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1. Introduction

Let I be the interval (-1, 1) and the function J: L,(I) x L,(I) — R be
defined by

1
J0nu) =5 (Ily =yl + BllullEn ) (1D
where y,; € L,(I) and S is a positive constant.
The optimal control problem is to

find (y,u) = arg min](y, u), (1.2)
( ,u)e]K

where (hu) € H} (I) x L,(I) belongs to K if and only if

Jy’z’dx = J (u+f)z dx Vz e Hy(I), (1.3)
I

I
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y <y a.e. on I. (1.4)
We assume that
feH (), y € HXI) (1.5)
and
J W dx > 0. (1.6)
I

Remark 1.1. The optimal control problem defined by Equations (1.1)-(1.4)
is a one dimensional analog of the optimal control problems considered in
[1-5]. It was solved by a C' finite element method in [6] under the
assumptions that

feH ™ () and yeH (). (1.7)
Since the constraint Eq. (1.3) implies y € H*(I) by elliptic regularity, we
can reformulate the optimization problem Egs. (1.1)-(1.4) as follows:

o 1
Find y = argmin (Il = palf, o + B + 1), (1.8)
ye

where
K={yeH(I)NHy(I): y <y on I}. (1.9)

According to the standard theory [7, 8], the minimization problem
defined by Egs. (1.8)-(1.9) has a unique solution characterized by the
fourth order variational inequality

ﬁL(y“ +£) () —y")dx + L(y —ya)(y—y)dx >0  VyeKk,

which can also be written as

a(y,y —y) > Lw —y)dx — ﬁJf 0" =y")dx  Vyek, (1.10)

I

where

a(y,z) = ﬂJIy"z”dx + Jyz dx. (1.11)

I

Remark 1.2. The reformulation of state constraint optimal control prob-
lems as fourth order variational inequalities was discussed in [9], and a
nonconforming finite element based on this idea was introduced in [10].
Other finite element methods can be found in [11-17].
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Remark 1.3. Note that Eq. (1.4) implies
Jv,bdeJy/dx:O VyeK
I I

and hence [/ dx > 0 is a necessary condition for K to be nonempty. It is
also a sufficient condition because the function y defined by

v = [ w - p)a
-1
belongs to K, where  is the mean of y over I. Furthermore,

0= | v ar= | (v =y)as

together with Eq. (1.4) implies = y’ identically on I and hence K = {y'}
is a singleton. Therefore we impose the condition Eq. (1.6) to ensure that
the optimization problem defined by Egs. (1.8)-(1.9) is nontrivial.

Our goal is to show that y € H*(I) under the assumptions in Eq. (1.5)
and consequently Eq. (1.8)/(1.10) can be solved by a C' finite element
method with O(h) convergence in the energy norm. Note that previously
y € H> ¢ was the best regularity result in the literature for Dirichlet elliptic
distributed optimal control problems on smooth/convex domains with
pointwise constraints on the gradient of the state.

The rest of the paper is organized as follows. The H> regularity of y is
obtained in Section 2 through a variational inequality for y' that can be
interpreted as a Neumann obstacle problem for the Laplace operator. The
C' finite element method for Eq. (1.8)/(1.10) is analyzed in Section 3, fol-
lowed by numerical results in Section 4. We end with some remarks on the
extension to higher dimensions in Section 5.

2. A variational inequality for y’

Observe that the set {y/ : y € K} is the subset .#" of H'(I) given by
%:{VGHI(I): JIV dc=0 and v<y on I}, (2.1)
and the variational inequality Eq. (1.10) is equivalent to
L((D —f)(a - p)dx+ Lp’ (¢' = p')dx

+ [f()(q(1) — p(1) —f(~=1)(q(=1) —p(-1))] >0  Vqe X,
(2.2)

where p =3, q =y, and ® € H'(I) is determined by
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PO =ys—y (2.3)

and
J O dx=0. (2.4)
I

Moreover Eq. (2.2) is the variational inequality that characterizes the solu-
tion of the following minimization problem:

Find p = argmin B L(q')zdx—l— JI((I) —f')q dx+f(1)q(1) — f(—=1)q(-1)|.

qeAX
(2.5)

2.1. A Neumann obstacle problem

The minimization problem Eq. (2.5), which is a Neumann obstacle prob-
lem, can be written more conveniently as

p = argmin Bb(q, q) + (¢,q) +1q(1) — og(-1) |, (2.6)
qeA”

where o = f(—1), = f(1),
b(g,r) = qu'r' dx, (¢.q) = JIqS gdx and ¢=0—f. (2.7)
Note that we have a compatibility condition
qu dx+1—-0=0 (2.8)

that follows from Egs. (1.5), (2.4) and the Fundamental Theorem of
Calculus for absolutely continuous functions.

