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Abstract

We study singular radially symmetric solution of the stationary Keller-Segel
equation, that is, an elliptic equation with exponential nonlinearity, which is
super-critical in dimension N > 3. The solutions are unbounded at the origin
and we show that they describe the asymptotics of bifurcation branches of reg-
ular solutions. It is shown that for any ball and any k£ > 0, there is a singular
solution that satisfies Neumann boundary condition and oscillates at least k
times around the constant equilibrium. Moreover, we prove that in dimension
3 < N <9 there are regular solutions satisfying Neumann boundary conditions
that are close to singular ones when the value at the origin is close to infinity.
Hence, it follows that there exist regular solutions on any ball with arbitrarily
fast oscillations. For generic radii, we show that the bifurcation branches of reg-
ular solutions oscillate in the bifurcation plane when 4 < N < 9 and approach
to a singular solution. In dimension N > 10, we show that the Morse index of

the singular solution is finite, and therefore the existence of regular solutions
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with fast oscillations is not expected.

Résumé

Nous étudions les solutions singulieres radiales de I’équation de Keller-Segel sta-
tionnaire, qui est une équation elliptique avec une non-linéarité exponentielle,
surcritique en dimension N > 3. Ces solutions ne sont pas bornées a l’origine et
nous montrons qu’elles décrivent les asymptotiques des branches de bifurcation
des solutions régulieres. Nous prouvons également que pour toutes boules et
tout k > 0, il existe une solution singuliére qui satisfait une condition de Neu-
mann homogene au bord et qui oscille exactement k fois autours de ’équilibre
constant. De plus, nous montrons qu’en dimension 3 < N < 9, il existe des
solutions régulieres satisfaisant la condition de Neumann homogene au bord qui
sont proches de nos solutions singulieres. Par conséquent, dans toute boule, il
existe des solutions régulieres qui oscillent arbitrairement rapidement. Pour des
rayons génériques, nous montrons que les branches de bifurcation des solutions
régulieres oscillent dans le plan de bifurcation quand 4 < N < 9. En dimension
N > 10, nous prouvons que l'indice de Morse des solutions singuliéres est fini.
Par conséquent, nous ne nous attendons pas a trouver des solutions régulieres
qui oscillent rapidement dans ce cas.

Keywords: Bifurcation branches, radial Keller-Segel equation, oscillations,
singular solutions.

2010 MSC: 34C23, 35J25, 34C10

1. Introduction

The goal of the present paper is to investigate singular, radial solutions of
the so-called Keller-Segel equation
—Av+v= A" in By \ {0},
v>0 in By \ {0},

d,v=0 on 0Bg,



where B C RN, N > 3 is a ball of radius R > 0 centered at the origin. The
solutions are assumed to blow-up at the origin with a specific rate (see (?7)
below) which is in some sense minimal so that they are limits of sequences of
regular solutions with value at the origin approaching infinity. Then, qualitative
properties of singular solutions such as Morse index, yield information about
oscillations of the bifurcation branches. We give more details below.

The problem (??) is motivated by models of chemotaxis, an omnipresent
mechanism in biology that describes the motion of species towards higher (lower)
concentration of a chemical substance, for example nutrients or poisons. Some-
times the substance is also secreted by the species themselves, which induces
a complicated large scale behavior such as aggregation, scattering, or pattern
formation. Mathematically, this phenomenon can be described by a strongly

coupled evolution system introduced by Keller and Segel [? ]

