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Abstract

We construct an invariant measure p for the Surface Quasi-Geostrophic (SQG)
equation and show that almost all functions in the support of 1 are initial conditions
of global, unique solutions of SQG that depend continuously on the initial data. In
addition, we show that the support of u is infinite dimensional, meaning that it is
not locally a subset of any compact set with finite Hausdorff dimension. Also, there
are global solutions that have arbitrarily large initial condition. The measure a p is
obtained via fluctuation—dissipation method, that is, as a limit of invariant measures
for stochastic SQG with a carefully chosen dissipation and random forcing.

1. Introduction

The goal of the present manuscript is to construct an invariant measure pu for
the Surface Quasi-Geostrophic (SQG) equation

6; +u- Vo =0, (1.1)

and to prove pu almost sure global well posedness of (1.1). First, we establish the
existence of invariant measures (it )q >0 for the stochastic SQG

do+u - VOodr=—aA?0di+aV - (|VO|*VO)+J/adn onT?x(0,00), (1.2)

and then we construct g as a limit of uy as @ — 0. In addition, we prove that all
functions in the support of i are initial conditions of global, regular solutions, and
the support of w is infinite dimensional. Before we precisely formulate our main
results, let us fix the notation and provide a motivation for our study.
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DMS-1816408.


http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-021-01650-7&domain=pdf

188 JURAT FOLDES & MOUHAMADOU SY

To avoid unnecessary technicalities associated with boundary conditions, we
work on a two dimensional flat torus T2, however most of our techniques could be
applied to domains with boundary. Unless indicated otherwise, we always assume
that & has zero mean for all times, that is, that

/ O(x,)dx =0 +t=0.
T2

We assume that 6 : T2 x R, — R has sufficient regularity (as detailed below),
and u = (—dy, ax)(—A)’%G = R10 is the Riesz transform of 0, that is,

_ 3
= ! ——Fe),
" (’m”

where F and F~! denote respectively Fourier and inverse Fourier transform. As
usual, we work with cylindrical Weiner process defined on a filtered probability
space (2, F, .7-'@0, P) and our stochastic forcing has the form

(. x) =Y ajej(x)W;(t), (1.3)

j=1

where e; are zero mean eigenfunctions of —A on the torus T2, ordered such that
the corresponding eigenvalues A; > 0 form a non-decreasing sequence, and (a;)
is a sequence of real numbers such that

o0
A():Za? < 0.
j=1

Finally, we complement (1.2) with appropriate initial condition specified below.

The SQG equation (1.1) appears as a model for the temperature of stratified
atmosphere on the rapidly rotating planet or as a model of ocean dynamics on
certain scales [6] (for derivation, applications to ocean and atmosphere dynamics,
and more references see [55] or a more recent survey [44]). From a mathematical
perspective, the SQG equation attracted a lot of attention due to many similarities
with three dimensional Euler equation. Most nobably, the vector V10 satsifies an
analogue of the Euler equation in the vorticity form. In particular, both equations
contain vortex stretching term and a divergence free drift term, however one is
posed in 2D whereas the other one in three dimensional and the constitutive laws
are different; see the seminal work by Constantin, Majda, and Tabak [17] for more
discussion.

Although the local existence and uniqueness of smooth solutions of (1.1) was
already resolved in [17], despite many efforts, the global existence of solutions on a
torus remains open. The blow-up scenario proposed in [ 13] was ruled out by precise
numerical simulations in [54] and analytically in [18,20,21]. Another mechanism
of gradient blow up based on the propagation of small instabilities in thin filaments
was proposed in [60]. We remark that blow-up was constructed in [13] for infinite
energy initial conditions on R?.
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In [36], Kiselev and Nazarov showed that there exists a solution with initial
condition having arbitrarily small initial conditions that attains arbitrary big norms
in finite time. Later, motivated by a construction for the Euler equation [68], it
was shown in [33] that there are solutions of (1.1) with the W% norm growing
exponentially (along sub-sequence) as time goes to infinity:

sup |[V20(, )|z = e’T  forsomey > 0. (1.4)
t<T

Also, very little is known about non-equilibrium global smooth solutions for SQG.
In fact the only example was given in [14], where with a rigorous, computer assisted
proof the authors proved a global existence for initial conditions on one dimensional
bifurcation branch close to a specific radial equilibrium.

We just briefly remark that one can also consider weak solutions of (1.1), which
are known to be global [51,57]. However, the uniqueness of weak solution was an
challenging open problem [24] that was solved by establishing non-uniqueness
in [11], see also [3,59]. Also, several regularized models (for example additional
dissipation, or smoother constitutive law) were introduced for which one can prove
global well posedness of solutions, see [12,16,19,37].

In the present manuscript we utilize fluctuation—dissipation method to construct
global solutions of (1.1). The idea is to add a regularizing higher order differential
terms, which guarantee global well posedness, and a stochastic forcing that keeps
the energy balance in (1.2). Note that the strength of the forcing and the coefficients
of the smoothing operators are carefully balanced. We prove that the stochastic SQG
equation possesses an invariant measure supported on appropriate Sobolev spaces
and by passing to the limit, we obtain an invariant measure u for the deterministic
SQG (1.1). Then, we investigate properties of 1.

Let us describe known results for problems close to (1.2). The well posedness
of stochastic SQG with either additive or multiplicative noise and additional sub-
critical smoothing (dissipation of the form (=A)B, B > %) was studied in [58].
The authors proved that the problem is pathwise globally well posed and under
additional assumptions they showed that there exists a unique invariant measure,
which is ergodic, and attracts all distributions at an algebraic rate. Later, large
deviation principles for stochastic SQG were proved in [49]. Note that stochastic
Quasi-geostrophic (which contains additional Laplacian compared to SQG) was
earlier studied in [8,34]. A regularization of (1.1) with help of the random diffusion
was proved in [10] for sufficiently small smooth initial conditions.

In what follows, we first investigate the pathwise global well posedness of (1.2)
and then we prove for each o > 0 the existence of invariant measure ., supported
on H2. The choice of bi-Laplacian in (1.1) rather than Laplacian, stems from the
fact, that we need 1, to be supported on H? rather than H . Otherwise, after passing
a — 0, we would obtain a measure supported on H' which is not sufficient for the
proof of uniqueness of solutions of (1.1) (see below). Our first main result is stated
in the following theorem, (for more precise formulation see Theorems 2.1 and 4.1
below):

Theorem 1.1. Assuming Ao < oo and appropriate moment bounds on the initial
distribution (see Theorem 2.1 below), almost surely there exists a pathwise global
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solution to (1.2). Furthermore, (1.2) admits at least one stationary measure [y
supported on H%(T?) n wi4(T?).

The proof of global pathwise, well posedness follows from a standard frame-
work — Galerkin approximation and passage to the limit. Since we were not able
to locate a suitable result in the literature, we provide sketch of the proof with
appropriate references. Then, the existence of the invariant measure follows from
moment bounds on solutions and Kryloff-Bogoliouboff theorem [38], see also [23].
Note that using standard coupling techniques, one can prove that p, is in fact a
unique invariant measure. For proofs in settings close to ours, we refer to [9,22,27-
29,32,43]

Before discussing convergence properties of measures constructed in Theorem
1.1, let us summarize known results. Passing « — 0 and consecutive analysis of
limiting measure u was done for Euler equation in [31,41], where it was proved that
w is supported on H' N L>. Moreover, it was proved that for any compact set S with
finite Hausdorff dimension, one has u(S) = 0, that is, u is infinite dimensional.
The crucial property that allowed to prove the infinite dimensionality was the exis-
tence of infinitely many conservation laws. Also, it was shown that the support of
W contains solutions with large energy. Analogous results were obtained for KdV,
Benjamin-Ono, Klein-Gordon, and Schrodinger equations in [42,62,64] (see also
references therein). It is important to notice that in all previous examples the proof
of the invariance of the limiting measure u was based on the well posedness of the
underlying deterministic equation, which is not known for SQG equation. Observe
that the proof of invariance for Euler equation [43] does not require global well
posedness of the deterministic equation, nevertheless the 2D Euler equation is sig-
nificantly simpler than SQG (which resembles three dimensional Euler equation).
The construction of global solutions for septic NLS [63] (not know to be globally
well posed), utilizes a different strategy: the fluctuation—dissipation is used only
for Galerking approximations and the main obstacle is passage to the limit (based
on an argument of Bourgain [7]).

On the other hand, different construction based on Gibbs measures was used to
construct global solutions and invariant measures for various, possibly globally ill
posed, Hamiltonian systems (see e.g [7,53,65] and references therein). However,
the authors of [52] identified a serious obstruction that prevent a ‘traditional way’
(for example as for 2D Euler [1]) of building a Gibbs measure based on the con-
servation of L? norm for the SQG equation. Indeed, for functions in the support of
such measure, the nonlinearity of SQG (one degree less regular than Euler) cannot
be defined in the sense of distributions.

The main novelty of the paper is the proof that the set of measures (1t,) from
Theorem 1.1 has an accumulation point i which is an invariant measure for (1.1).
The invariance is understood with respect to the dynamics induced by the stochastic
equation (1.2) and a passage « — 0. Furthermore, we prove that if the initial
condition belongs to the support of 1, the corresponding solution of (1.1) is global.
Hence, it is important to estimate the size of the support of 1. Although the SQG is
similar to the three dimensional Euler equation, a notable difference is the existence
of infinitely many conserved quantities, that allows us to prove that u(K) = 0 for
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any compact set K with a finite Hausdorff dimension. Also, we show that p is
not supported only on small functions, meaning that the support of ;« must contain

functions with arbitrarily large H > norm. The last statement follows from the fact,
that we can choose the noise in the fluctuation dissipation method and obtain u
with large moments (see Corollary 1.3 below).

Before we proceed, we denote

o
AS:=Z,\;a§., (1.5)
j=1

and recall that regular solutions of SQG equation admit, the following set of con-
servation laws:

1 _
E_1(0) = —/ I(—A) 7 02dx ,
2 2 T2

1
M®) = E/TZ 6%dx.

The next theorem contains our main results, for more general assertions see
Theorems 5.1, 6.1, and 6.2 below.

