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Abstract

We study singular radially symmetric solution of the stationary Keller-Segel

equation, that is, an elliptic equation with exponential nonlinearity, which is

super-critical in dimension N � 3. The solutions are unbounded at the origin

and we show that they describe the asymptotics of bifurcation branches of reg-

ular solutions. It is shown that for any ball and any k � 0, there is a singular

solution that satisfies Neumann boundary condition and oscillates at least k

times around the constant equilibrium. Moreover, we prove that in dimension

3  N  9 there are regular solutions satisfying Neumann boundary conditions

that are close to singular ones when the value at the origin is close to infinity.

Hence, it follows that there exist regular solutions on any ball with arbitrarily

fast oscillations. For generic radii, we show that the bifurcation branches of reg-

ular solutions oscillate in the bifurcation plane when 4  N  9 and approach

to a singular solution. In dimension N > 10, we show that the Morse index of

the singular solution is finite, and therefore the existence of regular solutions
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with fast oscillations is not expected.

Résumé

Nous étudions les solutions singulières radiales de l’équation de Keller-Segel sta-

tionnaire, qui est une équation elliptique avec une non-linéarité exponentielle,

surcritique en dimension N � 3. Ces solutions ne sont pas bornées à l’origine et

nous montrons qu’elles décrivent les asymptotiques des branches de bifurcation

des solutions régulières. Nous prouvons également que pour toutes boules et

tout k � 0, il existe une solution singulière qui satisfait une condition de Neu-

mann homogène au bord et qui oscille exactement k fois autours de l’équilibre

constant. De plus, nous montrons qu’en dimension 3  N  9, il existe des

solutions régulières satisfaisant la condition de Neumann homogène au bord qui

sont proches de nos solutions singulières. Par conséquent, dans toute boule, il

existe des solutions régulières qui oscillent arbitrairement rapidement. Pour des

rayons génériques, nous montrons que les branches de bifurcation des solutions

régulières oscillent dans le plan de bifurcation quand 4  N  9. En dimension

N > 10, nous prouvons que l’indice de Morse des solutions singulières est fini.

Par conséquent, nous ne nous attendons pas à trouver des solutions régulières

qui oscillent rapidement dans ce cas.

Keywords: Bifurcation branches, radial Keller-Segel equation, oscillations,

singular solutions.
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1. Introduction

The goal of the present paper is to investigate singular, radial solutions of

the so-called Keller-Segel equation
8
>>>><

>>>>:

��v + v = �ev in BR \ {0} ,

v > 0 in BR \ {0} ,

@⌫v = 0 on @BR ,
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where BR ⇢ RN , N � 3 is a ball of radius R > 0 centered at the origin. The

solutions are assumed to blow-up at the origin with a specific rate (see (??)

below) which is in some sense minimal so that they are limits of sequences of

regular solutions with value at the origin approaching infinity. Then, qualitative

properties of singular solutions such as Morse index, yield information about

oscillations of the bifurcation branches. We give more details below.

The problem (??) is motivated by models of chemotaxis, an omnipresent

mechanism in biology that describes the motion of species towards higher (lower)

concentration of a chemical substance, for example nutrients or poisons. Some-

times the substance is also secreted by the species themselves, which induces

a complicated large scale behavior such as aggregation, scattering, or pattern

formation. Mathematically, this phenomenon can be described by a strongly

coupled evolution system introduced by Keller and Segel [? ]
8
>>>><

>>>>:

@u

@t
= �u�D1r · (ur�(v)) in ⌦⇥ (0, T ),

@v

@t
= D2�v �D3v +D4u in ⌦⇥ (0, T ),

where T > 0, ⌦ ⇢ RN is a smooth bounded domain, Di, i = 1, · · · , 4 are positive

constants, and � is a smooth strictly increasing function, which depends on a

particular model. Since function v represents the concentration of a chemical

substance and u stands for the concentration of the considered organisms, it is

natural to suppose

u, v � 0 in ⌦⇥ (0, T )

and to complement the model with no-flux boundary conditions

@⌫u = @⌫v = 0 on @⌦⇥ (0, T ),

and some non-negative initial conditions. The system (??) has attracted a lot

of attention these past decades and we refer to surveys [? ? ], and to references

therein for more details on the existence, blow-up, and asymptotic behavior of

3



solutions.

The analysis of global dynamics of (??) crucially depends on the understand-

ing of equilibria, that is, solutions of

r · (ur(log u�D1�(v)) = 0, D2�v �D3v +D4u = 0 ,

with boundary conditions (??). By a standard reasoning one has u = CeD1�(v)

for some positive constant C. The canonical choices for � are �(v) = v, which

leads to the Keller-Segel equation (??) on a domain ⌦ and �(v) = ln v, which

after appropriate rescaling, yields Lin-Ni-Takagi equation
8
>>>><

>>>>:

��v + v = vp in ⌦,

v > 0 in ⌦,

@⌫v = 0 on @⌦.

The constants � and p in (??) and (??) respectively depend on the parameters

Di of the system. A large amount of literature has been devoted to the Lin-Ni-

Takagi equation in the subcritical and critical case, that is, when N � 3 and

1 < p  pS :=
N + 2

N � 2
(see [? ? ? ? ] and references therein). Much less is

known in the super-critical case, p > pS for (??) or N � 3 for (??), see [? ? ?

].

Clearly, if p increases, the problem (??) becomes ‘more super-critical’, how-

ever the role of � in (??) is less obvious, since the character of the nonlinearity

remains unchanged as � varies. To obtain a better insight, notice that (??) has

two constant equilibria v ⌘ 0 and v ⌘ 1 which are in particular independent of p.

On the other hand if � < 1/e, then (??) has two constant solutions u
�
< 1 < ū�

satisfying

�eµ = µ

and if � > 1/e there is no constant solution. Furthermore, ū� ! 1 and u
�
! 0

as �! 0+. To reveal the analogy between (??) and (??), denote µ = ū� and

u :=
v

u�

=
v

µ
.
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Then, u satisfies 8
>>>><

>>>>:

��u+ u = eµ(u�1) in BR

u > 0 in BR,

@⌫u = 0 on @BR ,

and constant solutions of (??) are u ⌘ 1 and u ⌘ u
µ
, with

u
µ
= eµ(uµ�1) = (euµ�1)µ, u

µ
< 1 .

Then, the nonlinearity is ‘more critical’ (has larger exponent) if µ is large, which

is equivalent to � being small.

The following bifurcation result for (??) with parameter µ was obtained in

[? ], see [? ] for an analogous result for (??). Note that for fixed parameters

the radial solutions of the second order equations are uniquely determined by

the value of the function at 0 (since u0(0) = 0), therefore it su�ces to investi-

gate bifurcation diagrams in R2 with coordinates corresponding to µ and u(0).

Specifically, by (µ0, A) we denote a pair (µ0, u), where u is the solution of (??)

with µ = µ0 and A = u(0). Here and below, �rad
i

denotes the i-th eigenvalue

of the operator ��+ Id in the ball BR := {x 2 RN : |x| < R} with Neumann

boundary conditions, restricted to the space of radial functions.

Theorem 1.1. For every i � 2, the trivial branch (µ, 1) of problem (??) has a

bifurcation point at (�rad
i

, 1). Let Bi ⇢ R2 be the continuum that branches out

of (�rad
i

, 1). The following holds

(i) the branches Bi are unbounded and do not intersect, and furthermore close

to (�rad
i

, 1), Bi is a C1-curve;

(ii) if (µ,A) 2 Bi, then the corresponding solution uµ satisfies uµ > 0 in BR;

(iii) each branch consists of two connected components B�
i

:= Bi \ {(µ,A) :

A < 1} and B+
i
:= Bi \ {(µ,A) : A > 1};

(iv) if (µ,A) 2 Bi then the corresponding uµ�1 has exactly i�1 zeros, u0
µ
has

exactly i� 2 zeros;

5



(v) the functions satisfying uµ(0) < 1 are uniformly bounded in the C1-norm.

The above theorem guarantees that B�
i

is a subset R ⇥ (0, 1) and it is un-

bounded. Since there are no non-trivial solutions for µ  0, we obtain that for

each i � 2 the curve B�
i

is unbounded from above in the µ coordinate. We

refer an interested reader to [? ? ? ? ] for the construction of solutions that

we expect to be on the lower branches B�
i

(the solutions lie in the half plane

{u(0) < 1}, but it is not known whether they are connected with the trivial so-

lution). Note that all the references above except [? ] deal with radial solutions

and analogous results to Theorem ?? for (??) were proved in [? ]. We also refer

to [? ? ] for related problems involving the p-Laplace operator.

Properties of the upper branches B+
i
are more delicate, since the correspond-

ing solutions are not a priori uniformly bounded. Although our interest is in

dimension N � 3, we first recall known results in two dimensions.

If N = 2, then we call the problem ’critical’ since the exponential nonlin-

earity is critical. It is proved in [? ] that the branches B+
i

are unbounded and

they exist for all values of µ � �rad
i

. Since �! 0 as µ ! 1, this means that in

(�, u(0)) plane, B+
i

approaches arbitrary close to the line � = 0. Moreover, for

N = 2 del Pino and Wei [? ] constructed a class of radial solutions (u�)�⌧1 of

(??) such that

u�(x) ! 8⇡G(x, 0) as �! 0+

uniformly on compact subsets of BR \{0}, where G is the Green’s function, that

is, for any y 2 BR, x 7! G(x, y) solves

��xG + G = �y in BR,
@G
@⌫x

= 0 on @BR

and �y is the Dirac measure supported at y. We remark that in [? ], a result

for non-radial solutions on general domains is also proved. Since one can check

that w�(0) = u�(0)/u� > 1, the functions (w�)�>0 belong to solutions in the

upper half plane, and their oscillation properties indicate that � 7! w� corre-

sponds to the asymptotic part of the first upper branch B+
1 . The results of [?

] were extended, by the first two authors in collaboration with Román in [? ],
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to solutions concentrating on the boundary and/or on an interior sphere and

blowing-up at the origin. Even more generally, under suitable non-degeneracy

assumptions, it is possible to show the existence of solutions (v�)�>0 such that

v�(0) ! 1 as � ! 0+ and for every M � 0 there is (rj)Mj=1 ⇢ (0, R) such that

v�(rj) ! 1 as � ! 0+. These non-degeneracy conditions are conjectured to

hold, and it is believed that the solutions that concentrate on i spheres form

the asymptote of the upper branch B+
i
. We remark that in the ‘asymptotically

critical’ case, p ⇡ pS for Lin-Ni-Takagi equation with N = 3, Rey and Wei [? ]

constructed a class of solutions that are believed to form the asymptote of B+
1 .

Our main aim is to describe the purely supercritical upper branches of (??),

a problem that recently attracted a lot of attention especially with Dirichlet

boundary conditions

8
>>>><

>>>>:

Urr +
N � 1

r
Ur + �g(U) = 0, 0 < r < 1,

U > 0, 0 < r < 1,

U(1) = 0,

see [? ? ? ? ? ? ]. In [? ], see also [? , Chapter 2] for a recent survey, Joseph

and Lundgren considered g(U) = eU and proved that the set of positive solutions

to (??) forms a curve � emanating from the trivial solution U ⌘ 0, � = 0. When

3  N  9, � has infinitely many turning points around �⇤ = 2(N�2) and blows

up at �⇤. The case N = 3 was treated earlier by Gel’fand [? ]. When N � 10,

the branch consists of minimal solutions for 0 < � < �⇤ with an asymptote at

� = �⇤. If g(U) = (1 + U)p, then in [? ] a special exponent pJL was found,

namely

pJL =

8
><

>:

1 +
4

N � 4� 2
p
N � 1

, when N � 11,

1, when 2  N  10,

and it was proved that when pS < p < pJL, the branch emanating from (U, �) =

(0, 0) has infinitely many turning points around �⇤ = ✓(N � 2 � ✓), ✓ =
2

p� 1
and blows up at �⇤ (the singular solution is given by U⇤ = r�✓ � 1), whereas if

7



p � pJL, the branch exists for all 0 < � < �⇤, does not oscillate and blows up at

�⇤. These results were extended to more general nonlinearities, see for instance

[? ], where the author considered nonlinearity of the form

g(u) = eu + h(u),

with h being a smooth lower order term.

For analogous Neumann problem we are only aware of [? ], where the author

studied the structure of positive radial solutions u� of
8
<

:
��u� = �(up

�
� u�) in B1,

@⌫u� = 0 on @B1,

that bifurcate from the trivial solution 1. The exponent p > N+2
N�2 is fixed here.

Problem (??) as well as (??) possesses a crucial scaling, that allows for exchange

of the parameter � for the size of the domain. More precisely, if u�(·) solves an

appropriate problem on BR with parameter �, then u↵2�(↵·) solves the same

problem on BR/↵. This property allows for a construction of explicit singular

solutions as well as proofs of various important non-degeneracy properties.

Neumann problems even with scale invariance are more complicated than

Dirichlet ones since there might be several bifurcation branches that contain

positive solutions. In fact, we show below that there are infinitely many such

branches. Also, radial eigenfunctions of Laplacian with Neumann boundary

conditions correspond to large eigenvalues.

In our problem (??) due to the presence of the zero order term, we can-

not rely on any scaling or transformation that removes the parameter � from

the equation. Moreover, the constant equilibria depend on � and after appro-

priate normalization (cf. (??)) the parameter appears in the exponent of the

nonlinearity, which introduces a novel parameter dependent problem.

To study the behavior of radial solutions for fixed parameter � > 0, we

first show that as the value of a solution at the origin increases, it converges

to a solution U⇤
�
satisfying the same problem with an explicit singularity at the

origin. The existence and uniqueness of U⇤
�
is shown on (0,1), and in order

8



to prove the existence of singular solution on a finite interval with appropriate

boundary conditions we first show that U⇤
�
has infinitely many critical points.

In other words, we show that for fixed �, the restriction of U⇤
�
satisfies Neumann

problem on infinitely many balls. More precisely, we prove that U⇤
�
oscillates

around ū�.

Before we formulate our first result, let us recall that ū� is the largest solution

of u = �eu and define O(rs) for s � 0 be a function such that O(rs)/rs ! 0 as

r ! 0+.

Theorem 1.2. For any N � 3 and � > 0, there exists U⇤
�
= U⇤ > 0 satisfying,

for each � 2 (0, 1),

8
><

>:

� u00 � N � 1

r
u0 + u = �eu on R+

u(r) = �2 ln r + ln
2(N � 2)

�
+O(r2�) when r ! 0.

Moreover, a solution satisfying the equation in (??) with the condition at the

origin

u(r) = �2 ln r + ln
2(N � 2)

�
+O(1)

is unique. In addition, if

� < �⇤
N

:=

8
>>>>>>>><

>>>>>>>>:

0.16 N = 3 ,

0.35 N = 4 ,

0.36 N = 5 ,

1
e

N > 5 ,

then U⇤ attains infinitely many times the value u�. Furthermore, for any se-

quences (�n)1n=1 and (�n)1n=1 with �n ! 1 and �n ! �1 2 (0,1), one has

un ! U⇤ in C1
loc

((0,1)), where un is the solution to
8
><

>:

�u00 � N � 1

r
u0 + u = �ne

u on R+ ,

u(0) = �n , u0(0) = 0

and U⇤ satisfies (??) and (??) with � = �1.

9



We require the restriction � < 1/e ⇡ 0.37 to guarantee that the nonlinearity

�eu�u changes sign, since otherwise due to compatibility condition, the solution

U⇤
�
cannot have critical points. Also, if � < 1/e, then there are two solutions

of u = �eu, or equivalently, two constant equilibria of (??). We believe that

the additional restriction on � in lower dimensions is technical (see Lemma ??

below) and the result should hold without it. However, since we are interested in

the asymptotes of bifurcation branches, that is, in small �, this assumption does

not cause any problems below. The oscillation result in Theorem ?? implies that

there exists an increasing, unbounded sequence of positive real numbers (Ri

�
)1
i=1

depending on N and � > 0 such that (U⇤
�
)0(Ri

�
) = 0, that is, U⇤

�
satisfies

Neumann boundary conditions on @BR
i
�
. Consequently, U⇤

�
is a singular radial

solution to (??) in the ball of radius Ri

�
, i 2 N.

Our next main result states that if the radius R and any large integer i > 1

are fixed, we can choose � > 0 such that Ri

�
= R, that is, U⇤

�
has prescribed

number of intersections with ū� on BR. Note that this result does not follow

from a rescaling of the domain, since our equation is not scaling invariant.

Clearly, such singular solutions have exactly i critical points (including the one

on the boundary).

Theorem 1.3. Assume N � 3 and let R > 0. Fix any �̃ 2 (0, �⇤
N
) (cf. Theorem

??) and let U⇤
�̃
be the function constructed in Theorem ??. Denote by (Ri

�̃
)i2N

the increasing sequence such that (U⇤
�̃
)0(Ri

�̃
) = 0 and let i⇤ be the smallest integer

such that Ri
⇤

�̃
> R. Then, for any i � i⇤, there exists �i > 0 such that

Ri

�i = R.

In particular, for any i � i⇤, there exists �i > 0 such that the equation (??)

admits a singular radial solution U⇤
�i satisfying

]{r 2 (0, 1)|U⇤
�i(r) = u�i} = i.

Once the existence of singular solutions on bounded domains is established,

we turn our attention to the character of bifurcation branches parametrized by

the value of solutions at the origin.