0
ait‘ = Au— DV - (uVé(v)) inQx(0,7),
v .
5= DyAv — Dsv + Dau in Q x (0,7),
where T > 0, Q C RY is a smooth bounded domain, D;, i = 1, -- , 4 are positive

constants, and ¢ is a smooth strictly increasing function, which depends on a
particular model. Since function v represents the concentration of a chemical
substance and u stands for the concentration of the considered organisms, it is
natural to suppose

u,v >0 in Qx(0,7)

and to complement the model with no-flux boundary conditions

Oyu=0,v=0 ondQdx(0,T),

and some non-negative initial conditions. The system (??) has attracted a lot
of attention these past decades and we refer to surveys [? 7 ], and to references

therein for more details on the existence, blow-up, and asymptotic behavior of



solutions.
The analysis of global dynamics of (??) crucially depends on the understand-

ing of equilibria, that is, solutions of
V- (uV(logu — D16(v)) =0, DyAv — Dsv+ Dyu =0,

with boundary conditions (??). By a standard reasoning one has u = CeP1¢(v)
for some positive constant C. The canonical choices for ¢ are ¢(v) = v, which
leads to the Keller-Segel equation (??) on a domain  and ¢(v) = Inv, which

after appropriate rescaling, yields Lin-Ni-Takagi equation

—Av+v=1" in Q,
v >0 in Q,

0,v=0 on 0f).

The constants A and p in (??) and (??) respectively depend on the parameters
D, of the system. A large amount of literature has been devoted to the Lin-Ni-
Takagi equation in the subcritical and critical case, that is, when N > 3 and
1<p<pg:= % (see [? 7 7 7 ] and references therein). Much less is
known in the super-critical case, p > pg for (??) or N > 3 for (??), see [? 7 ?
]

Clearly, if p increases, the problem (??) becomes ‘more super-critical’, how-
ever the role of A in (?7) is less obvious, since the character of the nonlinearity
remains unchanged as A varies. To obtain a better insight, notice that (??) has
two constant equilibria v = 0 and v = 1 which are in particular independent of p.
On the other hand if A < 1/e, then (??) has two constant solutions u, <1 < @y
satisfying

Aet =p

and if A > 1/e there is no constant solution. Furthermore, @y — oo and uy, — 0

as A — 0T. To reveal the analogy between (??) and (??), denote u = u, and

v
U'i=— =
Ux

[



Then, u satisfies

—Au+u =t in Bgr
u>0 in Bp,
O,u=20 on OBpg,
and constant solutions of (??) are u = 1 and u = u,,, with
u, = etlu,—1) — (egfl)u7 u, <1.

Then, the nonlinearity is ‘more critical’ (has larger exponent) if p is large, which
is equivalent to A being small.

The following bifurcation result for (??) with parameter p was obtained in
[? ], see [? ] for an analogous result for (??). Note that for fixed parameters
the radial solutions of the second order equations are uniquely determined by
the value of the function at 0 (since u/(0) = 0), therefore it suffices to investi-
gate bifurcation diagrams in R? with coordinates corresponding to u and u(0).
Specifically, by (uo, A) we denote a pair (ug,u), where u is the solution of (?7)
with = po and A = u(0). Here and below, A%¢ denotes the i-th eigenvalue
of the operator —A + Id in the ball Bg := {x € RY : 2| < R} with Neumann

boundary conditions, restricted to the space of radial functions.

Theorem 1.1. For every i > 2, the trivial branch (u,1) of problem (?7) has a
bifurcation point at (\;%4,1). Let B; C R? be the continuum that branches out

of (\r*d 1). The following holds

(i) the branches B; are unbounded and do not intersect, and furthermore close

to (\[*4 1), B; is a C'-curve;
(i) if (u, A) € B;, then the corresponding solution u,, satisfies u,, > 0 in Bg;

(iii) each branch consists of two connected components B; = B; N {(u, A) :

A< 1} and Bf =B, n{(p, A): A>1};

(iv) if (u, A) € B; then the corresponding u,, —1 has exactly i —1 zeros, u), has

exactly i — 2 zeros;



(v) the functions satisfying u,(0) < 1 are uniformly bounded in the C*-norm.

The above theorem guarantees that B; is a subset R x (0,1) and it is un-
bounded. Since there are no non-trivial solutions for p < 0, we obtain that for
each ¢ > 2 the curve B; is unbounded from above in the p coordinate. We
refer an interested reader to [? 7 ? ? | for the construction of solutions that
we expect to be on the lower branches B; (the solutions lie in the half plane
{u(0) < 1}, but it is not known whether they are connected with the trivial so-
lution). Note that all the references above except [? | deal with radial solutions
and analogous results to Theorem ?7? for (?7?) were proved in [? ]. We also refer
to [? 7 ] for related problems involving the p-Laplace operator.