Theorem 1.2. Assume Ay < 00. As o — 0, there is an accumulation point u for
the sequence (i) satisfying the following properties:

(1)  is a probability measure concentrated on the Sobolev space H*(T?), that is,
P(H*(T?) = 1.

(2) For jxalmost all data 0, there is a unique functiond € C(R*, H 1)ﬂLl2w (R*, H?)
satisfying the equation (1.1) with 6 (0, x) = 6y(x). Define a flow p for (1.1) as
pi(6o) = 0(-, 1; 6p).

(3) The flow p; is continuous on H'.

(4) w is invariant under p;.
(5) u satisfies the estimates

A
/ (||9||23—f |ve|2ve-V<—A>—5edx> pw(do) = —=,
12 H2 T2 2

/L L0172 + 10131.6)14(d6) < oo,

(6) If ay, # O for each m, w is infinite-dimensional in the sense that it vanishes on
finite-dimensional compact sets.
(7) The conservation laws of random variables M (0) and E Sl (0) are absolutely

continuous with respect to the Lebesgue measure on R.

The regularity of functions in the support of  (being H? by Theorem 1.2, 1.)
is a direct consequence of the support of 1., which follows from the regularizing
term A2. Note that L?H? is a minimal smoothness required to prove uniqueness
of solutions, that is, well posedness claimed in Theorem 1.2 part (2). Replacing
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A% by AP with B < 2, yields the existence of (j1o) and u supported on H”, but
solutions of (1.1) with initial conditions in the support of u are too weak to establish
uniqueness.

On the other hand, the choice of A2 instead of A brings several obstacles. For
example, for the proof of part (6) in Theorem 1.2 we needed to introduce additional
smoothing term A40:=V - (|VO|>V8) into (1.2) (A ,0:=V - (|VO|P~2A40) is called
p-Laplacian), the rest of the proofs can be done without it. The reason for the
addition of A4 is that the expression (A%, f(6)) is neither positive nor bounded
from below for all 6, and for large set of functions f, a minimal requirement for
the general framework, see details in Section 6. The addition of A4 guarantees that
(ia), and consequently s are supported also on W!# with fourth order moment
bounds. Then, we can bound (A20 — A40, f(0)) from below for any f that has
bounded derivatives up to fourth order, which suffices for our purposes.

If one wishes to construct invariant measures for (1.1) on smoother spaces, for
example H? for > 2, and prove infinite dimensionality of such measure, then
one has to correct the smoothing operator A? by appropriate quasilinear positive
definite operator such as p-Laplacian. Since the proofs are technically involved we
decided not to present them here.

Concerning the support of 1, by part (6) of Theorem 1.2, it cannot be contained
in any compact set of finite Hausdorff dimension. Moreover, (7) implies, that the
support of x is not merely a countable union of level sets of the conservation laws.
Also, the following corollary asserts that there are arbitrarily large initial data that
give rise to global solutions:

Corollary 1.3. Given any constant K, denote S = {0 : 103,14 + ||9||2% > K}.

Then there is 6y € Sk such that the solution of (1.1) with 6(0) = 6y is global.
More generally, there exists a sequence (a;) (see the definition of the noise (1.3))
such that for the measure | constructed in Theorem 1.2 one has (Skg) > 0.

Proof of Corollary 1.3. Choose the sequence (a;) such that A_ 1= 4CK and
Ap < oo, where C is a constant depending only on the size of T2, 1f w(Sg) =0,
then, by Theorem 1.2, (5) one has by Holder and Poincaré inequalities

A,l 1
20K = —2 g/ (nen2 3 +/ |ve|3|V<—A>ze|dx> 14(d6)
2 L2 H?2 T

< f 1017 5 IVO13, 14101 442 (dO)
12 H2
< Cf 1017 5 + IVOIy1.404(dO)
L2 H?2

= Cf 1612 5 + [VOII%,.4(d0) < CK,
L2\Sk H?2

which is a contradiction. The first statement follows from the second one and
Theorem 1.2 parts (1), (2). O

Another consequence of Theorem 1.2 follows from the Poincaré recurrence
theorem.
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Corollary 1.4. For p-almost every ug € H 2 there is a sequence (ty) increasing
to oo such that

lim | pguo — uoll2 = 0.
k— 00

Corollary (1.4) could be the reason why the estimate (1.4) requires ), <, that
is, the solution increases only along the sequence of times (solutions might return
infinitely many times to a neighbourhood of the initial condition).

A natural question is whether the set of solutions constructed in Theorem 1.2 is
a subset of equilibria to (1.1). This seems to be a very non-trivial question to which
we do not have a definitive answer. However, we have the following alternative:

(a) The support of w is not a subset of the equilibria of (1.1), and then the flow p;
constructed in Theorem 1.2, part (2) yields non-trivial global solutions.

(b) The support of u coincides with the equilibria of (1.1), for any choice of (suf-
ficiently regular) noise. In that case, we would have a remarkable stability
property of the equilibria for both (1.1) and (1.2) with small c.

Recall that the linear stability of equilibria of (1.1) were studied in [30].

Let us remark that in the context of equations having only discrete set of equilib-
ria, for instance the case of some power type nonlinearities, (6) and (7) of Theorem
1.2 imply that the alternative (a) above occurs. Also, we propose in the appendix a
general example of a finite-dimensional system having continuous set of equilibria,
but the support of the inviscid measure not being subset of equilibria.
Organization of the Paper. In Section 2, we prove probabilistic global well-
posedness for the stochastic equation (1.2). Moment bounds for such solutions
are given in Section 3 and based on moment bounds we construct stationary mea-
sures for any o > 0 in Section 4. Section 5 contains principal results of the paper,
and we prove there the existence of invariant measure for (1.1), and global well
posedness on its support. In Section 6, we combine the probabilistic estimates and
Krylov lemma to establish qualitative properties (infinite dimensionality of the sup-
port). Finally, Appendix A includes details about the invariant measures for finite
dimensional Hamiltonian systems and in Appendices B and C we recall that Itd
formula in infinite dimensions and a proof of a parabolic embedding.

1.1. General Notations

The following notation is used throughout the paper:

* C§°(R) is the space of functions f : R — R that are infinitely differentiable
and compactly supported.

* Forany 1 < p < coand s € R, we denote L?(T?) and W*?(T?) the usual
Lebesgue respectively Sobolev spaces. We also set H* (T?) = W* 7 (T?). Often
for the clarity of presentation we do not indicate the domain T? and we write
LP, WkP and H*.

* When a fixed T > O is clear from context, for any Banach space X de-
fine the spaces CX = C([0,T], X), LPX = LP([0,T], X), and WP X =
WS P([0, T], X). Sometime if needed, we indicate the variable of the space as



194 JURAT FOLDES & MOUHAMADOU SY

a subscript, for example C; H}. The spaces are equipped with usual parabolic
norms denoted for example || - ||cx.

* We write || - || instead of || - [|z2(72).

* Cloc X denotes the space of functions that are locally continuous in time with
values in X. Analogously we define L{ X and W,.”X.

* We denote p(X) the set of Borel probability measures on X.

* The non-decreasing sequence (,,),,>; contains all eigenvalues of —A on T?
and with corresponding normalized eigenvectors (e;,),,>1-

* For a probability measure 1 on X, we denote by E,, (f), the average of f with
respect to u:

f FEORx).
X

* The Riesz transform of @ is given denoted R0 = (—0y, Bx)(—A)_%G. Note
that by Hormander-Mikhlin theorem Riesz transform satisfies (see [61]), for
any p € (1, 00)

IR vllLr < Cllvlirr, (1.6)

where C depends on p.

2. Global Solutions for the Stochastic SQG

In this section we establish the path-wise global well posedness of solutions of
(1.2), and therefore prove the first part of Theorem 1.1. Although the proof follows
from a framework used several times in the literature, we were unable to locate the
precise reference that would cover our situation. Rather than providing all details,
we show how to satisfy assumptions of [47, Theorem 1.3] and explain how the
proof in [47] needs to be modified.

Theorem 2.1. Fixany o > 0, any T > 0, and any p 2 1. Also, fix any Fo measur-
able (see filtration for our Brownian motion randomvariable 6y withIE| 0o || 122 < 00,
and any noise n of the form (1.3) with Ag < oo. Then, there exists a unique adapted
solution 0 of (1.2) satisfying 0(0) = 6y and, almost surely,

6 € C([0, T1, L>(T?) N L2([0, T, H*(T?)) N L*([0, T], W"*(T?)) .

Furthermore,

T
E sup [00)]* +aE f 1017772 10117,2 + 19111.4)ds
t€l0,T] 0

S C(T, o, p, l6ol). (2.1

Proof. The proof closely follows the proof of [47, Theorem 1.3], see also [48].
However, since our differential operators have different scalings, we have to slightly
modify the arguments. We only highlight differences. For easier comparison, we
use the notation form [47].
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Recall that (e;,),, > is an orthonormal basis of L? and denote H,, = span{eq, ..., e,}.
Let P, : H~2 — H, be the orthogonal projection defined by

n

Pny=2(y,e,-)ei, yeH_z.
i=1

For each, n 2 1 consider the stochastic equation on H,
dx® = P,(AX™)dt + adn,, X = P.6p, (2.2)
where
AX = —aA’X +aV(VX|VX) - YVX, Y=R'X
and
n
Ma(x, 1) =Y ajej(x)W;(1).
j=1

The existence and uniqueness of solutions of (2.2) is classical and follows from
[40, Section 1], see also [56, Theorem 3.1.1]. O

We have the following a priori estimates for X :

Lemma 2.2. For every T > O there exists Ct depending on Ao, p and o, but
independent of n such that for eachn 2 1,

t

2 2p—2

E sup XM 0)5+ f IXPO 1L AX 15 4+ 1X P [51.0)ds
te[0,T] 0

< CrEIX™ O35 +1).

