Z 8unr g uo 1senb Aq 981609S/7€ 2 L/G/) 2/8191e/ax[/woo dno-olwepeoe//:sdiy wols pspeojumoq


http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz486#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz486#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz486#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz486#supplementary-data

involved in responses to heat, salinity, and abscisic acid (ABA)
(Supplementary Fig. S2). Similar to the stress combination-
specific transcripts (Supplementary Fig. S1), TFs belonging
to the HSE MYB, and ERF families were represented among
the 340 transcripts up-regulated in all stress combinations
(Supplementary Table S2). We therefore examined the expres-
sion pattern of each of these families during stress combin-
ation, as well as comparing them with the WRKY TF family
that is also proposed to be involved in stress combination (Bai
et al., 2018).

The HSF family of transcriptional regulators plays a canon-
ical role in the response of plants to heat and other stresses
by regulating both immediate responses and epigenetic con-
trol of heat stress memory (Jacob et al., 2017; Ohama et al.,
2017; Zhu et al.,2017; Duan et al., 2019). It is composed of 21
genes in Arabidopsis and can function as a regulatory network
under different conditions and in different tissues. As shown
in Fig. 2A, out of the 16 HSFs included in our meta-analysis,
two (HSFA2 and HSFB1) were up-regulated by all stress com-
binations. These two HSFs play a major role in orchestrating
the HSF network and are known to have distinct roles in the
regulation of heat stress responses in Arabidopsis (Ohama et al.,
2017). Interestingly, although many HSFs are up-regulated
during heat stress, when heat is combined with other stresses
the expression of some of these HSFs is suppressed. In addition,
although the expression of some HSFs during each of the indi-
vidual stresses is repeated when the two stresses are combined
(e.g. HSFA1D during light, heat, and light combined with
heat; Fig. 2B), in many cases the effect of the stress combination
is not additive or similar between the two different individual
stresses and their combination (e.g. HSFA4C during salinity,
heat, and salinity combined with heat, or HSFA4A during
drought, heat, and drought combined with heat). The HSF
network could therefore be using an additive, subtractive, and/
or combinatorial manner to regulate gene expression during
stress combination.

In contrast to the HSF TF family, the MYB (Baldoni ef al.,
2015; Li et al., 2019; Millard et al., 2019) and AP2-EREBP
(that includes classical ERF TFs; Mizoi et al., 2012; Agarwal
et al., 2017; Srivastava and Kumar, 2018; Takahashi ef al., 2018)
TF families are much larger and thought to be involved in
many more complex and different functions that include re-
sponses to stress and regulation of development (under stressful
and non-stressful conditions). Analysis of the MYB family
(Fig. 3) revealed that two MYBs (7 and 32) were up-regulated
by all stress combinations, whereas two other MYBs (30 and
51) were suppressed by all stress combinations. MYB7 was
previously found to negatively regulate ABA-induced inhib-
ition of seed germination by blocking the expression of ABI5
(Kim et al., 2015), and MYB32 is required for normal pollen
development in Arabidopsis (Preston et al., 2004). In con-
trast, MYB30 plays a key role in regulating reactive oxygen
signaling, root cell elongation, and plant immune responses
(Mabuchi et al., 2018), and MYDB51 regulates glucosinolate
biosynthesis in Arabidopsis (Frerigmann and Gigolashvili,
2014). Although it is possible that regulating these pathways in
a negative or a positive manner is involved in the response of
plants to different stress combinations (similar to HSFs, MY Bs
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Fig. 2. Regulation of heat shock transcription factors (HSFs) during
stress combination. (A) Venn diagrams showing overlap between HSFs
expression (top, up-regulated; bottom, down-regulated) during the
different abiotic stress combinations in Arabidopsis. Drought and heat
(D+H); salinity and heat (S+H); and high light and heat stress (L+H). (B)
Heat maps showing the response of the different HSFs in each stress
condition and their combinations (relative to control). Data were obtained
from Rizhsky et al. (2004), Suzuki et al. (2016), and Balfagon et al. (2019),
and subjected to meta-analysis as described in Zandalinas et al. (2019).

can be activators or suppressors of gene expression), a much
more inclusive view of the MYDB network as a whole should
be adopted when studying the response of plants to stress
combination. When viewing the heat map for MYB expres-
sion (Fig. 3B), it is apparent that similar to HSFs, an additive,
negative, and/or combinatorial manner of regulation is most
probably used by MYBs to control transcript expression, accli-
mation, and development during stress combination.

Analysis of the AP2-EREBP family of TFs, that includes
the DREB TFs important for heat and drought responses in
plants (Takahashi et al., 2018; Mizoi et al., 2019), revealed that
four different AP2-EREBP TFs (RAP2.10 and DREB 2A, 2B,
and 2C) were up-regulated by all stress combinations (Fig. 4).
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Fig. 3. Regulation of MYB transcription factors during stress combination. (A) Venn diagrams showing overlap between MYB expression (top,
up-regulated; bottom, down-regulated) during the different abiotic stress combinations in Arabidopsis. Drought and heat (D+H); salinity and heat (S+H);
and high light and heat stress (L+H). (B) Heat maps showing the response of the different MYBs in each stress condition and their combinations (relative
to control). Data were obtained from Rizhsky et al. (2004), Suzuki et al. (2016), and Balfagén et al. (2019), and subjected to meta-analysis as described in

Zandalinas et al. (2019).