Properties of the upper branches Bj' are more delicate, since the correspond-
ing solutions are not a priori uniformly bounded. Although our interest is in
dimension N > 3, we first recall known results in two dimensions.

If N = 2, then we call the problem ’critical’ since the exponential nonlin-
earity is critical. It is proved in [? ] that the branches B;” are unbounded and
they exist for all values of 1 > A7, Since A — 0 as i — oo, this means that in
(A, u(0)) plane, B;f approaches arbitrary close to the line A\ = 0. Moreover, for
N = 2 del Pino and Wei [? | constructed a class of radial solutions (u)x«1 of
(??) such that

uy(z) = 87G(x,0) as A — 0%
uniformly on compact subsets of Br\ {0}, where G is the Green’s function, that
is, for any y € Br, * — G(x,y) solves

~A,G+G =4, in B, STQ:OonaBR

and ¢, is the Dirac measure supported at y. We remark that in [? |, a result
for non-radial solutions on general domains is also proved. Since one can check
that wx(0) = ux(0)/ux > 1, the functions (wx)rso belong to solutions in the
upper half plane, and their oscillation properties indicate that A — w) corre-
sponds to the asymptotic part of the first upper branch Bf. The results of [?

] were extended, by the first two authors in collaboration with Romén in [? |,



to solutions concentrating on the boundary and/or on an interior sphere and
blowing-up at the origin. Even more generally, under suitable non-degeneracy
assumptions, it is possible to show the existence of solutions (vy)xso such that
vA(0) = 0o as A — 0™ and for every M > 0 there is (r;); C (0, R) such that
vA(r;) = o0 as A — 0F. These non-degeneracy conditions are conjectured to
hold, and it is believed that the solutions that concentrate on i spheres form
the asymptote of the upper branch B;‘ . We remark that in the ‘asymptotically
critical’ case, p & pg for Lin-Ni-Takagi equation with N = 3, Rey and Wei [? ]

constructed a class of solutions that are believed to form the asymptote of B .

Our main aim is to describe the purely supercritical upper branches of (?7),
a problem that recently attracted a lot of attention especially with Dirichlet

boundary conditions

N-—-1
Uyr+—U.+2g(U)=0, 0<r <1,
r

U>0, 0<r<1,

see [2 7772772 7]. In[?], seealso [? , Chapter 2] for a recent survey, Joseph
and Lundgren considered g(U) = eV and proved that the set of positive solutions
to (??) forms a curve v emanating from the trivial solution U = 0, A = 0. When
3 < N <9, v has infinitely many turning points around A* = 2(N —2) and blows
up at A*. The case N = 3 was treated earlier by Gel’fand [? ]. When N > 10,
the branch consists of minimal solutions for 0 < A < A* with an asymptote at
A= M. If g(U) = (14 U)P, then in [? | a special exponent py, was found,

namely
4
1+ ,
pIL = N—-4-2yN -1
00, when 2 < N <10,

when N > 11,

and it was proved that when pg < p < pyr, the branch emanating from (U, \) =
2

(0,0) has infinitely many turning points around A* = (N —2 —0), § = ]
p—

and blows up at A* (the singular solution is given by U* = =% — 1), whereas if



p > pyr, the branch exists for all 0 < A < A\*, does not oscillate and blows up at
A*. These results were extended to more general nonlinearities, see for instance

[? ], where the author considered nonlinearity of the form
g(u) =" + h(u),

with h being a smooth lower order term.
For analogous Neumann problem we are only aware of [? |, where the author

studied the structure of positive radial solutions uy of
—Auy = ANuf —uy) in By,
Opuy =0 on 0B,

that bifurcate from the trivial solution 1. The exponent p > % is fixed here.
Problem (?7?) as well as (??) possesses a crucial scaling, that allows for exchange
of the parameter X for the size of the domain. More precisely, if uy(-) solves an
appropriate problem on Bgr with parameter A, then wuqz2y(«-) solves the same
problem on Bg/,. This property allows for a construction of explicit singular
solutions as well as proofs of various important non-degeneracy properties.
Neumann problems even with scale invariance are more complicated than
Dirichlet ones since there might be several bifurcation branches that contain
positive solutions. In fact, we show below that there are infinitely many such

branches. Also, radial eigenfunctions of Laplacian with Neumann boundary

conditions correspond to large eigenvalues.

