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Abstract

We construct an invariant measure μ for the Surface Quasi-Geostrophic (SQG)
equation and show that almost all functions in the support ofμ are initial conditions
of global, unique solutions of SQG that depend continuously on the initial data. In
addition, we show that the support of μ is infinite dimensional, meaning that it is
not locally a subset of any compact set with finite Hausdorff dimension. Also, there
are global solutions that have arbitrarily large initial condition. The measure a μ is
obtained via fluctuation–dissipation method, that is, as a limit of invariant measures
for stochastic SQG with a carefully chosen dissipation and random forcing.

1. Introduction

The goal of the present manuscript is to construct an invariant measure μ for
the Surface Quasi-Geostrophic (SQG) equation

θt + u · ∇θ = 0, (1.1)

and to prove μ almost sure global well posedness of (1.1). First, we establish the
existence of invariant measures (μα)α>0 for the stochastic SQG

dθ+u · ∇θdt=−α�2θdt+α∇ · (|∇θ |2∇θ)+√
αdη on T

2×(0,∞) , (1.2)

and then we construct μ as a limit of μα as α → 0+. In addition, we prove that all
functions in the support of μ are initial conditions of global, regular solutions, and
the support of μ is infinite dimensional. Before we precisely formulate our main
results, let us fix the notation and provide a motivation for our study.
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To avoid unnecessary technicalities associated with boundary conditions, we
work on a two dimensional flat torus T2, however most of our techniques could be
applied to domains with boundary. Unless indicated otherwise, we always assume
that θ has zero mean for all times, that is, that∫

T2
θ(x, t) dx = 0 t � 0 .

We assume that θ : T2 × R+ → R has sufficient regularity (as detailed below),

and u = (−∂y, ∂x )(−�)− 1
2 θ = R⊥θ is the Riesz transform of θ , that is,

u = F−1
(

−i
ξ

|ξ | F(θ)

)
,

where F and F−1 denote respectively Fourier and inverse Fourier transform. As
usual, we work with cylindrical Weiner process defined on a filtered probability
space (�,F ,Ft�0,P) and our stochastic forcing has the form

η(t, x) =
∞∑
j=1

a j e j (x)Wj (t) , (1.3)

where e j are zero mean eigenfunctions of −� on the torus T2, ordered such that
the corresponding eigenvalues λ j > 0 form a non-decreasing sequence, and (a j )

is a sequence of real numbers such that

A0 =
∞∑
j=1

a2j < ∞ .

Finally, we complement (1.2) with appropriate initial condition specified below.
The SQG equation (1.1) appears as a model for the temperature of stratified

atmosphere on the rapidly rotating planet or as a model of ocean dynamics on
certain scales [6] (for derivation, applications to ocean and atmosphere dynamics,
and more references see [55] or a more recent survey [44]). From a mathematical
perspective, the SQG equation attracted a lot of attention due to many similarities
with three dimensional Euler equation. Most nobably, the vector ∇⊥θ satsifies an
analogue of the Euler equation in the vorticity form. In particular, both equations
contain vortex stretching term and a divergence free drift term, however one is
posed in 2D whereas the other one in three dimensional and the constitutive laws
are different; see the seminal work by Constantin, Majda, and Tabak [17] for more
discussion.

Although the local existence and uniqueness of smooth solutions of (1.1) was
already resolved in [17], despite many efforts, the global existence of solutions on a
torus remains open. The blow-up scenario proposed in [13] was ruled out by precise
numerical simulations in [54] and analytically in [18,20,21]. Another mechanism
of gradient blow up based on the propagation of small instabilities in thin filaments
was proposed in [60]. We remark that blow-up was constructed in [13] for infinite
energy initial conditions on R

2.
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In [36], Kiselev and Nazarov showed that there exists a solution with initial
condition having arbitrarily small initial conditions that attains arbitrary big norms
in finite time. Later, motivated by a construction for the Euler equation [68], it
was shown in [33] that there are solutions of (1.1) with the W 2,∞ norm growing
exponentially (along sub-sequence) as time goes to infinity:

sup
t�T

‖∇2θ(·, t)‖L∞ � eγ T for some γ > 0 . (1.4)

Also, very little is known about non-equilibrium global smooth solutions for SQG.
In fact the only example was given in [14], where with a rigorous, computer assisted
proof the authors proved a global existence for initial conditions on one dimensional
bifurcation branch close to a specific radial equilibrium.

We just briefly remark that one can also consider weak solutions of (1.1), which
are known to be global [51,57]. However, the uniqueness of weak solution was an
challenging open problem [24] that was solved by establishing non-uniqueness
in [11], see also [3,59]. Also, several regularized models (for example additional
dissipation, or smoother constitutive law) were introduced for which one can prove
global well posedness of solutions, see [12,16,19,37].

In the present manuscript we utilize fluctuation–dissipationmethod to construct
global solutions of (1.1). The idea is to add a regularizing higher order differential
terms, which guarantee global well posedness, and a stochastic forcing that keeps
the energy balance in (1.2). Note that the strength of the forcing and the coefficients
of the smoothing operators are carefully balanced.We prove that the stochastic SQG
equation possesses an invariant measure supported on appropriate Sobolev spaces
and by passing to the limit, we obtain an invariant measure μ for the deterministic
SQG (1.1). Then, we investigate properties of μ.

Let us describe known results for problems close to (1.2). The well posedness
of stochastic SQG with either additive or multiplicative noise and additional sub-
critical smoothing (dissipation of the form (−�)β , β > 1

2 ) was studied in [58].
The authors proved that the problem is pathwise globally well posed and under
additional assumptions they showed that there exists a unique invariant measure,
which is ergodic, and attracts all distributions at an algebraic rate. Later, large
deviation principles for stochastic SQG were proved in [49]. Note that stochastic
Quasi-geostrophic (which contains additional Laplacian compared to SQG) was
earlier studied in [8,34]. A regularization of (1.1) with help of the random diffusion
was proved in [10] for sufficiently small smooth initial conditions.

In what follows, we first investigate the pathwise global well posedness of (1.2)
and then we prove for each α > 0 the existence of invariant measure μα supported
on H2. The choice of bi-Laplacian in (1.1) rather than Laplacian, stems from the
fact, thatwe needμα to be supported on H2 rather than H1. Otherwise, after passing
α → 0, we would obtain a measure supported on H1 which is not sufficient for the
proof of uniqueness of solutions of (1.1) (see below). Our first main result is stated
in the following theorem, (for more precise formulation see Theorems 2.1 and 4.1
below):

Theorem 1.1. Assuming A0 < ∞ and appropriate moment bounds on the initial
distribution (see Theorem 2.1 below), almost surely there exists a pathwise global
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solution to (1.2). Furthermore, (1.2) admits at least one stationary measure μα

supported on H2(T2) ∩ W 1,4(T2).

The proof of global pathwise, well posedness follows from a standard frame-
work – Galerkin approximation and passage to the limit. Since we were not able
to locate a suitable result in the literature, we provide sketch of the proof with
appropriate references. Then, the existence of the invariant measure follows from
moment bounds on solutions and Kryloff-Bogoliouboff theorem [38], see also [23].
Note that using standard coupling techniques, one can prove that μα is in fact a
unique invariant measure. For proofs in settings close to ours, we refer to [9,22,27–
29,32,43]

Before discussing convergence properties of measures constructed in Theorem
1.1, let us summarize known results. Passing α → 0 and consecutive analysis of
limitingmeasureμwas done for Euler equation in [31,41], where it was proved that
μ is supported on H1∩L∞. Moreover, it was proved that for any compact set Swith
finite Hausdorff dimension, one has μ(S) = 0, that is, μ is infinite dimensional.
The crucial property that allowed to prove the infinite dimensionality was the exis-
tence of infinitely many conservation laws. Also, it was shown that the support of
μ contains solutions with large energy. Analogous results were obtained for KdV,
Benjamin-Ono, Klein-Gordon, and Schrödinger equations in [42,62,64] (see also
references therein). It is important to notice that in all previous examples the proof
of the invariance of the limiting measure μ was based on the well posedness of the
underlying deterministic equation, which is not known for SQG equation. Observe
that the proof of invariance for Euler equation [43] does not require global well
posedness of the deterministic equation, nevertheless the 2D Euler equation is sig-
nificantly simpler than SQG (which resembles three dimensional Euler equation).
The construction of global solutions for septic NLS [63] (not know to be globally
well posed), utilizes a different strategy: the fluctuation–dissipation is used only
for Galerking approximations and the main obstacle is passage to the limit (based
on an argument of Bourgain [7]).

On the other hand, different construction based on Gibbs measures was used to
construct global solutions and invariant measures for various, possibly globally ill
posed, Hamiltonian systems (see e.g [7,53,65] and references therein). However,
the authors of [52] identified a serious obstruction that prevent a ‘traditional way’
(for example as for 2D Euler [1]) of building a Gibbs measure based on the con-
servation of L2 norm for the SQG equation. Indeed, for functions in the support of
such measure, the nonlinearity of SQG (one degree less regular than Euler) cannot
be defined in the sense of distributions.

The main novelty of the paper is the proof that the set of measures (μα) from
Theorem 1.1 has an accumulation point μ which is an invariant measure for (1.1).
The invariance is understood with respect to the dynamics induced by the stochastic
equation (1.2) and a passage α → 0. Furthermore, we prove that if the initial
condition belongs to the support ofμ, the corresponding solution of (1.1) is global.
Hence, it is important to estimate the size of the support of μ. Although the SQG is
similar to the three dimensional Euler equation, a notable difference is the existence
of infinitely many conserved quantities, that allows us to prove that μ(K ) = 0 for
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any compact set K with a finite Hausdorff dimension. Also, we show that μ is
not supported only on small functions, meaning that the support of μ must contain

functions with arbitrarily large H
3
2 norm. The last statement follows from the fact,

that we can choose the noise in the fluctuation dissipation method and obtain μ

with large moments (see Corollary 1.3 below).
Before we proceed, we denote

As :=
∞∑
j=1

λsj a
2
j , (1.5)

and recall that regular solutions of SQG equation admit, the following set of con-
servation laws:

E −1
2

(θ) = 1

2

∫
T2

|(−�)
−1
2 θ |2dx ,

M(θ) = 1

2

∫
T2

θ2dx .

The next theorem contains our main results, for more general assertions see
Theorems 5.1, 6.1, and 6.2 below.

Theorem 1.2. Assume A0 < ∞. As α → 0, there is an accumulation point μ for
the sequence (μα) satisfying the following properties:

(1) μ is a probability measure concentrated on the Sobolev space H2(T2), that is,

μ(H2(T2)) = 1.

(2) Forμalmost all data θ0, there is aunique function θ ∈ C(R+, H1)∩L2
loc(R

+, H2)

satisfying the equation (1.1) with θ(0, x) = θ0(x). Define a flow ρ for (1.1) as
ρt (θ0) = θ(·, t; θ0).

(3) The flow ρt is continuous on H1.
(4) μ is invariant under ρt .
(5) μ satisfies the estimates

∫
L2

(
‖θ‖2

H
3
2

−
∫
T2

|∇θ |2∇θ · ∇(−�)−
1
2 θdx

)
μ(dθ) =

A−1
2

2
,

∫
L2

(‖θ‖2H2 + ‖θ‖4W 1,4)μ(dθ) < ∞.

(6) If am 
= 0 for each m, μ is infinite-dimensional in the sense that it vanishes on
finite-dimensional compact sets.

(7) The conservation laws of random variables M(θ) and E −1
2

(θ) are absolutely

continuous with respect to the Lebesgue measure on R.

The regularity of functions in the support of μ (being H2 by Theorem 1.2, 1.)
is a direct consequence of the support of μα , which follows from the regularizing
term �2. Note that L2H2 is a minimal smoothness required to prove uniqueness
of solutions, that is, well posedness claimed in Theorem 1.2 part (2). Replacing
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�2 by �β with β < 2, yields the existence of (μα) and μ supported on Hβ , but
solutions of (1.1) with initial conditions in the support ofμ are tooweak to establish
uniqueness.

On the other hand, the choice of �2 instead of � brings several obstacles. For
example, for the proof of part (6) in Theorem 1.2 we needed to introduce additional
smoothing term�4θ :=∇ ·(|∇θ |2∇θ) into (1.2) (�pθ :=∇ ·(|∇θ |p−2�4θ) is called
p-Laplacian), the rest of the proofs can be done without it. The reason for the
addition of �4θ is that the expression 〈�2θ, f (θ)〉 is neither positive nor bounded
from below for all θ , and for large set of functions f , a minimal requirement for
the general framework, see details in Section 6. The addition of �4 guarantees that
(μα), and consequently μ are supported also on W 1,4 with fourth order moment
bounds. Then, we can bound 〈�2θ − �4θ, f (θ)〉 from below for any f that has
bounded derivatives up to fourth order, which suffices for our purposes.

