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ABSTRACT
We consider a one dimensional elliptic distributed optimal
control problem with pointwise constraints on the derivative
of the state. By exploiting the variational inequality satisfied
by the derivative of the optimal state, we obtain higher regu-
larity for the optimal state under appropriate assumptions on
the data. We also solve the optimal control problem as a
fourth order variational inequality by a C1 finite element
method, and present the error analysis together with numer-
ical results.
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1. Introduction

Let I be the interval (–1, 1) and the function J : L2ðIÞ � L2ðIÞ ! R be
defined by

Jðy, uÞ ¼ 1
2

ky� ydk2L2 Ið Þ þ bkuk2L2 Ið Þ

� �
, (1.1)

where yd 2 L2 Ið Þ and b is a positive constant.
The optimal control problem is to

find �y, �uð Þ ¼ argmin
y, uð Þ2K

J y, uð Þ, (1.2)

where y, uð Þ 2 H1
0 Ið Þ � L2 Ið Þ belongs to K if and only ifð

I
y0z0dx ¼

ð
I
uþ fð Þz dx 8 z 2 H1

0 Ið Þ, (1.3)
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y0 � w a:e: on I: (1.4)

We assume that

f 2 H1 Ið Þ, w 2 H2 Ið Þ (1.5)

and ð
I
w dx > 0: (1.6)

Remark 1.1. The optimal control problem defined by Equations (1.1)–(1.4)
is a one dimensional analog of the optimal control problems considered in
[1–5]. It was solved by a C1 finite element method in [6] under the
assumptions that

f 2 H
1
2�� Ið Þ and w 2 H

3
2�� Ið Þ: (1.7)

Since the constraint Eq. (1.3) implies y 2 H2 Ið Þ by elliptic regularity, we
can reformulate the optimization problem Eqs. (1.1)–(1.4) as follows:

Find �y ¼ argmin
y2K

1
2

ky� ydk2L2 Ið Þ þ bky00 þ f k2L2 Ið Þ

� �
, (1.8)

where

K ¼ y 2 H2 Ið Þ \H1
0 Ið Þ : y0 � w on I

� �
: (1.9)

According to the standard theory [7, 8], the minimization problem
defined by Eqs. (1.8)–(1.9) has a unique solution characterized by the
fourth order variational inequality

b
ð
I
�y00 þ f
� �

y00 � �y00
� �

dxþ
ð
I
�y � ydð Þ y� �yð Þdx � 0 8 y 2 K,

which can also be written as

a �y, y� �yð Þ �
ð
I
yd y� �yð Þdx� b

ð
I
f y00 � �y00
� �

dx 8 y 2 K, (1.10)

where

a y, zð Þ ¼ b
ð
I
y00z00dxþ

ð
I
yz dx: (1.11)

Remark 1.2. The reformulation of state constraint optimal control prob-
lems as fourth order variational inequalities was discussed in [9], and a
nonconforming finite element based on this idea was introduced in [10].
Other finite element methods can be found in [11–17].
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Remark 1.3. Note that Eq. (1.4) impliesð
I
w dx �

ð
I
y0 dx ¼ 0 8 y 2 K

and hence
Ð
Iw dx � 0 is a necessary condition for K to be nonempty. It is

also a sufficient condition because the function y defined by

y xð Þ ¼
ðx
�1

w tð Þ � �w
� �

dt

belongs to K, where �w is the mean of w over I. Furthermore,

0 ¼
ð
I
w dx ¼

ð
I
w� y0
� �

dx

together with Eq. (1.4) implies w ¼ y0 identically on I and hence K ¼ wf g
is a singleton. Therefore we impose the condition Eq. (1.6) to ensure that
the optimization problem defined by Eqs. (1.8)–(1.9) is nontrivial.
Our goal is to show that �y 2 H3 Ið Þ under the assumptions in Eq. (1.5)

and consequently Eq. (1.8)/(1.10) can be solved by a C1 finite element
method with O(h) convergence in the energy norm. Note that previously
�y 2 H

5
2�� was the best regularity result in the literature for Dirichlet elliptic

distributed optimal control problems on smooth/convex domains with
pointwise constraints on the gradient of the state.
The rest of the paper is organized as follows. The H3 regularity of �y is

obtained in Section 2 through a variational inequality for �y0 that can be
interpreted as a Neumann obstacle problem for the Laplace operator. The
C1 finite element method for Eq. (1.8)/(1.10) is analyzed in Section 3, fol-
lowed by numerical results in Section 4. We end with some remarks on the
extension to higher dimensions in Section 5.