In our problem (??) due to the presence of the zero order term, we can-
not rely on any scaling or transformation that removes the parameter A from
the equation. Moreover, the constant equilibria depend on A and after appro-
priate normalization (cf. (?7?)) the parameter appears in the exponent of the
nonlinearity, which introduces a novel parameter dependent problem.

To study the behavior of radial solutions for fixed parameter A > 0, we
first show that as the value of a solution at the origin increases, it converges
to a solution Uy satisfying the same problem with an explicit singularity at the

origin. The existence and uniqueness of U is shown on (0,00), and in order



to prove the existence of singular solution on a finite interval with appropriate
boundary conditions we first show that Uy has infinitely many critical points.
In other words, we show that for fixed A, the restriction of Uy satisfies Neumann
problem on infinitely many balls. More precisely, we prove that Uy oscillates
around ).

Before we formulate our first result, let us recall that ) is the largest solution
of u = Ae" and define O(r®) for s > 0 be a function such that O(r®)/r® — 0 as

r—0t.

Theorem 1.2. For any N > 3 and A > 0, there exists Uy = U™ > 0 satisfying,
for each 6 € (0,1),

—u - u +u=\e¥ on RT
r

2(N —2
u(r) = —=2Inr +1In AN -2) 3 ) + O(r?%) when v — 0.

Moreover, a solution satisfying the equation in (??) with the condition at the

origin
2(N -2
u(r) =—2lnr+In (f) +0(1)

1s unique. In addition, if

0.16 N =3,

035 N =4,

A< Ay =
036 N =5,
1 N >5,

then U* attains infinitely many times the value wy. Furthermore, for any se-
quences (n)o2q and (A,)5L; with v, — 00 and A, — Ao € (0,00), one has

u, — U* in CL _((0,00)), where uy, is the solution to

, N-—-1

u +u=\e" on RT,
u(0) =yn, ¥ (0)=0

and U* satisfies (27) and (?7?) with A = Ao



We require the restriction A < 1/e & 0.37 to guarantee that the nonlinearity
Ae" —u changes sign, since otherwise due to compatibility condition, the solution
Uy cannot have critical points. Also, if A < 1/e, then there are two solutions
of u = Ae¥, or equivalently, two constant equilibria of (??7). We believe that
the additional restriction on A in lower dimensions is technical (see Lemma 77
below) and the result should hold without it. However, since we are interested in
the asymptotes of bifurcation branches, that is, in small X, this assumption does
not cause any problems below. The oscillation result in Theorem ?? implies that
there exists an increasing, unbounded sequence of positive real numbers (R})5°,
depending on N and A > 0 such that (U3)'(R}) = 0, that is, U; satisfies
Neumann boundary conditions on 0B R Consequently, Uy is a singular radial
solution to (??) in the ball of radius R, i € N.

Our next main result states that if the radius R and any large integer ¢ > 1
are fixed, we can choose A\ > 0 such that R} = R, that is, U} has prescribed
number of intersections with @) on Br. Note that this result does not follow
from a rescaling of the domain, since our equation is not scaling invariant.
Clearly, such singular solutions have exactly 4 critical points (including the one

on the boundary).