Since b(-,-) is coercive on H'(I)/R, the obstacle problem defined by
Egs. (2.1) and (2.6) has a unique solution p characterized by the variational
inequality

b(p,q —p) + (¢ —p) +1(q(1) —p(1)) —a(q(=1) —p(~1)) >0 Vge 1.
(2.9)

Theorem 2.1. The solution p =y € A" of (2.6)/(2.9) belongs to H*(I).

Proof. We begin by observing that

b(p.q—p) + (.9 —p) +1(q(1) —p(1)) —a(g(—=1) —p(-1)) >0 VgeK,
(2.10)

where
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K:{qEHl(I): qgwinlandjq deO}. (2.11)
I
Indeed, q € K implies q — G(q) € A, where

G(q) = %Lq dx (2.12)
is the mean of q over I, and hence, in view of (2.8), the definition of b(-, )
in Egs. (2.7) and (2.9),

b(p,q — p) + ($q — p) + (q(1) — p(1)) — o ((q(~1) — p(~1))
=b(p,q— G(q) —p) + ($-9— G(q) — p)
+7(q(1) = G(g) = p(1)) = o (a(~1) = G(g) — p(-1))
>0

for all g € K.
Let & C H'(I) be defined by
RA={qeH(D): 9< ¥ in I}, (2.13)
and G:H'(I) — [0,00) be defined by Eq. (2.12). Then K ={gq€ &:
G(q) > 0} and the function i € 8 satisfies
G(Y) >0 (2.14)
by Eq. (1.6).
It follows from the Slater condition Eq. (2.14) and the theory of

Lagrange multipliers [18, Chapter 1, Theorem 1.6] that there exists a non-
negative number A such that

b(p.q —p) + ($9 —p) +1((q(1) = p(1)) = o (q(~1) — p(~1))
—}LJI(q —p)dx >0

for all g € R.
Finally, we observe that Eq. (2.15) can be written as
b(p,q—p)+ (F.q—p) +(q(1) —p(1)) —a(q(~1) = p(-1)) >0 Vg€ &
(2.16)

(2.15)

where

b(gr)= Lq’r'dx - qur dx (2.17)

and
F=¢—I1—p. (2.18)
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The variational inequality defined by Egs. (2.13), (2.16) and (2.17) char-
acterizes the solution of a coercive Neumann obstacle problem on H(I).
Since F € L,(I) and € H*(I), we can apply the result in [19, Chapter 5,
Theorem 3.4] to conclude that p € H(I).

We can deduce the regularity of (y,u) from the relations p =}’
and u = — (5" +f). O

Corollary 2.2. Under the assumption (1.5) on the data, the solution (y,u) of
the optimal control problem Eqs. (1.1)-(1.6) belongs to H*(I) x H'(I).

Remark 2.3. The result in [19], which is for dimensions > 2, requires a
compatibility condition between 0y//On and the Neumann boundary con-
dition so that the boundary trace of the normal derivative of the solution
of the obstacle problem belongs to the correct Sobolev space. This is not
needed in one dimension since the boundary values of the normal deriva-
tive are just numbers.

2.2. The Karush-Kuhn-Tucker conditions

It follows from Eq. (2.7), Theorem 2.1 and integration by parts that

b(p.a) + ($r) + q1) ~oq(~1) 2| g det [ g dv =0 vgeHD),
I I
(2.19)
where the regular Borel measure v is given by
dv=(p" — ¢+ A)dx+ [p'(—1) + o]do_; — [p'(1) + 1] ddy, (2.20)

and 0_; (resp., 9,) is the Dirac point measure at —1 (resp., 1).
Let .7 be the active set of the derivative constraint Eq. (1.4), i.e.,

oA ={xe[-L1]: yx)=y@x)}={xe[-11]: p(x) =y(x)}. (221)
By a standard argument, p satisfies Eq. (2.15) if and only if
v is nonnegative and supported on .o7. (2.22)

We can translate Eqs. (2.19)-(2.22) into necessary conditions for the
solution y' = p € A" of Eq. (2.2)/(2.5), which is summarized in the follow-
ing theorem.