10



First we claim that the branch B+
i

(see Theorem ??) is bounded in µ, that

is, B+
i

⇢ (0, Ci) ⇥ (1,1), where Ci depends only on i. Indeed, by testing (??)

with v we see that there is no positive solution if �  0 and therefore by (??) no

solution of (??) if µ  0. Next, let u be a solution to (??) such that u(0) > 1.

Then setting ũ = u� 1, we see that

��ũ+ ũ = eµũ � 1 � µũ.

Hence, the Sturm-Picone comparison theorem implies that ũ� 1 has arbitrary

large number of zeros if µ is large. However, since number of zeros is constant

along B+
i

(cf. Theorem ??), the claim follows.

However, the branch B+
i

(see Theorem ??) is unbounded, and therefore by

Theorem ??, B+
i

(up to sub-sequence) converge to singular solutions. Next, we

turn our attention to asymptotic behavior of B+
i
.

To formulate the next result, for given �, � > 0 we denote by (ri
�,�

)i the

increasing sequence satisfying u0(ri
�,�

, �) = 0, where u(·, �) is the unique solution

to (??). Note that if u(·, �) is non-constant, its critical points are necessarily

discrete and the sequence (ri
�,�

)i is either finite or countable.

The following theorem gives a strong indication that for each i � 1, the

branch B+
i

oscillates around �i when 3  N  9. Below we show that the

oscillations of B+
i

indeed take place for a generic radius.

Theorem 1.4. Fix 3  N  9, R > 0, i � i⇤ (see Theorem ??), and let �i > 0

be the positive real number given in Theorem ??. Then, there exists a sequence

of initial data (�n)n with �n ! 1 and a sequence of positive integer (jn)n such

that rjn
�i,�n

= R.

Another evidence that the branch B+
i

oscillates around �i infinitely many

times if 3  N  9 and finitely many times if N > 10 is provided by the Morse

index of the singular solution. We leave open the border line case N = 10.

Recall that the Morse index of v satisfying (??), denoted m(v), in the space of

radial functions is the number of negative eigenvalues ↵ (counting multiplicities)

11



of the eigenvalue problem
8
>>>><

>>>>:

���+ �� �ev� = ↵� in BR,

@⌫� = 0 on @BR,

� is radially symmetric.

Recall that the Morse index of solutions remains constant along a bifurcation

branch unless it has a critical point in �. Thus, each turning point of a bifur-

cation branch corresponds to a transition of an eigenvalue (of the linearization)

across imaginary axis. Since the solutions u(·, �) ! U⇤ as � ! 1, the Morse

index of U⇤ indicates the total number of turning points of the branch and

combined with Theorem ??, it suggests the number of intersection points of B+
i

with �i.

Proposition 1.5. If U⇤
�i is a solution to (??), then m(U⇤

�i) < 1 when N > 10

while m(U⇤
�i) = 1 when 3  N  9.

Finally, we prove the oscillation of the branches B+
i

in dimension 4  N 

9 for generic radius. If the scale invariance is available, then one can show

that B+
i

can be parametrized by the value of the solution at the origin, and in

particular there are no secondary bifurcations and singular solutions are non-

degenerate. In our case the situation is much more complicated and we rely on

Sard’s theorem which merely yield results for generic domains.

First, we show a generic local uniqueness result for singular solutions, which

combined with Theorem ?? yields that B+
i

(and any other branches) converge

to discrete set of functions. More precisely, for generic R > 0, if (U⇤
�⇤)0(R) = 0,

then (U⇤
�
)0(R) 6= 0, for � close but di↵erent to �⇤. In other words, if we have a

singular solution on BR for certain �⇤, then we do not have a singular solution

for nearby �, that is, the set (�i) (see Theorem ??) is discrete.

Theorem 1.6. There exists a set S⇤ ⇢ (0,1) of Lebesgue measure zero, such

that for any radius R 2 (0,1) \ S⇤ the following holds. If (U⇤
�⇤)0(R) = 0,

then there exists � > 0 such that for any � 2 (�⇤ � �, �⇤ + �) \ {�⇤} one has

(U⇤
�
)0(R) 6= 0.

12



A direct consequence is the following corollary.

Corollary 1.7. Let R 2 (0,1)\S⇤, where S⇤ is defined in Theorem ??. Then,

there exists � > 0 such that, for any � 2 (�i��, �i+�)\{�i}, there is no singular

solution of (??) satisfying (??).

To formulate a generic uniqueness result for regular solutions, recall ri
�,�

defined in Theorem ??. Then, for any R 2 (0,1) \ S⇤ and any large � there

exists at most one � ⇡ �i such that ri
�,�

= R.

Theorem 1.8. Assume N � 4 and suppose � < 1/e for N > 4 and � < 0.196

if N = 4. Fix �i as in Theorem ?? and let S⇤ be the zero measure set as in

Theorem ??. Then for any R 2 (0,1) \ S⇤, there exist � > 0 and � > 0 such

that for each � � � there exists at most one � 2 (�i � �, �i + �) such that

ri
�,�

= R.

As a direct corollary of the two previous theorems and Theorem ??, we

obtain a quite complete picture of the bifurcation diagram in small dimension

for generic radius.

Corollary 1.9. Assume 4  N  9. Moreover suppose that � < 0.196 if N = 4.

For R 2 (0,1)\S⇤, the branches B+
i
defined in Theorem ?? oscillate in the plane

(µ, u(0)) around the line µ = �i, where �i is as in Theorem ??. Moreover, no

secondary bifurcation occurs for large u(0) and there are no branches bifurcating

from infinity. Furthermore, B+
i

can be parametrized by u(0) for large values of

u(0).

We remark that we expect Theorem ?? and Corollary ?? to hold true also

for N = 3 and for any � < 1/e (see Lemma ?? and ??).

Let us briefly describe the main ideas of proofs. We often use the change of

variables

u(r) = ⌘(⇣) + 2⇣,

where

r =

r
2(N � 2)

�
e�⇣

13



which transforms (??) to
8
><

>:

⌘00 � (N � 2)⌘0 + 2(N � 2)⌘ = m2e�2⌘(⌘ + 2⇣)� 2(N � 2)(e⌘ � 1� ⌘) ⌘ 2 R,

lim
⇣!1

⌘(⇣) = 0.

Note that the zero order term u makes (??) non-autonomous and as such we

cannot directly use techniques from dynamical systems. However, to gain a

better intuition assume that the term m2e�2⌘(⌘ + 2⇣), which is exponentially

small at infinity, is missing. In that case, we are searching for solutions con-

verging along stable manifold to 0. A standard linear analysis yields that 0 is

an unstable focus if 3  N  9 and unstable node if N � 10 and as such there

is no stable manifold. Thus, if e�2⇣(⌘ + 2⇣) is missing, then ⌘ ⌘ 0 is the only

solution of (??). This reasoning suggests that solutions of (??) are unique and

exponentially close to 0 at least for large ⇣. The uniqueness yields that solu-

tions of (??) are very unstable and are presumably hard to analyze by direct

numerical and analytical methods. Thus, to prove the existence and uniqueness

of solutions to (??) we incorporate the condition at infinity into the choice of

functional spaces and use the Banach fixed point theorem.

To analyze the oscillations, we need to understand the behavior of U⇤
�
for

large r. Since (??) admits a Lyapunov functional, intuition (modulo non-

autonomous term 1
r
u0 which is small for large r) yields that the function U⇤

�

converges as r ! 1 to an equilibrium of the (??) viewed as an initial value

problem, that is, to the values ū� or u
�
(see (??)). Again by ignoring the term

u0/r, we can analyze the character of equilibria and obtain that u
�
is a saddle

and ū� is a center. Hence, the former does not allow for oscillatory solutions,

whereas the latter does. Therefore, an important ingredient of the proof is to

show that the singular solution of (??) does not converge to u
�
as r ! 1,

see Proposition ?? which is in fact a Pohozaev type identity. This is the only

result where we need our technical upper bound �  �⇤ in lower dimensions (cf.

Theorem ??). The final argument is based on Sturm-Picone oscillation theorem

and careful estimates of singular solutions. Note that similar ideas were used in

[? ].
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The proof of u(·, �) ! U⇤ as � ! 1 is partly motivated by [? ] and crucially

depends on the uniqueness of the singular solution U⇤. Then, it su�ces to

prove that u(·, �) converges to a function that satisfies both the equation (??)

and asymptotics at the origin (??). Since, u(·, �) and U⇤ satisfy the same

equation (??), the convergence of u(·, �) to a solution of (??) follows from a

priori estimates and standard regularity theory. The asymptotics at the origin

is of a di↵erent flavor and requires careful estimates in transformed variables.

The proof of Theorem ?? uses an observation that for fixed � and large u,

the term u is negligible compared to eu, and therefore if � is large, then close

to the origin we can neglect the zero order term which was responsible for the

breaking of scaling. Hence, close to the origin u can be approximated by the

solution of scale invariant problem

8
<

:
�ū+ �eū = 0 on (0,1) ,

ū(0, ↵) = ↵, ū0(0, ↵) = 0 .

The same reasoning yields that singular solutions of (??) can be approximated

near the origin by the singular solution of (??) which is given by

ū⇤(r) = �2 ln r + ln
2(N � 2)

�
.

Using the classical arguments of Joseph and Lundgren [? ] and scale invariance

of (??) we conclude that if 3  N  9 and ↵ being su�ciently large, the solution

u(·, ↵) of (??) intersects arbitrarily many times ū⇤ in a small neighborhood of the

origin. Using precise estimates we can indeed verify this intuition and conclude

that the solution u of (??) with u(0) = � intersects arbitrarily many times the

singular solution U⇤ in a small neighborhood of the origin. The rest of the proof

of Theorem ?? follows from zero number arguments.

Theorem ?? is a consequence of the continuity of the function � ! Ri

�
for

all i 2 N and the fact that, for any i 2 N,

Ri

�
! 0+, as �! 0+.

15



Although this idea is rather elementary its proof poses the main technical chal-

lenge of the paper. In order to prove (??) we not only need more precise asymp-

totics of U⇤
�
at the origin, but we require estimates on the length of the interval

where the asymptotics are valid. In fact, we prove estimates up till r�, the first

intersection point of U⇤
�
with ū�. The cornerstone of the proofs is an observa-

tion that the higher order correction of U⇤
�
for small r is negative. Once the

first intersection with ū� is established, we obtain an estimate on (U⇤
�
)0(r�) and

finish the proof using careful estimates and Sturm-Piccone theorem. We remark

that direct estimates up till the first critical point of U⇤
�
, that is, till R1

�
, seem

beyond reach. The continuity of � ! M i

�
is primarily based on the uniqueness

of U⇤
�
.

The bounds on the Morse index stated in Proposition ?? are based on the

asymptotic behavior of U⇤
�
when r ! 0 combined with Hardy’s inequality. The

proof of Theorem ?? follows from the fact that the function �! Ri

�
is Lipschitz

which allows us to use the Sard’s theorem. Lipschitz continuity in turn follows

from precise estimates on the modulus of continuity of the function � 7! U⇤
�
.

The main observation in the proof of Theorem ?? is the fact that the function

� ! ri
�,�

is bounded in C2(I), for some compact interval I ⇢ (0,1), by a

constant not depending on �, which follows from precise estimates on the rate

of convergence of regular solutions to singular ones.

The paper is organized as follows. In Section ??, we prove the first part

of Theorem ??, namely, we establish the existence of U⇤
�
and prove oscillations

around u�. We finish the proof of Theorem ?? in Section ?? by showing the

convergence of u�(r, �) to U⇤
�
(r) as � ! 1. Section ?? is dedicated to the

proofs of Theorem ?? and Proposition ??. Theorem ?? is proved in Section ??.

Finally, generic results, Theorems ?? and ?? are proved in Section ??. Let us

mention that we expect the same results to hold for the Lin-Ni-Takagi equation

or all radii, which will be the subject of a forthcoming work.
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2. Construction of the positive radial singular solution in the whole

space.

Fix N � 3, � > 0 and consider the equation
8
><

>:

�u00 � N � 1

r
u0 + u = �eu in (0,1),

u > 0 in (0,1) ,

where u depends on the radial variable r and the derivatives are with respect

to r. The main goal of this section is the proof of the existence and uniqueness

of solution of (??) with

u(r) = �2 ln r + ln
2(N � 2)

�
+ o(1) as r ! 0+ ,

where we denote by o(1) the class of functions f such that limr!0+ f(r) = 0.

We use the following change of variables

u(r) = ⌘(⇣) + 2⇣,

where

r =

r
2(N � 2)

�
e�⇣ .

To simplify notation, we denote m =

r
2(N � 2)

�
and ⇣ = ln

m

r
. A direct

computation shows that
du

dr
= �1

r

d⌘

d⇣
� 2

r
,

and
d2u

dr2
=

1

r2
d2⌘

d⇣2
+

1

r2
d⌘

d⇣
+

2

r2
.

In the following, if f : R ! R depends only on one variable ⇢, usually r or ⇣,

we denote f 0 = df

d⇢
, and analogously for higher order derivatives. Then, (??) is

equivalent to

0 = �u00 � N � 1

r
u0 + u� �eu

=
1

r2
⇥
�⌘00 + (N � 2)⌘0 +m2e�2⇣(⌘ + 2⇣)� 2(N � 2)(e⌘ � 1)

⇤
,

17



and consequently

⌘00(⇣)� (N � 2)⌘0(⇣) + 2(N � 2)⌘(⇣) = g(⇣),

where

g(⇣) = m2e�2⇣(⌘(⇣) + 2⇣)� 2(N � 2)(e⌘(⇣) � 1� ⌘(⇣)) .

We also set

�(⌘) = �2(N � 2)(e⌘ � 1� ⌘)

and note that �(⌘) ⇡ 1
2⌘

2 for ⌘ ⇡ 0. The blow up rate (??) is equivalent to

lim
⇣!1

⌘(⇣) = 0 .

For any N � 3 denote

↵ = N � 2, � =

r
(N � 2)|N � 10|

4
,

and let GN be the Green’s function for the left hand side of (??) defined by

GN (z) :=

8
>>>><

>>>>:

1
�
e�

↵
2 z sin(�z) 3  N  9,

e�
↵
2 zz N = 10,

1
�
e�

↵
2 z sinh(�z) N > 10,

for z � 0, GN (z) = 0 for z < 0 .

Observe that GN 2 L1(R) \ L1(R) for any N � 3. Then, (??) is equivalent to

⌘(�) =

Z

R
GN (⌧ � �)g(⌧)d⌧ .

Thus, finding solution of (??) satisfying (??) reduces to finding a solution of

(??).

Proposition 2.1. Let m > 2
p

2(N � 2). The equation (??) admits a unique

solution on (�1,1) satisfying

lim
⇣!1

⌘(⇣) = 0.

18



This solution is also unique on any interval (⇣0,1), ⇣0 2 R.

Remark 2.2. Clearly, Proposition ?? establishes existence and uniqueness of

solution U⇤ asserted in Theorem ??.

Proof of Proposition ??. First, we construct a local solution by using the con-

traction mapping theorem on the Banach space X = {⌘ 2 C0([⇣0;1)); |⌘|1 <

1}, where ⇣0 is determined below and C0([⇣0,1)) is the space of continuous

function on [⇣0,1) that decay at infinity, equipped with the supremum norm.

Also, for any r̄ � 0 denote Br̄ = {⌘ 2 X; |⌘|1 < r̄} and let g be as in (??). To

avoid confusion, we explicitly indicate the dependence of g on ⌘.

Let GN be defined by (??). For any ⌘ 2 Br̄ and any ⇣ � ⇣0, denote

F (⌘)(⇣) =

Z

R
GN (� � ⇣)g(⌘, �)d� =

Z 1

0
GN (�)g(⌘, � + ⇣)d� .

Note that the integrals are well defined since GN 2 L1 and GN (z) = 0 for z  0.

Since ⌘ 2 X, we have that ⌘(⇣) ! 0 as ⇣ ! 1, and therefore |g(⌘, ⇣)| ! 0 as

⇣ ! 1. Hence, since GN 2 L1

|F (⌘)(⇣)|  CN sup
��0

|g(⌘, � + ⇣)| ! 0 as ⇣ ! 1

and in particular F : X ! X.

Next, we show that F is a contraction on Br̄. Indeed, for any " > 0 there is

r̄ > 0 and ⇣0 > 0 such that for every ⌘1, ⌘2 2 Br̄ and ⇣ � ⇣0 one has

|g(⌘1, �)� g(⌘2, �)|  (m2e�2�|⌘1(�)� ⌘2(�)|+ 2(N � 2)|e⌘1(�) � e⌘2(�) � ⌘1(�) + ⌘2(�)|

 "k⌘1 � ⌘2k1 ,

where in the last step we used the mean value theorem for the function m(x) =

ex � x and the fact that |m0(x)| = |ex � 1| is small if x is small, that is, if

|⌘i(�)|  r̄ ⌧ 1 for i 2 {1, 2}. Then, since GN 2 L1

kF (⌘1)� F (⌘2)kL1((⇣0,1))  " k⌘1 � ⌘2kL1((⇣0,1)) kGNkL1 = CN" k⌘1 � ⌘2kL1((⇣0,1)) .
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Fix " > 0 such that CN" <
1
2 , which in turn fixes small r̄ and large ⇣0.

Finally, we show that F maps Br̄ into itself. By increasing ⇣0 if necessary,

we can assume that ⇣e�2⇣ < "0r̄ for any ⇣ � ⇣0, where 0 < "0 < 1
CNm2 . Then,

for any ⇣ � ⇣0,

kF (0)k
L1(⇣0,1) = sup

⇣�⇣0

2m2

����
Z 1

0
GN (�)e�2(�+⇣)(� + ⇣)d�

���� < "0CNm2r̄ <
1

2
r̄ .