Proof of Lemma 2.2. The proof follows from [47, Lemma 2.2], see also proof of
(3.2) below for the idea of the proof. O

Define the spaces
Yi:=L*([0,T] x Q, H?)  Y»:=L*([0,T] x Q, Wh#
and
K=Y NY,
and the dual of K
K*=Y'+Y;
equipped with the usual intersection and sum norms

I XIlx = max{[[ Xy, | Xy},
[ XN+ = inf {1 X1 lly; +1 X2y, X1+ Xo=X}. (2.3)
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Note that
YE=L2([0,T] x @, H™2),  Y3:=L3([0,T] x Q, W~17)
1-— 3 B [l 2= ’ k] ’
Since
IAX® ks S @l A2X D lyx + | VAVX DIV [ly; 4+ 1Y OVXD |y
and
IAZX Py = B X172,
IVAVXDPVX D)y = BJIVX™P)|

4 4
L3L3

w

by
=EIVX™ 40 £ € (BIXPay00) "

1Y OV |G < CEIYPIX T2y < CEIY 170l X 1 0
< CEIX® s
from Lemma 2.2 if follows that

IAX™ g+ < C, 2.4)

with C independent of n, because EM (Xo) < E||6o]1? < oo.

The continuity of the map (assumption (H1) in [47]) s —> (A(X1 + sX2), X),
i = 1,2 is easy to verify for any X1, X7, X € H 2. Also, the local monotonicity
assumption ((H2) in [47])

(AX1) — A(X2), X1 — X2) £ (K +k(X2)[1X1 — X217, (2.5)

is valid for our operator A. Indeed, note that p-Laplacian is monotone operator (see
for example [67, Proposition 30.10]), thus (2.5) holds true for AX = V(|VX|>*VX)
with f = p =« = 0. Since Y] is divergence free, (1.6), H? < L, and Holder
and the Young inequalities yield

(AX1) = A(X2), X1 — X2) £ —allX| = Xal|3, + (Y2VXy — Y1 VX[, X| — X3)
= —al|X] — Xall32 + (Y2VX2 = ¥ VX5, X| — X3)

= —a|X| — X203, + (Y2 — Y)VX3, X1 — X3)

IIN

—a|lX| — lellzqz + 112 = Yl 2IVXoll 21X — Xl oo

A

CallX2 = X117V X2l7
where we used that
WX, =Y1V(X1 — X))+ Y1VXy

and that, by an integration by part and the property V - Y, = 0,

1
—(NVX1 = X2), X1 = Xa) = (V- V1, S (X) = X2)%) = 0.
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Thus, assumption (H2) in [47] holds with K = 0 and p(X) = ||X||il,. Next, the
assumption (H3) in [47],

2{AX). X) +8IXI%, < KIX[2, + £(0),

holds in our case, due to cancellation in the non-linear term, for § < 2«, f = 0,
and y = 2.

Finally, as stated in [47, Remark 3.2, (4)] the growth assumption in [47, (H4)]
is only needed to prove that E[|A(X ™) ||%<* is uniformly bounded in n, which was
already established in (2.4).

The rest of the roof follows line by line the same as in [47, proof of Theorem
1.1]. O

3. Probabilistic Estimates for the Stochastic Flow

In this section, we derive moment bounds on solutions of (1.2), that were
constructed in Section 2. Our choice of norms is dictated by the conserved quantities
of (1.1), and it is essential to keep track of dependencies of constants on «. The
proofs are based on energy estimates and Itd lemma recalled in “Appendix B”.

For A defined in (1.5), observe that, for any p > 0

p p

2

o o0
1 oy
/11‘2 Zafz'(ej(x))z dx = Qm)Pr /1;2 Zalz' dx = 2m)* P A < oo,
j=1 j=1

and recall the notation

1 2
M@©) = < 6-°dx .
2 T2

Theorem 3.1. Assume Ao < oo. Then, the solution 6 constructed in Theorem 2.1
satisfies the following properties:

(1) IfIEllO(O)H%{,I/2 < 00, then for anyt 2 0

t t
Elo®))? +2aE/ 16(s)]|> 3ds+2a]E/ / IVO(s)[2V8 - V(=A™ 2)8dxds
H 2 0 H2 0 JT?

=E[6oI> | +aA_it. (3.1
H™2
(2) IFEMY(0(0)) < oo for some g 2 1, then foranyt 2 0

t
EM?(0(1)) + 20qE f M @) (10132 + 10117,1.4)ds = EM(6(0))
0

t 00 2
—i—aqE/ AoMI1(0)ds +2(qg — 1)Mq—z(e)za§ </ e,-edx> ds .
0 ; T2
j=1
(3.2)
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In particular, when q = 1, we have for anyt 2 0

t
EI0()]* + 2a /0 E(0)1Z2 + 10()1,1.0)ds = E[l6o]1* + eAot. (3.3)

Proof. We proceed in the following steps:
Proof of (3.1).

We use that H -3 is conserved for the SQG equation (1.1) (see (3.4) below).
Clearly, the function 6 > |6 ||f,_171/2 = |A~1/49|)? satisfies assumptions (B.1) and
(B.2) of Theorem B.1 with s = —%. To satisfy (B.3), notice that

I
(]2
Q
~
o\ﬂ
=
VS
5—
~
S
|
s
[~}
o
~
o
=
——
5]
o
A

t
= CA,IE/ 16]12ds < oo,
0

where the last inequality follows from (2.1). Thus, heorem B.1 yields

EN0)13,-12 = EI0O)3,-12

t
+21E/ / (—A)"TO(=A)"F (—aA20 +aV - (|VO]2VE) — uVe)
0 JT2

o0
+a ) al(—A)Hep)? dxds.
j=1

Using thatu = Vl(—A)%Q is divergence free, we obtain

/(—A)—%e(—m—%(uve)dx=/ (—A)"20uvé dx

T T 1 1 (3.4)

= —/ (V(=A)"20 - VH(—=A)"20)0dx = 0.
T
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Hence, using integration by parts and Fourier representation of fractional Laplacian
we obtain

EI0)113,-12 = EIOO)]I3,-12

|5

t 1 -
+2a1Ef /2(—A)—19(—A)—%(—A29 +V- (|V9|2V9))dxds+az t
0 JT j

j=1

>
~

t t

:E||9(0)||§1,1/2—2aE/ ||9||§ds—2a]E/ /2(—A)—%ve|ve|2ve dxds+aA_it,
0 2 o Jr

and (3.1) follows.

Estimate for M7(0). Next, we turn our attention to the moment bounds for M4

with ¢ = 1. Clearly, the function 8 — M9(0) = %“9”211 satisfies assumptions

(B.1) and (B.2) of Theorem (B.1) with s = 0. In order to obtain (B.3), we need to

estimate the quadratic variation of the martingale term. Since (e;) are bounded,

o t
Zaf.E/ (||9||’1‘/ er(x)dx>
= 0 T2

2 t
ds < CAOE/ ||9||2H/ 16]2dxds
0 T2

t
= CAOIE/ 16]1%ds < oo,
0

where the last inequality follows from (2.1). Hence, by Theorem B.1 we obtain,
forany g = 1,

EM9(6(t)) = EM?(6(0))

t
+qIE/ M‘H(e)/ 20(—aA20 +aV - (|VO|2VE) — uVe)
0 T2

00 00 2
+ o Za?e? dxds + 2a(g — HYM?72(0) Za? (/1;2 eﬂdx) ds.
j=1

j=1

An integration by parts and the property V - u = 0 imply that sz fuVvedx = 0,
and (3.2) follows after integration by parts. O

4. Stationary Measures for the Stochastic SQG

In this section we construct invariant measures for the stochastic SQG equation
(1.2) and establish its moment bounds, which finishes the second part of Theorem
1.1. As above, it is necessary to keep track of the parameter «, since below we
pass « to zero. Also note that the moment estimates are equalities, which will be
important in the proof of non-degeneracy of the limiting measure. The proof of
existence of invariant measures is based on the Kryloff-Bogoliouboff theorem, and
the moment bounds follow from bounds on solutions established in Section 3.
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4.1. Construction and Basic Estimates

Theorem 4.1. Assume Ay < oo. For any a € (0, 1), the equation (1.2) admits
at least one stationary measure iy supported on L? and satisfying the following
properties:

Ao
/ (||9||2 3 +/ |V6|2V9 . V(—A)%dx) Ue(dO) = —=, 4.1
L2 H2 T2 2
Ap
/L 0132 + 1011510010 (d0) = —=. (4.2)

More generally, for any g 2 1,
/2 ML @) I013,2 + 10115110 (d0)
L

Ao - - 00 2
=/L2 Sm YO+ (g - DMI20) ) a (/Tzejedx> [ (df). (4.3)

J=1

In particular, uo(H?) = 1, any > 0, and any g > 1 there is C independent of «
such that

/L MITHO) 0172 + 10() 1)1 (d0) < C (4.4)

Proof. Tightness and existence of stationary measures. Let 6, be the solution of
(1.2) with 6, (0) = 0 almost surely, that is 6, (0) is distributed as the Dirac measure
concentrated at 0. Then, by (3.3), one has

t
2aE/ 1617,2ds < a Aot ,
0
and consequently,
—Ef 16113,2ds <
For each ¢ > 0 define the Borel probability measure on L*(T?) as
1 1
e (A) = 7/ POu(s) € A)ds,
0
where A is any Borel set in H2(T?) . Then,

1 1
/LZ(W) 161172146, (d6) = ;E/O 16 (5)113,2ds < C. (4.5)
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In particular, if Bg is a ball in H? of radius R centered at 0 and Bfe = H? \ Br,
then by Chebyshev inequality and (4.5) one has

1 (BR)

1 t
—/ P10 ()l g2 = R) ds
t Jo

tE(6(s)]?
élf 106 4 o €
t Jo R? R?

Since Bg is compact in H2=% 8 > 0, then for each o > 0, the set of measures
(ul)e=0 is tight, and therefore by Pokhorov theorem it is compact. For any se-
quence (t,) with t, — oo, one has that uf{; has a weakly convergent subsequence
converging to u . The Bogoliubov-Krylov argument (see for example [23]) implies
that u is stationary for (1.2).