Theorem 2.4. There exists a nonnegative number A such that
[ et [ (@=r)a as+50a0) — a1+ [ g v
I I

! (2.23)
:ijq dx Vg € H'(I),
I
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J (p—W)dv =0, (2.24)
1)
dv = 1% dx + Vd5_1 + Cdél, (2.25)
where
p=p"+f —®+ e L,(I) is nonnegative a.e., (2.26)
y=p'(=1) +f(=1) and { = —[p'(1) + f(1)] are nonnegative numbers,
(2.27)

and ® € H'(I) satisfies Egs. (2.3)-(2.4).

Remark 2.5. It can be checked that the necessary conditions Egs.
(2.23)-(2.27) are also sufficient conditions for Eq. (2.2)/(2.5). Indeed, they
imply, for any g € 4,

Lp’(q’ —p)dx+ L(‘D —f)q dx+f(1)(q(1) - p(1)) = f(=1)(q(=1) = p(-1))
= /IL(q —p)dx — JI(q —p)dv
= —Jl(q —y)dv >0,

which then also implies y(x) = [* p(t)dt is the solution of Eq. (1.8). We
will refer to these conditions as the Karush-Kuhn-Tucker (KKT) conditions
for Eq. (2.2)/(2.5).

Finally, we observe that Theorem 2.4 implies

ﬁJ (5" + f)" dx + J (V —ya)z dx+J Zdu=0 Vze HI)nHI),
i i

-1,1]

(2.28)
where
i = Pv is a nonnegative Borel measure, (2.29)
and
J (7 —¢)du=0. (2.30)
(-1,1]

3. The discrete problem

Let V;, C H2(I) N H}(I) be the cubic Hermite finite element space (cf. [20,
21]) associated with a triangulation/partition 7', of I with mesh size h. The
discrete problem is to find
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7 = argmin (Il =yl ) + B +1E,0)): G.1)
yreKy
where
Kpn={yn € Vi: Ppy, < Ppyr}, (3.2)

and Py, is the interpolation operator associated with the P; finite element
space associated with 77, i.e., the constraint Eq. (1.3) is only enforced at
the grid points.

The nodal interpolation operator from C!([—1,1]) onto V}, is denoted
by Hh-

We will use the following standard estimates for P, and II;, (cf. [20, 21])
in the error analysis:

1C = Pulll,) < Chlllpgy Y e HY(D), (3.3)
IC—Pulll, ) < CR Ly V€ HXD), (3.4)
1C = Tl gy + BIC = Tl ey < CR Ly V€ H(D). (3.5)

Here and below we use C to denote a generic positive constant that is inde-
pendent of the mesh size h.

The unique solution y, € Kj, of the minimization problem defined by
Egs. (3.1) and (3.2) is characterized by the discrete variational inequality

B 01400~ )+ | 3y =y -y =0 ¥y ek

which can also be written as

AV Yn —¥p) 2 J)’d()’h J_’h)dx_ﬁjf()’h Vy)dx Vyn € Ky, (3.6)

where the bilinear form a(--) is defined in Eq. (1.11).

The error analysis of the finite element method is based on the approach
in [22] for state-constrained optimal control problems that was extended to
one dimensional problems with constraints on the derivative of the state
in [6].