Thus for any ⌘ 2 Br̄ one has

kF (⌘)k
L1(⇣0,1)  kF (⌘)� F (0)k

L1(⇣0,1)+kF (0)k
L1(⇣0,1) <

1

2
k⌘kL1(⇣0,1)+

1

2
r̄  r̄ ,

and so F is a contraction on Br̄. The existence and uniqueness of solutions on

(⇣0,1) follows from the Banach fixed point theorem. To prove the uniqueness

in X suppose that there are two solutions ⌘1 and ⌘2. Fix r̄ as above and by

(??) we can choose ⇣0 su�ciently large such that ⌘1, ⌘2 2 Br̄. By the already

proved uniqueness we obtain that ⌘1 = ⌘2 on (⇣0,1). The fact that ⌘1 ⌘ ⌘2

follows from the uniqueness of the initial value problems.

Let us prove that ⌘ can be extended to the whole real line. We proceed by

showing that a solution u of (??) defined on the interval (0, r0) can be extended

to the interval (0,1). Indeed, let (0, R0) be the maximal existence interval of

the solution and assume R0 < 1. Since the nonlinearity is Lipschitz it su�ces

to show that u is bounded on the interval I0 = (R0/2, R0). Next, observe that

the functional

V (r) =
(u0(r))2 � u2(r)

2
+ �eu(r)

is a Lyapunov functional for the flow, that is, r 7! V (r) is decreasing on r 2

(0, R0). Hence,

V (r)  V (R0/2) = C⇤ for any r 2 I0 ,

that is, V is bounded from above on I0. To prove that u is bounded, note that

(??) yields (u0(r))2 � u2(r)  C⇤, and therefore

(u2)0 = 2uu0  u2 + (u0)2  C⇤ + 2u2 .
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The Gronwall inequality yields that u2(r)  Ce2r for r 2 I0, where C depends

on C⇤, R0, and u(R0/2). Thus, u is bounded on I0, and therefore can be

continued beyond R0, a contradiction.

Next we obtain more precise asymptotics on ⌘ at infinity, which in turn

transforms into more precise asymptotics of u at the origin.

Lemma 2.3. If ⌘ is a solution of (??), (??), then for any � > 0,

lim
⇣!1

e(2��)⇣⌘(⇣) = lim
⇣!1

e(2��)⇣⌘0(⇣) = 0 .

Proof. By applying Young convolution inequality to (??), we have
Z 1

⇣

|⌘(�)|d�  kGNkL1

Z 1

⇣

|g(�)|d� = CN

Z 1

⇣

|g(�)|d� .

Since, for every " > 0, one has 2(N � 2)|ea � 1 � a|  "|a| for any su�ciently

small |a|, and since ⌘(�) ! 0 as � ! 1, we deduce that for any � > 0, there

exists large ⇣0 such that, for any ⇣ � ⇣0,

|g(⇣)|  "|⌘(⇣)|+ 2m2⇣e�2⇣ +m2e�2⇣ |⌘(⇣)|  2"(e�2(1��/2)⇣ + |⌘(⇣)|).

This implies that, for " = 1
4 and any ⇣ � ⇣0

Z 1

⇣

|⌘(�)|d�  Ce�2(1��/2)⇣ ,

where C depends on � and N . Substituting this estimate and (??) with " = 1
4

to (??), we obtain that

|⌘(⇣)|  1

2

Z 1

�

|GN (⌧ � �)|(e�2(1��)� + |⌘(�)|d⌧  Ce�2(1��/2)⇣

and the first assertion follows.

Finally, since

⌘0(�) =

Z

R
G0

N
(⌧ � �)g(⌧)d⌧

and G0
N

2 L1, we can proceed as in (??) by replacing GN by G0
N

and conclude

the proof.

Next, we show that U⇤ 2 H1
loc

(RN ) where U⇤ is defined in Theorem ??.
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Lemma 2.4. If U⇤ is as in Theorem ??, then

lim
r!0

(U⇤)0(r) +
2

r
= 0.

Moreover, U⇤ 2 H1(BR1) for any R1 > 0.

Proof. By Proposition ??, U⇤ exists on (0,1). Relation (??) implies that

(U⇤)0(r) = �1

r
⌘0 (⇣)� 2

r
= � 1

m
e⇣⌘0 (⇣)� 2

r

and the first assertion follows from Lemma ??. Next, recall that U⇤(r) =

⌘(⇣)� 2 ln r

m
. So, using Lemma ??, we deduce that

kU⇤k2
H1(BR1 )

= !N

Z
R1

0
(|(U⇤)0|2 + |U⇤|2)rN�1dr

 C

Z
R1

0
(r�2 + (ln r)2 + 1)rN�1dr < 1

for N � 3. This establishes the lemma.

Next, we focus on the behavior of U⇤ for large r. As a preliminary we prove

the following lemma which is based on Pohozaev-type identity.

Lemma 2.5. Fix N � 3 and � 2 (0, �⇤
N
), where �⇤

N
is as in Theorem ??. If

U⇤ is the unique solution of (??), then U⇤ > u
�
and

lim inf
r!1

U⇤(r) > u
�
,

where u
�
< 1 is the smaller solution of u = �eu.

Proof. If v = U⇤ � u
�
, then v satisfies

��v + v = u
�
(ev � 1)

with

v(r) = �2 ln r + ln
2(N � 2)

�
� u

�
+O(1) = �2 ln r + ln

2(N � 2)

�eu�
+O(1)

= �2 ln r + ln
2(N � 2)

u
�

+O(1) .
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For a contradiction, assume that either there exists the smallest R0 such that

v(R0) = 0, or v > 0 and lim infr!1 v(r) = 0. In the latter case we set R0 = 1.

Denote "0 = 1� u
�
2 (0, 1).

We claim that R0 = 1 implies limr!1 v(r) = 0. Indeed, if not then there

exist v0 > 0 and a sequence rn ! 1 as n ! 1 such that v(rn) � v0 > 0. Since

lim infr!1 v(r) = 0, by the mean value theorem, there is a local minimizer r⇤

of v. In particular, v0(r⇤) = 0 and thus (U⇤)0(r⇤) = 0. Since the Lyapunov

functional V defined by (??) is decreasing, we obtain that V (r⇤) > V (r) for any

r > r⇤. This implies that there is no r > r⇤ such that U⇤(r) = U⇤(r⇤) and since

r⇤ is a local minimum U⇤(r) � U⇤(r⇤) > 0 for any r � r⇤. This contradicts

lim infr!1 U⇤(r) = 0, and the claim follows.

If R0 = 1, then since v & 0, we can fix R > 0 such that |ev(r) � 1| 

(1 + "0)|v(r)| for each r � R. Consequently,

��v + v  u
�
(1 + "0)v = (1� "20)v in RN \BR(0) .

Define  (r) = C1e�
"0
2 (r�R), for some C1 > 0 specified below. It is easy to see

after increasing R if necessary, that we have

�� +  =

✓
1� "20

4

◆
 + "0

(N � 1)

2r
 �

�
1� "20

�
 in RN\BR(0).

Fix R and choose C1 such that C1 > v(R). Then,  (R) � v(R)  0 and

limr!1(v(r)�  (r)) = 0. Then, a comparison principle yields v(r)   (r), for

all r � R. Also, elliptic regularity theory implies that v0 decays exponentially

at infinity.

Fix any R 2 (0, R0) multiplying (??) by rNv0 and integrating, we find, for

any 0 < ⇢ < R,

N � 2

2

Z
R

⇢

|v0|2rN�1dr +


rN (v0(r))2

2

�R

⇢

�

rNv2

2

�R

⇢

+
N

2

Z
R

⇢

v2rN�1dr

+ u
�

⇥
rN (ev � 1� v)

⇤R
⇢
= Nu

�

Z
R

⇢

(ev � 1� v)rN�1dr.

On the other hand, multiplying (??) by vrN�1 and integrating, we have
Z

R

⇢

|v0|2rN�1dr � [rN�1vv0]R
⇢
+

Z
R

⇢

v2rN�1dr = u
�

Z
R

⇢

v(ev � 1)rN�1dr.
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Since for small ⇢ one has |v(⇢)|  C| ln ⇢| by (??), and

|v0(⇢)| = |(U⇤)0(⇢)|  4

⇢
,

by Lemma ??, we have that the lower boundary terms converge to 0 as ⇢! 0.

Also, if R0 = 1 since v(R) and v0(R) decay exponentially as R ! 1, the

upper boundary terms decay to 0 as R ! 1. If R0 < 1, one has v(R0) = 0

and clearly RN

0 (v0(R0))2 � 0. This implies that

Z
R

0
v2rN�1dr+oR(1)  u

�

 
N

Z
R

0
(ev � 1� v)rN�1dr � N � 2

2

Z
R

0
v(ev � 1)rN�1dr

!
.

where oR(1) ! 0 as R ! 1 if R0 = 1 and oR(1) = 0 if R0 < 1. Let us denote

f(x) = x2 � u
�

✓
N(ex � 1� x)� N � 2

2
x(ex � 1)

◆
.

We will obtain a contradiction to (??) for su�ciently large R if we prove that

f(x) > 0 for any x > 0. Since f(0) = f 0(0) = 0, it su�ces to show that

f 00(x) > 0 for any x > 0. A simple computation shows that f 00(x) = 2 �

u
�

✓
2ex � N � 2

2
xex
◆

and that

min
x�0

f 00(x) =

8
><

>:

f 00
✓
6�N

N � 2

◆
, if N < 6,

f 00(0) = 2(1� u
�
), if N � 6.

Since by definition u
�
< 1, we have f 00(x) > 0 for N � 6, a contradiction. Also,

we obtain a contradiction if

u
�
<

4

N � 2
e�

6�N
N�2 ⇡

8
>>>><

>>>>:

0.20, if N = 3,

0.74, if N = 4,

0.96, if N = 5.

One can check that the previous values corresponds to

� =

8
>>>><

>>>>:

0.16, if N = 3,

0.35, if N = 4,

0.36, if N = 5 ,

that is, � < �⇤
N
.
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Remark 2.6. Under the assumptions of Lemma ?? one has U⇤ > 0.

Next, we prove that U⇤ oscillates around u� as claimed in Theorem ??.

Lemma 2.7. Let N � 3 and suppose that � 2 (0, �⇤
N
), where �⇤

N
is as in the

statement of Theorem ??. If U⇤ is as in Theorem ?? (for the existence and

uniqueness see Proposition ??), then there exists a sequence 0 < R1
�
< . . . <

Rk

�
< . . . ! 1 such that U⇤(Rk

�
) = ū�. In particular, there is a sequence (R⇤k

�
)

such that (U⇤)0(R⇤k
�
) = 0.

Proof. By Lemma ?? one has M := inf U⇤ > u
�
. If we denote w(r) =

r
N�1

2 (U⇤(r)� ū�), then standard calculations yield that w satisfies

w00 =

✓
U⇤ � �eU

⇤

U⇤ � ū�

+
(N � 1)(N � 3)

4r2

◆
w =: m(r)w.

Set

F (x) =
x� �ex

x� ū�

x 6= ū�, F (ū�) = 1� ū� .

It is easy to see that F is continuous and F ! �1 as x ! 1. Furthermore,

the numerator is positive if and only if x 2 (u
�
, ū�), whereas the denominator

is positive if and only if x > ū�. Thus, F < 0 on (u
�
,1), and consequently

F  �2"1 < 0 on [M,1). Choose R2 large such that

(N � 1)(N � 3)

4r2
< "1

and we obtain m(r)  �"1 for r � R2. By the Sturm-Picone comparison theo-

rem we obtain that w has infinitely many zeros on (R,1), which in particular

implies that U⇤ intersects ū� infinitely many times.

3. Convergence to the singular solution.

In this section, we finish the proof of Theorem ??, that is, for any fixed

� > 0 we show that the solution un of (??) converges to the solution U⇤ of (??)

in C1
loc

(0,1) as n ! 1. Although, the framework originates from [? ], our

setting is di↵erent due to breaking of scaling, and dependence of � on n. For
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clarity of notation, we often drop the subscript n of functions if the dependence

is clear from the context.

If ûn(⇢) = un(r, �n)� �n with ⇢ = e
�n
2 r, then û(·, �) satisfies

8
><

>:

û00 +
N � 1

r
û0 + �ne

û � e��n(û+ �n) = 0 in (0,1) ,

û(0) = û0(0) = 0.

Next, let ū(r, �̄) be the unique radial solution of
8
><

>:

ū00 +
N � 1

r
ū0 + �1eū = 0 in (0,1) ,

ū(0) = 0, ū0(0) = 0 .

The existence of global solutions of (??) and (??) is established in the proof of

the following lemma.

Lemma 3.1. For any n > 0 there exist unique solutions ûn and ū of (??) and

(??) respectively. Moreover,

ûn ! ū in C1
loc

([0,1)) as � ! 1.

Proof. Since the non-linearities are locally Lipschitz, local existence and unique-

ness of solution to (??) and (??) follow from standard arguments for radial

solutions. Also, if the solutions exist, then they are necessarily unique. Next,

define

En(⇢) =
(û0(⇢))2

2
� e��n

û2(⇢)

2
+ �ne

û(⇢) � e��n�nû(⇢) .

It is easy to check that En is decreasing and En(0) = �n and since (�n) con-

verges, |En(0)|  C. Thus, since � > 0 and � 7! e��� is bounded on (0,1),

Young inequality yields

((û)2)0(⇢)  û2(⇢)+(û0)2(⇢)  En(⇢)+û2(⇢)

✓
1 +

e��n

2

◆
+e��n�nû(⇢)  �n+C(û2(⇢)+1) ,

where C is a universal constant. Then, Gronwall inequality implies

|û(⇢)|  C1e
C2⇢ ,
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where C1, C2 are universal constants. Thus, û is a priori bounded, and therefore

it can be uniquely extended to [0,1). Also, since all coe�cients are bounded

by elliptic regularity, û has bounded first, second, and third order derivatives

locally on [0,1), uniformly in n. Then, by Arzelà-Ascoli theorem ûn ! û1

in C2
loc[0,1). Furthermore, e��n(û(⇢) + �n) ! 0 and �neû(⇢) ! �1eû1(⇢) as

n ! 1 locally uniformly in ⇢. Thus (ûn) converges (up to sub-sequence) locally

uniformly in C2([0,1)) to a solution of (??), and since such solution is unique,

we obtain that ū = û1 is globally defined. Convergence (??) follows.

As in (??), we define ⇣ = lnm� ln r with m =
q

2(N�2)
�1

and we let ⌘(⇣) =

u(r)� 2⇣. Then, ⌘ satisfies (cf. (??))

8
>>>><

>>>>:

⌘00 � (N � 2)⌘0 + 2(N � 2)( �n
�1

e⌘ � 1)�m2e�2⇣(⌘ + 2⇣) = 0, �1 < ⇣ < 1 ,

lim⇣!1(⌘(⇣) + 2⇣) = �n,

lim⇣!1 e⇣(⌘0(⇣) + 2) = 0.

For ⇢ = e
�n
2 r we set ⌧ = ⇣ � �n/2 = lnm � ln ⇢ and ⌘̂(⌧) := ⌘(⇣). Observe

that ⌘̂(⌧) = u(r) � 2⇣ = û(⇢) + �n � 2⇣ = û(⇢) � 2⌧ is a transformed function

corresponding to û solving (??). Standard computations show that

8
>>>><

>>>>:

⌘̂00 � (N � 2)⌘̂0 + 2(N � 2)( �n
�1

e⌘̂ � 1)�m2e�2⌧��n(⌘̂ + 2⌧ + �n) = 0, �1 < ⌧ < 1 ,

lim⌧!1(⌘̂(⌧) + 2⌧) = 0,

lim⌧!1 e⌧ (⌘̂0(⌧) + 2) = 0.

We also define ⌘̄(⌧) = ū(⇢, �)�2⌧ , a transformed function of ū. Then ⌘̄ satisfies

8
>>>><

>>>>:

⌘̄00 � (N � 2)⌘̄0 + 2(N � 2)(e⌘̄ � 1) = 0, �1 < ⌧ < 1 ,

lim⌧!1(⌘̄(⌧) + 2⌧) = 0,

lim⌧!1 e⌧ (⌘̄(⌧)0 � 2) = 0.

In the transformed variables, Lemma ?? rewrites as

Corollary 3.2. We have

⌘̂n(·) ! ⌘̄(·), in C1
loc

((�1,1)) as n ! 1.
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Proof. For any compact A ⇢ (�1,1), denote B = {⇢ : lnm � ln ⇢ 2 A} and

observe that B ⇢ (0,1) is bounded, compact, and independent of �. Then,

Lemma ?? implies that

sup
⌧2A

|⌘̂0
n
(⌧)�⌘̄0(⌧)| = sup

⌧2A

|(⌘̂n(⌧)+2⌧)0�(⌘̄(⌧)+2⌧)0| = sup
⇢2B

|⇢(û0
n
(⇢)�ū0(⇢))| ! 0 as n ! 1 .

Analogously, we obtain sup
⌧2A

|⌘̂n(⌧)� ⌘̄(⌧)| ! 0 as n ! 1 and the assertion

follows.

Next, a standard calculation yields that

Ē(⌧) =
(⌘̄0(⌧))2

2
+ 2(N � 2)(e⌘̄(⌧) � ⌘̄(⌧)� 1)

is non-decreasing, and strictly increasing unless ⌘̄0(⌧) = 0. Also, since ex � x�

1 � 0, we obtain Ē � 0. A standard theory of Lyapunov functions implies that

⌘̄ converges to a set of equilibria as ⌧ ! �1. Since 0 is the only equilibrium,

we have (⌘̄(⌧), ⌘̄0(⌧)) ! (0, 0) as ⌧ ! �1.