Also, by using (3.2) with 6(0) = 0, we obtain for any ¢ = 1 that

/L  MITLO) 0172 + 16() Iy1.)12,(d0) < € /L M O) g (d0)

NN (1 i
=C M I 1l (d0) + C M1 @)l (d)
1612, >R 161152 le1? , <R
c
<— M O) (101132144, (d0) + C / M0l () .
R Jyoi2, 2k 1012, <R

Choosing R = 2C and using M (8) < C||0]| 2, we have
/L MO 10172 + 16() 1) 126, (46)
<c f ML)l @6) < C,
12 , <2C

where C is independent of 7. Then, by the Portmanteau theorem, the same inequality
holds true with u!, replaced by i, and (4.4) follows.
Estimates for the stationary measures. Denote by i, any invariant measure
constructed by the above procedure. Let 6 be a random variable with the law 1ty
and let 6% be the solution of (1.2) with initial condition 9"‘ Then, by (4.4) one has
E[l6¢]9~" < oo and IE||9"‘||2 , <ooforanyg > 1.

2
Also, the invariance of ,uo, implies ]E||9“(t)||§( = ]E||6‘8‘||§( for X being L2,
w4 or H?, and consequently, by (3.3),

t
t / 012 + 11613y 1.4 14 (d0) = E / 16 )13,z + 0% ()15, 1.4ds
L 0

Ay
=t—, 4.6
5 (4.6)
and (4.2) follows.
Similarly, in (3.1) and (3.2), using E||0“(t)||2 = E||6¢ ||2 _, and also
2

EM1@6(t)) = EM?(6(0)) (by the invariance of /,La) we obtain respectlvely “4.1)
and (4.3). Recall that (4.4) was already proved. O
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5. Inviscid Limit

This section contains proofs of essential assertions of the manuscript detailed
in Theorem 1.2 parts 1-5. In particular, we prove prove convergence of measures
e constructed in Theorem 4.1 to an invariant measure u for the deterministic SQG
equation. Furthermore we show that almost all points in the support of u are initial
conditions for regular global solutions.

Theorem 5.1. If Ay < 09, there exists a measure p supported on H* with the
following properties:

(1) For almost every 6y € supp(iL), there exists a unique, global (existing for all
positive times) solution 0 of (1.1) with 6 € C; HXl N L,2H2. Furthermore, for
any t 2 0, the mas 6y — 0(t, 0y) is a continuous on HL.

(2) The measure . is invariant for (1.1), meaning that for every Borel set A in H?,
one has {0y : 0(t, 6y) € A} = u(A).

(3) For any g = 1 we have the moment bounds

Ao
/ (nen%—/ |ve|2ve-V(—A)%edx>u<d9>= LN GR))
12 H2 T2 2

ML @) (101172 + 1011714 1(dO) < C. (5.2)
L2

Before providing details of the proof, let us first sketch the general strategy.

Remark 5.2. Compared to the known results we face different challenges since it
is not known whether the equation (1.1) is globally well posed. This poses several
challenges. After verifying the tightness of measures (it,) and passing puy, — K
as « — 0, we obtain moment bounds for u, however we cannot immediately
conclude that almost all functions in the support are initial conditions of global
solutions. This problem is not solved even if we prove that w is invariant. For
example, there can be a set M, of measure zero that contain functions that cease to
exist at time ¢. Since (M;),~¢ form an uncountable family, we cannot conclude that
the union UM, has zero measure. For that reason we use the “lifted" measures v,
supported on solutions of (1.2) rather than on initial conditions. To pass « — 0 and
conclude that the limiting measure v is supported on solutions of (1.1), we have
to obtain compactness (tightness) of (vy) in spaces of time dependent functions.
This follows from improved temporal bounds for the solutions of (1.2). Also, these
bounds imply that the restriction of the measure v at the initial time is . Using the
Skorokhod theorem we find stationary random variables 6, distributed as v, that
converge almost surely to 6, which solves (1.1). In addition, 6(0) is distributed as
w. To prove the uniqueness of ¢ — 6(¢) we crucially use that the operator in the
fluctuation—dissipation method is bi-Laplacian instead of Laplacian, and therefore
6 is supported on L? H?, a regularity space sufficient to guarantee uniqueness and
continuous dependence on initial conditions.

Proof of Theorem 5.1. The proof is divided into several parts. Proof of 1. follows
from Proposition 5.11, part 2 follows from Lemma 5.10 and the proof of 3 follows
from Proposition 5.12. O
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If 6, is a solution of (1.2) with 6, (0) distributed as 1ty (see Theorem 4.1), then
due to the invariance, 6, (¢) is distributed as of j, for any ¢ = 0. We can either view
t — 6, (t) as a random process with range in a space of x dependent functions or
alternatively, we can view 6, as a random variable on a space of (x, r) dependent
functions in LIZOC(RJr, H?) (see (4.5)).

Denote v, the distribution of 6, and by the invariance of i, one has P(6, (t9) €
A) = g (A) for any 1y 2 0, and any Borel set A in H~% 8 €0, 1). Observe that
I is supported on H? and we can trivially (by zero) extend it to the larger space
H~%. Hence,

/XAx{to}dVa = Vo (A x {to}) = P(0x(10) € A) = pa(A) = /A xadpte ,

where xz denotes the characteristic function that a set Z. The linearity of integrals
and the dominated convergence theorem also implies

/  g(0(19))dva (6) =/7 g(0)dua(0) (5.3)
C H HY?

for any bounded continuous function g : H § 5 R.
Fix T > 0 and define I = (0, T) C R.

Remark 5.3. In this section we implicitly assume that all spaces are defined on the
time interval . For example, L?H? = L*(I, H*(T?%)) or H,1 Li = H'(I, LY(T?)).
We use the notation, say L4 (single space), to denote L4(T2), that is, we do not
specify regularity in time.

Also, 6, denotes the solution of (1.2), that is, a function depending on x and ¢,
whereas 6 denotes the integration variable, that is, a function depending on x only.

By (4.4), and the invariance of w, for any ¢ = 0,

T T
cz fo / 0171611721 (0)ds = /0 Ell6a ()1 16 (5) 32 ds = B8l 1603217
L2 *

= f 101012212 dva ®) (5.4)

Lr.x

where here and below, C is allowed to implicitly depend on 7. To gain the temporal
compactness in time, we prove the regularity of 6, in time.

Lemma54.Set X = H'L?> + H'H2 + Whiw=13 4+ We4L2 with
k € (1/4,1/2) equipped with the standard sum norm (cf. (2.3)). Then

4 4
CZEIGIL = [ | 1010,

t,x
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Proof. Observe that

t t
Oy (1) = 0 (0) — / u- VOds —a / A%0,ds (5.5)

0 0
1 11

t t

+a/ V - (|V0y > VOy)ds +ﬁ/ dn.
0 0
111 1V

First, by interpolation, (1.6), and embeddings we have (spatial norm)

lu-VOlz2 < CllullL+[IVOl 4

< <
= Cllel, 4191, 3 = ClelIoN 2 .

3
2
and by (4.2) and (4.4) with ¢ = 3,

EI112,, <2 (B0 OI; +Elu- Ve, |2, ) <C.

Second, using (4.2), we have
2 r 20112 r 2
BN e < CE [ 18%0 0 =E [ 1o s e 66

Moreover,

2 3 3 3
IV-(Vervel .4 S CIIVOPN 4 = ClIVOILs = Cllolya

and therefore, by (4.4),

4 4
BN o 4 SEIV-(V0PVeIT,
r,ij '3 L3W 3

=

T
< CE fO 10 llfyrs < C. (5.7)

Finally, since for any m and 0 < s < ¢, W, (1) — Wiu(s) ~ N(0,t — s5), we
have E|W,, (1) — Wy, (s)|> = t — s and E|W,, (1) — W,,(s)|* = 3(r — 5)%. By the
independence of W; and W for j # k, one has
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2
ENIV@H) -1V =E (Zaﬂwjm - W,~<s>|2)

j=1

=E Z “Jz‘“lawj(’) — W) Wi(t) — Wi ()]
k=1

o0 o0
=30t —sI> Y ajap(1+285) <9t —sI* Y aja; <9t —sIA,
Jik=1 Jok=1

where §;; = 0if i # j and §;; = 1. Consequently, if ¥ < %

T T /T 4
11V @) — 1V
ENTV [§yea,2 :E/O ||IV||‘L%dt+IE/(; /0 ppEET drds

T T T
< c/ t2dt+C/ / It — s|'*drds < C(T).
0 0 0

Overall,
4 4
Ell6ull; < BN + ol I - FalllII s +EIV[jear2 < C,

where C is independent of « € (0, 1) and the result follows. O

Proposition 5.5. For any 6 > 0 denote Vs = L?H> 3N CH™®. Let X be as
in Lemma 5.4 for some k € (%, %). Then, for any q = 0 there is a constant C
independent of a such that

4
f ||9||dea =Elfully =C (5.8)
[||||9||2 ||9||H2||2zdva = B[ [0« 16 ||H2||L2 = (5.9)

Moreover, forany § > 5 the set of measures (Vy ) is tight in V5. Consequently, there
is a sequence (vi):=(vy, ) with ax — 0 as k — 0o, and a measure v supported on
Vs such that vy converges weakly to v as k — 00.

Proof. The estimates (5.8) and (5.9) follow from Lemma 5.4 and (5.4) respectively.

We claim that )5 is compactly embedded in X N L?>H? for any § > % Indeed,
by [45, Theorem 5.1 and 5.2], for any 6 > 0, L?H*N X is compactly embedded in
L2H?7% Also, for any § > 0, [46, Theorem 3.1], [39, Lemma //.2.4], and standard
Sobolev embedding imply that L2 H>NH"' H~2 and L> H>NW*** L? are compactly
embedded in C #~%. Finally, by Appendix C, forany § > 1, L2H? N whiw—13
is compactly embedded in C H %, and the claim follows.