2. A variational inequality for �y 0

Observe that the set y0 : y 2 K
� �

is the subset K of H1 Ið Þ given by

K ¼ v 2 H1 Ið Þ :
ð
I
v dx ¼ 0 and v � w on I

� 	
, (2.1)

and the variational inequality Eq. (1.10) is equivalent toð
I
U� f 0
� �

q� pð Þdxþ
ð
I
p0 q0 � p0
� �

dx

þ f 1ð Þ q 1ð Þ � p 1ð Þ
� �

� f �1ð Þ q �1ð Þ � p �1ð Þ
� �
 �

� 0 8 q 2 K,

(2.2)

where p ¼ �y0, q ¼ y0, and U 2 H1 Ið Þ is determined by
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bU0 ¼ yd � �y (2.3)

and ð
I
U dx ¼ 0: (2.4)

Moreover Eq. (2.2) is the variational inequality that characterizes the solu-
tion of the following minimization problem:

Find p ¼ argmin
q2K

1
2

ð
I
q0
� �2

dxþ
ð
I
U� f 0
� �

q dxþ f 1ð Þq 1ð Þ � f �1ð Þq �1ð Þ
� 


:

(2.5)

2.1. A Neumann obstacle problem

The minimization problem Eq. (2.5), which is a Neumann obstacle prob-
lem, can be written more conveniently as

p ¼ argmin
q2K

1
2
b q, qð Þ þ /, qð Þ þ sq 1ð Þ � rq �1ð Þ

� 

, (2.6)

where r ¼ f �1ð Þ, s ¼ f 1ð Þ,

b q, rð Þ ¼
ð
I
q0r0 dx, /, qð Þ ¼

ð
I
/ q dx and / ¼ U� f 0: (2.7)

Note that we have a compatibility conditionð
I
/ dxþ s� r ¼ 0 (2.8)

that follows from Eqs. (1.5), (2.4) and the Fundamental Theorem of
Calculus for absolutely continuous functions.
Since b �, �ð Þ is coercive on H1 Ið Þ=R, the obstacle problem defined by

Eqs. (2.1) and (2.6) has a unique solution p characterized by the variational
inequality

b p, q� pð Þ þ /, q� pð Þ þ s q 1ð Þ � p 1ð Þ
� �

� r q �1ð Þ � p �1ð Þ
� �

� 0 8 q 2 K:

(2.9)

Theorem 2.1. The solution p ¼ �y0 2 K of (2.6)/(2.9) belongs to H2 Ið Þ:
Proof. We begin by observing that

b p, q� pð Þ þ /, q� pð Þ þ s q 1ð Þ � p 1ð Þ
� �

� r q �1ð Þ � p �1ð Þ
� �

� 0 8 q 2 ~K ,

(2.10)

where
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~K ¼ q 2 H1 Ið Þ : q � w in I and
ð
I
q dx � 0

� 	
: (2.11)

Indeed, q 2 ~K implies q� G qð Þ 2 K, where

G qð Þ ¼
1
2

ð
I
q dx (2.12)

is the mean of q over I, and hence, in view of (2.8), the definition of b �, �ð Þ
in Eqs. (2.7) and (2.9),

b p, q� pð Þ þ /, q� pð Þ þ s q 1ð Þ � p 1ð Þ
� �

� r q �1ð Þ � p �1ð Þ
� ��

¼ b p, q� G qð Þ � p
� �þ /, q� G qð Þ � p

� �
þs q 1ð Þ � G qð Þ � p 1ð Þ
� �

� r q �1ð Þ � G qð Þ � p �1ð Þ
� �

� 0

for all q 2 ~K :
Let K � H1 Ið Þ be defined by

K ¼ q 2 H1 Ið Þ : q � w in I
� �

, (2.13)

and G : H1 Ið Þ ! 0,1½ Þ be defined by Eq. (2.12). Then ~K ¼ q 2 K :f
G qð Þ � 0g and the function w 2 K satisfies