Fix any ⌧0 and recall that ⌘n(⇣) = ⌘̂n(⌧) with ⌧ = ⇣ � �n

2 . Then, Corollary

?? implies

lim
n!1

⇣
⌘n
⇣
⌧0 +

�n
2

⌘
, ⌘0

n

⇣
⌧0 +

�n
2

⌘⌘
= lim

n!1
(⌘̂n(⌧0), ⌘̂n(⌧0)) = (⌘̄(⌧0), ⌘̄(⌧0)) .

Since (⌘̄(⌧), ⌘̄0(⌧)) ! (0, 0) as ⌧ ! �1, we have that the right hand side of

(??) is arbitrary close to (0, 0) if ⌧0 is large negative.

In the following result we implicitly assume as above that the functions de-

pend on n. Denote z(⇣) = ⌘0(⇣). Next, we show that there is ⇣⇤ > 0 independent

of n such that if (⌘(⇣̄), z(⇣̄)) is close to (0, 0) for some ⇣̄ > ⇣⇤, then (⌘(⇣), ⌘0(⇣))

is close to (0, 0) for any ⇣ 2 (⇣⇤, ⇣̄). Note that by (??), ⇣̄ is indeed large, since

⌧0 is fixed and �n is large.

Lemma 3.3. For any n > 0 and " > 0 denote �n

"
= {(⌘, z) 2 R2 : 2(N �

2)( �n
�1

e⌘ � 1 � ⌘) + 1
2z

2  "} and fix "0 > 0 such that �n

2"0 ⇢ {(⌘, z) 2 R2 :

|⌘| < 1}. Note that since �n ! �1, "0 can be chosen independent to n. Fix
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" 2 (0, "0) and let ⇣⇤ � 2 depending on " > 0, but independent of n be so large

that

m2 e
�2⇣

2
(1 + 2⇣)2  "

2
for any ⇣ > ⇣⇤ .

If there are ⇣̄ > ⇣⇤ and n > 0 such that (⌘(⇣̄), ⌘0(⇣̄)) 2 �n

"
, then (⌘(⇣), ⌘0(⇣)) 2

�n

2", for any ⇣ 2 (⇣⇤, ⇣̄).

Proof. Fix any n > 0. We set

Ẽn(⌘, z, ⇣) =
z2

2
+ 2(N � 2)

✓
�n
�1

e⌘ � 1� ⌘

◆
� m2e�2⇣

2
(⌘ + 2⇣)2.

Since ⌘ satisfies (??), it is easy to check that

dẼn(⌘(⇣), ⌘0(⇣), ⇣)

d⇣
= ⌘0

✓
⌘00 + 2(N � 2)

✓
�n
�1

e⌘ � 1

◆
�m2e�2⇣(⌘ + 2⇣)

◆

� 2m2e�2⇣(⌘ + 2⇣) +m2e�2⇣(⌘ + 2⇣)2

= (N � 2)(⌘0)2 +m2e�2⇣(⌘ + 2⇣)(⌘ + 2⇣ � 2).

Fix " 2 (0, "0) and let ⇣̄ > ⇣⇤ be as in the statement of the lemma. Since " < "0,

then �n

2" ⇢ {(⌘, z) 2 R2 : |⌘| < 1} and, by continuity, (⌘(⇣), z(⇣)) 2 �n

2" for any

⇣ close to ⇣̄. By contradiction assume that there is T > ⇣⇤ such that

(⌘(⇣), z(⇣)) 2 �n

2", for ⇣ 2 (T, ⇣̄) and (⌘(T ), z(T )) /2 �n

2".

Integrating (??) between T and ⇣̄ and recalling that |⌘(⇣)|  1, for ⇣ 2 (T, ⇣̄)

and T > ⇣⇤ � 2, we find

Ẽn(⌘(⇣̄), z(⇣̄), ⇣̄)� Ẽn(⌘(T ), z(T ), T ) � m2

Z
⇣̄

T

e�2⇣(⌘(⇣) + 2⇣)(⌘(⇣) + 2⇣ � 2)d⇣ � 0 .

Then, recalling that (⌘(⇣̄), z(⇣̄)) 2 �", we deduce from the previous line and

(??) that

(z(T ))2

2
+ 2(N � 2)(e⌘(T ) � 1� ⌘(T ))  (z(⇣̄))2

2
+ 2(N � 2)(e⌘(⇣̄) � 1� ⌘(⇣̄) +m2 e

�2T

2
(⌘(T ) + 2T )2

 3

2
" ,

a contradiction to the definition of T .
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Now, we prove the convergence of un to U⇤ when n ! 1, which completes

the proof of Theorem ??.

Proposition 3.4. Let U⇤ be the singular solution given by Theorem ?? (cf.

Proposition ??). Then,

un ! U⇤ as � ! 1 in C1
loc

((0,1)).

Proof. Fix sequences (�n)n2N and (�n)n2N with �n % 1 and �n ! �1 2 (0,1)

as n ! 1 and let zn = ⌘0
n
(see (??)). Fix any small " 2 (0, "0), where "0 > 0

and ⇣⇤ are as in Lemma ??. Also, recall the definition of �" from Lemma ??

and denote

�⇤
"
=
\

n�0

�n

"
, �0

"
=
[

n�0

�n

"
.

Since �n ! �1, �⇤
"
and �0

"
are non-empty bounded sets that approach to {(0, 0)}

as "! 0+.

By (??), there exists ⌧0 < 0 such that, for any su�ciently large n, one has

⇣n := ⌧0 +
�n

2 > ⇣⇤ and (⌘n(⇣n), zn(⇣n)) 2 �⇤
"
. Then, Lemma ?? implies that

(⌘n(⇣), zn(⇣)) 2 �0
2", for any ⇣ 2 (⇣⇤, ⇣n].

Since ⌘ satisfies (??), we deduce that ⌘ 2 C2((⇣⇤, ⇣n]) and, after di↵erenti-

ating (??) with respect to ⇣, we obtain ⌘ 2 C3((⇣⇤, ⇣n]). Since ⇣⇤ is indepen-

dent of n and ⇣n ! 1 as n ! 1, we have, by Arzelà-Ascoli’s theorem, that

�n ! �1 and a standard diagonal argument shows that (⌘, z) converges (up to

sub-sequence) to (⌘⇤, z⇤) in (C1
loc

(T,1))2, where (⌘⇤(⇣), z⇤(⇣)) satisfies

⌘00⇤ � (N �2)⌘0⇤+2(N �2)⌘⇤ = m2e�2⇣(⌘⇤+2⇣)�2(N �2)(e⌘⇤ �1�⌘⇤), ⇣ 2 R.

In view of the uniqueness property established in Proposition ??, to finish the

proof, we only need to show that

⌘⇤(⇣) ! 0 when ⇣ ! 1.

Suppose for contradiction that there exists a sequence (⇣ 0
k
)k2N such that ⇣ 0

k
!
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1, as k ! 1 and a constant � > 0 such that

(⌘⇤(⇣
0
k
), z⇤(⇣

0
k
)) /2 �0

�
, for any k � 1 .

By decreasing " if necessary, we can suppose that "  �/4. Choose su�ciently

large k such that ⇣ 0
k

> ⇣⇤, ⌧0 < 0 and su�ciently large n such that ⇣n >

⇣ 0
k
and (⌘(⇣n, �n), z(⇣n, �n)) 2 �⇤

"
(cf. (??)). Then, by Lemma ?? one has

(⌘(⇣, �n), z(⇣, �n)) 2 �0
2" ⇢ �0

�
for any ⇣ 2 (⇣⇤, ⇣n), a contradiction.

Overall, we proved that ⌘(·, �) ! ⌘1 in C1
loc(R), where ⌘(·, �) solves (??)

and ⌘1 satisfies (??) with (??). Finally, fix any open set A with Ā ⇢ (0,1)

and let B := {⇣ 2 R : lnm� ln r 2 A}. Since B is open and bounded, one has,

for some constant CA depending on A,

ku(·, �)� U⇤(·)kC1(A) = k(u(·, �)� 2(lnm� ln ·))� (U⇤(·)� 2(lnm� ln ·))kC1(A)

 CAk⌘(·, �)� ⌘1(·)kC1(B) ! 0 as � ! 1 ,

as desired.

4. Oscillation of the branch and Morse index: proof of Theorem ??

and Proposition ??.

To prove Theorem ??, we first recall a result of Joseph and Lundgren [? ].

Let

ū⇤(r) = �2 log r + k, k = log
2(N � 2)

�

be the singular solution of (??), that is, it satisfies the equation in (??) and

blows-up at the origin.

Proposition 4.1. For any ↵ � 0, let ū(·, ↵) and ū⇤ be defined in (??) (??)

respectively. Then,

Z[0,1)[ū(·, ↵)� ū⇤(·)] =

8
><

>:

1 if 3  N  9

0 if N � 10,

where ZI(u) = ]{r 2 I|u(r) = 0} and ]A is the cardinality of the set A.
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For any given � > 0, let (ri
�,�

) be an increasing (finite or infinite) sequence

of positive real numbers such that u0(ri
�,�

, �) = 0, where u(·, �) = u�(·, �) is the

unique solution of (??). We show that if 3  N  9, then ri
�,�

oscillates around

Ri

�
(recall that (U⇤)0(Ri

�
) = 0) infinitely many times as � ! 1.

The following main result of this section is partly motivated by [? , Lemma

5], where a problem with Dirichlet boundary conditions is considered (see also

[? ] for a related problem with Neumann boundary condition). However, in the

works above, it is assumed that the parameter can be removed from the equation

by rescaling of the domain. Our situation is di↵erent and we have to work

directly with parameter dependent equation. We also have to appropriately

modify the zero number argument to treat Neumann boundary conditions.

Lemma 4.2. Assume 3  N  9 and fix R > 0. If �i be the positive real

number given in Theorem ??, then there exist a sequence of initial data (�n)n

with �n ! 1 and a sequence positive integer (jn)n such that rjn
�i,�n

= R. In

other words, u(·, �n) satisfies Neumann boundary data on @BR.

Proof. First, for any � > 0 we show that, for any A > 0 and I = (0, A), one has

ZI [u(·, �)� U⇤(·)] ! 1 as � ! 1 .

Recall that, by Lemma ??, we have

û(⇢, �) ! ū(⇢, 0) in C1
loc

([0,1)) when � ! 1 ,

where ⇢ = e
�
2 r, ū(⇢, 0) = ū(r, �) � � satisfies (??) and û(⇢, �) = u(r, �) � �

satisfies (??). Set Û⇤(⇢, �) = U⇤(r) � � and k = ln 2(N�2)
�

. Then (??) yields

that, for any r0 > 0, there is C = C(r0) such that

|U⇤(r) + 2 ln r � k|  Cr for any r  r0 ,

and therefore

|Û⇤(⇢, �) + 2 ln ⇢� k|  C⇢e�
�
2 for any ⇢  r0e

�/2 .

32



Consequently,

Û⇤(·, �) ! ū⇤ in Cloc((0,1)) as � ! 1,

where ū⇤ is defined in (??). Fix any M > 0. Then, by Proposition ??, there

exists a bounded interval IM ⇢ (0,1) such that

ZIM [ū(·, 1)� ū⇤(·)] � M.

By scale invariance of the equation, one has ū⇤(r) = ū⇤(e↵/2r) +↵ and ū(r, 1+

↵) = ū(e↵/2r, 1) + ↵, and therefore, for any � � 1,

ZIM [ū(·, �)� ū⇤(·)] = Z
e

��1
2 IM

[ū(·, 1)� ū⇤(·)] � M.

Then, thanks to (??) and (??), we have

ZIM [û(·, �)� Û⇤(·, �)] � ZIM [ū(·, �)� ū⇤(·)] � M .

Finally, for given I and su�ciently large � one has IM ⇢ e
�
2 I, and consequently

ZI [u(·, �)� U⇤(·, �)] = Z
e

�
2 I

[û(·, �)� Û⇤(·, �)] � M .

Since M was arbitrary, the claim (??) follows.

For � := �i, let U⇤ be the solution of (??) and notice that (U⇤)0(R) = 0.

Also, for the same �, let u(·, �) be the solution of (??). Observe that u(·, �)

does not necessarily satisfy Neumann boundary condition at R. Since w� :=

u(·, �)�U⇤ satisfies a linear di↵erential equation, it follows from the uniqueness

of initial value problem that every zero of w� is simple.

Observe that, for every � > 0, Z[0,1](w�) < 1 since otherwise by continuity,

the accumulation point would be a degenerate zero. Also, since w� has only

finitely many simple zeros, continuous dependence on parameters yields that

zeros of w� depend continuously on �. For each � > 0, let m� := Z[0,1](w�) and

let (z�
j
)
m�

j=1 ⇢ [0, R] be the increasing sequence of zeros of w� . Since w�(0) =

�1, we have that z�1 > 0 for each � > 0, and moreover w0
�
(z�1 ) > 0. By

induction it is easy to prove that w0
�
(z�

i
) > 0 if i is odd and w0

�
(z�

i
) < 0 if i is

even.

33



Since the zeros of w� are non-degenerate a new zero of w� cannot be created

in the interior of [0, R]. Furthermore, w�(0) = �1, and therefore a new zero

cannot enter [0, R] through 0. Hence, (??) yields that there exists a sequence

(�k) with �k ! 1 as k ! 1 such that w�k(R) = 0. Since w0
�k
(R) > 0

if k is odd and w0
�k
(R) < 0 if k is even, by the continuous dependence on

parameters, we obtain that there exists �⇤
k
2 (�k, �k+1) such that w0

�
⇤
k
(R) = 0.

Since (U⇤)0(R) = 0, we infer that u0(R, �⇤
k
) = 0 and the lemma follows.

Next, we prove that the Morse index of the singular solution U⇤
�

is finite

when N > 10 and infinite when 3  N  9.

Proof of Proposition ??. Assume 3  N  9. In order to prove that U⇤
�i has

infinite Morse index, by variational characterization of eigenvalues, it su�ces to

prove that there are infinitely many linearly independent functions f : (0, 1) !

R such that

J (f) =

Z 1

0

⇣
|f 0|2 + (1� �ieU

⇤
�i )f2

⌘
rN�1dr < 0 .

By the boundary conditions (??), we see that, for any " > 0, there exists r0

such that, for all r 2 (0, r0),

�ieU
⇤
�i (r) � 1 � 2(N � 2)

r2
(1� ").

Then, it follows that if 3  N  9, we have, for some small "0 > 0,

�ieU
⇤
�i (r) � 1 �

✓
(N � 2)2

4
+ "20

◆
1

r2
.

Next, we define fj(r) = f(r)�̃j(r), where

�̃j(r) =

8
><

>:

1, if r 2 [rj+1, rj ],

0, elsewhere ,
rj = e�2⇡j/"0

and f(r) = r�(N�2)/2 sin("0 log r/2). Notice that fj and fk have disjoint sup-

ports for j 6= k, and therefore they are linearly independent. Moreover, fj is a
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solution of

�f 00
j
� N � 1

r
f 0
j
�
✓
(N � 2)2

4
+
"20
4

◆
1

r2
fj = 0, r 2 (rj+1, rj).

Since fj(rj) = fj(rj+1) = 0 we have that fj 2 W 1,2((0,1)) and by (??)

J (fj) =

Z
rj

rj+1

✓
|f 0

j
|2 �

✓
(N � 2)2

4
+ "20

◆
1

r2
f2
j

◆
rN�1dr = �3

4
"20

Z
rj

rj+1

1

r2
f2
j
dx < 0 .

Thus the Morse index of U⇤
�i

is infinite.

Next, let us consider the caseN > 10. We show that there are at most finitely

many linearly independent functions satisfying (??). Recall that (U⇤
�i
)0(R) = 0.

Again, by using asymptotics of U⇤
�i at the origin, we have that, there is " > 0

and r0 2 (0, 1) such that, for any r 2 (0, r0),

�ieU
⇤
�i (r) � 1  2(N � 2)

r2
(1 + ")  (N � 2)2

4r2
(1� ") ,

where the last inequality holds for N > 10. Next, choose �0 2 C1(RN ) such

that

�0(r) =

8
><

>:

1, if r 2 (0, r0/2),

0, if r > r0,

and set �1 = 1��0. For � 2 H1
rad

(B1(0)) with �0(R) = 0, the Hardy inequality

[? ] and (??) imply

J (�) =

Z 1

0
(|�0|2 � (�0 + �1)(�

ieU
⇤
�i (r) � 1)�2)rN�1dr

� (1� ")

Z 1

0

✓
|�0|2 � �0

(N � 2)2

4r2
�2
◆
rN�1dr +

Z 1

0
("|�0|2 � �1(�

ieU
⇤
�i (r) � 1)�2)rN�1dr

�
Z 1

0
("|�0|2 � �1(�

ieU
⇤
�i (r) � 1)�2)rN�1dr

Since |(�ieU
⇤
�i (r)�1)|  C�i , for r 2 (r0/2, 1), the operator �"���1(�ie

U
⇤
�i (r)�

1) on B1(0) with Neumann boundary condition has finitely may negative eigen-

values, and therefore

Z 1

0
("|�0|2 � �1(�

ieU
⇤
�i (r) � 1)�2)rN�1dr < 0

35



has only finitely many linearly independent solutions. Thus, the Morse index of

U⇤
�i is finite, as desired.