If one wishes to construct invariant measures for (1.1) on smoother spaces, for
example Hβ for β > 2, and prove infinite dimensionality of such measure, then
one has to correct the smoothing operator �β by appropriate quasilinear positive
definite operator such as p-Laplacian. Since the proofs are technically involved we
decided not to present them here.

Concerning the support ofμ, by part (6) of Theorem 1.2, it cannot be contained
in any compact set of finite Hausdorff dimension. Moreover, (7) implies, that the
support of μ is not merely a countable union of level sets of the conservation laws.
Also, the following corollary asserts that there are arbitrarily large initial data that
give rise to global solutions:

Corollary 1.3. Given any constant K , denote SK = {θ : ‖θ‖4
W 1,4 + ‖θ‖2

H
3
2

� K }.
Then there is θ0 ∈ SK such that the solution of (1.1) with θ(0) = θ0 is global.
More generally, there exists a sequence (a j ) (see the definition of the noise (1.3))
such that for the measure μ constructed in Theorem 1.2 one has μ(SK ) > 0.

Proof of Corollary 1.3. Choose the sequence (a j ) such that A− 1
2

= 4CK and

A0 < ∞, where C is a constant depending only on the size of T2. If μ(SK ) = 0,
then, by Theorem 1.2, (5) one has by Hölder and Poincaré inequalities

2CK =
A− 1

2

2
�

∫
L2

(
‖θ‖2

H
3
2

+
∫
T2

|∇θ |3|∇(−�)
1
2 θ |dx

)
μ(dθ)

�
∫
L2

‖θ‖2
H

3
2
‖∇θ‖3W 1,4‖θ‖L4μ(dθ)

� C
∫
L2

‖θ‖2
H

3
2

+ ‖∇θ‖4W 1,4μ(dθ)

= C
∫
L2\SK

‖θ‖2
H

3
2

+ ‖∇θ‖4W 1,4μ(dθ) � CK ,

which is a contradiction. The first statement follows from the second one and
Theorem 1.2 parts (1), (2). 
�

Another consequence of Theorem 1.2 follows from the Poincaré recurrence
theorem.
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Corollary 1.4. For μ-almost every u0 ∈ H2, there is a sequence (tk)k increasing
to ∞ such that

lim
k→∞ ‖ρtk u0 − u0‖2 = 0.

Corollary (1.4) could be the reason why the estimate (1.4) requires
∑

t�T , that
is, the solution increases only along the sequence of times (solutions might return
infinitely many times to a neighbourhood of the initial condition).

A natural question is whether the set of solutions constructed in Theorem 1.2 is
a subset of equilibria to (1.1). This seems to be a very non-trivial question to which
we do not have a definitive answer. However, we have the following alternative:

(a) The support of μ is not a subset of the equilibria of (1.1), and then the flow ρt
constructed in Theorem 1.2, part (2) yields non-trivial global solutions.

(b) The support of μ coincides with the equilibria of (1.1), for any choice of (suf-
ficiently regular) noise. In that case, we would have a remarkable stability
property of the equilibria for both (1.1) and (1.2) with small α.

Recall that the linear stability of equilibria of (1.1) were studied in [30].
Let us remark that in the context of equations having only discrete set of equilib-

ria, for instance the case of some power type nonlinearities, (6) and (7) of Theorem
1.2 imply that the alternative (a) above occurs. Also, we propose in the appendix a
general example of a finite-dimensional system having continuous set of equilibria,
but the support of the inviscid measure not being subset of equilibria.
Organization of the Paper. In Section 2, we prove probabilistic global well-
posedness for the stochastic equation (1.2). Moment bounds for such solutions
are given in Section 3 and based on moment bounds we construct stationary mea-
sures for any α > 0 in Section 4. Section 5 contains principal results of the paper,
and we prove there the existence of invariant measure for (1.1), and global well
posedness on its support. In Section 6, we combine the probabilistic estimates and
Krylov lemma to establish qualitative properties (infinite dimensionality of the sup-
port). Finally, Appendix A includes details about the invariant measures for finite
dimensional Hamiltonian systems and in Appendices B and C we recall that Itô
formula in infinite dimensions and a proof of a parabolic embedding.

1.1. General Notations

The following notation is used throughout the paper:

* C∞
0 (R) is the space of functions f : R → R that are infinitely differentiable

and compactly supported.
* For any 1 � p � ∞ and s ∈ R, we denote L p(T2) and Ws,p(T2) the usual

Lebesgue respectively Sobolev spaces.We also set Hs(T2) = Ws,p(T2). Often
for the clarity of presentation we do not indicate the domain T

2 and we write
L p, Wk,p, and Hk .

* When a fixed T > 0 is clear from context, for any Banach space X de-
fine the spaces CX = C([0, T ], X), L pX = L p([0, T ], X), and Ws,p X =
Ws,p([0, T ], X). Sometime if needed, we indicate the variable of the space as
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a subscript, for example Ct Hs
x . The spaces are equipped with usual parabolic

norms denoted for example ‖ · ‖CX .
* We write ‖ · ‖ instead of ‖ · ‖L2(T2).
* ClocX denotes the space of functions that are locally continuous in time with
values in X . Analogously we define L p

locX and Ws,p
loc X .

* We denote p(X) the set of Borel probability measures on X .
* The non-decreasing sequence (λm)m�1 contains all eigenvalues of −� on T

2

and with corresponding normalized eigenvectors (em)m�1.
* For a probability measure μ on X , we denote by Eμ( f ), the average of f with
respect to μ: ∫

X
f (x)μ(dx).

* The Riesz transform of θ is given denoted R⊥θ = (−∂y, ∂x )(−�)− 1
2 θ. Note

that by Hörmander-Mikhlin theorem Riesz transform satisfies (see [61]), for
any p ∈ (1,∞)

‖R⊥v‖L p � C‖v‖L p , (1.6)

where C depends on p.

2. Global Solutions for the Stochastic SQG

In this section we establish the path-wise global well posedness of solutions of
(1.2), and therefore prove the first part of Theorem 1.1. Although the proof follows
from a framework used several times in the literature, we were unable to locate the
precise reference that would cover our situation. Rather than providing all details,
we show how to satisfy assumptions of [47, Theorem 1.3] and explain how the
proof in [47] needs to be modified.

Theorem 2.1. Fix any α > 0, any T > 0, and any p � 1. Also, fix any F0 measur-
able (see filtration for ourBrownianmotion randomvariable θ0 withE‖θ0‖p

L2 < ∞,
and any noise η of the form (1.3)with A0 < ∞. Then, there exists a unique adapted
solution θ of (1.2) satisfying θ(0) = θ0 and, almost surely,

θ ∈ C([0, T ], L2(T2)) ∩ L2([0, T ], H2(T2)) ∩ L4([0, T ],W 1,4(T2)) .

Furthermore,

E sup
t∈[0,T ]

‖θ(t)‖2p +αE

∫ T

0
‖θ‖2p−2(‖θ‖2H2 + ‖θ‖4W 1,4)ds

� C(T, α, p, ‖θ0‖). (2.1)

Proof. The proof closely follows the proof of [47, Theorem 1.3], see also [48].
However, since our differential operators have different scalings, we have to slightly
modify the arguments. We only highlight differences. For easier comparison, we
use the notation form [47].
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Recall that (en)n�1 is anorthonormal basis of L2 anddenoteHn = span{e1, . . . , en}.
Let Pn : H−2 → Hn be the orthogonal projection defined by

Pn y =
n∑

i=1

〈y, ei 〉ei , y ∈ H−2 .

For each, n � 1 consider the stochastic equation on Hn

dx (n) = Pn(AX
(n))dt + √

αdηn , X (n)
0 = Pnθ0, (2.2)

where

AX = −α�2X + α∇(|∇X |∇X) − Y∇X, Y = R⊥X

and

ηn(x, t) =
n∑
j=1

a j e j (x)Wj (t) .

The existence and uniqueness of solutions of (2.2) is classical and follows from
[40, Section 1], see also [56, Theorem 3.1.1]. 
�

We have the following a priori estimates for X (n):

Lemma 2.2. For every T > 0 there exists CT depending on A0, p and α, but
independent of n such that for each n � 1,

E sup
t∈[0,T ]

‖X (n)(t)‖2p
L2 +

∫ t

0
‖X (n)(t)‖2p−2

L2 (‖X (n)‖2H2 + ‖X (n)‖4W 1,4)ds

� CT (E‖X (n)(0)‖2p
L2 + 1) .

Proof of Lemma 2.2. The proof follows from [47, Lemma 2.2], see also proof of
(3.2) below for the idea of the proof. 
�

Define the spaces

Y1:=L2([0, T ] × �, H2) Y2:=L4([0, T ] × �,W 1,4)

and

K = Y1 ∩ Y2

and the dual of K

K ∗ = Y ∗
1 + Y ∗

2

equipped with the usual intersection and sum norms

‖X‖K = max{‖X‖Y1 , ‖X‖Y2},
‖X‖K ∗ = inf{‖X1‖Y ∗

1
+‖X2‖Y ∗

2
, X1 + X2= X}. (2.3)
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Note that

Y ∗
1 :=L2([0, T ] × �, H−2), Y ∗

2 :=L
4
3 ([0, T ] × �,W−1, 43 ),

Since

‖AX (n)‖K ∗ � α‖�2X (n)‖Y ∗
1

+ α‖∇(|∇X (n)|∇X (n))‖Y ∗
2

+ ‖Y (n)∇X (n)‖Y ∗
1

and

‖�2X (n)‖Y ∗
1

= E‖X (n)‖2L2H2

‖∇(|∇X (n)|2∇X (n))‖Y ∗
2

= E‖|∇X (n)|3‖
L

4
3 L

4
3

= E‖∇X (n)‖3L4L4 � C
(
E‖X (n)‖4L4W 1,4

) 3
4

,

‖Y (n)∇X (n)‖2Y ∗
1

� CE‖|Y (n)|X (n)‖2L2L2 � CE‖Y (n)‖2L4L4‖X (n)‖2L4L4

� CE‖X (n)‖4L4W 1,4 ,

from Lemma 2.2 if follows that

‖AX (n)‖K ∗ � C, (2.4)

with C independent of n, because EM(X0) � E‖θ0‖2 < ∞.
The continuity of the map (assumption (H1) in [47]) s �→ 〈A(X1 + sX2), X〉,

i = 1, 2 is easy to verify for any X1, X2, X ∈ H2. Also, the local monotonicity
assumption ((H2) in [47])

〈A(X1) − A(X2), X1 − X2〉 � (K + κ(X2))‖X1 − X2‖2L2 (2.5)

is valid for our operator A. Indeed, note that p-Laplacian is monotone operator (see
for example [67, Proposition 30.10]), thus (2.5) holds true for AX = ∇(|∇X |2∇X)

with f = ρ = κ ≡ 0. Since Y1 is divergence free, (1.6), H2 ↪→ L∞, and Hölder
and the Young inequalities yield

〈A(X1) − A(X2), X1 − X2〉 � −α‖X1 − X2‖2H2 + 〈Y2∇X2 − Y1∇X1, X1 − X2〉
= −α‖X1 − X2‖2H2 + 〈Y2∇X2 − Y1∇X2, X1 − X2〉
= −α‖X1 − X2‖2H2 + 〈(Y2 − Y1)∇X2, X1 − X2〉
� −α‖X1 − X2‖2H2 + ‖Y2 − Y1‖L2‖∇X2‖L2‖X1 − X2‖L∞

� Cα‖X2 − X1‖2L2‖∇X2‖2L2 ,

where we used that

Y1∇X1 = Y1∇(X1 − X2) + Y1∇X2

and that, by an integration by part and the property ∇ · Y2 = 0,

−〈Y1∇(X1 − X2), X1 − X2〉 = 〈∇ · Y1, 1
2
(X1 − X2)

2〉 = 0.



Invariant Measures and Global Well Posedness for the SQG Equation 197

Thus, assumption (H2) in [47] holds with K = 0 and ρ(X) = ‖X‖2
H1 . Next, the

assumption (H3) in [47],

2〈A(X), X〉 + δ‖X‖γ

H2 � K‖X‖2L2 + f (t),

holds in our case, due to cancellation in the non-linear term, for δ < 2α, f ≡ 0,
and γ = 2.

Finally, as stated in [47, Remark 3.2, (4)] the growth assumption in [47, (H4)]
is only needed to prove that E‖A(X (n))‖2K ∗ is uniformly bounded in n, which was
already established in (2.4).