G wð Þ > 0 (2.14)

by Eq. (1.6).
It follows from the Slater condition Eq. (2.14) and the theory of

Lagrange multipliers [18, Chapter 1, Theorem 1.6] that there exists a non-
negative number k such that

b p, q� pð Þ þ /, q� pð Þ þ s q 1ð Þ � p 1ð Þ
� �

� r q �1ð Þ � p �1ð Þ
� ��

�k
ð
I
q� pð Þdx � 0

(2.15)

for all q 2 K:
Finally, we observe that Eq. (2.15) can be written as

~b p, q� pð Þ þ F, q� pð Þ þ s q 1ð Þ � p 1ð Þ
� �

� r q �1ð Þ � p �1ð Þ
� �

� 0 8 q 2 K,

(2.16)

where

~b q, rð Þ ¼
ð
I
q0r0dxþ

ð
I
qr dx (2.17)

and

F ¼ /� k� p: (2.18)

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 5



The variational inequality defined by Eqs. (2.13), (2.16) and (2.17) char-
acterizes the solution of a coercive Neumann obstacle problem on H1 Ið Þ:
Since F 2 L2 Ið Þ and w 2 H2 Ið Þ, we can apply the result in [19, Chapter 5,
Theorem 3.4] to conclude that p 2 H2 Ið Þ:
We can deduce the regularity of �y, �uð Þ from the relations p ¼ �y0

and �u ¼ � �y00 þ f
� �

: w

Corollary 2.2. Under the assumption (1.5) on the data, the solution �y, �uð Þ of
the optimal control problem Eqs. (1.1)–(1.6) belongs to H3 Ið Þ �H1 Ið Þ:

Remark 2.3. The result in [19], which is for dimensions � 2, requires a
compatibility condition between @w=@n and the Neumann boundary con-
dition so that the boundary trace of the normal derivative of the solution
of the obstacle problem belongs to the correct Sobolev space. This is not
needed in one dimension since the boundary values of the normal deriva-
tive are just numbers.

2.2. The Karush-Kuhn-Tucker conditions

It follows from Eq. (2.7), Theorem 2.1 and integration by parts that

b p, qð Þ þ /, qð Þ þ sq 1ð Þ � rq �1ð Þ � k
ð
I
q dxþ

ð
I
q d� ¼ 0 8 q 2 H1 Ið Þ,

(2.19)

where the regular Borel measure � is given by

d� ¼ p00 � /þ k
� �

dxþ p0 �1ð Þ þ r

 �

dd�1 � p0 1ð Þ þ s

 �

dd1, (2.20)

and d�1 (resp., d1) is the Dirac point measure at �1 (resp., 1).
Let A be the active set of the derivative constraint Eq. (1.4), i.e.,

A ¼ x 2 �1, 1½ � : �y0 xð Þ ¼ w xð Þ
� �

¼ x 2 �1, 1½ � : p xð Þ ¼ w xð Þ
� �

: (2.21)

By a standard argument, p satisfies Eq. (2.15) if and only if

� is nonnegative and supported on A: (2.22)

We can translate Eqs. (2.19)–(2.22) into necessary conditions for the
solution �y0 ¼ p 2 K of Eq. (2.2)/(2.5), which is summarized in the follow-
ing theorem.