5. Proof of Theorem ??

In this section, we prove Theorem ??. Let (Ri

�
)1
i=1, be an increasing, un-

bounded sequence of positive real numbers depending on N and � such that

(U⇤
�
)0(Ri

�
) = 0 (see Lemma ??), where U⇤

�
is the solution to (??). To prove

Theorem ??, we need two ingredients. First we show that, for any i 2 N,

Ri

�
! 0, as �! 0+

and obtain necessary bounds on solutions. Then, we show that, for any i 2 N,

the map �! Ri

�
is continuous.

Proposition 5.1. For each � > 0, let U⇤
�
be the unique solution to (??) and

denote by (Ri

�
)1
i=1, the increasing sequence of all positive real numbers such that

(U⇤
�
)0(Ri

�
) = 0. Then, for any fixed i 2 N, we have

Ri

�
! 0, as �! 0+.

Proof. The proof is divided into several steps. We begin by giving some nota-

tions. Many constants and functions in the proof depend on � and

m =

r
2(N � 2)

�
.

However for the clarity of the notation, this dependence is not explicitly indi-

cated, but the needed asymptotic is explained. If a constant depends only on

the dimension N , we usually denote it by CN , cN , etc. Note that such constant

can change from line to line. First, we define

f(⇣) =
m2

2(N � 1)
e�2⇣

✓
⇣ +

N � 2

4(N � 1)

◆
.

and let ⇣ 7! ⌘ be the unique solution of (??) (see Proposition ??). Setting

⌘̃(⇣) = ⌘(⇣)� f(⇣), we see that ⌘ satisfies

⌘̃00 � (N � 2)⌘̃0 + 2(N � 2)⌘̃ = m2e�2⇣⌘(⇣) + �(⌘(⇣)) =: g̃(⇣),
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where � is as in (??).

Define ↵, �, and GN as in (??) and (??) and recall that GN 2 L1(R)\L1(R)

for any N � 3. Hence,

⌘̃(⇣) =

Z 1

⇣

GN (� � ⇣)g̃(�) d� = GN ⇤ g̃(⇣).

If v := U⇤/u�, then v satisfies (see (??))

�v00 � N � 1

r
v0 + v = eu�(v�1)

and w(r) = r
N�1

2 (v(r)� 1) satisfies (see the proof of Lemma ??)

w00 +

✓
eu�(v�1) � v

v � 1
� (N � 1)(N � 3)

4r2

◆
w = 0.

For any � 2 (0, 1/e), we recall that u� > 1 is the solution of the equation

u = �eu. Let r� be the smallest r such that U⇤(r) = u�, or equivalently the

smallest point such that v(r) = 1 or w(r) = 0.

Step 1. For any � > 0 there is �� > 0 such that

�(1� �) ln�  u�,

for any � 2 (0, ��).

Proof of Step 1. By taking the logarithm of the equality u� = �eu� , we obtain

lnu� � u� � ln� = 0 .

For v1 = �(1� �) ln�, we have

ln v1 � v1 � ln� = ln((1� �) ln��1)� � ln� > 0,

for any � 2 (0, ��), where �� is su�ciently small. On the other hand, for any

fixed � and su�ciently large v, one has

ln v � v � ln� < 0 .

In particular there is a solution of u = �eu which is bigger than v1 = �(1��) ln�.

Finally, since u� is the biggest solution, ū� � v1 and the claim follows.
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Remark 5.2. For any � > 0, one can prove more the precise bound

� ln�+ ln(� ln�) < u�  �(1 + �) ln� ,

for any su�ciently small � depending on �.

Step 2. Recall that r� is the smallest r such that U⇤(r) = ū�. Then, there

exists KN > 0 such that r2
�
< KN

u�
, for any small � > 0.

Proof of Step 2. Set KN = max{(N � 1)(N � 3), 2(16⇡)2}. For a contradiction,

assume that there exists a sequence �n ! 0 as n ! 1 such that r2
n
� KN/un,

where rn := r�n and un := u�n . Then U⇤
�n

> ūn on In := [An, 2An] with

An =
p
KN/(16un), and consequently wn := w�n > 0 and vn := v�n > 1

(solutions of (??) and (??) with � = �n) on In. Since for any x � 0 one has

ex � x+ 1 and vn > 1, we have for any r 2 In

eun(v�1) � v

v � 1
� (N � 1)(N � 3)

4r2
� un(v � 1) + 1� v

v � 1
�un(N � 1)(N � 3)

4KN

� 3

4
un�1 ,

where the last inequality holds by the definition of KN . Furthermore, by Step

1, ū� ! 1, and therefore it is possible to choose n large enough such that

3

4
un � 1 >

1

2
un � (16⇡)2un

KN

� (4⇡)2

A2
n

.

Then, wn satisfies

w00
n
+ qn(r)wn = 0, on [An, 2An],

with qn > (4⇡)2/A2
n
for any su�ciently large n. However, the equation

m00 +
(4⇡)2

A2
n

m = 0

has a solution m(r) = sin(4⇡r/An) which has zeros at An + k

4An 2 [An, 2An]

for any k 2 {0, 1, · · · , 4}. By the Sturm-Piccone comparison theorem, wn has

also a zero on In, contradicting the fact that wn > 0 on In.

Let r� be as in Step 3. and let ⇣� be defined by (see (??))

r� =

r
2(N � 2)

�
e�⇣� .
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Step 3. There exists a constant CN such that for any su�ciently small � > 0,

one has f(⇣�)  CN .

Proof of Step 3. Step 1 and Step 2 with � = 1
2 imply for any small � > 0

r2
�
 KN

u�

 2KN

� ln�
,

which is equivalent to

e�2⇣�  KN

N � 2

�

� ln�
.

The previous inequality can be rewritten as

⇣� � �1

2

✓
ln

✓
KN

N � 2
�

◆
� ln(� ln�)

◆
.

In particular, we see that ⇣� ! 1 as � ! 0. Since the function x 7! xe�x is

decreasing on (0,1), for any su�ciently small � > 0 one has

f(⇣�) =
N � 2

N � 1

e�2⇣�

�

✓
⇣� +

N � 2

4(N � 1)

◆
 � KN

2N � 2

⇣
ln( KN

N�2�)� ln(� ln�)
⌘

�

� ln�

�
 CN .

This proves Step 3.

Remark 5.3. For clarity let us indicate explicitly the dependence of f on � (or

equivalently on m). Fix any M > 0 and for each � > 0 choose ⇣̄� � 0 such that

f�(⇣̄�)  M . Since infK f ! 1 as m ! 1 on any compact set K ⇢ (0,1),

one has

⇣̄� ! 1, as �! 0 or equivalently if m ! 1 .

We frequently use this observation below, often without further reference.

Next, we derive estimates on ⌘̃ solving (??) . We consider two cases: f(⇣�) 

1.1 and f(⇣�) � 1.1, where ⇣� is given by (??).

Step 4. There exists a constant C̃N such that if, for su�ciently small � > 0,

one has 1.1  f(⇣�), then |⌘̃(⇣�)|  C̃N .
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Proof. First, the assumption and Step 3 yield 1  f(⇣�)  CN , and therefore by

Remark ??, ⇣� ! 1 as �! 1. Hence, there exist two constants cN < 1 < CN

such that, for any su�ciently small �,

cN�  e�2⇣�2⇣�  CN�.

Using that � = u�e�u� and u� ! 1 as � ! 0 (see Step 1), we obtain that for

small �

CN� = u�e
�u�+lnCN  (u� � 2 lnCN )e�u�+2 lnCN ,

and

cN� = u�e
�u�+ln cN � (u� � 2 ln cN )e�u�+2 ln cN .

Consequently

(u��2 ln cN )e�u�+2 ln cN  cN�  e�2⇣�2⇣�  CN�  (u��2 lnCN )e�u�+2 lnCN .

Since the function x 7! xe�x is decreasing on (0,1), we have

u� � 2 ln cN � 2⇣� � u� � 2 lnCN .

By (??),

u� = u(r�) = f(⇣�) + ⌘̃(⇣�) + 2⇣�,

we deduce that

�2 lnCN  f(⇣�) + ⌘̃(⇣�)  �2 ln cN .

Since 1  f(⇣�)  CN , we obtain the desired result.

Before proceeding let us introduce some additional notation. Define

� = 1.1,

and denote ⇣⇤1 the largest solution of f(⇣) = �, where of course ⇣⇤1 depends on

� and by Remark ??, ⇣⇤1 ! 1 as � ! 1. We remark that instead of 1.1, we

can take any number bigger than 1, su�ciently close to 1 (see (??)).
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Fix any "0 > 0 and set

⇣⇤2 := inf{⇣ � ⇣⇤1 : |⌘̃(z)|  (1 + "0)PNf(z) for any z � ⇣},

with inf ; = 1, where

PN :=
|� (�)|

�
P̃N :=

|� (�)|
�

⇥

8
>>>><

>>>>:

(1 + e�
(↵+8)⇡

2� ) 4
(↵+8)2+4�2 if 3  N  9,

4
(↵+8)2 if N = 10,

4
(↵+8)2�4�2 if N > 10 ,

and � is defined in (??). Clearly, PN and P̃N are constants depending only on

N and ⇣⇤2 depends on the solution ⌘. Since ⇣⇤2 � ⇣⇤1 , one has

⇣⇤2 ! 1 as m ! 1 .

Moreover,

PN =
e� � �� 1

�
2(N � 2)P̃N <

e� � �� 1

3�
<

1

3
,

where in the first inequality, after standard manipulations, we used that N 7!

2(N�2)P̃N is increasing and P̃N ! 1/3 as N ! 1. Denote PN,"0 := PN (1+"0)

and by the definition of ⇣⇤2 one has |⌘̃(�)|  PN,"0f(�) for each � 2 (⇣⇤2 ,1).

Next, in the following three steps we obtain estimates on ⇣̃ on the interval

[⇣⇤1 ,1) and in particular we prove that the assertion of Step 4 remains valid if

f(⇣�)  1.1.

Step 5: For any m > 0 and "0 > 0, one has ⇣⇤2 < 1.

Proof of Step 5. We proceed as in the proof of Lemma ??. Using the represen-

tation formula (??) and Young’s inequality for convolutions, we obtain
Z 1

⇣

|⌘̃(�)|d�  CN

Z 1

⇣

|g̃(�)|d� ,

where CN = kGNkL1 . Since ⌘(⇣) ! 0 as ⇣ ! 1, for any " > 0 there is ⇣0 > 0

depending on N , ⌘, and " such that for any ⇣ � ⇣0 one has

|�(⌘)| = 2(N � 2) |e⌘ � 1� ⌘|  "

2
|⌘| , where ⌘ = ⌘(⇣) .
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By the definition of g̃ and (??), one has, for � � ⇣0,

|g̃(�)|  m2e�2�(|f(�)|+ |⌘̃(�)|) + "

2
(|⌘̃(�)|+ |f(�)|) .

Fix ⇣0 > 0 such that m2e�2⇣0  "

2 , and set ⇣⇤0 = max{⇣0, ⇣0}. Then we have,

for � � ⇣⇤0 ,

|g̃(�)|  "(|f(�)|+ |⌘̃(�)|) .

Substituting (??) into (??) and requiring that " 2 (0, 1/(2CN )) we obtain, for

⇣ � ⇣⇤0 > 0,
Z 1

⇣

|⌘̃(�)| d�  1

2

Z 1

⇣

|f(�)| d� +
1

2

Z 1

⇣

|⌘̃(�)| d� ,

and consequently Z 1

⇣

|⌘̃(�)| d� 
Z 1

⇣

|f(�)| d� .

Using (??) and (??), we obtain for ⇣ � ⇣⇤0 ,

|⌘̃(⇣)|  kGNkL1

Z 1

⇣

|g̃(�)| d�  "CN

Z 1

⇣

f(�) + |⌘̃(�)| d�

 "CN

Z 1

⇣

f(�) d�  "CNf(⇣) .

By making " > 0 smaller if necessary such that "  PN (1 + "0)/CN we obtain

⇣⇤2  ⇣⇤0 , and the claim follows.

Step 6: For any small "0 > 0, there exists m0 > 0 such that for each m � m0

we have ⌘̃  0 on [⇣⇤2 ,1), where ⇣⇤2 is defined in (??).

Proof of Step 6. Suppose first that 3  N  9. Then, we rewrite (??) as

⌘̃(⇣) =

Z 1

⇣

GN (� � ⇣)g̃(�)d� =:

Z 1

⇣

F (⇣, �)d�

and
Z 1

⇣

F (⇣, �)d� =
1X

k=0

Z
⇣+ (2k+1)⇡

�

⇣+ 2k⇡
�

F (⇣, �)d� +

Z
⇣+ (2k+2)⇡

�

⇣+ (2k+1)⇡
�

F (⇣, �)d�

=
1X

k=0

Z
⇣+ (2k+1)⇡

�

⇣+ 2k⇡
�

F (⇣, �) + F

✓
⇣, � +

⇡

�

◆
d� ,
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where

F (⇣, �) + F

✓
⇣, � +

⇡

�

◆
= GN (� � ⇣)

✓
g̃(�)� e�

↵⇡
2� g̃

✓
� +

⇡

�

◆◆
.

Recall, for any � � ⇣⇤2 we have |⌘̃(�)|  PN,"0f(�) and by (??), 1 > PN,"0 for

any su�ciently small "0 > 0. In the following, we use the notation O(m�1) for

quantities converging to zero as m ! 1. Then, since � is decreasing on (0,1)

and f ± ⌘̃ � 0 on [⇣⇤2 ,1), one has

�((f+⌘̃)(�))�e�
↵⇡
2� �

✓
(f + ⌘̃)

✓
� +

⇡

�

◆◆
 �((f�|⌘̃|)(�))�e�

↵⇡
2� �

✓
(f + |⌘̃|)

✓
� +

⇡

�

◆◆

 �((1� PN,"0)f(�))� e�
↵⇡
2� �

✓
(1 + PN,"0)f

✓
� +

⇡

�

◆◆

 �((1� PN,"0)f(�))� e�
↵⇡
2� �

⇣
(1 + PN,"0)(e

� 2⇡
� +O(m�1))f (�)

⌘
,

where in the last step we used that, for � � ⇣⇤2 ,

f(� + ⇡/�) = e�
2⇡
� f (�) +

⇡m2

2�(N � 1)
e�

2⇡
� e�2�  e�

2⇡
� f (�) +

⇡

�⇣1
f(�)

 (e�
2⇡
� +O(m�1))f (�) .

We claim that for any su�ciently small "0, "1 > 0 and any su�ciently large m,

one has

� ((1� PN,"0)z)  e�
↵⇡
2� �

⇣
(1 + PN,"0)(e

� 2⇡
� +O(m�1))z

⌘
�"1z2, for any z 2 [0,�] .

Indeed, for any  > 1 su�ciently close to one (see below), define

 (z) = � ((1� PN )z)� e�
↵⇡
2� �

⇣
(1 + PN )e�

2⇡
� z
⌘

and note that  (0) =  0

(0) = 0. Moreover, using that �00(z) = �2(N � 2)ez

and PN < 1/3, we have, for  = 1 and any z 2 [0,�],

 00
1 (z) = �2(N � 2)

✓
(1� PN )2e(1�PN )z � e�(↵

2 +4)⇡
� (1 + PN )2e(1+PN )e

� 2⇡
� z

◆

 �2(N � 2)e(1�PN )z
⇣
(1� PN )2 � e�(↵

2 +4)⇡
� (1 + PN )2e2PNz

⌘

 �2(N � 2)e(1�PN )z
⇣
(1� PN )2 � e�(↵

2 +4)⇡
� (1 + PN )2e2PN�

⌘

 �2(N � 2)e(1�PN )z

✓
4

9
� e�⇡

16

9
e2/3·1.1

◆
= �2cN < 0.
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Then by the continuity  00

(z) < �cN < 0 for any  > 1 su�ciently close to 1

and any z 2 [0,�]. Fix such 0 > 1. Thus  (z) < �cNz2 on [0,�], and we

obtain that (??) holds true for any "1 < cN and for any su�ciently small "0 > 0

and large m. The claim follows.

In addition, using that f is decreasing and that |⌘̃(�)|  PN,"0f(�), we have,

for � � ⇣⇤2 � ⇣⇤1 ,

m2e�2�

✓
(⌘̃ + f)(�)� e�

⇡
2� (4+↵)(⌘̃ + f)

✓
� +

⇡

�

◆◆
 2(1 + PN,"0)m

2e�2�f(�)

 CN

⇣⇤1
f2(�)  "1f

2(�) ,

where we used that by Remark ??, ⇣⇤1 ! 1 as m ! 1. Therefore, after

recalling that g̃(⇣) = �(⌘(⇣) +m2e�2⇣⌘(⇣), (??) yields

g̃(�)� e�
↵⇡
2� g̃

✓
� +

⇡

�

◆
 0.

Since for any integer k � 0, one hasGN (��⇣) � 0 on the interval
⇣
⇣ + 2k⇡

�
, ⇣ + (2k+1)⇡

�

⌘
,

we obtain from (??)

F (⇣, �) + F

✓
⇣, � +

⇡

�

◆
 0,

and Step 6 follows for 3  N  9.

Next, assume N � 10 and notice that GN � 0 in this case. Also, since

|⌘̃(�)|  PN,"0f(�) on [⇣⇤2 ,1) and PN,"0 < 1 for any su�ciently small "0, we

obtain that ⌘ = f + ⌘̃ � 0 on [⇣⇤2 ,1). Since ex � 1 � x � 1

2
x2 for x � 0, then

for any ⇣ � ⇣⇤2 ,

⌘̃(⇣) 
Z 1

⇣

GN (� � ⇣)
⇣
m2e�2�⌘(�)� (N � 2)⌘2(�)

⌘
d�.