The rest of the roof follows line by line the same as in [47, proof of Theorem
1.1]. 
�

3. Probabilistic Estimates for the Stochastic Flow

In this section, we derive moment bounds on solutions of (1.2), that were
constructed in Section 2.Our choice of norms is dictated by the conserved quantities
of (1.1), and it is essential to keep track of dependencies of constants on α. The
proofs are based on energy estimates and Itô lemma recalled in “Appendix B”.

For A0 defined in (1.5), observe that, for any p > 0

∫
T2

⎛
⎝ ∞∑

j=1

a2j (e j (x))
2

⎞
⎠

p
2

dx � 1

(2π)p

∫
T2

⎛
⎝ ∞∑

j=1

a2j

⎞
⎠

p
2

dx = (2π)2−p A
p
2
0 < ∞,

and recall the notation

M(θ) = 1

2

∫
T2

θ2dx .

Theorem 3.1. Assume A0 < ∞. Then, the solution θ constructed in Theorem 2.1
satisfies the following properties:

(1) If E‖θ(0)‖2
H−1/2 < ∞, then for any t � 0

E‖θ(t)‖2
H− 1

2
+ 2αE

∫ t

0
‖θ(s)‖2

H
3
2
ds + 2αE

∫ t

0

∫
T2

|∇θ(s)|2∇θ · ∇(−�− 1
2 )θdxds

= E‖θ0‖2
H− 1

2
+ αA−1t. (3.1)

(2) If EMq(θ(0)) < ∞ for some q � 1, then for any t � 0

EMq(θ(t)) + 2αqE
∫ t

0
Mq−1(θ)(‖θ‖2H2 + ‖θ‖4W 1,4)ds = EMq(θ(0))

+αqE
∫ t

0
A0M

q−1(θ)ds + 2(q − 1)Mq−2(θ)

∞∑
j=1

a2j

(∫
T2

e jθdx

)2

ds .

(3.2)
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In particular, when q = 1, we have for any t � 0

E‖θ(t)‖2 + 2α
∫ t

0
E(‖θ(s)‖2H2 + ‖θ(s)‖4W 1,4)ds = E‖θ0‖2 + αA0t. (3.3)

Proof. We proceed in the following steps:
Proof of (3.1).

We use that H− 1
2 is conserved for the SQG equation (1.1) (see (3.4) below).

Clearly, the function θ �→ ‖θ‖2
H−1/2 = ‖�−1/4θ‖2 satisfies assumptions (B.1) and

(B.2) of Theorem B.1 with s = − 1
2 . To satisfy (B.3), notice that

∞∑
j=1

a2j

∫ t

0
E

(∫
T2

(−�)− 1
4 θ(−�)− 1

4 e jdx

)2
ds

=
∞∑
j=1

a2j

∫ t

0
E

(∫
T2

θ(−�)− 1
2 e jdx

)2
ds

=
∞∑
j=1

a2j
λ j

∫ t

0
E

(∫
T2

θe jdx

)2
ds

� C
∞∑
j=1

a2j
λ j

∫ t

0
E

∫
T2

θ2dxds

= CA−1E

∫ t

0
‖θ‖2ds < ∞ ,

where the last inequality follows from (2.1). Thus, heorem B.1 yields

E‖θ(t)‖2H−1/2 = E‖θ(0)‖2H−1/2

+ 2E
∫ t

0

∫
T2

(−�)−
1
4 θ(−�)−

1
4 (−α�2θ + α∇ · (|∇θ |2∇θ) − u∇θ)

+ α

∞∑
j=1

a2j ((−�)−
1
4 e j )

2 dxds .

Using that u = ∇⊥(−�)
1
2 θ is divergence free, we obtain

∫
T2

(−�)−
1
4 θ(−�)−

1
4 (u∇θ) dx =

∫
T2

(−�)−
1
2 θu∇θ dx

= −
∫
T2

(∇(−�)−
1
2 θ · ∇⊥(−�)−

1
2 θ)θ dx = 0 .

(3.4)
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Hence, using integration by parts and Fourier representation of fractional Laplacian
we obtain

E‖θ(t)‖2H−1/2 = E‖θ(0)‖2H−1/2

+ 2αE
∫ t

0

∫
T2

(−�)−
1
4 θ(−�)−

1
4 (−�2θ + ∇ · (|∇θ |2∇θ)) dxds + α

∞∑
j=1

a2j
λ j

t

=E‖θ(0)‖2H−1/2−2αE
∫ t

0
‖θ‖23

2
ds−2αE

∫ t

0

∫
T2

(−�)−
1
2 ∇θ |∇θ |2∇θ dxds+αA−1t,

and (3.1) follows.
Estimate for Mq(θ). Next, we turn our attention to the moment bounds for Mq

with q � 1. Clearly, the function θ �→ Mq(θ) = 1
2‖θ‖2q satisfies assumptions

(B.1) and (B.2) of Theorem (B.1) with s = 0. In order to obtain (B.3), we need to
estimate the quadratic variation of the martingale term. Since (e j ) are bounded,

∞∑
j=1

a2jE
∫ t

0

(
‖θ‖q−1

∫
T2

θe j (x)dx

)2

ds � CA0E

∫ t

0
‖θ‖2q−2

∫
T2

|θ |2dxds

= CA0E

∫ t

0
‖θ‖2qds < ∞ ,

where the last inequality follows from (2.1). Hence, by Theorem B.1 we obtain,
for any q � 1,

EMq(θ(t)) = EMq(θ(0))

+ qE
∫ t

0
Mq−1(θ)

∫
T2

2θ(−α�2θ + α∇ · (|∇θ |2∇θ) − u∇θ)

+ α

∞∑
j=1

a2j e
2
j dxds + 2α(q − 1)Mq−2(θ)

∞∑
j=1

a2j

(∫
T2

e jθdx

)2

ds .

An integration by parts and the property ∇ · u = 0 imply that
∫
T2 θu∇θdx = 0,

and (3.2) follows after integration by parts. 
�

4. Stationary Measures for the Stochastic SQG

In this section we construct invariant measures for the stochastic SQG equation
(1.2) and establish its moment bounds, which finishes the second part of Theorem
1.1. As above, it is necessary to keep track of the parameter α, since below we
pass α to zero. Also note that the moment estimates are equalities, which will be
important in the proof of non-degeneracy of the limiting measure. The proof of
existence of invariant measures is based on the Kryloff-Bogoliouboff theorem, and
the moment bounds follow from bounds on solutions established in Section 3.
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4.1. Construction and Basic Estimates

Theorem 4.1. Assume A0 < ∞. For any α ∈ (0, 1), the equation (1.2) admits
at least one stationary measure μα supported on L2 and satisfying the following
properties:

∫
L2

(
‖θ‖2

H
3
2

+
∫
T2

|∇θ |2∇θ · ∇(−�)−
1
2 θdx

)
μα(dθ) =

A−1
2

2
, (4.1)

∫
L2

(‖θ‖2H2 + ‖θ‖4W 1,4)μα(dθ) = A0

2
. (4.2)

More generally, for any q � 1,

∫
L2

Mq−1(θ)(‖θ‖2H2 + ‖θ‖4W 1,4)μα(dθ)

=
∫
L2

A0

2
Mq−1(θ) + (q − 1)Mq−2(θ)

∞∑
j=1

a2j

(∫
T2

e jθdx

)2

μα(dθ). (4.3)

In particular, μα(H2) = 1, any α > 0, and any q � 1 there is C independent of α
such that

∫
L2

Mq−1(θ)(‖θ‖2H2 + ‖θ(s)‖4W 1,4)μα(dθ) � C . (4.4)

Proof. Tightness and existence of stationarymeasures. Let θα be the solution of
(1.2) with θα(0) = 0 almost surely, that is θα(0) is distributed as the Dirac measure
concentrated at 0. Then, by (3.3), one has

2αE
∫ t

0
‖θ‖2H2ds � αA0t ,

and consequently,

1

t
E

∫ t

0
‖θ‖2H2ds � C .

For each t > 0 define the Borel probability measure on L2(T2) as

μt
α(A) = 1

t

∫ t

0
P(θα(s) ∈ A) ds ,

where A is any Borel set in H2(T2) . Then,

∫
L2(T2)

‖θ‖2H2μ
t
α(dθ) = 1

t
E

∫ t

0
‖θα(s)‖2H2ds � C. (4.5)
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In particular, if BR is a ball in H2 of radius R centered at 0 and Bc
R = H2 \ BR ,

then by Chebyshev inequality and (4.5) one has

μt
α(Bc

R) = 1

t

∫ t

0
P(‖θα(s)‖H2 � R) ds

� 1

t

∫ t

0

E‖θ(s)‖2
H2

R2 ds � C

R2 .

Since BR is compact in H2−δ , δ > 0, then for each α > 0, the set of measures
(μt

α)t>0 is tight, and therefore by Pokhorov theorem it is compact. For any se-
quence (tn) with tn → ∞, one has that μ

tn
α has a weakly convergent subsequence

converging toμ∗
α . The Bogoliubov-Krylov argument (see for example [23]) implies

that μ∗
α is stationary for (1.2).

Also, by using (3.2) with θ(0) = 0, we obtain for any q � 1 that∫
L2

Mq−1(θ)(‖θ‖2H2 + ‖θ(s)‖4W 1,4)μ
t
α(dθ) � C

∫
L2

Mq−1(θ)μt
α(dθ)

= C
∫

‖θ‖2
H2�R

Mq−1(θ)
‖θ‖2

H2

‖θ‖2
H2

μt
α(dθ) + C

∫
‖θ‖2

H2<R
Mq−1(θ)μt

α(dθ)

� C

R

∫
‖θ‖2

H2�R
Mq−1(θ)‖θ‖2H2μ

t
α(dθ) + C

∫
‖θ‖2

H2<R
Mq−1(θ)μt

α(dθ) .

Choosing R = 2C and using M(θ) � C‖θ‖H2 , we have∫
L2

Mq−1(θ)(‖θ‖2H2 + ‖θ(s)‖4W 1,4)μ
t
α(dθ)

� C
∫

‖θ‖2
H2<2C

Mq−1(θ)μt
α(dθ) � C,

whereC is independent of t . Then, by the Portmanteau theorem, the same inequality
holds true with μt

α replaced by μα and (4.4) follows.
Estimates for the stationary measures. Denote by μα any invariant measure
constructed by the above procedure. Let θα

0 be a random variable with the law μα

and let θα be the solution of (1.2) with initial condition θα
0 . Then, by (4.4) one has

E‖θα
0 ‖q−1 < ∞ and E‖θα

0 ‖2
H− 1

2
< ∞ for any q � 1.

Also, the invariance of μα implies E‖θα(t)‖2X = E‖θα
0 ‖2X for X being L2,

W 1,4, or H2, and consequently, by (3.3),

t
∫
L2

‖θ‖2H2 + ‖θ‖4W 1,4μα(dθ) = E

∫ t

0
‖θα(s)‖2H2 + ‖θα(s)‖4W 1,4ds

= t
A0

2
, (4.6)

and (4.2) follows.
Similarly, in (3.1) and (3.2), using E‖θα(t)‖2

H
−1
2

= E‖θα
0 ‖2

H
−1
2

and also

EMq(θ(t)) = EMq(θ(0)) (by the invariance of μα) we obtain respectively (4.1)
and (4.3). Recall that (4.4) was already proved. 
�
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5. Inviscid Limit

This section contains proofs of essential assertions of the manuscript detailed
in Theorem 1.2 parts 1–5. In particular, we prove prove convergence of measures
μα constructed in Theorem 4.1 to an invariant measureμ for the deterministic SQG
equation. Furthermore we show that almost all points in the support of μ are initial
conditions for regular global solutions.

Theorem 5.1. If A0 < ∞, there exists a measure μ supported on H2 with the
following properties:

(1) For almost every θ0 ∈ supp(μ), there exists a unique, global (existing for all
positive times) solution θ of (1.1) with θ ∈ Ct H1

x ∩ L2
t H

2. Furthermore, for
any t � 0, the mas θ0 �→ θ(t, θ0) is a continuous on H1.

(2) The measure μ is invariant for (1.1), meaning that for every Borel set A in H2,
one has μ{θ0 : θ(t, θ0) ∈ A} = μ(A).

(3) For any q � 1 we have the moment bounds
∫
L2

(
‖θ‖2

H
3
2

−
∫
T2

|∇θ |2∇θ · ∇(−�)−
1
2 θdx

)
μ(dθ) =

A−1
2

2
, (5.1)

∫
L2

Mq−1(θ)(‖θ‖2H2 + ‖θ‖4W 1,4)μ(dθ) � C. (5.2)

Before providing details of the proof, let us first sketch the general strategy.