Theorem 2.4. There exists a nonnegative number k such thatð
I
p0q0dxþ

ð
I
U� f 0
� �

q dxþ f 1ð Þq 1ð Þ � f �1ð Þq �1ð Þ þ
ð
I
q d�

¼ k
ð
I
q dx 8 q 2 H1 Ið Þ,

(2.23)

6 S. C. BRENNER ET AL.



ð
�1, 1½ �

p� wð Þd� ¼ 0, (2.24)

d� ¼ q dxþ cdd�1 þ fdd1, (2.25)

where

q ¼ p00 þ f 0 � Uþ k 2 L2 Ið Þ is nonnegative a:e:, (2.26)

c ¼ p0 �1ð Þ þ f �1ð Þ and f ¼ � p0 1ð Þ þ f 1ð Þ

 �

are nonnegative numbers,

(2.27)

and U 2 H1 Ið Þ satisfies Eqs. (2.3)–(2.4).
Remark 2.5. It can be checked that the necessary conditions Eqs.
(2.23)–(2.27) are also sufficient conditions for Eq. (2.2)/(2.5). Indeed, they
imply, for any q 2 K,ð

I
p0 q0 � p0
� �

dxþ
ð
I
U� f 0
� �

q dxþ f 1ð Þ q 1ð Þ � p 1ð Þ
� �

� f �1ð Þ q �1ð Þ � p �1ð Þ
� �

¼ k
ð
I
q� pð Þdx�

ð
I
q� pð Þd�

¼ �
ð
I
q� wð Þd� � 0,

which then also implies �y xð Þ ¼
Ð x
�1 p tð Þdt is the solution of Eq. (1.8). We

will refer to these conditions as the Karush-Kuhn-Tucker (KKT) conditions
for Eq. (2.2)/(2.5).
Finally, we observe that Theorem 2.4 implies

b
ð
I
�y00 þ f
� �

z00dxþ
ð
I
�y � ydð Þz dxþ

ð
�1, 1½ �

z0dl ¼ 0 8 z 2 H2 Ið Þ \ H1
0 Ið Þ,

(2.28)

where

l ¼ b� is a nonnegative Borel measure, (2.29)

and ð
�1, 1½ �

�y0 � w
� �

dl ¼ 0: (2.30)

3. The discrete problem

Let Vh � H2 Ið Þ \ H1
0 Ið Þ be the cubic Hermite finite element space (cf. [20,

21]) associated with a triangulation/partition T h of I with mesh size h. The
discrete problem is to find

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 7



�yh ¼ argmin
yh2Kh

1
2

kyh � ydk2L2 Ið Þ þ bky00h þ f k2L2 Ið Þ

� �
, (3.1)

where

Kh ¼ yh 2 Vh : Phy
0
h � Phw

� �
, (3.2)

and Ph is the interpolation operator associated with the P1 finite element
space associated with T h, i.e., the constraint Eq. (1.3) is only enforced at
the grid points.
The nodal interpolation operator from C1 �1, 1½ �ð Þ onto Vh is denoted

by Ph.
We will use the following standard estimates for Ph and Ph (cf. [20, 21])

in the error analysis:

kf� PhfjjL2 Ið Þ � ChjfjH1 Ið Þ 8 f 2 H1 Ið Þ, (3.3)

kf� PhfjjL2 Ið Þ � Ch2jfjH2 Ið Þ 8 f 2 H2 Ið Þ, (3.4)

jf�PhfjH1 Ið Þ þ hjf�PhfjH2 Ið Þ � Ch2jfjH3 Ið Þ 8 f 2 H3 Ið Þ: (3.5)

Here and below we use C to denote a generic positive constant that is inde-
pendent of the mesh size h.
The unique solution �yh 2 Kh of the minimization problem defined by

Eqs. (3.1) and (3.2) is characterized by the discrete variational inequality

b
ð
I
�y00h þ f
� �

y00h � �y00h
� �

dxþ
ð
I
�yh � ydð Þ yh � �yhð Þdx � 0 8 yh 2 Kh,

which can also be written as

a �yh, yh � �yhð Þ �
ð
I
yd yh � �yhð Þdx� b

ð
I
f y00h � �y00h
� �

dx 8 yh 2 Kh, (3.6)

where the bilinear form a �, �ð Þ is defined in Eq. (1.11).
The error analysis of the finite element method is based on the approach

in [22] for state-constrained optimal control problems that was extended to
one dimensional problems with constraints on the derivative of the state
in [6].
We will use the energy norm k � jja defined by

kvk2a ¼ a v, vð Þ ¼ kvk2L2 Ið Þ þ bjvj2H2 Ið Þ: (3.7)