Also, since ⌘ � 0 we have

m2e�2�⌘(�)� (N � 2)⌘2(�)  ⌘(�)

✓
cN

f(�)

�
� (f(�)� |⌘̃(�)|)

◆

 ⌘(�)f(�)

✓
cN
⇣⇤1

� (1� PN,"0)

◆
 0 ,

where cN depends only on N and the last inequality follows for any su�ciently

large ⇣⇤1 , that is, for su�ciently large m. Thus ⌘(⇣)  0 for each ⌘̃ � ⇣⇤2 as

desired.
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Step 7: For any su�ciently small "0 > 0, there exists m0 such that for each

m � m0 we have ⇣⇤2 = ⇣⇤1 , where ⇣
⇤
2 is defined in (??) and ⇣⇤1 is the largest

solution to f(⇣) = �. In particular, |⌘̃(⇣�)|  C̃N .

Proof of Step 7. In Step 6, we proved that ⌘̃  0 on (⇣⇤2 ,1). In order to obtain

an estimate on |⌘̃|, we need a lower bound on ⌘̃.

First assume 3  N  9. SinceGN (��⇣)  0 on the interval
⇣
⇣ + (2k+1)⇡

�
, ⇣ + (2k+2)⇡

�

⌘
,

(??) and (??) yield

F (⇣, �) + F

✓
⇣, � +

⇡

�

◆
� 0.

Consequently by using that � is decreasing and ⌘̃  0, we obtain, for any ⇣ � ⇣⇤2 ,

⌘̃(⇣) �
Z

⇣+⇡
�

⇣

GN (� � ⇣)�((f + ⌘̃)(�))d� +m2

Z 1

⇣

GN (� � ⇣)e�2�(⌘̃ + f)(�)d�

�
Z

⇣+⇡
�

⇣

GN (� � ⇣)�(f(�))d� �m2(1 + PN,"0)

Z 1

⇣

|GN (� � ⇣)|e�2�f(�)d�.

In order to estimate �(f(�)) we use that, for any y � x > 0, one has

�(x)

�(y)
 x2

y2
.

Indeed, this inequality is equivalent to

ex � x� 1

x2
 ey � y � 1

y2

which is true since the function x 7! (ex � x � 1)/x2 is increasing on (0,1).

Hence, since � < 0 on (0,1) we have for � � ⇣

�(f(�)) � �(f(⇣))

✓
f(�)

f(⇣)

◆2

= �(f(⇣))e�4(��⇣)

✓
� + cN
⇣ + cN

◆2

.

Using that � 2 (⇣, ⇣ + ⇡/�) and ⇣ � ⇣⇤1 ! 1 as m ! 1, we have

�(f(�)) � �(f(⇣))e�4(��⇣)(1 +O(m�1)) ,
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and therefore

m2(1+PN,"0)

Z 1

⇣

|GN (��⇣)|e�2�f(�)d�  cNm2f(⇣)e�2⇣  cN
f2(⇣)

⇣
= O(m�1)f2(⇣) .

Thus, for any ⇣ � ⇣⇤2

⌘̃(⇣) � �(f(⇣))

�

Z
⇣+⇡

�

⇣

e�(↵
2 +4)(��⇣) sin(�(� � ⇣))d� �O(m�1)f2(⇣)

=
4�(f(⇣))

(↵+ 8)2 + 4�2
(1 + e�

(↵+8)⇡
2� )�O(m�1)f2(⇣) .

Using that ⌘̃  0 and x 7! �(x)/x, is decreasing and the definition of PN we

obtain for any ⇣ � ⇣⇤2 � ⇣⇤1 , that is, f(⇣) 2 (0,�] and su�ciently large m

|⌘̃(⇣)|  4�(f(⇣))

((↵+ 8)2 + 4�2)f(⇣)
(1 + e�

(↵+8)⇡
2� )f(⇣) +O(m�1)f2(⇣)


�
PN +O(m�1)

�
f(⇣) <

⇣
1 +

"0
2

⌘
PNf(⇣) .

If ⇣⇤2 > ⇣⇤1 , then, by continuity, |⌘̃(⇣)|  (1+"0)PN |f(⇣)| holds for any ⇣⇤1  ⇣ 

⇣⇤2 su�ciently close to ⇣⇤2 , a contradiction to the definition of ⇣⇤2 . Thus ⇣
⇤
1 = ⇣⇤2

as desired.

If N � 10, using GN � 0, the monotonicity of �, and ⌘̃  0 as above, we

obtain, for any ⇣ � ⇣⇤1 ,

⌘(⇣) �
Z 1

⇣

GN (� � ⇣)(m2e�2� ⌘̃(�) + �(f(�)))d�

� �(f(⇣))

(⇣ + cN )2

Z 1

⇣

GN (� � ⇣)e�4(��⇣)(� + cN )2d� �O(m�1)f2(⇣) ,

and note that we could not use (??) since �� ⇣ is unbounded. Then, if N > 10,

one has

⌘̃(⇣) � �(f(⇣))

((↵/2 + 4)2 � �2)

✓
1� c̃N

⇣ + cN

◆
�O(m�1)f2(⇣)

and using again that |�(f(⇣))|  c̄Nf2(⇣) for any ⇣ � ⇣⇤1 and ⇣ ! 1 as m ! 1,

we have

⌘̃(⇣) � �(f(⇣))

((↵/2 + 4)2 � �2)
�O(m�1)f2(⇣) .

If N = 10, one similarly has

⌘̃(⇣) � �(f(⇣))

(↵/2 + 4)2
�O(m�1)f2(⇣) .
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The rest of the proof is the same as in the case 3  N  9.

Remark 5.4. In Steps 5-7 we proved that

0 � ⌘̃(⇣) � �f(⇣) � �� for any ⇣ � ⇣⇤1

which in turn implies

0  ⌘  f(⇣) for any ⇣ � ⇣⇤1 .

In the original variables, for U⇤
�
(r) = ⌘(⇣) + 2⇣ we have

�2 ln r+ln
2(N � 2)

�
 U⇤

�
(r)  �2 ln r+ln

2(N � 2)

�
+cNr2(1�ln r) for any r  c̃N .

The importance of this bound is in the estimate on U⇤
�
on an interval which is

independent of �. An interested reader can calculate explicitly constants cN and

c̃N .

Remark 5.5. From Remark ?? we can also obtain an estimates on (U⇤
�
)0 as

follows. By (??)

⌘̃0(⇣) = �
Z 1

⇣

G0
N
(� � ⇣)g̃(�) d� .

Since G0
N

is a bounded integrable function, using Remark ?? and analogous

estimates as in (??) we have

|⌘̃0(⇣)|  CNf(⇣) for any ⇣ � ⇣⇤1 .

In the original variables the last bound translates into

�����(U
⇤
�
)0(r) +

2

r
+ rc⇤

N
� r

N � 1

 
ln

r
2(N � 2)

�
� ln r

!����� =
1

r
|⌘̃0(⇣)|

 CN

1

r
f(⇣)  CN,�r(1 + | ln r|) for any r  cN ,

where CN,� is bounded in � uniformly on compact subsets of (0,1).

Step 8: Proof of Proposition ??.

Proof of Step 8. Recall that r� is the smallest solution of U⇤(r) = u� and ⇣� is

the corresponding transformed variable, see (??). Denote z� := M1
�
, that is, z�
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is first critical point of U⇤ and let ⇢� be transformed z�, see (??) with r� and

⇣� replaced respectively by z� and ⇢�.

First, we show that z� � r�. Indeed, otherwise z� < r� and as in the proof

of Lemma ??, we have that the function V defined by (??) is decreasing in r.

Then, as in the proof of Lemma ?? we obtain that U⇤(r) � U⇤(z�) > ū� a

contradiction to Lemma ??. Hence for the rest of the proof we assume that

z� � r�.

By Steps 5-7 (cf. Remark ??) one has |⌘̃(⇣)|  CN for any ⇣ � ⇣⇤1 . In

particular, |⌘̃(⇣�)|  CN if ⇣� � ⇣⇤, that is, if f(⇣�)  �. But |⌘̃(⇣�)|  CN

holds also by Step 4 if f(⇣�) � �. Overall, we have |⌘̃(⇣�)|  CN .

We claim that |⌘(⇣)|  CN holds in fact for all ⇣ � ⇣� and any su�ciently

small � > 0. Indeed, if ⇣� � ⇣⇤1 , then the statement is already proved in Steps

5-7. If ⇣� < ⇣⇤1 , assume that there exists ⇣̃ 2 (⇣�, ⇣⇤1 ] such that ⌘̃0(⇣̃) = 0.

Without loss of generality let ⇣̃ be the largest such number. Since ⇣̃ < ⇣⇤1 ,

then f(⇣̃) � � = 1.1, and consequently for any large m (or small �), one has

f 0(⇣̃) < � 2
�f(⇣̃)  �2. If r̃ corresponds to ⇣̃, see (??), then

(U⇤)0(r̃) = �1

r̃
(f 0(⇣̃) + ⌘̃0(⇣̃) + 2) = �1

r̃
(f 0(⇣̃) + 2) > 0.

Since (U⇤)0(r) < 0 for r su�ciently close to 0, we obtain r̃ � z�, and therefore

⇣̃  ⇣�, a contradiction to ⇣� < ⇣̃. Thus, no such ⇣̃ exists, and therefore ⌘̃

is increasing on (⇣�, ⇣⇤1 ). Since max{|⌘(⌘̃�)|, |⌘̃(⇣⇤1 )|}  CN , we deduce that

|⌘̃(⇣)|  CN , for all ⇣ � ⇣� and the claim follows.

Now, |⌘̃|  CN implies that |g̃|  CN (defined in (??)) on (⇣�,1). Di↵eren-

tiating (??) and using that G0
N

is integrable, we find

|⌘̃0(⇣�)| 
Z 1

⇣�

|G0
N
(� � ⇣�)||g̃(�)|d�  CN .

Then, using (??) and |f 0(⇣)|  3f(⇣), for any |⇣| large enough, we have

|(U⇤)0(r�)| 
|f 0(⇣�)|+ |⌘̃0(⇣�)|+ 2

r�
 CN

r�
= CN

p
�e2⇣� .

Furthermore, recalling that U⇤(r) = 2⇣ + f(⇣) + ⌘̃(⇣), we deduce from Step 3,

and |⌘̃(⇣�)|  CN that 2⇣� � cN  U⇤(r�) = u�  2⇣� + cN . Consequently,
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u� = �eu� yields

|(U⇤)0(r�)|  CN

p
�eu� = CN

p
u�.

Recalling that v := U⇤/u� solves (??), we obtain

|v0(r�)|  CN

1p
u�

and v(r�) = 1 .

Furthermore, since the function

r 7! E(r) =
(v0(r))2

2
+

eu�(v(r)�1)

u�

� v2(r)

2

is non-increasing, any r � r� one has

CN

u�

� 1

2
� E(r�) � E(r) � eu�(v(r)�1)

u�

� v2(r)

2
� �v2(r)

2
.

Thus, for su�ciently small � > 0,

v2(r) � 1� CN

u�

for any r � r� ,

and consequently

sup
r�r�

(1� v)+ ! 0 as �! 0 ,

where g+ = max{g, 0} denotes a positive part of a function g. Recall that

w(r) = r
N�1

2 (v(r)� 1) satisfies (??) and clearly

eu�(v�1) � v

v � 1
=

eu�(v�1) � 1

v � 1
� 1 .

Fix any µ > 0, a > 0 and denote Ia :=
⇥
a

4 , a
⇤
. Choose any r 2 Ia. If u�(v(r)�

1) � �1, then using that x 7! (ex � 1)/x is increasing we have for su�ciently

small � (or large ū� by Step 1)

eu�(v(r)�1) � 1

v(r)� 1
=

eu�(v(r)�1) � 1

u�(v(r)� 1)
u� � u�

✓
1� 1

e

◆
� µ .

On the other hand if u�(v(r)� 1) < �1, then v(r) < 1 and

eu�(v(r)�1) � 1

v(r)� 1
� e�1 � 1

v(r)� 1
� 1� e�1

sup
⇢�r�

(1� v(⇢))+
> µ ,
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for su�ciently small �, where we used (??) in the last inequality. Hence, for

any µ > 0 and a > 0 one has for su�ciently small � > 0 that

eu�(v�1) � v

v � 1
� (N � 1)(N � 3)

4r2
� µ� CN,a for any r 2 Ia :=

ha
4
, a
i
.

Thus, given a > 0 and integer i > 0, there is large µ, such that a solution of the

equation z00+(µ�CN,a)z = 0 has at least i+2 zeros on Ia, and by Sturm-Picone

oscillation theorem for any su�ciently small � > 0, the function w has at least

i + 1 zeros on Ia. Consequently, U⇤(r) = u� has at least i + 1 solutions on Ia,

and therefore U⇤ has at least i critical points on Ia. In a di↵erent notation for

any j 2 {1, · · · , i} and any a > 0 one has Rj

�
< a for any su�ciently small

� > 0.

Proposition 5.6. For any i 2 N, the function �! Ri

�
is continuous.

Proof. Fix �⇤ > 0 and an open interval I0 = (A,B) with 0 < A < B < 1.

Without loss of generality assume A  cN , where cN is as in Remark ??. Then

by Remark ?? there is � > 0 such that for any � 2 (�⇤ � �, �⇤ + �) one has

|U⇤
�
(A)|  CN .

If for some � 2 (�⇤ � �, �⇤ + �) the function U⇤
�
is decreasing on (A,B), then

non-negativity of U⇤ yields |U⇤
�
|  CN on (A,B). If for some � 2 (�⇤��, �⇤+�),

there is a smallest z� < B such that (U⇤
�
)0(z�) = 0, then since V defined by

(??) is non-decreasing and by the Step 8 in the proof of Proposition ?? one has

U⇤
�
(z�) < ū�, then, for any r � z�,

ū� � �eU
⇤
�(z�) � �eU

⇤
�(z�)� 1

2
(U⇤

�
(z�))

2 = V (r�) � V (r) � �eU
⇤
�(r)� 1

2
(U⇤

�
(r))2.

Since � 2 (�⇤ � �, �⇤ + �), we obtain that the left hand side is bounded by a

constant independent of �, and consequently U⇤
�
is bounded on (z�,1), by a

constant independent of � 2 (�⇤ � �, �⇤ + �). Overall, we have

sup
�2(�⇤��,�⇤+�)

sup
(A,B)

U⇤
�
 C(A) .
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Then, the elliptic regularity implies that, for any q > 1,

kU⇤
�
kW 3,q(I0)  C(N, q,A,B �A, �⇤, �) for any � 2 (�⇤ � �, �⇤ + �) .

For ↵0 2 (0, 1), we choose q0 > 0 large enough such that W 3,q0(I0) ,!

C2+↵0(I0). Let (�n)n2N be a sequence such that �n ! �⇤ when n ! 1.

Thanks to (??), using Arzelà-Ascoli’s theorem, there exists a sub-sequence, still

denoted (�n), such that U⇤
�n

! w, as n ! 1, in C2(I0). Noticing that

|�neU
⇤
�n

(s) � �⇤ew(s)|  �n|eU
⇤
�n

(s) � ew(s)|+ |�n � �⇤|ew(s) ! 0 as n ! 1,

we deduce that w satisfies the equation

��w + w = �⇤ew in I0 .

Since I0 is an arbitrary compact interval, proceeding as above and using stan-

dard diagonal arguments, we obtain the existence of a sub-sequence (�kn)n,

�n 2 (�⇤ � �, �⇤ + �), for all n 2 N, such that U⇤
�kn

! w, as n ! 1, in

C2
loc

((0,1)), for some function w satisfying

��w + w = �⇤ew in (0,1) .

Next, we claim that w is in fact U⇤
�⇤ . Using the uniqueness of solution proved

in Proposition ??, it is su�cient to show that

lim
r!0+

w(r) + 2 ln r = A�⇤,N ,

where A�,N = ln
2(N � 2)

�
. However, by Remark ?? there is r0(") independent

of � 2 (�⇤ � �, �⇤ + �) such that

A�,N  U⇤
�
(r) + 2 ln r  A�,N + " for all r 2 (0, r0(")) .

ClearlyA�n,N ! A�⇤,N when n ! 1 and using that U⇤
�n

! w in C2
loc((0, r0("))),

we obtain

A�⇤,N  w(r) + 2 ln r  A�⇤,N + ", for all r 2 (0, r0(")) .
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Since " > 0 is arbitrary, we conclude that (??) holds, and therefore w = U⇤
�⇤ by

the uniqueness. Hence,

U⇤
�
! U⇤

�⇤ , as �! �⇤, in C2
loc

((0,1)).

Finally, we prove the continuity of the function � ! Ri

�
. In the following, we

assume that Ri

�
is a local minimum of U⇤

�
, the case of local maximum follows

analogously. Note that U⇤(Ri

�
) 6= ū�, otherwise U⇤ ⌘ ū�, and we have a

contradiction to the uniqueness of the initial value problem. Thus, for any

su�ciently small "̄ > 0, we obtain

U⇤
�⇤(Ri

�⇤ � "̄) > U⇤
�⇤(Ri

�⇤) and U⇤
�⇤(Ri

�⇤ + "̄) > U⇤
�⇤(Ri

�⇤) .