Remark 5.2. Compared to the known results we face different challenges since it
is not known whether the equation (1.1) is globally well posed. This poses several
challenges. After verifying the tightness of measures (μα) and passing μα → μ

as α → 0, we obtain moment bounds for μ, however we cannot immediately
conclude that almost all functions in the support are initial conditions of global
solutions. This problem is not solved even if we prove that μ is invariant. For
example, there can be a set Mt of measure zero that contain functions that cease to
exist at time t . Since (Mt )t>0 form an uncountable family, we cannot conclude that
the union ∪Mt has zero measure. For that reason we use the “lifted" measures να

supported on solutions of (1.2) rather than on initial conditions. To pass α → 0 and
conclude that the limiting measure ν is supported on solutions of (1.1), we have
to obtain compactness (tightness) of (να) in spaces of time dependent functions.
This follows from improved temporal bounds for the solutions of (1.2). Also, these
bounds imply that the restriction of the measure ν at the initial time is μ. Using the
Skorokhod theorem we find stationary random variables θα distributed as να that
converge almost surely to θ , which solves (1.1). In addition, θ(0) is distributed as
μ. To prove the uniqueness of t �→ θ(t) we crucially use that the operator in the
fluctuation–dissipation method is bi-Laplacian instead of Laplacian, and therefore
θ is supported on L2H2, a regularity space sufficient to guarantee uniqueness and
continuous dependence on initial conditions.

Proof of Theorem 5.1. The proof is divided into several parts. Proof of 1. follows
from Proposition 5.11, part 2 follows from Lemma 5.10 and the proof of 3 follows
from Proposition 5.12. 
�
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If θα is a solution of (1.2) with θα(0) distributed as μα (see Theorem 4.1), then
due to the invariance, θα(t) is distributed as ofμα for any t � 0.We can either view
t �→ θα(t) as a random process with range in a space of x dependent functions or
alternatively, we can view θα as a random variable on a space of (x, t) dependent
functions in L2

loc(R+, H2) (see (4.5)).
Denote να the distribution of θα and by the invariance ofμα one has P(θα(t0) ∈

A) = μα(A) for any t0 � 0, and any Borel set A in H−δ , δ ∈ [0, 1). Observe that
μα is supported on H2 and we can trivially (by zero) extend it to the larger space
H−δ . Hence,

∫
χA×{t0}dνα = να(A × {t0}) = P(θα(t0) ∈ A) = μα(A) =

∫
A

χAdμα ,

where χZ denotes the characteristic function that a set Z . The linearity of integrals
and the dominated convergence theorem also implies

∫
Ct H

−δ
x

g(θ(t0))dνα(θ) =
∫
H−δ
x

g(θ)dμα(θ) (5.3)

for any bounded continuous function g : H−δ
x → R.

Fix T > 0 and define I = (0, T ) ⊂ R.

Remark 5.3. In this section we implicitly assume that all spaces are defined on the
time interval I . For example, L2H2 = L2(I, H2(T2)) or H1

t L
4
x = H1(I, L4(T2)).

We use the notation, say L4 (single space), to denote L4(T2), that is, we do not
specify regularity in time.

Also, θα denotes the solution of (1.2), that is, a function depending on x and t ,
whereas θ denotes the integration variable, that is, a function depending on x only.

By (4.4), and the invariance of μα , for any q � 0,

C �
∫ T

0

∫
L2
x

‖θ‖q‖θ‖2H2dμα(θ)ds =
∫ T

0
E‖θα(s)‖q‖θα(s)‖2H2ds = E‖‖θα‖ q

2 ‖θα‖2H2
x
‖2
L2
t

=
∫
L2
t,x

‖‖θ‖ q
2 ‖θ‖H2

x
‖2
L2
t
dνα(θ) , (5.4)

where here and below,C is allowed to implicitly depend on T . To gain the temporal
compactness in time, we prove the regularity of θα in time.

Lemma 5.4. Set X = H1L2 + H1H−2 + W 1, 43W−1, 43 + W κ,4L2 with
κ ∈ (1/4, 1/2) equipped with the standard sum norm (cf. (2.3)). Then

C � E‖θα‖
4
3
X =

∫
L2
t,x

‖θ‖
4
3
X dνα(θ) ,
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Proof. Observe that

θα(t) = θα(0) −
∫ t

0
u · ∇θαds

︸ ︷︷ ︸
I

−α

∫ t

0
�2θαds

︸ ︷︷ ︸
I I

(5.5)

+ α

∫ t

0
∇ · (|∇θα|2∇θα)ds

︸ ︷︷ ︸
I I I

+√
α

∫ t

0
dη

︸ ︷︷ ︸
I V

.

First, by interpolation, (1.6), and embeddings we have (spatial norm)

‖u · ∇θ‖L2
x

� C‖u‖L4‖∇θ‖L4

� C‖θ‖
H

1
2
‖θ‖

H
3
2

� C‖θ‖‖θ‖H2 ,

and by (4.2) and (4.4) with q = 3,

E‖I‖2
H1
t L2

x
� 2

(
E‖θα(0)‖2L2

x
+ E‖u · ∇θα‖2

L2
t,x

)
� C .

Second, using (4.2), we have

E‖I I‖2
H1
t H

−2
x

� CE

∫ T

0
‖�2θ‖2H−2dt = E

∫ T

0
‖θ‖2H2 � CT . (5.6)

Moreover,

‖∇ · (|∇θ |2∇θ)‖
W−1, 43

� C‖|∇θ |3‖
L

4
3

= C‖∇θ‖3L4 = C‖θ‖3W 1,4 ,

and therefore, by (4.4),

E‖I I I‖
4
3

W
1, 43
t W

−1, 43
x

� E‖∇ · (|∇θα|2∇θα)‖
4
3

L
4
3 W−1, 43

� CE

∫ T

0
‖θα‖4W 1,4 � C . (5.7)

Finally, since for any m and 0 � s � t , Wm(t) − Wm(s) ∼ N (0, t − s), we
have E|Wm(t) − Wm(s)|2 = t − s and E|Wm(t) − Wm(s)|4 = 3(t − s)2. By the
independence of Wj and Wk for j 
= k, one has



Invariant Measures and Global Well Posedness for the SQG Equation 205

E‖I V (t) − I V (s)‖4 = E

⎛
⎝ ∞∑

j=1

a2j |Wj (t) − Wj (s)|2
⎞
⎠

2

= E

∞∑
j,k=1

a2j a
2
k |Wj (t) − Wj (s)|2|Wk(t) − Wk(s)|2

= 3|t − s|2
∞∑

j,k=1

a2j a
2
k (1 + 2δ jk) � 9|t − s|2

∞∑
j,k=1

a2j a
2
k � 9|t − s|2A2

0 ,

where δi j = 0 if i 
= j and δi i = 1. Consequently, if κ < 1
2 ,

E‖I V ‖4W κ,4L2 = E

∫ T

0
‖I V ‖4L2

x
dt + E

∫ T

0

∫ T

0

‖I V (t) − I V (s)‖4
|t − s|1+4κ dtds

� C
∫ T

0
t2dt + C

∫ T

0

∫ T

0
|t − s|1−4κdtds � C(T ).

Overall,

E‖θα‖
4
3
χ � E‖I‖2H1L2 + α‖I I‖2H1H−2 + α‖I I I‖

4
3

W 1, 43 W−1, 43
+ E‖I V ‖4W κ,4L2 � C,

where C is independent of α ∈ (0, 1) and the result follows. 
�
Proposition 5.5. For any δ > 0 denote Yδ = L2H2−δ ∩ CH−δ . Let X be as
in Lemma 5.4 for some κ ∈ ( 14 ,

1
2 ). Then, for any q � 0 there is a constant C

independent of α such that∫
‖θ‖

4
3
X dνα = E‖θα‖

4
3
X � C , (5.8)

∫
‖‖θ‖ q

2 ‖θ‖H2
x
‖2
L2
t
dνα = E‖‖θα‖ q

2 ‖θα‖H2
x
‖2
L2
t

� C. (5.9)

Moreover, for any δ > 1
3 the set of measures (να)α is tight inYδ . Consequently, there

is a sequence (νk):=(ναk ) with αk → 0 as k → ∞, and a measure ν supported on
Yδ such that νk converges weakly to ν as k → ∞.

Proof. The estimates (5.8) and (5.9) follow fromLemma 5.4 and (5.4) respectively.
We claim that Yδ is compactly embedded in X ∩ L2H2 for any δ > 1

3 . Indeed,
by [45, Theorem 5.1 and 5.2], for any δ > 0, L2H2 ∩X is compactly embedded in
L2H2−δ . Also, for any δ > 0, [46, Theorem 3.1], [39, Lemma I I.2.4], and standard
Sobolev embedding imply that L2H2∩H1H−2 and L2H2∩W κ,4L2 are compactly

embedded in CH−δ . Finally, by Appendix C, for any δ > 1
3 , L

2H2 ∩W 1, 43W−1, 43

is compactly embedded in CH−δ , and the claim follows.
Let BR be the ball in X ∩ L2H2 of radius R centered at the origin. By the just

proved compactness, BR is compact in Yδ . Furthermore, by Chebyshev inequality

να(Bc
R) = P(‖θα‖X∩L2H2 � R) �

E‖θα‖
4
3
X∩L2H2

R
4
3

� C

R
4
3
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and therefore the set of measures (να)α is tight in Yδ . The existence of appropriate
sequence follows from Prokhorov theorem. 
�

Lemma 5.6. Let νk → ν in be as in Proposition 5.5. Then, there is a probability
space (�̃, P̃), onwhich is defined a sequence of randomvariables (θ̃k) and a random
variable θ̃ having the following properties:

(1) The law of θ̃ is ν and for every k, the law of θ̃k is νk .
(2) For any δ > 1

3 , the sequence θ̃k converges to θ̃ almost surely, that is, for

P̃ almost every ω ∈ �̃ one has ‖θ̃k(ω) − θ̃ (ω)‖Yδ
→ 0 as k → ∞.

(3) For each k, θ̃k satisfies (5.5).

Furthermore, by passing to a sub-sequence if necessary, θ̃k converges weakly to θ̃

in L
4
3 (�̃,X ) ∩ L2(�̃, L2H2) and, for any q � 0,

∫
‖θ‖

4
3
X dν(θ) = E‖θ̃‖

4
3
X � lim inf

k→∞ E‖θ̃k‖
4
3
X � CT , (5.10)

∫
‖‖θ‖ q

2 ‖θ‖H2
x
‖2
L2
t
dν(θ) = E‖‖θ̃‖ q

2 ‖θ̃‖H2
x
‖2
L2
t

� lim inf
k→∞ E‖‖θ̃k‖ q

2 ‖θ̃k‖H2
x
‖2
L2
t

� CT . (5.11)

Proof. Since Yδ with δ ∈ ( 13 ,
1
2 ) is a separable metric space, Skorokhod theorem

(see [26, Theorem 11.7.2]) implies (1) and (2). Moreover, (3) follows analogously
as in [4, Section 4.3.4].

By Proposition 5.5, (θ̃k) is uniformly bounded in the space Z = L
4
3 (�̃,X ) ∩

L2(�̃, L2H2), and therefore, up to a subsequence, (θ̃k) weakly converges in Z to

some θ̂ . In particular, (θ̃k) convergesweakly to θ̂ in L
4
3 (�̃,Yδ). Since (θ̃k) converges

almost surely (up to subsequence) in L
4
3 (�̃,Yδ) to θ̃ , then by [25, Proposition 9.1c]

(trivially modified to Banach spaces), weak and almost sure limits are equal, and
therefore θ̂ = θ̃ . For another approach see [66, Proposition 16.6].

Finally, (5.10) and (5.11) follows from theweak lower semi-continuity of norms
and (5.8), (5.9) respectively. 
�

Next, we prove that θ̃ satisfies (1.1) almost surely. Before proceeding, we prove
the following auxiliary result:

Lemma 5.7. Fix δ ∈ ( 13 ,
2
3 ) and recallYδ = Ct H−δ∩L2

t H
2−δ . For any sufficiently

smooth θ ∈ Yδ one has

‖R⊥θ · ∇θ‖L2
t H−1 � C‖θ‖2Yδ

. (5.12)

Also, the map B : Yδ → L2
t H

−1
x defined as B(θ) = R⊥θ · ∇θ is continuous.