Theorem 1.3. Assume N > 3 and let R > 0. Fiz any A € (0,\%) (¢f. Theorem
?7?) and let U5 be the function constructed in Theorem ??. Denote by (Rg)ieN
the increasing sequence such that (U/i\“)’(Rf\) = 0 and let i* be the smallest integer

such that R%\* > R. Then, for any i > i*, there exists \' > 0 such that

In particular, for any i > i*, there exists A\* > 0 such that the equation (?7)

admits a singular radial solution Uy, satisfying

ﬁ{r S (0, 1)|U;7(7") = ﬂ)\i} =1.

Once the existence of singular solutions on bounded domains is established,
we turn our attention to the character of bifurcation branches parametrized by

the value of solutions at the origin.

10



First we claim that the branch B;" (see Theorem ?7) is bounded in p, that
is, B < (0,C;) x (1,00), where C; depends only on i. Indeed, by testing (?7?)
with v we see that there is no positive solution if A < 0 and therefore by (??) no
solution of (??) if g < 0. Next, let u be a solution to (??) such that u(0) > 1.

Then setting @ = u — 1, we see that
—Al 4= e — 1> .

Hence, the Sturm-Picone comparison theorem implies that @ — 1 has arbitrary
large number of zeros if u is large. However, since number of zeros is constant
along B (cf. Theorem ?7), the claim follows.

However, the branch B;" (see Theorem ??) is unbounded, and therefore by
Theorem 77, B;r (up to sub-sequence) converge to singular solutions. Next, we
turn our attention to asymptotic behavior of B;'.

To formulate the next result, for given A,y > 0 we denote by (7“3\,Y)Z the
increasing sequence satisfying v’ (rﬁw, v) = 0, where u(+, ) is the unique solution
to (??). Note that if u(-,v) is non-constant, its critical points are necessarily
discrete and the sequence (rgm/)i is either finite or countable.

The following theorem gives a strong indication that for each ¢ > 1, the
branch Bf oscillates around A\* when 3 < N < 9. Below we show that the

oscillations of B indeed take place for a generic radius.

Theorem 1.4. Fiz3< N <9, R>0,i>i* (see Theorem ?7), and let \* > 0
be the positive real number given in Theorem ?7. Then, there exists a sequence
of initial data (yp)n with v, — 0o and a sequence of positive integer (jn)n such

that ri’;ﬁn = R.

Another evidence that the branch B;" oscillates around A* infinitely many
times if 3 < N <9 and finitely many times if N > 10 is provided by the Morse
index of the singular solution. We leave open the border line case N = 10.
Recall that the Morse index of v satisfying (?7?), denoted m(v), in the space of

radial functions is the number of negative eigenvalues « (counting multiplicities)

11



of the eigenvalue problem

—Ap+ P — AP = ad in Bpg,
o6 =0 on 0Bpg,
¢ is radially symmetric.

Recall that the Morse index of solutions remains constant along a bifurcation
branch unless it has a critical point in A\. Thus, each turning point of a bifur-
cation branch corresponds to a transition of an eigenvalue (of the linearization)
across imaginary axis. Since the solutions u(-,y) — U* as v — oo, the Morse
index of U* indicates the total number of turning points of the branch and
combined with Theorem ?7?, it suggests the number of intersection points of B;"

with A%

Proposition 1.5. If U}, is a solution to (77), then m(U3;) < co when N > 10

while m(Uy;) = oo when 3 < N < 9.

Finally, we prove the oscillation of the branches B; in dimension 4 < N <
9 for generic radius. If the scale invariance is available, then one can show
that B;r can be parametrized by the value of the solution at the origin, and in
particular there are no secondary bifurcations and singular solutions are non-
degenerate. In our case the situation is much more complicated and we rely on
Sard’s theorem which merely yield results for generic domains.

First, we show a generic local uniqueness result for singular solutions, which
combined with Theorem ?? yields that B;” (and any other branches) converge
to discrete set of functions. More precisely, for generic R > 0, if (U}.)'(R) =0,
then (U3)'(R) # 0, for A close but different to A*. In other words, if we have a
singular solution on By for certain A*, then we do not have a singular solution

for nearby ), that is, the set (\?) (see Theorem ??) is discrete.