Then (??), yields that for � > 0 su�ciently close to �⇤ that (??) holds true

with U⇤
�⇤ replaced by U⇤

�
. Thus, there exists a local minimizer q� of U⇤

�
in any

small neighborhood of Ri

�⇤ , or equivalently for every � > 0 there is q� with

(U⇤
�
)0(q�) = 0 such that

lim
�!�⇤

q� = Ri

�⇤ .

On the other hand assume that there exists a sequence (�n)n2N such that �n !

�⇤ and (q�n)n2N converging to q⇤. Then by (??) one has (U⇤
�⇤)0(q⇤) = 0.

Finally assume that there exists a sequence (�n)n2N such that �n ! �⇤ and

two sequences (q�n)n2N, (q0�n
)n2N that converge to q⇤. Then by the mean value

theorem, there exists s�n between q�n and q0
�n

such that (U⇤)00(s�n) = 0. By

passing to the limit, one has (U⇤
�⇤)0(q⇤) = (U⇤

�⇤)00(q⇤) = 0, a contradiction to

the fact that every critical point is either strict minimizer or strict maximizer.

Overall, we proved that in each neighborhood of Ri

�⇤ , for su�ciently small

�, there exists exactly one critical point of U⇤
�
and the proof is finished.

Proof of Theorem ??. By the definition of i⇤, for any i � ĩ we have Ri

�̃
> R. On

the other hand, by Proposition ??, we know that, for any i > 0, lim�!0 Ri

�
< R.

Since for any i 2 N the function � ! Ri

�
is continuous by Proposition ??,

52



we deduce that there exists �i > �̃ such that Ri

�i = R. This concludes the

proof.

6. Oscillation of the branches for generic radius

In this section, we prove two generic uniqueness results, one for singular and

one for regular solutions i.e. we prove Theorems ?? and ??. More precisely

we show that, for generic R > 0, if (U⇤
�⇤)0(R) = 0 for some �⇤ > 0, then

(U⇤
�
)0(R) 6= 0, for any � ⇡ �⇤, � 6= �⇤ and that there exists at most one �

such that ri
�,�

= R, if � ⇡ �⇤ and � is large enough. The proof of Theorem ??

relies on the Sard’s theorem applied to the function �! Ri

�
, and therefore our

first goal is to show that this function is Lipschitz. We start with the following

lemma.

Lemma 6.1. For any �⇤ > 0 and any compact I ⇢ (0,1), there exists C�⇤,I >

0 locally bounded in �⇤ such that

kU⇤
�⇤ � U⇤

�
kC2(I)  C�⇤,I |�� �⇤|,

for any � su�ciently close to �⇤.

Proof. Fix any � > 0 and denote V� = U⇤
�
+ �⇤, where �⇤ = ln(�/�⇤). Then, V�

satisfies

�V 00
�
� N � 1

r
V 0
�
+ V� = �⇤eV� + �⇤

and by Remark ??

V�(r) = �2 ln r + ln

✓
2(N � 2)

�⇤

◆
+O(r2(1� ln r)) .

Denote W = U⇤
�⇤ � V�. We see that W satisfies

�W 00 � N � 1

r
W 0 +W = �⇤(eU

⇤
�⇤ � eV�)� �⇤ = �⇤eU

⇤
�⇤ (1� e�W )� �⇤

and after simple algebraic manipulations, we end up with

�W 00�N � 1

r
W 0+W�2(N � 2)

r2
W =

✓
�⇤eU

⇤
�⇤ 1� e�W �W

W
+ �⇤eU

⇤
�⇤ � 2(N � 2)

r2

◆
W��⇤ .
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Furthermore,

W (r) = O(r2(1� ln r)) ,

where O(r2��) in general depends on � and �⇤. By Remark ?? one has that

|W |  1 on (0, cN ) and combined with (??) one has |W |  1 on I for any �

su�ciently close to �⇤. Hence,
����
1� e�W �W

W

����  CW on I ,

and then by Remark ?? for � < 1, we have
�����

⇤eU
⇤
�⇤ 1� e�W �W

W

����  cN
1

r2
r2|1� ln r|  cN (1 + | ln r|) on I .

Also, by Remark ??, we infer that
�����

⇤eU
⇤
�⇤ � 2(N � 2)

r2

���� =
2(N � 2)

r2

���eq(r) � 1
��� ,

where |q(r)|  cNr2(1 + | ln r|). Thus, if we set W̄ = W/�⇤, we obtain

�W̄ 00 � N � 1

r
W̄ 0 � 2(N � 2)

r2
W̄ = m(r)W̄ � 1

with |m(r)|  cN (1 + | ln r|). Furthermore, Remark ?? implies W̄ 0(0) = 0 and

this condition is fulfilled continuously. Finally, denote Z1(r) = W̄ (r), Z2(r) =

rW̄ 0(r) and Z = (Z1, Z2). Then

Z 0 =
1

r
JZ � rm(r)

0

@ 0

Z1

1

A+

0

@ 0

r

1

A , Z(0) = 0 ,

where

J =

0

@ 0 1

�2(N � 2) 2�N

1

A .

Since the eigenvalues µ1, µ2 of J have negative real parts, proceeding as in

Lemma 2.3 of [? ], one can show that Z1 is bounded on I.

Consequently, W̄ is bounded, and therefore |W |  C|�⇤| on I. Since |�⇤| 

C�⇤ |���⇤| for any � su�ciently close to �⇤, the assertion of the lemma follows

from standard regularity theory since I is bounded away from the origin, and

therefore the coe�cients of the equation are bounded, uniformly in � 2 (�⇤ �

�, �⇤ + �). This also implies that �⇤ 7! C�⇤ is bounded locally uniformly on

(0,1).
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Lemma 6.2. The function � 7! Ri

�
is Lipschitz.

Proof. Fix �⇤ > 0 and i 2 N+. Without loss of generality, we assume that

Ri

�⇤ is a local minimizer of U⇤
�⇤ . Thus, from the equation in (??), we infer that

(U⇤
�⇤)00(Ri

�⇤) = M > 0. By continuity, there is "0 > 0 such that

(U⇤
�⇤)00(r) �

M

2
r 2 I0 := [Ri

�⇤ � "0, R
i

�⇤ + "0] .

Now for fixed � > 0 su�ciently close to �⇤, we estimate Ri

�
. Without loss

of generality assume (U⇤
�
)0(Ri

�⇤)  0, the other case is analogous. For any

r 2 I+0 := [Ri

�⇤ , Ri

�⇤ + "0], the mean value theorem implies

(U⇤
�
)0(r)�(U⇤

�
)0(Ri

�⇤) = (U⇤
�
)00(⇣)(r�Ri

�⇤) = (U⇤
�⇤)00(⇣)(r�Ri

�⇤)+(U⇤
�
�U⇤

�⇤)00(⇣)(r�Ri

�⇤) .

for some ⇣ 2 I0 depending on �. Setting r = Ri

�⇤ + "0 in (??), one has by

Lemma ?? combined with (??) and the fact that (U⇤
�⇤)0(Ri

�⇤) = 0 that

(U⇤
�
)0(Ri

�⇤ + "0) �
M

2
"0 + (U⇤

�
� U⇤

�⇤)00(⇣)"0 � M

2
"0 � CN |�� �⇤| .

Consequently, for � su�ciently close to �⇤, we deduce that (U⇤
�
)0(Ri

�⇤)  0 

(U⇤
�
)0(Ri

�⇤ + "0) and by the intermediate value theorem, there is j such that

Rj

�
2 [Ri

�⇤ , Ri

�⇤ + "0]. Since critical points of U⇤
�⇤ are non-degenerate, it is

standard to see that j = i. Therefore, by setting r = Ri

�
in (??), one obtains

0  M

2
(Ri

�
�Ri

�⇤)  (U⇤
�⇤)00(⇣)(Ri

�
�Ri

�⇤)  |(U⇤
�
�U⇤

�⇤)0(Ri

�⇤)|+|(U⇤
�
�U⇤

�⇤)00(⇣)(r�Ri

�⇤)|  C�⇤ |���⇤|,

where we used the fact that (U⇤
�⇤)0(Ri

�⇤) = (U⇤
�
)0(Ri

�
) = 0 in the last inequality.

This concludes the proof.

We are now in position to prove Theorem ??.

Proof of Theorem ??. Fix i 2 N+. Since by Lemma ?? the function � 7!

Fi(�) := Ri

�
is Lipschitz, Rademacher’s theorem implies that Fi is di↵eren-

tiable for any � 2 (0,1) \ Si, where Si has Lebesgue measure zero. Denote

by Ei = {� 2 (0,1) \ Si : F 0
i
(�) = 0}. Then, by Sard’s theorem for Lipschitz
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functions (see [? ]), one has that Fi(Ei) is a set of measure zero. Moreover,

since Fi is Lipschitz with locally uniformly bounded Lipschitz constant, one has

that Fi(Si) has also measure zero.

Overall, S⇤
i
:= Fi(Si[Ei) is a set of zero measure, and therefore S⇤ =

S
i
S⇤
i

has measure zero as well. Thus for any radius R 2 (0,1) \ S⇤, any i and any

�⇤ such that Ri

�⇤ = R, the function � 7! Ri

�
is di↵erentiable at �⇤ with nonzero

derivative. We claim that for any � su�ciently close to �⇤ one has (U⇤
�
)0(R) 6= 0.

Indeed, otherwise there is a sequence �n ! �⇤ such that (U⇤
�n

)0(R) = 0, or

equivalently, Rin
�n

= R for any n � 1. Since critical points of U⇤
�⇤ are non-

degenerate, in = i for any su�ciently large n. Then, by the definition of the

derivative F 0
i
(�⇤) = @�Ri

�⇤ = 0, a contradiction.

Next, we turn to the proof of Theorem ??. The main ingredient is the proof

of the fact that for some compact interval I ⇢ (0,1), the function � ! ri
�,�

is

bounded in C2(I) by a constant that does not depend on �. To show this, we

will prove that @�u(·, �, �) and @2�u(·, �, �) are uniformly bounded in �.

Lemma 6.3. Assume 4  N  9. Moreover, suppose that � < 0.196 if N = 4.

For any compact interval I ⇢ (0,1), the function � 7! u(·, �, �) is a locally C2

map from (0,1) to C2(I), where u(·, �, �) is the solution to (??). Moreover,

for any � > 0 and su�ciently large � (depending on �), there holds

� 2

�� �
 @�u(r, �) < 0,

for any r > 0.

Proof. Due to the smooth dependence on data, the function � 7! u(·, �, �) is

smooth, so the main challenge is to prove uniformity in �. Fix � > 0 and � > 0

and denote w(r) = @�u(r, �).

Fix M > 0. Then, by Remark ?? there exists " > 0 such that �eUs > M

on (0, "). By Theorem ??, for su�ciently large �, one has �eu(") > M . Also,

decreasing " > 0 if necessary, we can assume that u0  0 on (0, "), for any

su�ciently large �.
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By the smooth dependence on parameters, w is a smooth function satisfying

the problem

�w00 � N � 1

r
w0 + w = �euw + eu, w(0) = w0(0) = 0 .

Define the energy

E(r) =
(w0)2

2
+ �eu

w2

2
� w2

2
.

A standard calculation yields

E0(r) = �(N � 1)
(w0)2

r
+ �euu0w

2

2
� euw0 .

Fix "0 > 0 as in Corollary ??. Then, for any r 2 (0, "0), one has

E0(r)  u0 (w
0)2

2
+ �euu0w

2

2
� euw0 � �0

(w0)2

r
 u0E(r)� euw0 � �0

(w0)2

r
,

where we used that u0 < 0 on (0, "0). Equivalently, we have

(E(r)e�u)0  �w0 � �0
(w0)2

r
e�u.

So, using that w(0) = E(0) = 0, we obtain

�0

Z
r

0

(w0)2

⇢
e�ud⇢+ e�u(r)E(r)  �w(r) .

For fixed �, by choosing M su�ciently large, we have

e�u(r)E(r) � �� �

2
w2(r) +

(w0(r))2

2
e�u(r).

Combining the two previous inequalities, we see that 0 � w � � 2
���

, for any

r 2 (0, "0). Moreover,

Z
r

0

(w0)2

⇢
e�ud⇢  C |w0(r)|  Ce

u(r)
2 .

Next, we extend the bound to the desired interval I = (a,A) with a > 0.

Without loss of generality assume a  " and recall that " > 0 is independent of

�. Theorem ?? implies that by choosing su�ciently large �, one has |u�U | < 1

on (a/2, A), where U is the singular solution corresponding to �. In addition |U |
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is bounded on (a/2,1), and therefore |u| < C on (a/2, A) with C independent

of large �. Then since |w̄|  C on ("/2, "), we obtain that there is a point

s0 2 (a/2, a) possibly depending on � such that |w(s)|, |w0(s)|  C. Since w

solves on (a/2,1) an equation with coe�cients bounded independently of �,

we obtain that |w̄|  C on (a,A) as desired.

Furthermore, by the standard elliptic regularity theory and above bounds

on coe�cients, one obtains

k@�ukC2(a,A) = kwkC2(a,A)  C�,a,A .

Next, we prove that the second derivative of u with respect to � is bounded

uniformly in �. First, we obtain the estimate for small r, and then we extend

it to I as above. Again, by the smooth dependence on the data, � 7! u(·, �) is

a smooth map and therefore

@2
�
u(·, �) = @�w(·, �) =: Z(·, �) ,

is a well defined smooth function. Also, Z solves

�Z 00 � N � 1

r
Z 0 + Z = �euZ + 2euw + �euw2, Z(0) = Z 0(0) = 0 .

Next, let us estimate |Z 0| near the origin. If we define the energy

Ê(r) =
(Z 0)2

2
+ �eu

Z2

2
� Z2

2
,

then, as above, we have Ê(0) = 0 and

Ê0(r)  u0�eu
Z2

2
� eu(2w + �w2)Z 0 � (N � 1)

(Z 0)2

r

 u0Ê(r)�
✓
1

�
(�w + 1)2 � 1

�2

◆
Z 0eu � �0

(Z 0)2

r
,

which can be rewritten as

(e�uÊ)0  �
✓
1

�
(�w + 1)2 � 1

�2

◆
Z 0 � �0

(Z 0)2

r
e�u .

Note that we cannot proceed as in the previous case, since the coe�cient of Z 0

is not constant. Rather after integrating and using that Ê(0) = 0 = Z(0), we
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obtain

�� �

2
(Z(r))2  � 1

�

Z
r

0
(�w + 1)2Z 0d⇢+

1

�2
Z(r)� �0

Z
r

0

(Z 0)2

⇢
e�ud⇢ .

Then, Young’s inequality yields
����
1

�

Z
r

0
(�w + 1)2Z 0d⇢

����  �0

Z
r

0

(Z 0)2

⇢
e�ud⇢+ C

Z
r

0
⇢(�w + 1)4eud⇢ .

We conclude the proof by showing that the last integral on the right hand side

is bounded. Observing that

(�w + 1)4 = (�w + 1)(�3w3 + 3�2w2 + 3�w + 1),

the assertion follows once we show for any p � 1
����
Z

r

0
⇢eu(�w + 1)wp�1d⇢

����  C .

We need more estimates on w. Since w solves (??)

�(wp)00 � N � 1

r
(wp)0 = pwp�1

✓
�w00 � N � 1

r
w0
◆
� p(p� 1)wp�2(w0)2

= pwp�1(�euw + eu � w)� p(p� 1)wp�2(w0)2 .

So, using the representation formula (??), we find

wp(r) = � 1

N � 2

Z
r

0
⇢

✓
1�

⇣⇢
r

⌘N�2
◆
p[(�euw+eu�w)wp�1�(p�1)wp�2(w0)2]d⇢

and

(wp)0(r) = pwp�1w0 = �1

r

Z
r

0
⇢
⇣⇢
r

⌘N�2
p[(�euw+eu�w)wp�1�(p�1)wp�2(w0)2]d⇢ .

Since |w|  C and u  Us + C (see Remark ??), then (??) yields
Z

r

0
⇢(w0)2wp�1d⇢  C

Z
r

0
⇢(w0)2eue�ud⇢  C

Z
r

0

1

⇢
(w0)2e�ud⇢  C .

Then, (??), (??), (??), and |w|  C imply
����
Z

r

0
⇢

✓
1�

⇣⇢
r

⌘N�2
◆
(�euw + eu � w)wp�1d⇢

����  C,

����
Z

r

0
⇢
⇣⇢
r

⌘N�2
(�euw + eu � w)wp�1d⇢

����  C ,
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and consequently ����
Z

r

0
⇢eu(�w + 1)wp�1d⇢

����  C .

This established (??). Overall (see (??) and (??)), we have proved that

�

2
(Z(r))2  C � 1

�2
Z(r)

which yields |Z|  C. The boundedness in C2(a,A) for a > 0 follows from the

elliptic regularity as above.

Lemma 6.4. Assume 4  N  9. Moreover suppose that � < 0.196 if N = 4.

For any su�ciently large � > 0, the function � 7! ri
�,�

belongs to C2
loc(0,1),

where ri
�,�

is defined as in Theorem ??. Furthermore, for any compact interval

I ⇢ (0,1), we have

k� 7! ri
�,�

kC2(I)  CI ,

where CI is in particular independent of �.