Proof. It suffices to prove the assertion for smooth functions and then use a standard
argument to pass to the limit.
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For any smooth θ1, θ2, with help of (1.6), Agmon’s inequality, and interpolation,
one has

‖B(θ1) − B(θ2)‖H−1
x

� ‖R⊥(θ1 − θ2) · ∇θ1‖H−1
x

+ ‖R⊥θ2 · ∇(θ1 − θ2)‖H−1
x

� ‖|R⊥(θ1 − θ2)|θ1‖ + ‖|R⊥θ2|(θ1 − θ2)‖
� C(‖R⊥(θ1 − θ2)‖‖θ1‖L∞

x
+ ‖R⊥θ2‖L∞

x
‖(θ1 − θ2)‖)

� C‖θ1 − θ2‖(‖θ1‖
1
2− δ

4

H−δ
x

‖θ1‖
1
2+ δ

4

H2−δ
x

+ ‖R⊥θ2‖
1
2− δ

4

H−δ
x

‖R⊥θ2‖
1
2+ δ

4

H2−δ
x

)

� C‖θ1 − θ2‖1−
δ
2

H−δ
x

‖θ1 − θ2‖
δ
2

H2−δ
x

(‖θ1‖
1
2− δ

4

H−δ
x

‖θ1‖
1
2+ δ

4

H2−δ
x

+ ‖θ2‖
1
2− δ

4

H−δ
x

‖θ2‖
1
2+ δ

4

H2−δ
x

) .

To prove (5.12) we set θ2 ≡ 0, θ1 = θ . After integration in time and an application
of Jensen’s inequality we obtain, for δ ∈ (0, 2

3 ),

∫ T

0
‖B(θ)‖2

H−1
x
ds � C

∫ T

0
‖θ‖3−

3δ
2

H−δ
x

‖θ‖1+
3δ
2

H2−δ
x

ds

� CT ‖θ‖3−
3δ
2

L∞
t H−δ

x
‖θ‖1+

3δ
2

L2
t H

2−δ
x

� CT ‖θ‖4Yδ
.

To prove the continuity of B we observe that, for δ ∈ (0, 2
3 ),

∫ T

0
‖θ1 − θ2‖2−δ

H−δ
x

‖θ1 − θ2‖δ

H2−δ
x

‖θ1‖1−
δ
2

H−δ
x

‖θ1‖1+
δ
2

H2−δ
x

ds

� ‖θ1 − θ2‖2−δ

L∞
t H−δ

x
‖θ1‖1−

δ
2

L∞
t H−δ

x

∫ T

0
‖θ1 − θ2‖δ

H2−δ
x

‖θ1‖1+
δ
2

H2−δ
x

ds

� CT ‖θ1 − θ2‖2−
δ
2

L∞
t H−δ

x
‖θ1‖1−

δ
2

L∞
t H−δ

x
‖θ1 − θ2‖δ

L2
t H

2−δ
x

‖θ1‖1+
δ
2

L2
t H

2−δ
x

� CT ‖θ1 − θ2‖2Yδ
‖θ1‖2Yδ

.

Thus,

‖B(θ1) − B(θ2)‖L2
t H

−1
x

� CT ‖θ1 − θ2‖Yδ
(‖θ1‖Yδ

+ ‖θ1‖Yδ
),

as desired. 
�
Lemma 5.8. For θ̃ defined in Lemma 5.6 one has almost surely θ̃ ∈ Ct H1

x ∩L2
t H

2
x ∩

H1
t L

2
x locally in time. Furthermore, θ̃ almost surely satisfies

θ̃ (t) = θ̃ (0) −
∫ t

0
u · ∇ θ̃ds t � 0 ,

that is, θ̃ is a strong solution of (1.1) on [0, T ].
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Proof. Let (αk) be as in Proposition 5.5. Replacing α by αk in (5.5) and setting
θ̃k = θ̃αk (see property Lemma 5.6 part (3)), we have

θ̃k(t) = θ̃k(0) −
∫ t

0
uk · ∇ θ̃kds + αk

∫ t

0
∇ · (|∇ θ̃k |2∇ θ̃k) − �2θ̃kds + √

αkζ

= I + αk I I + √
αk I I I .

By Proposition 5.5 (cf. (5.6) and (5.7))

αk I I,
√

αk I I I → 0, (5.13)

where the convergence is in L
4
3 (�̃,X ). Then, byChebyshev inequality, (5.13) holds

in probability and by passing to a sub-sequence, we can assume that (5.13) holds
almost surely in X . Since X ↪→ Ct H−2

x , (5.13) holds almost surely in Ct H−2
x .

If δ ∈ ( 13 ,
2
3 ), then Lemma 5.7 yields that θ̃ �→ R⊥θ̃ · ∇ θ̃ is continuous as map

from Yδ into L2(I, H−1
x ). Hence, as k → ∞,

∫ t

0
uk · ∇ θ̃kds →

∫ t

0
u · ∇ θ̃ds in H1

t H
−1
x a.s.,

From Lemma 5.6, part (2) follows almost surely:

θ̃k → θ̃ , in Ct H
−δ
x .

Overall, almost surely we have, for any t ∈ I , that

θ̃ (t) = θ̃ (0) −
∫ t

0
u · ∇ θ̃ds in Ct H

−2
x .

To obtain the regularity of θ̃ , observe that (5.11) implies almost surely θ̃ ∈ L2H2.
Also, by interpolation, properties of Riesz transform, and Agmon’s inequality,

‖u · ∇ θ̃‖L2
x

� ‖u‖L∞
x

‖∇ θ̃‖L2
x

� C‖u‖
1
2
L2
x
‖u‖

1
2
H2
x
‖θ̃‖

1
2
L2
x
‖θ̃‖

1
2
H2
x

� C‖θ̃‖L2
x
‖θ̃‖H2

x
.

Consequently, by (5.11),

E‖u · ∇ θ̃‖2
L2
x,t

� CE‖‖θ̃‖‖θ̃‖H2
x
‖2
L2
t

� C ,

and therefore, almost surely ∂t θ̃ ∈ L2
t,x . Then, the Lions-Magenes lemma (see [46,

Theorem 3.1]) yields that θ̃ belongs a.s. locally to Ct H1
x ∩ L2

t H
2
x ∩ H1

t L
2
x . 
�

The proved regularity is exactly a borderline case for the proof of uniqueness.
As such we cannot use direct energy estimates, but we have to employ more subtle
argument of Judovich, who used it for Euler equation, see [35,50]. In particular,
we need a precise estimates on the Sobolev embedding constants.
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Lemma 5.9. Solution of (1.1)with θ(0) = θ0 ∈ H1 that belongs toCt H1∩L2
t H

2∩
H1
t L

2
x is unique.

Proof. Let θi ∈ Ct H1 ∩ L2
t H

2 ∩ H1
t L

2
x , i = 1, 2 be two solution of (1.1) with

θ1(0) = θ2(0). Then, w = θ1 − θ2 satisfies

wt = −R⊥w · ∇θ1 − R⊥θ1 · ∇w. (5.14)

Testing with w and using (1.6) yields

d

dt
‖w‖2 � 2|(w, R⊥w · ∇θ1)| � C‖w‖L2p‖w‖‖∇θ1‖

L
2p
p−1

.

where C is independent of p. By interpolation, we have, for any p ∈ (1, 2),

‖w‖L2p � ‖w‖2−p‖w‖p−1

L
2p
p−1

. (5.15)

Using Hölder inequality, p < 2, and Sobolev inequality with a precise constant
(see for example [15, Remark 1.5]), we obtain

d

dt
‖w‖2 � C‖w‖3−p‖w‖p−1

L
2p
p−1

‖∇θ1‖
L

2p
p−1

� C

√
2p

p − 1
‖w‖2δ(‖θ1‖2H2 + ‖θ2‖2H2)

p
2

� C√
1 − δ

‖w‖2δ(1 + ‖θ1‖2H2 + ‖θ2‖2H2) ,

where δ = 3−p
2 < 1 and p ∈ (1, 2). Then, after recalling that w(0) = 0, we have

1

1 − δ
‖w(t)‖2(1−δ) � C√

1 − δ

∫ t

0

(
1 + ‖θ1‖2H2 + ‖θ2‖2H2

)
ds ,

and consequently,

‖w(t)‖2 � C

(√
1 − δ

∫ t

0

(
1 + ‖θ1‖2H2 + ‖θ2‖2H2

)
ds

) 1
1−δ

.

Since θi ∈ L2
t H

2, then for any t0 � 0onehas
√
1−δ

∫ t0

0
(1+‖θ1‖2H2+‖θ2‖2H2)ds< 1

for any δ < 1 sufficiently close to 1. Passing p → 1 (or equivalently δ → 1), we
arrive at

‖w(t)‖ = 0 for any t � t0.

Since t0 was arbitrary, ‖w(t)‖ = 0 for any t � 0, as desired. 
�
Lemma 5.10. The law of θ̃ (t) is independent of t and is equal to μ. Here, μ is a
weak limit of (a sub-sequence) (μα) as α → 0 in the space H2−γ , γ > 0, where
μα was defined in Theorem 4.1. Furthermore, μ is concentrated on H2.
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Proof. From Chebyshev inequality and (4.4) if follows that

μα(Bc
R) � 1

R2

∫
L2

‖θ‖2H2dμα(θ) � C

R2 , (5.16)

where BR is a ball of radius R in H2 and C is independent of α. Since H2 is
compactly embedded in H2−γ , γ > 0, the Prokhorov theorem implies that there
exists a weakly convergent sequence (μαk ) in H2−γ to μ. To prove that μ is
supported on H2 note that, by (5.16),

μα(BR) � 1 − C

R2 (5.17)

and by the Portmanteau theorem, (5) holdswithμα replaced byμ. Passing R → ∞,
one obtain μ(H2) = 1.

Fix τ ∈ [0, T ) and a bounded continuous function g : H−δ → R and define
G(θ) = g(θ(τ )). We claim that for any δ ∈ ( 13 ,

1
2 ), G : Yδ → R is bounded

continuous. Indeed, if ‖θ1 − θ2‖Yδ
< ε, then ‖θ1(τ ) − θ2(τ )‖H−δ < ε and

|G(θ1) − G(θ2)| = |g(θ1(τ )) − g(θ2(τ ))| ,

and the boundedness and continuity of G follows from the boundedness and con-
tinuity of g.

By Proposition 5.5,

lim
k→∞

∫
Yδ

G(θ)dνk(θ) =
∫
Yδ

G(θ)dν(θ)

and by using (5.3) and weak converges of (νk) and (μk), one obtains

Eg(θ̃(τ )) =
∫
Yδ

g(θ(τ ))dν(θ) = lim
k→∞

∫
Yδ

g(θ(τ ))dνk(θ)

= lim
k→∞

∫
H−δ

g(θ)dμk(θ) =
∫
H−δ

g(θ)dμ(θ) .

Thus, for any τ , the law of θ̃ is μ, as desired. 
�

Proposition 5.11. For θ̃ defined inLemma5.6onehasalmost surely θ̃ ∈ C(R+, H1
x )∩

L2(R+, H2
x )∩H1(R+, L2

x ) and θ̃ satisfies (1.1). Furthermore, t �→ θ̃ (t) is unique,
and θ̃ depends continuously on initial conditions, that is,

lim‖θ1(T0)−θ2(T0)‖H1
x
→0

sup
t∈[T0,T1]

‖θ1(t) − θ2(t)‖H1
x

= 0 . (5.18)

We remark that by changing t to −t , we can define solutions for all times, positive
or negative.
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Proof. By Lemmas 5.8 and 5.9, for each integer N > 0 there exists almost surely a
unique strong solution θ̃N of (1.1) on interval [0, N ). Since (1.1) is a deterministic
equation, by almost surely we mean for μ almost every initial condition θ̃ (0) (see
Lemma5.10). Thus for each integer N > 0 there exists a setMN , withμ(MN ) = 1
such that for each θ̃0 ∈ MN , there exists a unique solution of (1.1) on [0, N ) with
θ̃ (0) = θ̃0.

If we denote M = ∩NMN , then μ(M) = 1 and for each θ̃0 ∈ M, and each
N , there exists a unique solution of (1.1) on [0, N ) (see Lemma 5.9), and global
existence follows.

By slightly modifying the argument of Lemma 5.9, we could prove (5.18) with
H1 replaced by L2. However, we need to modify the argument to obtain continuity
with respect to the H1 topology.