Note that

kvjja	kvjjH2 Ið Þ 8 v 2 H2 Ið Þ \H1
0 Ið Þ (3.8)

by a Poincar�e-Friedrichs inequality [23].

8 S. C. BRENNER ET AL.



3.1. An abstract error estimate

In view of Eqs. (3.6), (3.7) and the Cauchy-Schwarz inequality, we have

k�y � �yhk
2
a ¼ a �y � �yh,�y � yhð Þ þ a �y � �yh, yh � �yhð Þ

� 1
2
k�y � �yhk

2
a þ

1
2
k�y � yhk2a þ a �y, yh � �yhð Þ

�
ð
I
yd yh � �yhð Þdxþ b

ð
I
f y00h � �y00h
� �

dx 8 yh 2 Kh:

(3.9)

It follows from Eqs. (2.28), (2.30) and (3.2) that

a �y, yh � �yhð Þ �
ð
I
yd yh � �yhð Þdxþ b

ð
I
f y00h � �y00h
� �

dx

¼
ð
�1, 1½ �

�y0h � y0h
� �

dl

¼
ð
�1, 1½ �

�y0h � Ph�y
0
h

� �
dlþ

ð
�1, 1½ �

Ph�y
0
h � Phw

� �
dlþ

ð
�1, 1½ �

Phw� wð Þdl

þ
ð
�1, 1½ �

w� �y0
� �

dlþ
ð
�1, 1½ �

�y0 � y0h
� �

dl

�
ð
�1, 1½ �

�y0h � Ph�y
0
h

� �
dlþ

ð
�1, 1½ �

Phw� wð Þdlþ
ð
�1, 1½ �

�y0 � y0h
� �

dl

(3.10)

for all yh 2 Kh:
Putting Eqs. (3.9) and (3.10) together, we arrive at the abstract error estimate

k�y � �yhk
2
a � 2

ð
�1, 1½ �

�y0h � Ph�y
0
h

� �
dlþ

ð
�1, 1½ �

Phw� wð Þdl
 !

þ inf
yh2Kh

k�y � yhk2a þ 2
ð
�1, 1½ �

�y0 � y0h
� �

dl

 !
:

(3.11)

3.2. Concrete error estimates

The three terms on the right-hand side of Eq. (3.11) can be estimated as follows.
First of all, we haveð
�1, 1½ �

�y0h � Ph�y
0
h

� �
dl ¼

ð
�1, 1½ �

�y0h � �y0
� �

� Ph �y0h � �y0
� �
 �

dlþ
ð
�1, 1½ �

�y0 � Ph�y
0� �
dl

¼ b
ð
I

�y0h � �y0
� �

� Ph �y0h � �y0
� �
 �

q dxþ
ð
I
�y0 � Ph�y

0� �
q dx

� �

� C hk�y � �yhjja þ h2jyjH3 Ið Þ

� �
,

(3.12)

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 9



by Corollary 2.2, (2.25), (2.29), (3.3), (3.4), (3.8) and the fact that f� Phf
vanishes at the points ±1 for any f 2 H1 Ið Þ: The generic positive constant
C in Eq. (3.12) (and other estimates below) is allowed to depend on q.
Similarly, we can deriveð

�1, 1½ �
Phw� wð Þdl ¼ b

ð
I
Phw� wð Þq dx � Ch2jwjH2 Ið Þ (3.13)

by Eqs. (1.5) and (3.4).
Finally, we have

inf
yh2Kh

k�y � yhk2a þ 2
ð
�1, 1½ �

�y0 � y0h
� �

dl

 !