Proof. Denote w = @�u, where u satisfies (??). Then, as in Lemma ??, one

has that w satisfies (??). By the definition of ri
�,�

, we have u0(ri
�,�

, �) = 0 and,

after di↵erentiation with respect to �, one obtains

@�r
i

�,�
= �

w0(ri
�,�

, �)

u00(ri
�,�

, �)
=

w0(ri
�,�

, �)

� exp(u(ri
�,�

, �))� u(ri
�,�

, �)
,

where in the last equality we used the equation for u. By Theorem ??, for large

� one has that ri
�,�

is close to Ri

�
, a critical point of U⇤. Thus for large �, Lemma

?? yields |w0(ri
�,�

, �)|  C. Also, Theorem ?? implies that u(ri
�,�

, �) is close

to U⇤(Ri

�
), and in particular the denominator of (??) is bounded away from 0

uniformly in large �. A combination of these observations yields |@�ri�,� |  C.

Analogously, by using full power of Lemma ??, we obtain the boundedness

of the second derivatives, and the assertion follows.

We are now in position to prove Theorem ??.

Proof of Theorem ??. For a contradiction, assume that there exist sequences

�n ! 1 and �n, �0n ! �i such that ri
�n,�n

= ri
�0
n,�n

= R. Then, by the mean
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value theorem, there exists �⇤
n
between �n and �0

n
such that @�ri�⇤

n,�n
= 0. Since

�⇤
n
! �i and � 7! @�ri�,�n

has bounded (uniformly in � and locally in �) second

derivative, one has that @�ri�i,�n
! 0 as n ! 1.

Furthermore, by Lemma ??, the sequence of functions (� 7! ri
�n,�n

)n is uni-

formly bounded in C2
loc, and therefore by Arzelà-Ascoli’s theorem, it converges

in C1
loc. In addition (� 7! ri

�n,�n
)n converges point-wise to Ri

�i , and therefore it

converges to Ri

�i in C1
loc.

Combining the previous observations, we obtain that @�Ri

�i = 0, a contra-

diction to the definition of the set S⇤.

7. Appendix

Recall that û defined in (??) satisfies

�û00 � (N � 1)
û0

r
+ e��(û+ �) = �eû in (0,1),

with û(0) = û0(0) = 0. Also, Us = �2 ln r + ln 2(N�2)
�

solves

��Us = �eUs .

Define ū as a solution of

��ū = �eū, ū(0) = ū0(0) = 0

and, by Lemma ??, û ! ū in C1
loc[0,1) as � ! 1. First we obtain some

preliminary estimates on ū.

Lemma 7.1. The function ū is decreasing and ū(r) � � 1
2�r

2. Furthermore,

ū(r) < Us(r) for r 2 [0,
p
2(N � 2)/�].

Proof. Note that ��ū > 0, which can be rewritten as

�(rN�1ū0) > 0.

Integrating, we deduce that ū0 < 0, for r > 0. In particular, we see that ū  0.

Then, using that ū, ū0  0, we have

ū00 = �N � 1

r
ū0 � �eū � ��eū � �� .
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Integrating twice the previous inequality and using the initial conditions, one

obtains that ū(r) � � 1
2�r

2. Finally, the last assertion follows since ū  0 and

Us � 0 on the desired interval.

Remark 7.2. Since û ! ū in C1
loc[0,1) as � ! 1, analogous estimates as in

Lemma ?? holds for û up to an error term of order o�(1). Note that o�(1) ! 0

as � ! 1.

We show that on small intervals, we have an uniform (with respect to �)

upper bound for û�Us. Before proceeding, we formulate the following Grönwall

lemma proved in [? , Theorem 15].

Theorem 7.3. Let u be a non-negative function satisfying, for s > s0,

x(s)  c+

Z
s

s0

k(s, r)x(r) dr, c > 0,

where k(s, r) is a continuously di↵erentiable function in s and continuous in r

with k(s, t) � 0, for s � r � s0. Then

x(s)  c exp

✓Z
s

s0

✓
k(r, r) +

Z
r

s0

@k

@r
(r, t)dt

◆
dr

◆
.

Thanks to this inequality, we have the following result.

Lemma 7.4. Assume 4  N  9. Let w = û � Us. Then, for any �, �̃ > 0,

there are "0, �0 > 0 such that for any � � �0, and any s  "0e�/2, one has

w(s)  2 + (2 + �̃)s̃2�N

0 )

N � 2
+ � =: K,

where s̃0 =
q

2(N�2)
�

.

Remark 7.5. Lemma ?? immediately implies

û(s)  Us(s) +K s  "0e
�/2 ,

which in original variables yields for large �

u(r)  Us(s) +K + � = Us(r) +K r  "0 .
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Proof of Lemma ??. First observe that w1(s) = 1 and w2(s) = s2�N are linearly

independent radial solutions of the problem �w = 0. We define the Wronskian

W (w1, w2) = w1w0
2 � w2w0

1 = (2�N)s1�N . Moreover, if w is a radial solution

of �w = f , then, for any fixed a 2 R+, the variation of parameters yields

w(s) = c1w1(s)+c2w2(s)�w1(s)

Z
s

a

w2(r)f(r)

W (w1, w2)(r)
dr+w2(s)

Z
s

a

w1(r)f(r)

W (w1, w2)(r)
dr,

where c1, c2 are constants depending on w(a) and w0(a). For û, we have

û(s) = c1w1(s) + c2w2(s)�
1

N � 2

Z
s

1
r

✓
1�

⇣r
s

⌘N�2
◆
(�eû � e��(û+ �))dr .

Since, by definition, û0(0) = 0, we obtain

c2 = � 1

N � 2

Z 0

1
rN�1(�eû � e��(û+ �))dr ,

and then û(0) = 0 implies

c1 =
1

N � 2

Z 0

1
r(�eû � e��(û+ �))dr .

By Remark ??, one has |û|  o�(1)

o�(1) � c1 � � �

2(N � 2)
+ o�(1) o�(1)  c2  �

N(N � 2)

and in particular c1, c2 are bounded, independently of large � > 0. On the

other hand, since �eUs(r) = 2(N � 2)/r2, a direct calculation yields

Us(s) =

✓
ln

2(N � 2)

�
� 2

N � 2

◆
w1(s)+

2w2(s)

N � 2
� 1

N � 2

Z
s

1
r

✓
1�

⇣r
s

⌘N�2
◆
�eUsdr .

By definition of w = û� Us, we infer that

w(s) =

✓
c1 +

2

N � 2
� ln

2(N � 2)

�

◆
+

✓
c2 �

2

N � 2

◆
w2(s)

� 1

N � 2

Z
s

1
r

✓
1�

⇣r
s

⌘N�2
◆
(�(eû � eUs)� e��(û+ �))dr .

Using again that �eUs(r) = 2(N � 2)/r2, we obtain

�(eû � eUs) =
2(N � 2)

r2
(ew � 1) .
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By Remark ??, w(s) < 0 on (0, 1] for any large �. We set s0 2 (1, "e�/2) to be

the smallest real number such that w(s0) = 0. If no such s0 exists, then the

assertion follows. Thus, on the interval (0, s0), one has

�1  ew � 1  0 .

Moreover, by definition, observe that ��  û  0. Thus, for s 2 [1, s0], the

integrand in (??) is negative and therefore we have for s 2 [1, s0],

w(s) �
✓
c1 +

2

N � 2
� ln

2(N � 2)

�

◆
+

✓
c2 �

2

N � 2

◆
w2(s) � C ,

where C is a constant independent of �. Since w(s)  0, for 0  s  s0, and

w(s0) = 0, one has w0(s0) � 0. On the other hand, di↵erentiating (??), we

obtain

w0(s)

=
2�N

s

✓
c2 �

2

N � 2

◆
w2(s) +

1

N � 2

Z
s

1
r
⇣r
s

⌘N�2
✓
2(N � 2)

r2
(ew � 1)� e��(û+ �)

◆
dr

�
.

Since w  0 is bounded on [1, s0] and s0  "e
�
2 , we have for any r 2 [1, s0],

|û(r) + �| =
����w + � � 2 ln r + ln

2(N � 2)

�

����  C + � � 2 ln r,

and

|ew � 1|  1 .

Thus, for any s 2 [1, s0], we obtain that

w0(s)  C�

w2(s)

s
+

1

sN�1

Z
s

1
rN�1

✓
2(N � 2)

r2
+ e��(C + � � 2 ln r)

◆
dr ,

where by (??)

C� = 2� (N � 2)c2  2 + o�(1) .

Recalling that, for m 6= �1,

Z
sm ln s ds = sm+1 (m+ 1) ln s� 1

(m+ 1)2
+ C,
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we obtain for m = N � 1, that
Z

s

1
rN�1(C + � � 2 ln r) dr 

✓
�2sN

N ln s� 1

N2
+

sN

N
(C + �)

◆

= sN�1

✓
�2s

N ln s� 1

N2
+

s

N
(C + �)

◆
,

where we dropped the lower limit term since it is negative. Since s0 < "e�/2,

for small " > 0 the expression in the parentheses on the right had side of (??)

is increasing on (0, "e
�
2 ), we replace s by "e

�
2 and obtain

Z
s

1
rN�1(C + � � 2 ln r) dr  sN�1"e

�
2

✓
�2

N ln "� 1

N2
+

C

N

◆
.

Therefore, we have for small " > 0 independent of �

1

sN�1

Z
s

1
rN�1

✓
2(N � 2)

r2
+ e��(C + � � 2 ln r)

◆
dr 

✓
2(N � 2)

(N � 2)s
+ e��/2"| ln "|

◆
 1

s

�
2 + "2| ln "|

�
.

Thus, combining (??) and (??)

w0(s)  C�

sN�1
+

1

s

�
2 + "2| ln "|

�
 2 + "+ C�s2�N

s
.

Next, we rewrite the representation formula (??) for w with di↵erent starting

point. Namely, we have

w(s) = c̄1 + c̄2w2(s)�
1

N � 2

Z
s

s0

r

✓
1�

⇣r
s

⌘N�2
◆
(�(eû � eUs)� e��(û+ �))dr ,

for some constants c̄1, c̄2. We have w(s0) = 0 and by Remark ?? for su�ciently

large � one has s0 �
p
2(N � 2)/� = s̃0. Hence, (??) and (??) yields

0  w0(s0) 
1

s0

�
2 + "+ C�s

2�N

0

�
 1

s0

⇥
2 + "+ C�s̃

2�N

0

⇤

Then, by using (??) and similar expression for w0 as well as its derivative, we

obtain

c̄1 + c̄2s
2�N

0 = 0, 0  c̄2(2�N)s1�N

0  2 + "+ C�s̃
2�N

0

s0
.

Consequently,

0 � c̄2w2(s0) = c̄2s
2�N

0 � �2 + "+ C�s̃
2�N

0

N � 2
and 0  c1  2 + "+ C�s̃

2�N

0

N � 2
.
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Denote s1  "e�/2 the smallest number larger than s0 such that w(s1) = 0. If

such number does not exist, then we set s1 = "e�/2. So, for s 2 [s0, s1], we have

ew(s) � 1 � 0, and therefore

w(s)  2 + "+ C�s̃
2�N

0

N � 2
� 1

N � 2

Z
s

s0

r

✓
1�

⇣r
s

⌘N�2
◆✓

2(N � 2)

r2
(ew � 1)� e��(û+ �)

◆
dr

 2 + "+ C�s̃
2�N

0

N � 2
+

1

N � 2

Z
s

s0

r

✓
1�

⇣r
s

⌘N�2
◆
e��(û+ �)dr

=
2 + "+ C�s̃

2�N

0

N � 2
+

1

N � 2

Z
s

s0

r

✓
1�

⇣r
s

⌘N�2
◆
e��(w + C � 2 ln r + �)dr.

Using (??) with N = 2 and s1  "e�/2 we have for small " > 0
Z

s

s0

r

✓
1�

⇣r
s

⌘N�2
◆
e��(C�2 ln r+�)dr 

Z
s

s0

re��(C�2 ln r+�)dr  C"e�
�
2 s| ln "|  C"2| ln "|,

for some constant C not depending on �. Therefore,

w(s)  2 + "̃+ C�s̃
2�N

0

N � 2
+

1

N � 2

Z
s

s0

r

✓
1�

⇣r
s

⌘N�2
◆
e��wdr .

Then, by Theorem ??, we obtain, for any s 2 (s0, s1),

w(s)  2 + "̃+ C�s̃
2�N

0

N � 2
exp

 
e��

Z
s

s0

Z
r

s0

✓
t

r

◆N�1

dtdr

!

 2 + "̃+ C�s̃
2�N

0

N � 2
exp

�
Ce��s2

�

 2 + "̃+ C�s̃
2�N

0

N � 2
+ o�(1) ,

where in the last inequality we used that s  s1  "e�/2.

Finally, let us treat the interval (s1, "e
�
2 ) if s1 < "e

�
2 . Note, that we cannot

merely reiterate the approach above, since we used that w < 0 on (0, s0) to

obtain the estimate for w0(s0). If s1 < "e
�
2 denote s⇤ 2 (s0, s1) the first local

maximum of w and the above arguments yield w(s⇤)  2+"̃+C�s̃
2�N
0

(N�2) + o�(1).

Using �eUs = 2(N � 2)/r2, we obtain that w satisfies

�w00�(N�1)
w0

r
= �(eû�eUS )�e��(û+�) =

2(N � 2)

r2
(ew�1)�e��(w+�+C��2 ln r) .

66



Define the energy

E(r) =
(w0)2

2
+

2(N � 2)(ew � w)

r2
� e��

w2

2

and observe that

E0(r) = �(N � 1)
(w0)2

r
� 4(N � 2)(ew � w)

r3
+ e��(� + C� � 2 ln r)w0 .

Then, Young’s inequality implies for N > 3

e��(� � C� � 2 ln r)|w0|  (N � 3)
(w0)2

r
+ Cre�2�(� + C� � 2 ln r)2 ,

and consequently, since N � 4,

E0(r)  �2
(w0)2

r
�4(N � 2)(ew � w)

r3
+Cre�2�(�+C��2 ln r)2  �2

r
E(r)+Cre�2�(�+C��2 ln r)2 .

Hence,

(r2E(r))0  Cr3e�2�(� + C� � 2 ln r)2 .

Using the substitution p = te�
�
2 and r  "e�

�
2 , we obtain

Z
r

s

t3e�2�(�+C��2 ln t)2dt =

Z
re

� �
2

se
� �

2

p3(�+C��2 ln(e
�
2 p))2dp 

Z
"

0
p3(C��2 ln p)2dp = O(") .

Finally, we have, for r > s⇤,

2(N � 2)(ew(r) � w(r))� e��r2

2
w2(r)  r2E(r)

 (s⇤)2E(s⇤) +O(")  2(N � 2)(ew(s⇤) � w(s⇤))� e��(s⇤)2

2
w2(s⇤) +O(") ,

and therefore, for s⇤ < r  "e�
�
2 ,

ew(r) � w(r)� "2

2
w2(r)  ew(s⇤) � w(s⇤) +O(") .

If " = 0, the monotonicity of function x 7! ex � x on (0,1) yields that w(r) 

w(s⇤)  2+C�s̃
2�N
0

N�2 + O("). Finally, by continuity and monotonicity, we have

that, for small " > 0, w(r)  w(s⇤)  2+C�s̃
2�N
0

N�2 +O(") as desired.
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Lemma 7.6. Assume 4  N  9. Let w = û�Us and s̃0 =
q

2(N�2)
�

. For any

�, �̃ > 0, there exists �0, "0 > 0 such that, for any � � �0 and any s  "0e�/2,

there holds

w0(s) � �2(eK � 1)

s
,

where K is defined in Lemma ??.

Proof. Using (??) and the fact that û  �, we have

w0(s) � 2�N

s

✓
c2 �

2

N � 2

◆
w2(s) +

1

N � 2

Z
s

1
r
⇣r
s

⌘N�2 2(N � 2)

r2
(ew � 1)dr

�
.

By Lemma ??

w0(s) � 2�N

s

✓
c2 �

2

N � 2

◆
w2(s) +

1

N � 2

Z
s

1
r
⇣r
s

⌘N�2 2(N � 2)

r2
(eK � 1)dr

�

� 2�N

s

✓
c2 �

2

N � 2

◆
w2(s) +

2

N � 2

�
eK � 1

��
.

By (??) and � < 1/e

c2 �
2

N � 2
<

�

N(N � 2)
� 2

N � 2
< 0

and the assertion follows.

Corollary 7.7. Assume 4  N  9. Moreover, suppose that � < 0.196 if

N = 4. For any � > 0, there exists �0, "0 > 0 such that, for any � � �0 and any

r  "0, there holds

u0(r) � �2(N � 1) + �

r
.

Proof. We set w = û � Us. Choose "0 > 0 as in Lemma ?? (and recall the

definition of K there) and observe that, for s  "0e
�
2 ,

û0(s) = U 0
s
(s) + w0(s) � �2

s
� 2(eK � 1)

s
= �2eK

s
.

Furthermore, by the definition of û (cf. (??) and note that s = e
�
2 r)

d

dr
u(r) =

d

ds
û(s)

ds

dr
=

d

ds
û(s)e

�
2 � �2eK

s
e

�
2 = �2eK

r
.
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We finish the proof, once we show that eK0 � (N � 1), where K0 = 2+2s̃2�N
0

N�2

(compare with the definition of K). Solving for �, yields

�  2(N � 2)

 
ln(N � 1)� 2

N�2

2

!2/(N�2)

.

which is indeed true since the right hand side is bigger than 1/e if N � 5 and

bigger than 0.197 if N = 4.

Remark 7.8. Numerical simulations suggest that the value of s̃0 (namely the

small positive real number such that w(s̃0) = 0) can be improved in order for

the previous corollary to hold true for any � < 1/e when N = 4.
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