Test (5.14) by�w, and let us first focus on the right hand side (using summation
convention)

(∂2i iw,u j∂ jθ1) + (∂2i iw,u j
1∂ jw) = (1) + (2) ,

where u = R⊥(w) and u1 = R⊥(θ1). To estimate (2), we use an integration by
parts and ∇ · u = 0 to obtain

(∂2i iw,u j
1∂ jw) = −(∂iw, ∂iu

j
1∂ jw) − (∂iw,u j

1∂
2
i jw)

= −(∂iw, ∂iu
j
1∂ jw) − 1

2
(∂ j (∂iw)2,u j

1)

= −(∂iw, ∂iu
j
1∂ jw) ,

and consequently, for any p ∈ (1, 2),

|(∂iw, ∂ jw∂iu
j
1)| � ‖w‖H1‖Du1‖

L
2p
p−1

‖Dw‖L2p . (5.19)

Using (5.15), (1.6), and precise constant of embedding as in the proof of Lemma
5.9, one has

|(2)| = |(∂iw, ∂ jw∂iu
j
1)| � C‖w‖3−p

H2 ‖Dw‖p−1

L
2p
p−1

‖Du1‖
L

2p
p−1

� C

(p − 1)
p
2
‖w‖3−p

H1

(‖θ1‖H2 + ‖θ2‖H2
)p

. (5.20)

On the other hand,

|(1)| � |(∂iw, ∂iu j∂ jθ1)| + |(∂iw,u j∂2i jθ1)| = |(3)| + |(4)|.
As in (5.19) and (5.20) we obtain,

|(3)| = |(∂iw, ∂iu j∂ jθ1)|
� C

(p − 1)
p
2
‖w‖3−p

H1

(‖θ1‖H2 + ‖θ2‖H2
)p

.
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To estimate (4), the embedding H1 ↪→ Lq (with precise constant [15, Remark
1.5]), (1.6) and (5.15) imply

|(4)| = |(∂iw,u j∂2i jθ1)| � ‖θ1‖H2‖Dw‖L2p‖u‖
L

2p
p−1

� ‖θ1‖H2‖Dw‖L2p‖w‖
L

2p
p−1

� C‖θ1‖H2‖w‖2−p
H1 ‖Dw‖p−1

L
2p
p−1

‖w‖
L

2p
p−1

� C

(p − 1)
p
2
‖w‖3−p

H1

(‖θ1‖H2 + ‖θ2‖H2
)p

,

where C is independent of p. Combining all the estimates, and using that p < 2,
we have

d

dt
‖w(t)‖2H1 � C

(p − 1)
p
2
‖w(t)‖2δH1(1 + ‖θ1‖2H2 + ‖θ2‖2H2),

where δ = 3−p
2 and p ∈ (1, 2). Thus, for any T0 < T1,

sup
t∈[T0,T1]

‖w(t)‖2H1 �
(

‖w(T0)‖2(1−δ)

H1

+ C(1 − δ)δ−
1
2

∫ T1

T0
(1 + ‖θ1‖2H2 + ‖θ2‖2H2)ds

) 1
1−δ

.

Passing to ‖w(T0)‖1 → 0 implies, for any δ ∈ (0, 1), that

lim‖w(T0)‖→0
sup

t∈[T0,T1]
‖w(t)‖21 �

(
C(1 − δ)δ−

1
2

∫ T1

T0
(1 + ‖θ1‖22 + ‖θ2‖22)ds

) 1
1−δ

.

Finally, letting δ → 1+, or equivalently p → 1+, we arrive at

lim‖w(T0)‖1→0
sup

t∈[T0,T1]
‖w(t)‖1 = 0,

as desired. 
�
Proposition 5.12. Under the assumption of Theorem 5.1, the relations (5.1) and
(5.2).

Proof. Recall that by Lemma 5.10 μk → μ as measures on H2−γ , γ > 0 and μ

is supported on H2.
The inequality (5.2) follows from (4.4) and the Portmanteau theorem, since C

in (4.4) is independent of α.
To establish (5.1), frix R � 1 and letψR : R → [0, 1] be a C∞ cut off function

with ψR(r) = 1 for |r | � R and ψR(r) = 0 for |r | � R + 1 . Denote BR the ball
in L2 centred at 0 with radius R, and Bc

R the complement of BR in L2 and define

I (θ) = ‖θ‖23
2

−
∫
T2

|∇θ |2∇θ · ∇(−�)−
1
2 θdx . (5.21)



Invariant Measures and Global Well Posedness for the SQG Equation 213

Then, by (4.1),

A−1
2

2
−

∫
Bc
R

|I (θ)|μk(dθ) �
∫
L2

ψR(I (θ))I (θ)μk(dθ)

�
A−1

2

2
+

∫
Bc
R

|I (θ)|μk(dθ) .

Also, Hölder’s inequality, interpolation, (5.16), and (4.4) imply that

∫
Bc
R

‖θ‖23
2
μk(dθ) �

(∫
L2

‖θ‖
8
3
3
2
μk(dθ)

) 3
4

(μk(B
c
R))

1
4

�
(∫

L2
‖θ‖ 2

3 ‖θ‖22μk(dθ)

) 3
4

(μk(B
c
R))

1
4 � C

R
1
2

,

and by Hölder the and Gagliardo-Nirenberg inequalities,

∣∣∣∣
∫
T2

|∇θ |2∇θ · ∇(−�)− 1
2 θdx

∣∣∣∣ � ‖|∇θ |2∇θ‖
L

4
3
‖∇(−�)− 1

2 θ‖L4 � C‖∇θ‖3L4‖θ‖L4

� C‖∇θ‖
10
3
L4‖θ‖

2
3
L2 . (5.22)

Hence, by (4.4) and (5.16),

∫
Bc
R

∣∣∣∣
∫
T2

|∇θ |2∇θ · ∇(−�)−
1
2 θdx

∣∣∣∣μk(dθ) � C
∫
Bc
R

‖∇θ‖
10
3
L4‖θ‖

2
3
L2μk(dθ)

� C

(∫
L2

‖∇θ‖4L4‖θ‖
4
5
L2μk(dθ)

) 5
6

(μk(B
c
R))

1
6

� C

R
1
3

.

Thus,

A− 1
2

2
− C

(
1

R
1
2

+ 1

R
1
3

)
�

∫
L2

ψR(I (θ))I (θ)μk(dθ)

�
A− 1

2

2
+ C

(
1

R
1
2

+ 1

R
1
3

)
. (5.23)

Furthermore, Hölder’s inequality and the Sobolev embedding imply that

∣∣∣∣
∫
T2

|∇θ |2∇θ · ∇(−�)−
1
2 θdx

∣∣∣∣ � ‖|∇θ |2∇θ‖
L

7
6
‖∇(−�)−

1
2 θ‖L7

� C‖∇θ‖3
L

7
2
‖θ‖L7 � C‖θ‖3

H
10
7

‖θ‖L7 .
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Therefore, I : H
10
7 → R, and by passing k → ∞ in (5.23) and using of

weak convergence μk → μ on H
10
7 (see Lemma 5.10) and the boundedness of

ψR(I (θ))I (θ), we obtain

A− 1
2

2
− C

(
1

R
2
5

+ 1

R
1
6

)
�

∫
L2

ψR(I (θ))I (θ)μ(dθ)

�
A− 1

2

2
+ C

(
1

R
2
5

+ 1

R
1
6

)
. (5.24)

Finally, by (5.22), one has

|ψR(I (θ))I (θ)| � |I (θ)| � C(‖∇θ‖
10
3
L4‖θ‖

2
3
L2 + ‖θ‖23

2
), (5.25)

and by (5.2), the right hand side is μ integrable. Since ψR(I (θ))I (θ) → I (θ)

everywhere as R → ∞, by the dominated convergence theorem, and (5.24) implies
(5.1). 
�

6. Qualitative Properties

In this sectionwe complete the proof of themain result, Theorem1.2 by showing
that parts 6 and 7 holds true.

In particular, we show that the the distributions via μ of the functionals below
admit densities with respect to the Lebesgue measure on R; that is

E− 1
2
(θ) = 1

2
‖θ‖2

H
−1
2

,

M(θ) = 1

2
‖θ‖2.

Also, using other conservation laws of the SQG equation, we show the infinite-
dimensional nature of the measure μ. The proofs follow general framework de-
veloped for analogous problems, however the adaptation is not straightforward.
Since our smoothing operator is not Laplacian, but bi-Laplacian, we lost several
important properties. For example, unlike 〈−�θ, f (θ)〉 � 0, for any increasing
function f , it is not clear that 〈�2θ, f (θ)〉 is bounded from below for any θ ∈ H2

and for sufficiently many functions f . This obstacle was solved by introducing the
p-Laplacian to the equation, that lead to stronger moment bounds, see Theorem
5.1. In such case, after nontrivial integration by parts we can show that 〈�2θ, f (θ)〉
is bounded from below if f has bounded derivative up to fourth order. Also, com-
pared to Euler equation we have to choose differently the set of functions f . Let
us provide the details.

Theorem 6.1. Assume A0 < ∞. The laws of the functionals M(θ) and E− 1
2
(θ)

underμ are absolutely continuous with respect to the Lebesgue measure on (0,∞).
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Analogous statement canbeproved for other invariants, but it ismore technically
involved, and we decided to skip it for the clarity of presentation.

To obtain the following result in a cleaner form, we redefine the measure μ

constructed in Theorem 5.1 so that it does not have an atom at the origin.
By (5.1) and A− 1

2

= 0 one hasμ({0}) < 1, and therefore S:=μ(H2 \{0}) > 0.

Define the probability measure

μ̃(A) = μ(A \ {0})
S

.

The SQG equation preserves the L2 norm of solutions, and therefore it preserves
the set supp(μ) \ {0}. The invariance of μ̃ comes readily from the invariance of μ.

Theorem 6.2. If A0 < ∞ and am 
= 0 for each m, then he measure μ̃ is infinite-
dimensional in the sense that if K ⊂ H1 is a compact set of finite Hausdorff
dimension, then μ(K ) = 0.

Proof of Theorem 6.1. Let F(θ) be either M(θ) or E −1
2

(θ). Thanks to the Port-
manteau theorem, it suffices to prove the theorem for measures μα with bounds
that are uniform in α. Also, according to the non-negativity of F , our analysis shall
be reduced to the interval [0,∞).

Step 1 : The pilot relation. Fix any f ∈ C∞
0 and define

�δ(x) = 1√
2δ

∫ ∞

−∞
f (y)e−|x−y|√2δdy

= 1√
2δ

(∫ x

−∞
f (y)e−(x−y)

√
2δdy +

∫ ∞

x
f (y)e(x−y)

√
2δdy

)
.

Then,

�′
δ(x) =

∫ ∞

x
f (y)e(x−y)

√
2δdy −

∫ x

−∞
f (y)e−(x−y)

√
2δdy.

Computing the second derivative of �δ , we obtain that

1

2
�′′

δ + f = δ�δ.

Since �δ is bounded uniformly in δ (as f is compactly supported), for every x ,
δ�δ(x) → 0 as δ → 0 and

�′
δ(x) →

∫ ∞

x
f (y)dy −

∫ x

−∞
f (y)dy as δ → 0,

�′′
δ (x) → −2 f (x) as δ → 0.

Assume that θ is a solution of (1.2) with θ(0) distributed as μα , and therefore θ(t)
is distributed as μα for any t � 0. Note that by Theorem 2.1, θ is a global solution
and to simply the notation, we will not indicate explicitly the dependence of θ on
α. Denote Eμα to integral with respect to the measure μα(dθ).
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Let us apply the Itô formula to�δ(F(θ)), take the expectation, anduse∇θ F(θ;u·
∇θ) = 0 and stationarity of θ(t) to obtain

Eμα

(
�′

δ(F(θ))

[
∇θ F(θ; ∇ · (|∇θ |2∇θ − �2θ))

+1

2

∑
m

a2m∇2
θ F(θ; em, em)

])

+1

2
Eμα

(
�′′

δ (θ)
∑
m

a2m(∇θ F(θ, em))2

)
= 0. (6.1)

If F(θ) = M(θ), then

∇θ F(θ;�2θ − ∇ · (|∇θ |2∇θ)) = ‖θ‖2H2 + ‖θ‖4W 1,4 ,

and if F(θ) = E −1
2

(θ), then

∇θ F(θ;�2θ − ∇ · (|∇θ |2∇θ)) = I (θ),

where I is defined by (5.21).
By (3.3), μα is supported on H2. Since f ∈ C∞

0 , |�′
δ|, |�′′

δ | are bounded
independently of δ, we can use the Lebesgue dominated convergence theorem to
pass δ → 0 in (6.1) and obtain, for F = M , that

Eμα

([∫ ∞

F(θ)

f (y)dy −
∫ F(θ)

−∞
f (y)dy

]
×

×
[
‖θ‖2H2 + ‖θ‖4W 1,4 + 1

2

∑
m

a2m∇2
θ F(θ; em, em)

])

−Eμα

(
f (F(θ))

∑
m

a2m |∇θ F(θ, em)|2
)

= 0, (6.2)

and for F = E− 1
2
we just replace ‖θ‖2

H2 + ‖θ‖4
W 1,4 by I (θ).