� k�y �Ph�yk2a þ 2
ð
�1, 1½ �

�y0 � Ph�yð Þ0

 �

dl

¼ k�y �Ph�yk2a þ 2b
ð
I
�y0 � Ph�yð Þ0

 �

q dx � Ch2 j�yj2H3 Ið Þ þ j�yjH3 Ið Þ

h i
,

(3.14)

by Corollary 2.2, (2.25), (2.29), (3.5), (3.8) and the fact that �y0 � Ph�yð Þ0
vanishes at ±1.
It follows from Eqs. (3.11)–(3.14) and Young’s inequality that

k�y � �yhjja � Ch, (3.15)

which immediately implies the following result, where �uh ¼ � �y00h þ f
� �

is
the approximation for �u ¼ � �y þ fð Þ:
Theorem 3.1. Under the assumptions on the data in Eq. (1.5), we have

j�y � �yhjH1 Ið Þ þ k�u � �uhjjL2 Ið Þ � Ch: (3.16)

Remark 3.2. Numerical results in Section 4 indicate that the estimate for
k�u � �uhjjL2 Ið Þ in Theorem 3.1 is sharp.

Remark 3.3. For comparison, the error estimate

j�y � �yhjH1 Ið Þ þ k�u � �uhjjL2 Ið Þ � C�h
1
2��

was obtained in [6] under the assumptions in Eq. (1.7).

4. A numerical experiment

We begin by constructing an example for the problem Eq. (1.8)/(1.10) with
a known exact solution.
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4.1. An example

Let b¼ 1,

w xð Þ ¼
1� 9

2 x
2 � 1 � x � 0

1 0 � x � 1
,

(
(4.1)

and

�y xð Þ ¼
ðx
�1

p tð Þdt, (4.2)

where

p xð Þ ¼ 1� 81
32 x� 1

3

� �2 � 1 � x � 1
3

1 1
3 � x � 1

:

(
(4.3)

We have w 2 H2 Ið Þ, ð
I
w dx ¼ 1

2
, (4.4)

p 2 H2 Ið Þ,

p00 xð Þ ¼
�81=16 � 1 < x < 1

3

0 1
3 < x < 1

,

(
(4.5)

p0 1ð Þ ¼ 0, p0 �1ð Þ ¼ 27=4,ð
I
p dx ¼ 0, p � w and A ¼ �1f g [ 1=3, 1½ �: (4.6)

Let f 2 H1 Ið Þ be defined by

f xð Þ ¼
2
9p sin p 3x� 1ð Þð Þ � 1 < x � 1

3

� x� 1
3

� �2 1
3 � x < 1

:

(
(4.7)

We have f �1ð Þ ¼ 0, f 1=3ð Þ ¼ 0, f 0� 1=3ð Þ ¼ 2=3, f 0þ 1=3ð Þ ¼ 0 and f 1ð Þ ¼
�4=9: Therefore the function

U xð Þ ¼
f 0 xð Þ � 1 < x < 1

3

f 0 xð Þ þ 2
3

1
3 < x < 1

(
(4.8)

belongs to H1 Ið Þ andð
I
U dx ¼

ð
I
f 0 xð Þ þ

ð1
1
3

2
3

dx ¼ f 1ð Þ � f �1ð Þ þ 4
9
¼ 0: (4.9)

Finally, we take k ¼ 81=16 and yd ¼ �y þ U0: Then the KKT conditions
Eqs. (2.23)–(2.27) are satisfied with
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d� ¼ p00 þ f 0 � Uþ k

 �

dxþ p0 �1ð Þ þ f �1ð Þ

 �

dd�1 � p0 1ð Þ þ f 1ð Þ

 �

dd1
¼ 211=48ð Þv 1=3, 1½ �dxþ 27=4ð Þdd�1 þ 4=9ð Þdd1,

where v 1=3, 1½ � is the characteristic function of the interval 1=3, 1½ �:

4.2. Numerical results

We solved the problem in Section 4.1 by the finite element method in
Section 3 on uniform meshes. The results are displayed in Table 1.
We observe O(h) convergence in the H2 norm which agrees with