In contrast, no AP2-EREBP TF was suppressed by all stress
combinations. While not much is known about RAP2.10,
DREB 2A, 2B, and 2C are known to regulate many responses
to drought, salinity, and heat stresses (Takahashi et al., 2018;
Mizoi et al., 2019). Similar to HSFs and MY Bs, the pattern of
AP2-EREBP expression during the different stresses (Fig. 4B)
revealed an additive, negative, and/or combinatorial manner of
regulation. In contrast to HSFs, MYBs, and AP2-ER EBPs, no
WRKY TF (Schluttenhofer and Yuan, 2015;Viana et al., 2018)
responded to all stress combinations, and the expression of the
different WRKYS in response to the different stresses was not
as extensive as that of the other TF families (Supplementary
Fig. S3). It is therefore possible that WRKYs are mainly ex-
pressed using combinations of biotic and abiotic conditions
(Bai et al., 2018; as opposed to the abiotic stress combinations
tested in Figs 1-4).

Concluding remarks and future
perspectives

The unique physiological and developmental demands im-
posed on plants during periods of stress combination could
be reflected in their molecular response to these conditions.
Opposing demands for stomatal responses (Fig. 1A) and their
effects on leaf temperature, respiration, transpiration, and photo-
synthesis could, for example, be driving novel transcriptomic re-
sponses. Indeed, our meta-analysis of the response of plants to
heat and drought, salinity and heat, and high light and heat stress
combinations revealed that each different stress combination re-
sulted in a unique transcriptomic response that included stress
combination-specific transcripts; and that the three groups of
stress combination-specific transcripts had no overlap between
them (Fig. 1B).In addition, the three difterent stress combinations
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Fig. 4. Regulation of AP2-EREBP transcription factors during stress combination. (A) Venn diagrams showing overlap between AP2-EREBP expression
(top, up-regulated; bottom, down-regulated) during the different abiotic stress combinations in Arabidopsis. Drought and heat (D+H); salinity and

heat (S+H); and high light and heat stress (L+H). (B) Heat maps showing the response of the different AP2-EREBPs in each stress condition and their
combinations (relative to control). Data were obtained from Rizhsky et al. (2004), Suzuki et al. (2016), and Balfagon et al. (2019), and subjected to meta-

analysis as described in Zandalinas et al. (2019).

resulted in different combinatorial patterns of TF expression (i.e.
a TF fingerprint unique to each stress combination; Figs 2—4;
Supplementary Fig. S3), that could be mediating these unique
transcriptomic responses. One possible conclusion that could be
drawn based on these observations is that, because each stress
combination is unique, attempting to generate crops with en-
hanced tolerance to stress combination would require a dedi-
cated effort directed at each particular stress combination. No
single ‘magic bullet’ might therefore be used to generate crops
with enhanced tolerance to all different stress combinations.
The transcriptomic response of plants to the different stress
combinations addressed in our meta-analysis could be regulated
by unique TFs that are dedicated to each of the different stress
combinations (Supplementary Table S1), by additive, subtractive,
or combinatorial expression patterns of different groups of TFs
(e.g. Figs 2, 3; Supplementary Fig. S3), generating a novel overall
TF pattern of expression that is unique to the stress combin-
ation (a TF fingerprint unique to each stress combination), or

by both of these mechanisms combined. Future studies are of
course needed to decipher these TF regulatory networks and
their regulated targets, and to learn how to use them in the de-
velopment of crops with enhanced tolerance to stress combin-
ations. Although, as discussed above, no one ‘magic bullet’ could
be used for all different types of stress combination, at least when
it comes to stress combinations that have one component in
common (e.g. heat stress; Figs 2, 3), some candidates, for example
MYB7 and MYB32 (Fig. 3), or HSFA2 (Fig. 1), could poten-
tially be used in an attempt to enhance the tolerance of plants
to different types of stress combinations that involve heat. Of
course future studies are needed to address this hypothesis.

The three different studies used for our meta-analysis were
all performed with leaf tissues of plants subjected to stress com-
bination. Although all different stress combinations studied had
a negative impact on plant growth and survival (Rizhsky ef al.,
2004; Suzuki ef al., 2016; Balfagon et al., 2019), the effect of these
stress combinations on plant reproduction, and in particular the
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transcriptomic response of reproductive tissues to the different
stress combinations, was not addressed in them. It is therefore pos-
sible that a different, as yet unknown, set of TF responses occurs
in reproductive tissues, and that this response is more common
or different than that of vegetative tissues. Because reproductive
tissues are particularly sensitive to stress combination and are one
of the major causes of crop loss (e.g. due to flower or seed abor-
tion), studying the transcriptomic response of reproductive tissues
to stress combination should be a major goal of future studies.

The alarming rate at which global average temperatures are
increasing, coupled with predicted future weather events such
as extensive periods of droughts, highlights the urgent need to
develop many different crop plants with enhanced tolerance
to stress combination. The uniqueness and complexity of the
physiological and molecular response of plants to stress com-
bination underline, however, the daunting challenge we face
in accomplishing this goal. Dedicated efforts combining field
experimentation, omics, and network analysis using machine
learning, coupled with advanced phenotyping and breeding
methods are therefore needed to address the many specific
crops and particular stress combinations relevant to maintaining
our food chain secured and viable worldwide. There is no lack
of work waiting for us, so let’s start working.

Supplementary data

Supplementary data are available at JXB online.

Fig. S1. Overlap between transcripts encoding different stress
combination-specific transcription factors (TFs), and repre-
sentation of different transcriptional regulators within the dif-
ferent stress combination-specific transcript groups.

Fig. S2. Gene Ontology (GO) annotation of the 340 transcripts
common to all stress combinations shown in Fig. 1C.

Fig. S3. Regulation of WRKY transcription factors during
stress combination.

Fig. S4. Gene Ontology (GO) annotation of all transcripts
up-regulated during the three different stress combinations
shown in Fig. 1C.

Table S1.Transcription factors specifically up-regulated during
different types of stress combinations.

Table S2. Transcripts up-regulated during all stress combin-
ations analyzed.
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