By a standard approximation argument combined with the Lebesgue dominated
convergence theorem, we can extend (6.2) to f = χ� being the characteristic
function of a Borel set � ⊂ R. Then, F � 0 and (4.4) imply that there is C
independent of α and � such that

Eμα

([∫ ∞
F(θ)

χ�(y)dy −
∫ F(θ)

−∞
χ�(y)dy

][
‖θ‖2

H2 + ‖θ‖4
W1,4 + 1

2

∑
m

a2m∇2
θ F(θ; em , em )

])

�
(∫ ∞

0
χ�(y)dy

)
Eμα

[
‖θ‖2

H2 + ‖θ‖4
W1,4 + 1

2

∑
m

a2m

]

� C
∫ ∞
−∞

χ�(y)dy � C�(�) ,
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where �(�) denotes the Lebesgue measure of�. If F = E− 1
2
, one obtains a similar

bound by using (5.25) and (4.4).
By (6.2),

Eμα

(
χ�(F(θ))

∑
m

a2m |∇θ F(θ, em)|2
)

� C�(�). (6.3)

In the remaining part of the proof, we estimate the left hand side from below.
Step 2:Absolute continuity on (0,∞).Recalling that F is either E −1

2
(θ) or M(θ),

then ∇θ F(θ; em) is

λ−1
m (θ, em) or (θ, em).

First, focus on F(θ) = E −1
2

(θ). For any δ > 0 denote the set �δ = {‖θ‖2−1 � δ}
∩ {‖θ‖2 � 1/δ}.

Let āN = min{|am |, 1 � |m| � N } and recall that 0 < λ1 � λ2 � · · · � λN �
· · · are eigenvalues of (−�). Let PN be the projection on the space spanned by the
first N eigenfunctions of the Laplacian. Then, by the inverse Poincaré inequality,
for any θ ∈ �δ one has

∑
m

a2mλ−2
m (θ, em)2 =

∑
|m|�N

a2mλ−2
m (θ, em)2 +

∑
|m|N

a2mλ−2
m (θ, em)2

� ā2Nλ−1
N ‖PN θ‖2−1 � ā2Nλ−1

N (‖θ‖2−1 − λ−1
N ‖(I − PN )θ‖2)

� ā2Nλ−1
N

(
δ − 1

δλN

)
.

Fix any δ̄ > 0 and any Borel set �∗ ⊂ (δ̄,∞). For any δ ∈ (0, δ̄), using (6.2) the
left hand side of (6.3) can be estimated as

Eμα

(
χ�∗(F(θ))

∑
m

a2m |∇θ F(θ, em)|2
)

� ā2Nλ−1
N

(
δ − 1

δλN

)
μα(F−1(�∗) ∩ �δ).

Since the sequence λN increases to infinity, we can find N such that δ − 1
δλN

> 0,
and therefore, by (6.3),

μα(F−1(�∗) ∩ �δ) � CλN

ā2N

(
δ − 1

δλN

)�(�∗).

Using the Portmanteau theorem, we pass to the limit α → 0 and obtain

μ(F−1(�∗) ∩ �δ) � CλN

ā2N

(
δ − 1

δλN

)�(�∗).
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Consequently, if �(�∗) = 0, then for any δ ∈ (0, δ̄),

μ(F−1(�∗) ∩ �δ) = 0.

Since
⋃

n�1 �1/n = L2 \ {0} and 0 
∈ F−1(�∗), one obtains

μα(F−1(�∗)) = μα(F−1(�∗) \ {0})) = 0 .

Thus,μα(F−1(�∗)) = 0 whenever �(�∗) = 0, and the claimed absolute continuity
follows.

Next, we focus on F(θ) = M(θ). By the Cauchy–Schwartz inequality,

‖θ‖2 = (θ, θ) =
∑
m

(θ, em)2 =
∑

|m|�N

(θ, em)2 +
∑

|m|>N

(θ, em)2

� ‖θ‖
āN

⎛
⎝ ∑

|m|�N

a2m(θ, em)2

⎞
⎠

1
2

+ ‖θ‖
⎛
⎝ ∑

|m|>N

(θ, em)2

⎞
⎠

1
2

.

Also,
∑

|m|>N

(θ, em)2 � 1

λ2N
‖θ‖21 ,

and therefore,

aN

(
‖θ‖ − 1

λN
‖θ‖1

)
�

(∑
m

a2m(θ, em)2

) 1
2

.

For any ε > 0 denote Iε = {‖θ‖ � ε, ‖θ‖1 � 1
ε
}. Then, for any θ ∈ Iε,

aN

(
ε − 1

λ̄N ε

)
�

(∑
m

a2m(θ, em)2

) 1
2

. (6.4)

Fix ε̄ > 0 and a Borel set � ⊂ [ε̄,∞). Since θ is distributed as μα , and M(θ) ∈ �

implies ‖θ‖ � ε̄, then for any ε ∈ (0, ε̄),

μα(M−1(�)) = μα({M(θ) ∈ �} ∩ {θ ∈ Iε})
+μα

(
{M(θ) ∈ �} ∩

{
‖θ‖1 � 1

ε

})
= I + I I.

Using the Chebyshev inequality and (4.4), we obtain

I I � C
A0

2
ε2.

Since λN → ∞ as N → ∞, we can suppose that (ε − 1
ελN

) > 0. By (6.3) and
(6.4),

I � C

āN (ε − 1
λN ε

)
�(�) .



Invariant Measures and Global Well Posedness for the SQG Equation 219

Consequently, that Portmanteau theorem yields that

μ(M−1(�)) � C

āN (ε − 1
ελN

)
�(�) + A0

2
ε2,

and the rest of the proof follows as in the previous case. 
�

Next, let us turn to the proof of Theorem 6.2.

Proof of Theorem 6.2. For any positive integer k denote

Fk(θ) = 1

|T2|
∫
T2

fk(θ(x))dx,

where fk is a smooth function on R. Then, by ∇ · u = 0, we have for any θ ∈ H2

that

( f ′
k(θ),u · ∇θ) = 0. (6.5)

Therefore, the functionals Fk are conservation laws for (1.1). Fix n and functions
( fk)nk=1 on R such that

(i) There is a constant C independent of k such that | f (p)(z)| � C for p ∈
{0, . . . , 4}, that is, the sequence ( fk) has uniformly (in k) bounded derivatives
up to fourth order. Note that the bound can depend on n.

(ii) fk(0) = 0 for each k.
(iii) f1 � 0 and f1 > 0 on (−δ∗, δ∗) \ {0} for some δ∗ > 0.
(iv) If for some v ∈ R

n and some continuous function m : T2 → R with zero
mean one has

n∑
i=1

vi f
′
i (m(x)) = Const, for all x ∈ T

2 ,

then vi = 0 for each i, or m ≡ 0. (6.6)

For any n � 1, such ( fk)nk=1 indeed exists. For example let fk be smooth functions,
compactly supported on [−2, 2] and fk(z) = zk+1 on (−1, 1). In addition, we
assume that f1 � 0. Clearly (i)–(iii) holds and it remains to verify (iv). Fix any
zero mean continuous function m 
≡ 0. Then the image of m contains the interval
(−δ, δ) for some δ > 0 and, consequently,

n∑
i=1

ci f
′
i (z) = Const for all z ∈ (−δ, δ) .

Since f ′
k are non-constant polynomials on (−1, 1) one obtains that vi = 0 for each

i as desired.
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Since the second order derivatives of fk are bounded, then for any solution θ

of (1.1) we can use Theorem B.1 and (6.5) to obtain

EFk(θ(t)) + αE

∫ t

0
( f ′

k(θ),�2θ − ∇ · (|∇θ |2∇θ))ds

= EFk(θ0) + α

2

∞∑
m=1

a2mE
∫ t

0
( f ′′

k (θ; em, em))ds.

Next, with the use of a summation convention,

( f ′
k(θ), ∂2i i∂

2
j jθ) = −( f ′′

k (θ), ∂iθ∂i∂
2
j jθ)

= ( f ′′
k (θ), ∂2i iθ∂2j jθ) + ( f (3)

k (θ), (∂iθ)2∂2j jθ) =: (1) + (2).

On the other hand,

( f ′
k(θ), ∂2i i∂

2
j jθ) = −( f ′′

k (θ), ∂iθ∂i∂
2
j jθ)

= ( f ′′
k (θ), (∂2i jθ)2) + ( f (3)

k (θ), ∂iθ∂ jθ∂2i jθ) =: (3) + (4).

Furthermore,

(2) = −( f (4)
k (θ), (∂iθ)2(∂ jθ)2) − 2( f (3)

k (θ), ∂iθ∂ jθ∂2i jθ).

We obtain

( f ′
k(θ), ∂2i i∂

2
j jθ) = 1

3
[(1) + (2)] + 2

3
[(3) + (4)]

= 1

3

(
( f ′′

k (θ), ∂2i iθ∂2j jθ + 2(∂2i jθ)2) −( f (4)
k (θ), (∂iθ)2(∂ jθ)2)

)
,

and consequently,

( f ′
k(θ),�2θ − ∇ · (|∇θ |2∇θ))

= 1

3

(
( f ′′

k (θ), (�θ)2 + 2(D2θ)2) + ( f ′′
k (θ) − f (4)

k (θ), |∇θ |4)
)

=: Ak(θ). (6.7)

For any positive integer n, denote

Vn(θ) =

⎛
⎜⎜⎜⎝

F1(θ)

F2(θ)
...

Fn(θ)

⎞
⎟⎟⎟⎠ . (6.8)

By the Itô’s formula and (6.5),

Vn(θ) = Vn(θ0) +
∫ t

0
xsds + √

α
∑
m

∫ t

0
ym(s)dWm(s),
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and with Ak defined as in (6.7), one has

xs = −α

⎛
⎜⎜⎜⎝

A1(θ)

A2(θ)
...

An(θ)

⎞
⎟⎟⎟⎠ + α

2

∑
m

a2m

⎛
⎜⎜⎜⎝

∇2
θ F1(θ; em, em)

∇2
θ F2(θ; em, em)

...

∇2
θ Fn(θ; em, em)

⎞
⎟⎟⎟⎠

= −α

⎛
⎜⎜⎜⎝

A1(θ)

A2(θ)
...

An(θ)

⎞
⎟⎟⎟⎠ + α

2

∑
m

a2m

⎛
⎜⎜⎜⎝

( f ′′
1 (θ), e2m)

( f ′′
2 (θ), e2m)

...

( f ′′
n (θ), e2m)

⎞
⎟⎟⎟⎠ =: −αA(θ) + α

2
B(θ),

ym = am

⎛
⎜⎜⎜⎝

( f ′
1(θ), em)

( f ′
2(θ), em)

...

( f ′
n(θ), em)

⎞
⎟⎟⎟⎠ .

Let yim = am( f ′
i (θ), em) be the i th component of ym . Denote by M the n×nmatrix

with entries

Mi, j =
∑
m

yim y
j
m =

∑
m

a2m( f ′
i (θ), em)( f ′

j (θ), em),

and note that M depends on t , but is independent of x .
Since f ′

k , f
′′
k , and f (4)

k are bounded, by (6.7) and (4.4) one has for anyα ∈ (0, 1)

E

∫ t

0
|xs | + α

∞∑
m=1

|ym(s)|2ds

� CαE

n∑
k=1

∫ t

0
‖θ‖2H2 + ‖∇θ‖4L4 + 1 +

∞∑
m=1

a2mds � C , (6.9)

where C is independent of α. Then, [43, Theorem 7.9.1] and (6.9) (bound on |xs |)
imply for any bounded measurable function g the Krylov’s estimate

Eμα

∫ 1

0
(det M)1/ng(Vn)dt � Cn‖g‖LnEμα

∫ 1

0
|xs | � Cn‖g‖Ln .

Let B ⊂ R
n be a Borel set and denote g = χB the indicator function of B. Then,

since μα is an invariant measure,∫
(det M(θ̄))1/nχB(Vn(θ̄))dμα(θ̄) = Eμα

∫ 1

0
(det M(θ(s)))1/nχB(Vn(θ(s)))ds

� Cn A0(�n(B))
1
n . (6.10)

For any integer k > 0 denote Bk = B ∩ Bc
k , where Bk ⊂ R

n is a ball of radius 1
k

centred at the origin, and Bc
k is its complement. Note that B = {0} ∪ ⋃

k Bk , and
by (6.10), for any k > 0,∫

(det M(θ̄))1/nχBk (Vn(θ̄))dμα(θ̄) � Cn A0(�n(B))
1
n . (6.11)
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Estimate on det M. The matrix M is clearly a non-negative symmetric n × n
matrix. We show that for any ε ≥ 0, M is positively bounded from below outside
the ball in H1 of radius ε ≥ 0 centered at the origin. Observe that M is an infinite
sum of non-negative matrices Mm with coefficients

Mm
i, j = a2m( f ′

i (θ), em)( f ′
j (θ), em).