We will use the energy norm || - ||, defined by
IVla = a(v.v) = M, + Blvlzeq)- (37)
Note that
W2Vl ¥y € HX (D) N Hy(D) (3.8)

by a Poincaré-Friedrichs inequality [23].
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3.1. An abstract error estimate

In view of Egs. (3.6), (3.7) and the Cauchy-Schwarz inequality, we have
7 = 7lla = a7 = F1o 7 = 1) + (7 = o 30 = 71)
<0 = 7l 4515 = 9l + a@ ~ 3) (.9
- L)’d()’h — Yp)dx + ﬁJIf()’Z —h)dx  Vyu € Kp.
It follows from Egs. (2.28), (2.30) and (3.2) that
(> yh = Vn) — Lyd(yh — Vp)dx + ﬂLf (Vh — i) dx
=, Oh e

= J (7, — Puyy,)du + J
[—1,1]

o AL AL

[-1.1]

(B, — Pu)du + j (Pu — )di

[-1.1] (-1.1]

(P — ) + J 5 — ) du

[~1.1]

< L ](%1 — Py, )du+ J
-1,1

(-1.1]
(3.10)

for all y, € K.
Putting Eqs. (3.9) and (3.10) together, we arrive at the abstract error estimate

ly =7,z <2 (J (7, — Puy))du + J (Pryy — lﬂ)du>
[-1L1]

[-1.1]
(3.11)

yh€EK)

+ inf (uy—yhuiﬂj[ w(y/—y’h)du).

3.2. Concrete error estimates

The three terms on the right-hand side of Eq. (3.11) can be estimated as follows.
First of all, we have

J[_U] (7 — Payy)dun = J (G}, —7) = Pu(7, — 7)]du + J G — B

o [-1,1]
B ﬂ(JI[()_/;l _}_/) - Ph()_’;q _)_/)}deJr L()_'/ - Ph)_’/)/) dx)

< C(hlly = 7ulla + Flrlsin )
(3.12)
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by Corollary 2.2, (2.25), (2.29), (3.3), (3.4), (3.8) and the fact that { — Py(

vanishes at the points +1 for any { € H!(I). The generic positive constant

C in Eq. (3.12) (and other estimates below) is allowed to depend on p.
Similarly, we can derive

J[—l 1] (Puy = ¥)dp = ﬂJI(Phlp —Y)pdx < Ch2|W|H2(1) (3.13)

by Egs. (1.5) and (3.4).
Finally, we have

inf (II?—yhllﬁJrZJ[ 11](7’—y’h)dﬂ)

}/heKh

<y - I + 2[ ¥ — (Ty)]du

[-1.1]
= |y = Mypll; + ZﬁL 7' = () ]p dx < CR[[73q) + Pl
(3.14)

by Corollary 2.2, (2.25), (2.29), (3.5), (3.8) and the fact that y' — (th/)/
vanishes at +1.
It follows from Egs. (3.11)-(3.14) and Young’s inequality that

||)7 _tha S Ch: (315)

which immediately implies the following result, where &, = —(y}, + f) is
the approximation for u = —(y + f).

Theorem 3.1. Under the assumptions on the data in Eq. (1.5), we have

Y = Vulm + 14 = anll,m < Ch. (3.16)

Remark 3.2. Numerical results in Section 4 indicate that the estimate for
|4 — @nl|;,(;) in Theorem 3.1 is sharp.

Remark 3.3. For comparison, the error estimate

= Vulim + 14— anll, g < Ch

was obtained in [6] under the assumptions in Eq. (1.7).

4. A numerical experiment

We begin by constructing an example for the problem Eq. (1.8)/(1.10) with
a known exact solution.
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4.1. An example

Let f=1,
1—3x° -1<x<0
_ =T =" 4.1
V) { 1 0<x<1 “D)
and
y(x) :J p(t)dt, (4.2)
-1
where
ﬂ@:{ et e (43)
1 1<x<1
We have € H(I),
Jl,b dx = —, (4.4)
1
p € HX(I),
) —81/16 —1<x<3
(x) = . (4.5)
0 3 <x<l1
p(1) =0, p'(=1) =27/4,
Jp dx=0, p<y and ./ ={-1}U[1/3,1]. (4.6)
1
Let f € H'(I) be defined by
&sin (n(3x — 1)) —l<x<t
f(x) = ’ 2 1 3. (4.7)
(=) t<x<

We have f(—1) =0, f(1/3) =0, f(1/3) =2/3, f/.(1/3) =0 and f(1) =
—4/9. Therefore the function
{f@) —l<x< ! (4s)

q@:_ﬂ@+§ lax<

belongs to H'(I) and
JI(D dx:Jf'(x)—l—J % dx :f(l)—f(—1)+§:0. (4.9)

I 3
Finally, we take 4 =81/16 and y; =y + @'. Then the KKT conditions

Egs. (2.23)-(2.27) are satisfied with
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Table 1. Numerical results for the example in Section 4.1.