Let By be the ball in X N L2 H? of radius R centered at the origin. By the just
proved compactness, Bg is compact in V5. Furthermore, by Chebyshev inequality

4
Hf':”é’oz”j 212 C
Va(BY) = Pl0all yrr2pe 2 R) £ ——2LHE < —

R3 "R

Wl
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and therefore the set of measures (vy )y is tight in V5. The existence of appropriate
sequence follows from Prokhorov theorem. O

Lemma 5.6. Let v — v in be as in Proposition 5.5. Then, there is a probability
space (2, ), on which is defined a sequence of random variables (6) and a random
variable 0 having the following properties:

(1) The law of 0 is v and for every k, the law of 0y is k.
(2) For any § > 3, the sequence 0y converges to 6 almost surely, that is, for

P almost every w € Q one has ||9k(a)) — 9((z))||y5 — Qask — oo.
(3) For each k, Ok satisfies (5.5).

Furthermore, by passing to a sub-sequence if necessary, 0 converges weakly to 6
in L%(Q, X)N L%, L2H?) and, for any ¢ = 0,

4 .4 .4
/ 10113dv©) = E[0]} = likminfEII(?kII} s Cr, (5.10)
— 00

q ~ 4 &~
f||||e||z||e||H;||izdv<9) = EN161% 16112112
t t

. . ~ 4 0~
< liminf E||[|6 2 ||9k||H2||iz =Cr. (5.11)
k— o0 x L

Proof. Since Vs with § € (%, %) is a separable metric space, Skorokhod theorem
(see [26, Theorem 11.7.2]) implies (1) and (2). Moreover, (3) follows analogously
as in [4, Section 4.3.4].

By Proposition 5.5, (6;) is uniformly bounded in the space Z = L3 (Q,2)nN
Lz(fz, L’H 2), and therefore, up to a subsequence, (ék) weakly converges in Z to
somed. In particular, (ék) converges weakly to finL3 (Q, Vs).Since (ék) converges
almost surely (up to subsequence) in L% (fz YVs) to 6, then by [25, Proposition 9.1c]
(trivially modified to Banach spaces), weak and almost sure limits are equal, and
therefore § = 6. For another approach see [66, Proposition 16.6].

Finally, (5.10) and (5.11) follows from the weak lower semi-continuity of norms
and (5.8), (5.9) respectively. O

Next, we prove that 6 satisfies (1.1) almost surely. Before proceeding, we prove
the following auxiliary result:

Lemma 5.7. Fix$§ € (%, %) andrecallYs = C,H™? ﬂL%HZ_‘S. For any sufficiently
smooth 0 € Vs one has

IRY6 - VO 251 < CIOII3,- (5.12)
Also, the map B : Vs — LIZHX_l defined as B(0) = R0 - V0 is continuous.

Proof. Itsuffices to prove the assertion for smooth functions and then use a standard
argument to pass to the limit.
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For any smooth 1, 6>, with help of (1.6), Agmon’s inequality, and interpolation,
one has

IB61) — B62)l ;1 < IR (61 = 62) - VOill 1 + [|IRV62 - V(61 — )]y
< IIRH 61 = 01611 + [1R621(61 — 6)|
< CUIR* 61 — 01161l + ||RL92||Loc||(91 — )l

= Cl161r — 211(116 ||2 4I|(91 ||22 5 T ||RL92||2 4||RL92II22 5)

3+

< Clloy a1, 16y — a1y lon 1 1052

5
+ 1162l §‘I|92I|2z 5)

27
Hy

To prove (5.12) we set 6, = 0, 6; = 6. After integration in time and an application
of Jensen’s inequality we obtain, for § € (0, %),

HZS

T T xs
3— 1+3
/ ”B(e)”i]—lds s C/ I|9I|H Jlel ,2%ds
O X

35
1+3
< CT||9||LOOH—5||9||L2H2 5 = CT||9||3;(3

To prove the continuity of B we observe that, for § € (0, %),

T 8
/O (R o [ P Y T

T
2-5 5
< 16y —92||L<,<>1r(s||6‘1IILocHﬂs/O 161 — 02117 - a||91||H2 5

< Crllor — 62l 161 161 — 6211° 01l

LooH—S' LOOH—BI L2H2 5| L2H2 8

< Crl61 = 6213, 101113, -
Thus,

1B@) — B@)l 251 < Crl6r = Bally, (61l + 161 ly,).
as desired. O

Lemma 5.8. For 0 defined in Lemma 5.6 one has almost surely 6 € C, Hx1 ﬁLtsz2 N
Hzl LJZC locally in time. Furthermore, 0 almost surely satisfies

t
é(r):é(O)—/ u-vVods >0,
0

that is, fisa strong solution of (1.1) on [0, T].
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Ijroof.~ Let (o) be as in Proposition 5.5. Replacing « by oy in (5.5) and setting
Or = Oy, (see property Lemma 5.6 part (3)), we have

t t
Ok (1) = 6,.(0) — f u - VOds + ozk/ V- (|VO* V) — A%0kds + Jag
0 0
=1+oll + Jorlll.
By Proposition 5.5 (cf. (5.6) and (5.7))

arll, Joyulll — 0, (5.13)

where the convergenceisin L 3 (Q, X). Then, by Chebyshev inequality, (5.13) holds
in probability and by passing to a sub-sequence, we can assume that (5.13) holds
almost surely in X. Since X — C;H_ 2 (5.13) holds almost surely in C; H_ 2,

If6 e (%, %), then Lemma 5.7 yields that 0 — RL6 .V is continuous as map
from )5 into L2(1, Hx_l). Hence, as k — oo,

' t
/ uy - Voids — / u-Véds in H'H7' as,
0 0

From Lemma 5.6, part (2) follows almost surely:
9~k — 5, in C,Hx_‘s.
Overall, almost surely we have, for any ¢ € I, that
t
6(t) = 6(0) — / u-Véods in C,H 2.
0
To obtain the regularity of 6, observe that (5.11) implies almost surely § € L>H?.
Also, by interpolation, properties of Riesz transform, and Agmon’s inequality,
la- VOl < lullrel VOl 2
1 F T |
< Cllull lull 7 19172 101,
< ClOL2 10152 -
Consequently, by (5.11),
Ellu- V6|, < CEII6N8]m17, < C.
and therefore, almost surely 8,5 € Lf’ - Then, the Lions-Magenes lemma (see [46,
Theorem 3.1]) yields that § belongs a.s. locally to C;H! N L?H> N H'L2. O

The proved regularity is exactly a borderline case for the proof of uniqueness.
As such we cannot use direct energy estimates, but we have to employ more subtle
argument of Judovich, who used it for Euler equation, see [35,50]. In particular,
we need a precise estimates on the Sobolev embedding constants.
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Lemma 5.9. Solution of (1.1) with(0) = 6y € H' thatbelongsto C;H'NL?H*N
HL? is unique.

Proof. Let6; € C,;H' N L?H?> N H'L2, i = 1,2 be two solution of (1.1) with
01(0) = 6,(0). Then, w = 0; — 6, satisfies

w, = —Rtw - Vo, — R0, - Vw. (5.14)

Testing with w and using (1.6) yields

d
Ellwll2 < 2|(w, RMw - VO))| < C||w||L2p||w||||V91||L 2 -

P
where C is independent of p. By interpolation, we have, for any p € (1, 2),

2— —1
w2 < Nwl® P llwl?, -

Lpr-1

(5.15)

Using Holder inequality, p < 2, and Sobolev inequality with a precise constant
(see for example [15, Remark 1.5]), we obtain

P
—1

d -

2 3— 1
—llwl* < ClwlP~Pwl”, 1V6ll 2
dr LT LP

2p P
N L G PR L FOE

C
w2 (1 + 11611132 + 1162113,2) .

<
- -4

i

where § = 3_7” < land p € (1, 2). Then, after recalling that w(0) = 0, we have

t

1 _ C
T WO < o | (1 10115 + o2l ) .

and consequently,

1

t =y
||w<r>||2<c<¢1—afo (1+||91||%,2+||92||i,2)ds) .

to
Since#; € L?H?, thenforanyzg > Oonehas«/l—S/ (14101 [13,H162117,2)ds < 1

0
for any § < 1 sufficiently close to 1. Passing p — 1 (or equivalently § — 1), we
arrive at

lw@|| =0 foranyt < 1.
Since 7y was arbitrary, |[w(#)|| = 0 for any ¢ = 0, as desired. O

Lemma 5.10. The law of 6(t) is independent of t and is equal to w. Here, i is a
weak limit of (a sub-sequence) (y) as @« — 0 in the space H*7,y > 0, where
e was defined in Theorem 4.1. Furthermore, y is concentrated on H?.
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Proof. From Chebyshev inequality and (4.4) if follows that
(B < o [ 16122dia®) < < (5.16)
H“Ol R/ = R2 L2 H2 Ma = R2 ’ .

where Bg is a ball of radius R in H> and C is independent of . Since H? is
compactly embedded in H>77, y > 0, the Prokhorov theorem implies that there
exists a weakly convergent sequence (i) in H 277 to p. To prove that p is
supported on H? note that, by (5.16),

Ma(BRr) = 1 — % (5.17)
and by the Portmanteau theorem, (5) holds with u4 replaced by . Passing R — oo,
one obtain M(Hz) =1.
Fix T € [0, T) and a bounded continuous function g : H =% _ R and define
G(0) = g(0(r)). We claim that for any § € (%, %), G : Vs — R is bounded
continuous. Indeed, if |01 — 62|y, < &, then [|61(t) — 62(7)| y—s < € and

|G (O1) — GO2)] = |g(O1(7)) — g(62())],
and the boundedness and continuity of G follows from the boundedness and con-

tinuity of g.
By Proposition 5.5,

lim/ G(@)dvk(9)=/ G(0)dv(6)
k=00 Jyy Vs
and by using (5.3) and weak converges of (v;) and (ux), one obtains
Eg(6(r)) =/ gO(r))dv(0) = lim/ g(0(7))dvi (9)
Vs k=00 Jy;

—lim [ g®)du®) = /
k— 5

8(©0)du ().
o0 JH- )

Thus, for any 7, the law of 0 is i, as desired. O

Proposition 5.11. For@ defined in Lemma 5.6 one has almost surely € C(Ry., H Xl)ﬂ
LZ(R+, Hf) NH! R4, L%) and 6 satisfies (1.1). Furthermore, t — 0(1) is unique,
and depends continuously on initial conditions, that is,

lim sup ||61(t) — 02(H)||y1 = 0. (5.18)
||91(T0)—92(T0)\|Hx1—>0te[TOI,)T1] s

We remark that by changing t to —t, we can define solutions for all times, positive
or negative.
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Proof. By Lemmas 5.8 and 5.9, for each integer N > 0 there exists almost surely a
unique strong solution 6N of (1.1) oninterval [0, N). Since (1.1) is a deterministic
equation, by almost surely we mean for . almost every initial condition 6 (0) (see
Lemma 5.10). Thus for each integer N > 0 there exists aset My, with u(My) =1
such that for each 50 € My, there exists a unique solution of (1.1) on [0, N) with
6(0) = 6.