Theorem 3.1. On the other hand, the convergence in the H1 norm is
O h2ð Þ, better than the O(h) convergence predicted by Theorem 3.1. The
convergence in L2 and L1 is also O h2ð Þ:

5. Concluding remarks

We have shown that higher regularity for the solutions of one dimensional
Dirichlet elliptic distributed optimal control problems with pointwise con-
straints on the derivative of the state can be obtained through a variational
inequality satisfied by the derivative of the optimal state. A similar result
for one dimensional optimal control problems with mixed boundary condi-
tions was obtained earlier in [6]. A natural question is: Can these results be
extended to higher dimensions?
For analogs of Eqs. (1.1)–(1.4) on a smooth/convex domain X 2 R

d

(d¼ 2, 3), where f 2 H1 Xð Þ and W 2 H2 Xð Þ½ �d, one can also derive a vari-
ational inequality for the gradient of the optimal state. Observe that the
space G of the gradients of the states is characterized by (cf. [24, Chapter I,
Section 2.3])

G ¼ ry : y 2 H2 Xð Þ \ H1
0 Xð Þ

� �
¼ q 2 H1 Xð Þ


 �d
: curl q ¼ 0 on X and n� q ¼ 0 on @X

n o
,

where n is the unit outward normal along @X:

Table 1. Numerical results for the example in Section 4.1.
2/h k�y � �yhkL2ðIÞ k�y � �yhkL1ðIÞ j�y � �yhjH1ðIÞ j�y � �yhjH2ðIÞ

1þ 20 1.430334 e-01 1.625937 e-01 2.581989 e-01 8.660252 e-01
1þ 21 1.216070 e-01 1.385037 e-01 2.199480 e-01 7.486796 e-01
1þ 22 4.306657 e-02 4.679253 e-02 8.061916 e-02 4.485156 e-01
1þ 23 1.613494 e-02 1.850729 e-02 2.919318 e-02 2.573315 e-01
1þ 24 3.439341 e-03 3.849954 e-03 6.315816 e-03 1.266029 e-01
1þ 25 9.590453 e-04 1.087740 e-03 1.741244 e-03 6.470514 e-02
1þ 26 2.256478 e-04 2.542346 e-04 4.125212 e-04 3.223430 e-02
1þ 27 5.874304 e-05 6.639870 e-05 1.067193 e-04 1.618687 e-02
1þ 28 1.425640 e-05 1.608790 e-05 2.549283 e-05 8.086258 e-03
1þ 29 3.657433 e-06 4.124680 e-06 6.430499 e-06 4.047165 e-03
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Let K be the subset of G defined by

K ¼ q 2 G : q � W a:e: in Xf g:
We assume that K is nonempty, which is the case for example if W � 0:
The analog of Eq. (2.2) is given byð
X
U�rfð Þ � q� pð Þdxþ

ð
X
div p div q� pð Þ dxþ

ð
@X
f q� pð Þ � n dS � 0

(5.1)

for all q 2 K, where p ¼ r�y 2 K, and U 2 G is defined by b div U ¼
yd � �y, which is an analog of Eq. (2.3). The variational inequality Eq. (5.1)
is uniquely solvable because (cf. [24, Chapter I, Sections 3.2 and 3.4])ð

X
div qð Þ2dx � CXjqj2H1 Xð Þ 8 q 2 G:

We can also write Eq. (5.1) asð
X
U�rfð Þ � q� pð Þdxþ

ð
X
div p div q� pð Þ þ curl p � curl q� pð Þ

 �

dx

þ
ð
@X
f q� pð Þ � n dS � 0 8 q 2 K,

(5.2)

which can be interpreted as an obstacle problem for the vector Laplacian
operator with natural boundary conditions.
In order to obtain higher regularity for the optimal state �y, one will

need regularity results for Eq. (5.1)/(5.2), which unfortunately are not avail-
able. Therefore the problem of extending the results in this paper to higher
dimensions remains open.
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