Then, for any vector v = (v1, ..., vn) ∈ R
n , we have

(v, Mv) =
∑
m�0

(v, Mmv) =
∑
m�0

∑
1�i, j�n

Mm
i, jviv j

=
∑
m�0

a2m
∑

1�i, j�n

viv j ( f
′
i (θ(x)), em(x))( f ′

j (θ(x)), em(x))

=
∑
m�0

a2m

⎛
⎝ n∑

j=1

v j ( f
′
j (θ(x)), em(x))

⎞
⎠

2

=
∑
m�0

a2m

⎛
⎝ n∑

j=1

v j f
′
j (θ(x)), em

⎞
⎠

2

.

Suppose that (v, Mv) = 0 for some v 
= 0, since am 
= 0, for all m,⎛
⎝ n∑

j=1

v j f
′
j (θ), em

⎞
⎠ = 0 for all m � 0.

Hence, the function x �→ ∑n
j=1 v j f ′

j (θ(x)) is constant, that is, there is C such that

n∑
j=1

v j f
′
j (θ(x)) = C for all x ∈ T

2.

By the independence property (6.6), either vk = 0 for each k or θ ≡ C . Since
v 
= 0, the latter property holds and since θ has zero mean we have θ ≡ 0.

Therefore if θ 
≡ 0, then det(M) > 0. Next, denote the set Iε = {‖θ‖ � ε,

‖θ‖H1 � 1
ε
}, and note that Iε is compact in L2. Indeed, if (θ j ) j ⊂ Iε , then

‖θ j‖H1 � 1
ε
, and therefore there exists subsequence, still denoted (θ j ) j , converging

to θ∞ weakly in H1 and strongly in L2. Weak lower semi-continuity, and strong
continuity of norms yield θ ∈ Iε as desired.

By smoothness of fk , uniform boundedness of f ′, and A0 < ∞, the map
θ �→ M(θ) : H1 → R

n×n is continuous, and consequently θ �→ det M(θ) :
H1 → [0,∞) is continuous as well. Since det M > 0 on the compact set Iε,
det M(θ) � cε > 0 on Iε.
Conclusion. For the Borel set Bk fixed in (6.11), and Vn defined in (6.8) one has,
for any k,

μα({Vn(θ) ∈ Bk}) � μα({Vn(θ) ∈ Bk} ∩ {θ ∈ Iε})
+ μα

({Vn(θ) ∈ Bk} ∩ {
θ ∈ I cε

}) = I + I I.
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Since det M(θ) � cε, on Iε , (6.11) yields

I � A0Cnc
− 1

n
ε (�n(B))

1
n .

Next, since ( fk) are uniformly, globally Lipschitz and fk(0) = 0, there exists L � 0
such that | fk(z)| � L|z| for any k and any z ∈ R. Then, for any θ with Vn(θ) ∈ Bk

one has |Vn(θ)| � 1
k , and therefore,

1

k
� C max

j
|Fj (θ)| � C max

j

∫
T2

| f j (θ(x))|dx � C‖θ‖ ,

where we used Jensen’s inequality in the last estimate. Without loss of generality
assume C � 1. Thus, by (4.4) and the Chebyshev inequality, if ε < 1

Ck , then

I I � μα

(
{Vn(θ) ∈ Bk} ∩

{
‖θ‖H1 � 1

ε

})

+ μα

({Vn(θ) ∈ Bk} ∩ {‖θ‖ � ε
})

︸ ︷︷ ︸
=0

� μα

({
‖θ‖H1 � 1

ε

})
� A0

2
ε2.

Gathering these estimates, we arrive at

μα({Vn(θ) ∈ Bk}) � A0

2
ε2 + Cnc

− 1
n

ε (�n(B))
1
n ,

and by the Portmanteau theorem, (6) is valid with μα replaced by the limiting
measure μ. If �n(B) = 0, then since ε > 0 is arbitrary, we obtain μ({Vn(θ) ∈
Bk}) = 0 for any k > 0. Taking the countable union in integer k > 0, we arrive to
μ({Vn(θ) ∈ B \ {0}}) = 0.

Since f1 is non-negative and f1 > 0 in a punctured neighbourhood of zero,
then for any continuous, zero mean function θ 
≡ 0 one has F1(θ) 
= 0. Hence,

μ({Vn(θ) ∈ B} \ {0}) = μ({Vn(θ) ∈ B \ {0}}) = 0 .

By the definition of μ̃,

μ̃({Vn(θ) ∈ B}) = μ({Vn(θ) ∈ B} \ {0})
S

= 0 (6.12)

for any B with �n(B) = 0.
Finally, we prove that μ̃ is infinite dimensional. Let K ⊂ L2 be a compact set

with finite Hausdorff dimension dimH (K ) =: h and fix an integer n > h. We claim
that Vn defined in (6.8) is differentiable on L2. Indeed, each component Fk of Vn
satisfies

|F ′′
k (θ; u, v)| = 1

|T2|
∣∣∣∣
∫
T2

f ′′
k (θ)uvdx

∣∣∣∣ � C
∫
T2

|uv|dx � C‖u‖‖v‖ ,
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whereweused that f ′′
k is bounded. In particular,Vn is locallyLipschitz. Since locally

Lipschitzmaps do not increase theHausdorff dimension, dimH (V) � h < n, where
V:=Vn(K ) ∈ R

n , and therefore �n(V) = 0. Then, by (6.12)

μ̃(K ) � μ̃({Vn(θ) ∈ V}) = 0

as desired. 
�
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Appendix A: Some Facts on the Fluctuation–Dissipation Approach for
Finite-Dimensional Hamiltonian Systems

In this section we elaborate on the question that was raised in the introduction:
Do the constructed invariant measure μ for is (1.1) concentrates on the equilibria?
Although we proved that the support ofμ is infinite dimensional, it also known that
the set of equilibria is also infinite dimensional; any solution of the equation

(−�)
1
2 � = F(�)

is an equilibrium of (1.1). Since every equilibrium is trivially a global solution,
there is a possibility that μ concentrates on the set of equilibria, and we did not
construct any new solution. As mentioned above, we don’t have a definite answer
to this question, however we provide an example of a general system for which the
measure arising from fluctuation dissipation method is not supported on equilibria.

Since the SQG equation has a Hamiltonian structure, we will focus only on the
Hamiltonian systems.There are several trivial examples inwhich the equilibria form
a discrete set, and therefore are of measure zero, for instance the cubic defocusing
Schrödinger equation with only one equilibrium. The example closest to SQG
is 2D Euler equation, which has infinite dimensional manifold of equilibria with
similar structure. However, whether the invariant measures for 2D Euler equation
concentrate on equilibria is an open question, hence regularizing the problemmight
not help.

Let us turnour attention tofinite dimensional systems.Consider a 2n-dimensional
Hamiltonian system

ẋ = −∂y H(x, y), ẏ = ∂x H(x, y), (A.1)

where H : R
n × R

n → R is a smooth Hamiltonian function. It is well known
that f (H)dxdy is an invariant measure for the system, for any integrable smooth
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function f . We consider now the fluctuation–dissipation model

dx = (−∂y H(x, y) − α∂x H(x, y))dt + √
2αdβ1,

dy = (∂x H(x, y) − α∂y H(x, y))dt + √
2αdβ2, (A.2)

where β1, β2 are independent Brownian motions. Then, e−H(x,y) is a density of an
invariant measure for (A.2), since e−H(x,y) is solution of the Fokker-Plank equation

Lρ = α�ρ − ∇ ·
[
(∂y H(x, y) + α∂x H(x, y),−∂x H(x, y) + α∂y H(x, y))T ρ

]
= 0.

Thus μ(dxdy) = T−1e−H(x,y)dxdy is an invariant probability measure of (A.2),
were we denote T = ∫

Rn×Rn e−H(x,y)dxdy to be a partition function (normaliza-
tion). Note that T is finite if H has appropriate increase at infinity. Observe that μ
does not depend on α, thus by passing α → 0, we see thatμ is an invariant measure
of (A.1).

If H is constant on the unit ball of Rn × R
n , then any point in that ball

is an equilibrium of (A.1), and therefore we have an open set of equilibria. On
the other hand, μ has positive density everywhere and in particular its support
coincides with the whole space. There might be a possibility to apply this reasoning
to infinite dimensional systems, but there are serious difficulties with coercivity of
the dissipation. We leave this question open.

Appendix B: Itô Formula

For the reader’s convenience, we recall Itô’s formula in infinite dimensions,
which is used several times in the proofs of the main results. We say that the
equation (1.2) has the Itô property on the triple (Hs−1, Hs, Hs+1) if

(1) for some T > 0, (1.2) has a unique solution on [0, T ) for any data in Hs ;
(2) the process h:= − α(�2θ − ∇(|∇θ |2∇θ)) − u · ∇θ is Ft -adapted and

P

(∫ t

0
(‖θ(r)‖2s+1 + ‖h(r)‖2s−1)dr < ∞, ∀ t > 0

)
= 1,

∑
m>0

a2mλsm < ∞.

We have the following version of Itô’s lemma proved in [43, Section A.7]:

Theorem B.1. ([43])Let F ∈ C2(Hs,R) be a functional which is locally uniformly
continuous, togetherwith its first two derivatives, on Hs. Suppose that (1.2) satisfies
the Itô property on (Hs−1, Hs, Hs+1) and that F satisfies the following conditions:

(1) There is a function K : R+ → R+ such that

|F ′(θ; v)| � K (‖θ‖s)‖θ‖s+1‖v‖s−1, θ ∈ Hs+1, v ∈ Hs−1. (B.1)

(2) For any sequence {wk} ⊂ Hs+1 converging toward w ∈ Hs+1 and any v ∈
Hs−1, we have

F ′(wk; v) → F ′(w; v), as k → ∞. (B.2)
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(3) The solution θ of (1.2) satisfies

∑
m

a2mE
∫ t

0
|F ′(θ; em)|2ds < ∞ f or all t > 0. (B.3)

Then we have

F(θ(t)) = F(θ(0))

+
∫ t

0

(
F ′(θ(s); h(s)) + α

2

∑
m

a2mF
′′(θ(s); em, em)

)
ds

+ √
α
∑
m

am

∫ t

0
F ′(θ(s); em)dWm(s).

In particular,

EF(θ(t)) = EF(θ(0))

+
∫ t

0
E

(
F ′(θ(s); h(s)) + α

2

∑
m

a2mF
′′(θ(s); em, em)

)
ds.

If one omits (B.3), thenwe have the formula (B.1) where t is replaced by the stopping
time t ∧ τn, with

τn = inf{t � 0, ‖θ(t)‖s > n}, n � 0,

with the convention inf ∅ = +∞.

Appendix C: Embedding L2H2 ∩ W 1, 43W−1, 43 ↪→ CH−δ

Although the parabolic embedding L2H2 ∩ W 1, 43W−1, 43 ↪→ CH−δ follows
from standard arguments we were not able to locate the proof in the literature.
Hence, we outline the main steps in this appendix.

By [2, Theorem 5.2], we have, for any θ > 2
3 , that

L2H2 ∩ W 1, 43W−1, 43 ↪→ C(H2,W−1, 43 )θ,pθ ,

where (H2,W−1, 43 )θ,pθ is the real interpolation space and pθ satisfies

1

pθ

= 1 − θ

2
+ θ

4
3

.

However, by [2, (3.5)], for any ε ∈ (0, 1) one has

(H2,W−1, 43 )θ,pθ ↪→ (H2−ε,W−1−ε, 43 )θ,pθ = (B2−ε
2,2 , B−1−ε

4
3 , 43

)θ,pθ ,
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where Bs
p,q is a Besov space. From [5, Theorem 6.4.5, (3)] and [2, (3.5)] if follows

that

(B2−ε
2,2 , B−1−ε

4
3 , 43

)θ,pθ = B(−3+ε)θ+(2−ε)
4

2+θ
, 4
2+θ

= W (−3+ε)θ+(2−ε), 4
2+θ .

Finally, by Sobolev embeddings,

W (−3+ε)θ+(2−ε), 4
2+θ ↪→ W−δ,2 ,

where δ � θ
2 + (−2 + ε) + (3 − ε)θ . Since θ > 2

3 and ε > 0 can be chosen
arbitrarily close to 2

3 and 0, respectively, one obtains that

L2H2 ∩ W 1, 43W−1, 43 ↪→ CW−δ,2

for any δ > 1
3 , as desired.
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