If we denote M = Ny My, then (M) = 1 and for each ) € M, and each
N, there exists a unique solution of (1.1) on [0, N) (see Lemma 5.9), and global
existence follows.

By slightly modifying the argument of Lemma 5.9, we could prove (5.18) with
H' replaced by L?. However, we need to modify the argument to obtain continuity
with respect to the H'! topology.

Test (5.14) by Aw, and let us first focus on the right hand side (using summation
convention)

(9w, u/9;61) + (B w, ujd;w) = (1) + (2).

where u = R (w) and u; = R1(8;). To estimate (2), we use an integration by
parts and V - u = 0 to obtain

(02w, u]djw) = —(B;w, du)d;w) — (Gw, u] 9% w)

J
j ! 2
= —(0jw, dujdjw) — 5(31'(31'10) ,uy)
= —(@w, dulojw),
and consequently, for any p € (1, 2),

(@, 9;wduy)| < ”wllHl”D“l”LLpl||Dw||L2P- (5.19)
=

Using (5.15), (1.6), and precise constant of embedding as in the proof of Lemma
5.9, one has

j 3— —1
1) = [(@w, djwdu])| < CIIwIIHz”IIDwII” 2 IIDur]l 2
LT Lp-1

< %nwni;” (16111522 + 116211 22) " - (5.20)
(p—1)2
On the other hand,
[(D] £ [@w, 307,60 + |Giw, w/ 9560 = |3)] + (4.
As in (5.19) and (5.20) we obtain,
3] = [(@w, 0;u70,;6))]

C 3—
< ——— il (10112 + 162052)"
(p—12
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To estimate (4), the embedding H I s L4 (with precise constant [15, Remark
1.5]), (1.6) and (5.15) imply

2p
=

@] = [(@w, w/d}61)] < ||91||H2||Dw”L2P”u”L 2p S ||91I|H2I|Dw||L2p||wI|L 1

=

2— -1
S ClO g2 lw "I DwI ™, w2

LT Lr-1
< ¢ 3-p P
S ———lwly” (16112 + 16201 2)"
(p—1D2

where C is independent of p. Combining all the estimates, and using that p < 2,
we have

C
w15 £ ——— lw® 13 (1 + 0113, + 162115,),
H H H H

g
ds IRCERIE

where § = 377” and p € (1, 2). Thus, for any Ty < T,

2(1-6
sup ||w(r>||i,l<(||w(ro>||;1 :
t€[To, T1]

51 T 5 2 IITzS
+ C(1—§)°"2 A+ 161l + ||92||Hz)dS> .
To

Passing to ||w(Tp)|1 — O implies, for any é € (0, 1), that

1
1 T, =
lim  sup ||w<r>||%§<c<1—6>3—z <1+||91||%+||92||%>ds> :
lw(To) -0 ¢[79, 711 To

Finally, letting § — 17T, or equivalently p — 17, we arrive at

lim sup Jlw(®)|; =0,
lw(To) =0 ¢e[70, 741

as desired. O

Proposition 5.12. Under the assumption of Theorem 5.1, the relations (5.1) and
(5.2).

Proof. Recall that by Lemma 5.10 y; — 1 as measures on H>~7,y > 0 and
is supported on H2.

The inequality (5.2) follows from (4.4) and the Portmanteau theorem, since C
in (4.4) is independent of «.

To establish (5.1), frix R = 1 and let g : R — [0, 1] be a C* cut off function
with ¥ g (r) = 1 for |[r| £ R and ¥g(r) = 0 for |[r| =2 R + 1 . Denote By the ball
in L2 centred at 0 with radius R, and BICQ the complement of By in L? and define

16) = 013 —/ V02V - V(—A)“26dx . (5.21)
2 T2
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Then, by (4.1),

ALI
2 _/BC |1(0)| i (dO) = /LZ YR O)I(O)(d6)
R

2

A

= +/Bc 11(0)1114(d6)

<
- 2
R

Also, Holder’s inequality, interpolation, (5.16), and (4.4) imply that
5 i
8 1
/ 19113 1x (d6) = (/ |I9II§Mk(d9)) (K (Bg))4
BS 2 L? 2
i c
2 1
S (/ ||9||3||9I|§Mk(d9)) (uk(BR)* = —,
L? R2

and by Holder the and Gagliardo-Nirenberg inequalities,

_1
< ”'W'QW”L% IV(=A)"20]1 4 < CIIVOI3 L1101l 4

1
‘/2 IVO|2VO - V(—A)"20dx
T

02
S CIVOl 4101, - (5.22)

Hence, by (4.4) and (5.16),

/B;;

1 10 2
/2 IV612V6 - V(—A)~36dx | j14(d6) < C[ V61,1615 (00)
T B,

4 6
<c ( /L IvoIel zzuk(de)> (e (BR))s

<<
R3
Thus,
A 1 1
2 -c (—1 + —1) < / YR (0)1(0)114(d0)
R2 R3 L?
A_1 1 1
< +C<—1+—1>. (5.23)
2 R2 R3

Furthermore, Holder’s inequality and the Sobolev embedding imply that

‘/ V62V - V(=) 26dx| £ IVOIPVE| 1 1V(=4) 7205
T2

S CIVOIP 1017 S CIOIP 10 16117 -
L2 H7
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Therefore, I : HT - R, and by passing k — oo in (5.23) and using of

weak convergence fx —> u on H ¥ (see Lemma 5.10) and the boundedness of
Yr(1(0))I(0), we obtain

Ay 1 1
_c (—2 + —1) < /L YR(IO)] (©)1(d6)
5 2

R Ro
Al 1 1
< =+ C <—2 + —1) . (5.24)
2 R3 R%
Finally, by (5.22), one has
0 2 )
YR ONIO)] = 1) = CUIVOI L0, + IIQII%), (5.25)

and by (5.2), the right hand side is @ integrable. Since g (1(0))I(0) — I1(0)
everywhere as R — 00, by the dominated convergence theorem, and (5.24) implies
(5.1). o

6. Qualitative Properties

In this section we complete the proof of the main result, Theorem 1.2 by showing
that parts 6 and 7 holds true.

In particular, we show that the the distributions via p of the functionals below
admit densities with respect to the Lebesgue measure on R; that is

1 2
E_1(0)==101" _1,
2 2 H7Z

1 2
M@©) = 2161

Also, using other conservation laws of the SQG equation, we show the infinite-
dimensional nature of the measure . The proofs follow general framework de-
veloped for analogous problems, however the adaptation is not straightforward.
Since our smoothing operator is not Laplacian, but bi-Laplacian, we lost several
important properties. For example, unlike (—A6, f(0)) = 0, for any increasing
function f, it is not clear that (A26, £(6)) is bounded from below for any 0 € H 2
and for sufficiently many functions f. This obstacle was solved by introducing the
p-Laplacian to the equation, that lead to stronger moment bounds, see Theorem
5.1. In such case, after nontrivial integration by parts we can show that (A6, f(9))
is bounded from below if f has bounded derivative up to fourth order. Also, com-
pared to Euler equation we have to choose differently the set of functions f. Let
us provide the details.

Theorem 6.1. Assume Ay < oo. The laws of the functionals M (0) and E _ 1 )
under p are absolutely continuous with respect to the Lebesgue measure on (0, 00).
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Analogous statement can be proved for other invariants, butitis more technically
involved, and we decided to skip it for the clarity of presentation.

To obtain the following result in a cleaner form, we redefine the measure u
constructed in Theorem 5.1 so that it does not have an atom at the origin.

By (5.1)and Af% # 0 one has u({0}) < 1, and therefore S::;L(H2 \{0}) > 0.

Define the probability measure

AN{O
i = 44N

The SQG equation preserves the L norm of solutions, and therefore it preserves
the set supp(w) \ {0}. The invariance of & comes readily from the invariance of .

Theorem 6.2. If Ag < oo and a,, # 0 for each m, then he measure [i is infinite-
dimensional in the sense that if K C H' is a compact set of finite Hausdorff
dimension, then u(K) = 0.

Proof of Theorem 6.1. Let F(0) be either M(0) or E Sl (0). Thanks to the Port-

manteau theorem, it suffices to prove the theorem for measures p, with bounds
that are uniform in «. Also, according to the non-negativity of ', our analysis shall
be reduced to the interval [0, c0).

Step 1 : The pilot relation. Fix any f € C3° and define

1 o0
D5(x) = —— —h—ylv2sg
5(x) m/oo f(e y
= le—a ( / ' F)e GmIVAgy 4 / b f(y)e‘”Wdy) :

Then,
(I):S(_x) = / f(y)e(xf)’)m(ly _ / f(y)ef(xfy)mdy'

Computing the second derivative of ®g, we obtain that

1 "
Since ®; is bounded uniformly in § (as f is compactly supported), for every x,
§Ps(x) > 0as§ — 0and

) (x) f FO)dy — f FO)dy asé — 0,
DY (x) > —2f(x) asd — 0.

Assume that 0 is a solution of (1.2) with 6(0) distributed as 1, and therefore 0(t)
is distributed as 4 for any # = 0. Note that by Theorem 2.1, 6 is a global solution
and to simply the notation, we will not indicate explicitly the dependence of 6 on
a. Denote E, to integral with respect to the measure /14 (d6).
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Letus apply the Itd formulato ®5(F (0)), take the expectation, and use Vg F'(0; u-
V6) = 0 and stationarity of 6(¢) to obtain

Ep, ((bg(F(e)) [VQF(G; V- (IVOI*V6O — A%6))

+% ;aﬁ,vgm; em, em)])
1 i
+§]EM <q>3 ©) ;ai(VQF(O, em))2> =0. 6.1)

If F(§) = M(8), then
CA2 2 _ 2 4
VoF(0; A0 — V- (IVO]"VO)) = (1012 + 1101l 1.4

and if F(0) = E%l (0), then

Vo F(0; A% — V - (IVO>VO)) = 1(0),

where [ is defined by (5.21).