2/h 1Y = ¥nlli, Iy —¥ulli. Y — Valw ) [y — Valieq)

142° 1.430334 e-01 1.625937 e-01 2.581989 e-01 8.660252 e-01
142! 1.216070 e-01 1.385037 e-01 2.199480 e-01 7.486796 e-01
1 +22 4.306657 e-02 4.679253 e-02 8.061916 e-02 4.485156 e-01
1423 1.613494 e-02 1.850729 e-02 2919318 e-02 2.573315 e-01
142¢ 3.439341 e-03 3.849954 e-03 6.315816 e-03 1.266029 e-01
142° 9.590453 e-04 1.087740 e-03 1.741244 e-03 6.470514 e-02
1 +26 2.256478 e-04 2.542346 e-04 4125212 e-04 3.223430 e-02
1427 5.874304 e-05 6.639870 e-05 1.067193 e-04 1.618687 e-02
1428 1.425640 e-05 1.608790 e-05 2.549283 e-05 8.086258 e-03
142° 3.657433 e-06 4124680 e-06 6.430499 e-06 4.047165 e-03

dv=[p"+f — @+ idx+ [p/(=1) + f(=1)]ds_, — [p'(1) + £(1)]d0,
— (211/48) 7,5,y dx + (27/4)d0 1 + (4/9)d6,,

where (/3,1 is the characteristic function of the interval [1/3,1].

4.2. Numerical results

We solved the problem in Section 4.1 by the finite element method in
Section 3 on uniform meshes. The results are displayed in Table 1.

We observe O(h) convergence in the H” norm which agrees with
Theorem 3.1. On the other hand, the convergence in the H' norm is
O(K?), better than the O(h) convergence predicted by Theorem 3.1. The
convergence in L, and Ly, is also O(h?).

5. Concluding remarks

We have shown that higher regularity for the solutions of one dimensional
Dirichlet elliptic distributed optimal control problems with pointwise con-
straints on the derivative of the state can be obtained through a variational
inequality satisfied by the derivative of the optimal state. A similar result
for one dimensional optimal control problems with mixed boundary condi-
tions was obtained earlier in [6]. A natural question is: Can these results be
extended to higher dimensions?

For analogs of Egs. (1.1)-(1.4) on a smooth/convex domain Q € R?
(d=2, 3), where f € HY(Q) and ¥ € [HZ(Q)]d, one can also derive a vari-
ational inequality for the gradient of the optimal state. Observe that the
space G of the gradients of the states is characterized by (cf. [24, Chapter I,
Section 2.3])

G={Vy: ye H(Q)nH(Q)}
:{q = [HI(Q)}d: curl =0 on Q and nx g =0 on 8!2},

where n is the unit outward normal along 0Q.
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Let K be the subset of G defined by
K={qcG: q<V¥ ae. in Q}.

We assume that K is nonempty, which is the case for example if ¥ > 0.
The analog of Eq. (2.2) is given by

J (® — Vf) - (q—p)dx+J divp div(q — p) dx+J f(a—p) - ndS>0
Q Q 0

(5.1)
for all g € K, where p=Vy € K, and ® € G is defined by f div ® =

ya — ¥, which is an analog of Eq. (2.3). The variational inequality Eq. (5.1)
is uniquely solvable because (cf. [24, Chapter I, Sections 3.2 and 3.4])

JQ(diV q)°dx > CQ|q|12Lp(Q) Vqe€G.

We can also write Eq. (5.1) as
J (® —Vf):(q—p)dx+ J [div p div (q — p) + curl p-curl (q —p)] dx
Q Q

+J f(g—p) - ndS>0 Vq €K,
oQ

(5.2)

which can be interpreted as an obstacle problem for the vector Laplacian
operator with natural boundary conditions.

In order to obtain higher regularity for the optimal state y, one will
need regularity results for Eq. (5.1)/(5.2), which unfortunately are not avail-
able. Therefore the problem of extending the results in this paper to higher
dimensions remains open.
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