By (3.3), iq is supported on H2. Since f € C5°, |®§, |®f| are bounded
independently of §, we can use the Lebesgue dominated convergence theorem to
pass § — 01in (6.1) and obtain, for F = M, that

00 F()
E,, / FOdy — / FOdy | x
F(9) —00
1
x {neniﬂ + 16114 + 5 ;a,iVéF(@; em, em)D
—Ey, (f(F(Q)) Y anIVoF @, em>|2> =0, (62)

and for F' = E_ we just replace 16137, + 1611514 by 1(6).

By a standard approximation argument combined with the Lebesgue dominated
convergence theorem, we can extend (6.2) to f = xr being the characteristic
function of a Borel set I' € R. Then, F = 0 and (4.4) imply that there is C
independent of o and I" such that

) F(0) 1
L ([/m) xr ()dy —/ xr(y)dy} [w@z 161510+ 5 ZaﬁtveﬁF(e;enl,em)D
m

—00

e 1
< ([0 xr (y)dy) Epq [nmi,z +10l14 + 5 Zafn}
m

o0
= C/ xr(ydy = CeI),
o0
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where £(I") denotes the Lebesgue measure of . If F = E_ 1 one obtains a similar
bound by using (5.25) and (4.4).
By (6.2),

Ey, (mF(e)) > anlVeF @, em)|2) < cer). (6.3)

In the remaining part of the proof, we estimate the left hand side from below.
Step 2:Absolute continuity on (0, c0). Recalling that F is either E Sl (0) or M(6),

then Vo F (0; ey,) is
An (@, em) or (0, en).

First, focus on F(0) = E%l (0). For any § > 0 denote the set ' = {||9||271 > 5§}

N{IoI° < 1/8}.
Letay = min{|a,|, 1 £ |m| £ N}andrecallthat0 < A S < ... <Ay <
- are eigenvalues of (—A). Let Py be the projection on the space spanned by the
first N eigenfunctions of the Laplacian. Then, by the inverse Poincaré inequality,
for any 6 € I's one has

Y oapa O en)? = Y aph 0. em) + Y apin 0, em)?
m

Im|IEN [m|N

> a3 PO 2 axay (012 — Ayt I — Py)ol?)

1
>azay (6 ——).
= day N< 3)"N

Fix any § > 0 and any Borel set I'* C (8, 00). For any § € (0, 8), using (6.2) the
left hand side of (6.3) can be estimated as

Ep, (xF*(Fw)) D anlVoF @, em)|2>

o 1 .
2 ayy' (8 - —) pe(F~HT*) NTy).
SAN

Since the sequence Ay increases to infinity, we can find N such that § — >0,

SAn
and therefore, by (6.3),

_ Cin
fe(FHI*)NTy) £ —
ax (- 5iy)
N SAn

Using the Portmanteau theorem, we pass to the limit « — 0 and obtain

or).

A
W(FHI A Ty) < — 2

2 1
aN <8—m)

o).
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Consequently, if £(I"*) = 0, then for any § € (0, 5),
w(F~1(T*)NTy) = 0.
Since J,>; T'i/n = L*\ {0} and 0 ¢ F~(I'*), one obtains

te (F~HI*) = g (F~HT™)\ {0) = 0.

Thus, /1 (F~1(I'*)) = 0 whenever £(I"*) = 0, and the claimed absolute continuity

follows.

Next, we focus on F () = M(0). By the Cauchy—Schwartz inequality,

1017 =©0.0) =Y B em)*= D @ em)*+ Y (0, en)’

m|IEN [m|>N
1 1
19 ’ i
S| X a@en?]  Flon| X0 @.en)’
N m|IEN [m|>N

Also,

1
D O.en)” = 1017
)‘N

|m|>N

and therefore,

1 7
an (nen -~ mneul) < (Zaf,,(e,em>2) :

For any € > O denote I. = {||0] =€, (0|1 < é}.Then, for any 0 € I,

_ 1 :
any (e - )_\—Ng> < (;ai(e,emf) .

(6.4)

Fix £ > 0 and a Borel set I C [&, 00). Since 6 is distributed as puq, and M(0) € '

implies ||| = &, then for any ¢ € (0, &),
ta(M™'(T) = pa (M(©) €T} N {0 € L))

+1ta ({M(9) €F}ﬂ{||9||1 z é}) =I+1I

Using the Chebyshev inequality and (4.4), we obtain

I1 < C—¢".
Since Ay — 0o as N — 00, we can suppose that (& — ﬁ) > 0. By (6.3) and
(6.4),
C
I —— D).

an(e — 55



Invariant Measures and Global Well Posedness for the SQG Equation 219

Consequently, that Portmanteau theorem yields that

aM ) € —S oy + 202,

an(e — 5 2

and the rest of the proof follows as in the previous case. 0O
Next, let us turn to the proof of Theorem 6.2.

Proof of Theorem 6.2. For any positive integer k denote

1

Fi(0) = 2 /]1‘2 Jie(0(x))dx,

where fj is a smooth function on R. Then, by V - u = 0, we have for any 6 € H 2
that

(fl(0),u-V6) =0. (6.5)

Therefore, the functionals Fj are conservation laws for (1.1). Fix n and functions
(fi)j—; on R such that

(i) There is a constant C independent of k such that | f (v ()] £ C for p €
{0, ..., 4}, thatis, the sequence ( f;) has uniformly (in k) bounded derivatives
up to fourth order. Note that the bound can depend on n.
(i1) f%x(0) = O for each k.
(iii) f1 2 0and f; > 0 on (=6&*, 6*) \ {0} for some §* > 0.
(iv) If for some v € R” and some continuous function m : T> — R with zero
mean one has

n
Z vi f/ (m(x)) = Const, forall x € T?,
i=I

thenv; =0 foreachi, or m =0. (6.6)

Forany n 2 1, such (fi)}_, indeed exists. For example let f; be smooth functions,
compactly supported on [—2,2] and fi(z) = z¥*! on (=1, 1). In addition, we
assume that f; = 0. Clearly (i)—(iii) holds and it remains to verify (iv). Fix any
zero mean continuous function m # 0. Then the image of m contains the interval
(—4, 8) for some § > 0 and, consequently,

n
Zci fl/(z) =Const  forall ze (-4,9).
i=1

Since fk’ are non-constant polynomials on (—1, 1) one obtains that v; = 0 for each
i as desired.
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Since the second order derivatives of f; are bounded, then for any solution 6
of (1.1) we can use Theorem B.1 and (6.5) to obtain

t
EF(0(1)) +aE/ (f1(0), A*6 — V - (IVO[*V))ds
0

00 t
o 2 "en.
= EFiO0) +5 3 aE /0 (F/(0: em, em))ds.

m=1
Next, with the use of a summation convention,
(f£(6), 9707;,0) = —(f{'(6), 8;00;07,6)
= (f{(0). 9200%0) + (£ 0). (8:6)*9%,6) =: (1) + ().
On the other hand,
(f{(6), 0;:03,60) = — (£ (6), 3:69;07,6)
= ({0, 050 + (/) 0), 3169;0050) =t 3) + ().
Furthermore,
@) = — (0. 3:6)20;0)>) — 2(£7(0). 3:60,6926).
We obtain
/ 292 1 2
(H©), 07950) = 31D + @)1+ 3(6) + @)]
1
=3 (7 ©. 020026 +2030)) ~(£0©). 46)*@;0)) .
and consequently,
(f{(0), A*0 =V - (VO] VH))
1
= 3 ((©. 20 +20%) + (1 ©) = £©). 190
=: Ax(9). (6.7)
For any positive integer n, denote
F1(0)
Fy(0)
vaoy=| " |- (6.8)
Fo(6)

By the It6’s formula and (6.5),

t 13
Vn(e>=vn(eo)+/ xsds+ﬁ2/ Y ($)dWin (s),
0 —Jo
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and with A defined as in (6.7), one has

A1(0) VZF1(0; em, em)
A2(6) VZFy(0; em, em)
Xy = —Q . .

4,(6) V2 (0: e, em)
A1(0) (f](0), e%)

A (0 /(9), €2,
- —a 23( ) +%;aﬁq (21 E) | _. —aA(9)+%B(9),
An(6) (f1(0), e
(f1(0), em)
(f50), em)
Ym = am .

(f19). em)

Let y,in = au(f!(0), ey,) be the ith component of y,,. Denote by M the n x n matrix
with entries

Mij =Y yiym= Y ai(f©).en)(f]©). em),

m

and note that M depends on ¢, but is independent of x.
Since f;, f{’,and fk(4) are bounded, by (6.7) and (4.4) one has forany « € (0, 1)

t o0
E/ sl ) lym(s) | ds
0 m=1

n t o0
< Coz]EZ/ 101132 + 1VOl7s + 1+ Y ands < C, (6.9)
0
k=1

m=1

where C is independent of «. Then, [43, Theorem 7.9.1] and (6.9) (bound on |x,|)
imply for any bounded measurable function g the Krylov’s estimate

1 1
Euu/O (det M)'/" g (V,,)dt gcnuguLnEm,/o x| £ Callgllzn.

Let B C R" be a Borel set and denote g = xp the indicator function of B. Then,
since [y 1S an invariant measure,

1
/ (det MO x5(Va(0))dua (@) = E,, /0 (det MO x(Va(6(s)))ds

< CrAo(lu(B))i. (6.10)

For any integer k > 0 denote By = B N By, where By C R”" is a ball of radius %
centred at the origin, and By is its complement. Note that B = {0} U [ J; Bk, and
by (6.10), for any k > 0,

f (det M (@)™ x5, (Vo (0))d (@) < CAo(Ln(B)). (6.11)
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Estimate on det M. The matrix M is clearly a non-negative symmetric n X n
matrix. We show that for any € > 0, M is positively bounded from below outside
the ball in H' of radius € > 0 centered at the origin. Observe that M is an infinite
sum of non-negative matrices M™ with coefficients

M} = ay, (f](0), en)(f](0), em).
Then, for any vector v = (vy, ..., v;) € R”, we have

. Mv) =Y @.M"v)=>" > M"vv;

m=>0 m=015i,j<n

=3 a 3w (O, en (SO, en(0))
m=0 15i,j<n
2

=Y an | D vi(f{6()), en(x)

m=0 Jj=1
2
n
= an [ D v fj0)). em
m=0 Jj=1

Suppose that (v, Mv) = 0 for some v # 0, since a,, # 0, for all m,

n
Zvjf]{(g),em =0 forallm = 0.
j=I

Hence, the function x Z?:l v f ]’ (6(x)) is constant, that is, there is C such that

n
D ifj@@) =C forallx e T
j=1
By the independence property (6.6), either vy = O for each k or & = C. Since
v # 0, the latter property holds and since 6 has zero mean we have 6 = 0.
Therefore if & # 0, then det(M) > 0. Next, denote the set I, = {||0] = e,
011 < %}, and note that I, is compact in L2. Indeed, if (0;); C I, then
160111 = %, and therefore there exists subsequence, still denoted (6;) j, converging
t0 O weakly in H' and strongly in L2. Weak lower semi-continuity, and strong
continuity of norms yield 6 € I as desired.
By smoothness of f, uniform boundedness of f’, and Ag < oo, the map
6 — M(@®) : H' — R™" is continuous, and consequently § > det M(9) :
H! — [0, o0) is continuous as well. Since det M > 0 on the compact set I,
det M) = c, > 0on I,.
Conclusion. For the Borel set 5 fixed in (6.11), and V,, defined in (6.8) one has,
for any k,

ta({Va(0) € Bk)) = na({Va(9) € B} N {0 € Ic})
+ua ((Vu@) € BiyN{0 € IS}) =T+11.
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Since det M (9) = ce, on I, (6.11) yields

_1 1
1 é AoCrce "(Ln(B))7.

Next, since ( f) are uniformly, globally Lipschitz and f(0) = 0, there exists L = 0
such that | f;(z)| £ L|z| for any k and any z € R. Then, for any 6 with V,,(8) € By
one has |V,(0)| = %, and therefore,

1

— = Cmax|F;0)] = CmaX/ |fj(@(x)ldx = Cle]l,

k j i Jr2

where we used Jensen’s inequality in the last estimate. Without loss of generality

assume C = 1. Thus, by (4.4) and the Chebyshev inequality, if ¢ < & then

11 = po ({Vn(Q) € B} n {IIQIIH1 z é})

+ o ((Va(0) € By 0 {110]] < £})

1 Ao
< o ({nenm > ED < 762.

Gathering these estimates, we arrive at

Ha(Va(0) € B)) < %ez + Cacl " (Ea (B,

and by the Portmanteau theorem, (6) is valid with p, replaced by the limiting
measure . If £,,(B) = 0, then since ¢ > 0 is arbitrary, we obtain u({V,(0) €
Bi}) = 0 for any k£ > 0. Taking the countable union in integer k£ > 0, we arrive to

n({Va(0) € B\ {0}}) = 0.
Since f1 is non-negative and f; > 0 in a punctured neighbourhood of zero,
then for any continuous, zero mean function 6 0 one has F(6) # 0. Hence,

n({V,(0) € BY\ {0}) = u({V,(0) € B\ {0}}) =0.
By the definition of fi,

n({Va(0) € BIN{OD) _
S

w({Vn(9) € B}) = 0 (6.12)
for any B with £, (B) = 0.

Finally, we prove that /& is infinite dimensional. Let K C L? be a compact set
with finite Hausdorff dimension dimg (K) =: & and fix an integer n > h. We claim
that V,, defined in (6.8) is differentiable on L2. Indeed, each component Fy of V,,
satisfies

1

ary _
|F (05 u,v)| = ]

/ Ji ©)uvdx| = C/ luv|dx < Cllullllv],
T2 T2
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where we used that £} is bounded. In particular, V,, is locally Lipschitz. Since locally
Lipschitz maps do not increase the Hausdorff dimension, dimg (V) < h < n, where
V:=V,(K) € R", and therefore £, (V) = 0. Then, by (6.12)

A(K) = a({Va(0) € VH =0

as desired. 0O
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Appendix A: Some Facts on the Fluctuation—Dissipation Approach for
Finite-Dimensional Hamiltonian Systems

In this section we elaborate on the question that was raised in the introduction:
Do the constructed invariant measure p for is (1.1) concentrates on the equilibria?
Although we proved that the support of . is infinite dimensional, it also known that
the set of equilibria is also infinite dimensional; any solution of the equation

(_A)%cb = F(D)

is an equilibrium of (1.1). Since every equilibrium is trivially a global solution,
there is a possibility that ;« concentrates on the set of equilibria, and we did not
construct any new solution. As mentioned above, we don’t have a definite answer
to this question, however we provide an example of a general system for which the
measure arising from fluctuation dissipation method is not supported on equilibria.

Since the SQG equation has a Hamiltonian structure, we will focus only on the
Hamiltonian systems. There are several trivial examples in which the equilibria form
a discrete set, and therefore are of measure zero, for instance the cubic defocusing
Schrodinger equation with only one equilibrium. The example closest to SQG
is 2D Euler equation, which has infinite dimensional manifold of equilibria with
similar structure. However, whether the invariant measures for 2D Euler equation
concentrate on equilibria is an open question, hence regularizing the problem might
not help.

Letus turn our attention to finite dimensional systems. Consider a 2n-dimensional
Hamiltonian system

X=—0,H(x,y), y=0H(x,y), (A.1)

where H : R" x R” — R is a smooth Hamiltonian function. It is well known
that f(H)dxdy is an invariant measure for the system, for any integrable smooth
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function f. We consider now the fluctuation—dissipation model

dx = (=3, H(x, y) — ad, H(x, y)dr + v2adfi,
dy = (9, H(x, y) — ady H(x, y)dr + v2adp, (A.2)

where B, B> are independent Brownian motions. Then, e~ ) is a density of an
invariant measure for (A.2), since e~ *-Y) is solution of the Fokker-Plank equation

Lp=atp =V [@H () +ad Hx, y), —0.H(x, y) +ady Hex, ) p| =0,

Thus 1 (dxdy) = T~ le#®¥ dxdy is an invariant probability measure of (A.2),
were we denote T = fR,, SR e HxYdxd y to be a partition function (normaliza-
tion). Note that 7 is finite if H has appropriate increase at infinity. Observe that p
does not depend on «, thus by passing « — 0, we see that p is an invariant measure
of (A.1).

If H is constant on the unit ball of R” x R”", then any point in that ball
is an equilibrium of (A.1), and therefore we have an open set of equilibria. On
the other hand, u has positive density everywhere and in particular its support
coincides with the whole space. There might be a possibility to apply this reasoning
to infinite dimensional systems, but there are serious difficulties with coercivity of
the dissipation. We leave this question open.

Appendix B: It6 Formula

For the reader’s convenience, we recall Itd’s formula in infinite dimensions,
which is used several times in the proofs of the main results. We say that the
equation (1.2) has the It property on the triple (H*~!, H*, H°T1) if

(1) for some T > 0, (1.2) has a unique solution on [0, T') for any data in H*;
(2) the process h:= — a(A%0 — V(IVO|2VH)) —u - VO is JF-adapted and

t
J%Ammmrwmem<mvnw}ﬂ,Z%%<w

m=>0

We have the following version of It6’s lemma proved in [43, Section A.7]:

Theorem B.1. ([43]) Let F € C2(H®, R) be afunctional which is locally uniformly
continuous, together with its first two derivatives, on H®. Suppose that (1.2) satisfies
the It6 property on (H*~', H®, H**t) and that F satisfies the following conditions:

(1) There is a function K : Ry — Ry such that
[F'@;0)| < KU01)100s4110l5-1, 6 € HF, ve BT (B.D

(2) For any sequence {wy} C H**! converging toward w € H’*' and any v €
H*~!, we have

F'(wg; v) = F'(w;v), as k — oo. (B.2)
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(3) The solution 0 of (1.2) satisfies
!
ZaEnE/ |F'(0; em)|?ds < 00 forallt > 0. (B.3)
0
m

Then we have

F(0(1) = F(0(0)

t
+ <F/(9<s>;h(s))+%;aﬁ,F%e(s);em,em)) ds
t
FVE Y an [ F O emdWno).
m 0

In particular,
EF@© @) = EF(@©(0))

'
+/ E (F/(e(s); h(s)) + % > an F'(0(s): em. em)> ds.
0 m
Ifone omits (B.3), then we have the formula (B.1) where t is replaced by the stopping
time t A T, With
T, =inf{t 2 0, |0(®)]ls > n}, n =20,

with the convention inf § = +o0.

4

Appendix C: Embedding L>H?* N whiw—13 < cH™?

Although the parabolic embedding L2H2 N WH3W=13 < CH™ follows
from standard arguments we were not able to locate the proof in the literature.
Hence, we outline the main steps in this appendix.

By [2, Theorem 5.2], we have, for any 6 > %, that

LPH AW WS o c(HL Wby,

where (H?, W_l’%)e’ pe 1s the real interpolation space and py satisfies
1 1-0 n 0
Po 2 %"

However, by [2, (3.5)], for any ¢ € (0, 1) one has

2 -4 2— —1-¢,% 2—¢ p—1-
(H W53,y > (H W05,y = (By5" By 'y Dopa s
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where B;,q is a Besov space. From [5, Theorem 6.4.5, (3)] and [2, (3.5)] if follows

that

(B2 BT\ )9 py = B He0He-e W(3H0+C2—e) 5y
’ 33 246240

Finally, by Sobolev embeddings,

WBHO0+2—e) 5ty 3.2

where § = % +(—2+¢)+ (3 —¢)6. Since 6 > % and ¢ > 0 can be chosen
arbitrarily close to % and 0, respectively, one obtains that

LPH>NWhiw—13 < cw92

for any § > % as desired.
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