Theorem 1.6. There exists a set S* C (0,00) of Lebesque measure zero, such
that for any radius R € (0,00) \ S* the following holds. If (Uy.) (R) = 0,
then there exists 6 > 0 such that for any A € (A* — 6, \* 4+ 6) \ {A\*} one has
(U3Y(R) £ 0,

12



A direct consequence is the following corollary.

Corollary 1.7. Let R € (0,00)\S*, where S* is defined in Theorem ?7?. Then,
there exists § > 0 such that, for any X € (\' =38, \'4-6)\{\*}, there is no singular

solution of (?7) satisfying (7).

To formulate a generic uniqueness result for regular solutions, recall rf\ﬁ
defined in Theorem ??. Then, for any R € (0,00) \ S* and any large ~ there

exists at most one A &~ A¢ such that rﬁw = R.

Theorem 1.8. Assume N > 4 and suppose A < 1/e for N > 4 and A < 0.196
if N = 4. Fiz \' as in Theorem 7?7 and let S* be the zero measure set as in
Theorem ??. Then for any R € (0,00) \ S*, there exist 6 > 0 and I" > 0 such
that for each v > T there exists at most one A € (\* — §, A" + &) such that
rﬁw = R.

As a direct corollary of the two previous theorems and Theorem 77, we
obtain a quite complete picture of the bifurcation diagram in small dimension

for generic radius.

Corollary 1.9. Assume 4 < N < 9. Moreover suppose that A < 0.196 if N = 4.
For R € (0,00)\S*, the branches B defined in Theorem ?? oscillate in the plane
(i, u(0)) around the line p = X, where A is as in Theorem ??. Moreover, no
secondary bifurcation occurs for large u(0) and there are no branches bifurcating

from infinity. Furthermore, Bj can be parametrized by u(0) for large values of

u(0).

We remark that we expect Theorem 7?7 and Corollary ?? to hold true also

for N =3 and for any A < 1/e (see Lemma ?7 and ?7).

Let us briefly describe the main ideas of proofs. We often use the change of

variables
u(r) =n(¢) + 2¢,
where
2(N —2
SENEEEDR

13



which transforms (?7?) to
W' = (N =20 +2(N =2 =m?e"(n+20) —2(N - 2)(e" —1-n) neR,
lim 7(¢) = 0.
(—o0

Note that the zero order term u makes (??) non-autonomous and as such we
cannot directly use techniques from dynamical systems. However, to gain a
better intuition assume that the term m?2e=2"(n + 2¢), which is exponentially
small at infinity, is missing. In that case, we are searching for solutions con-
verging along stable manifold to 0. A standard linear analysis yields that 0 is
an unstable focus if 3 < N < 9 and unstable node if N > 10 and as such there
is no stable manifold. Thus, if e=2¢(n + 2¢) is missing, then n = 0 is the only
solution of (??). This reasoning suggests that solutions of (??) are unique and
exponentially close to 0 at least for large (. The uniqueness yields that solu-
tions of (??) are very unstable and are presumably hard to analyze by direct
numerical and analytical methods. Thus, to prove the existence and uniqueness
of solutions to (??) we incorporate the condition at infinity into the choice of
functional spaces and use the Banach fixed point theorem.

To analyze the oscillations, we need to understand the behavior of U5 for

large 7. Since (??) admits a Lyapunov functional, intuition (modulo non-
1

autonomous term v’ which is small for large r) yields that the function Uy
converges as 7 — oo to an equilibrium of the (??) viewed as an initial value
problem, that is, to the values uy or u, (see (??)). Again by ignoring the term
u’/r, we can analyze the character of equilibria and obtain that u, is a saddle
and @y is a center. Hence, the former does not allow for oscillatory solutions,
whereas the latter does. Therefore, an important ingredient of the proof is to
show that the singular solution of (??) does not converge to u, as r — oo,
see Proposition ?? which is in fact a Pohozaev type identity. This is the only
result where we need our technical upper bound A < A* in lower dimensions (cf.

Theorem ??7). The final argument is based on Sturm-Picone oscillation theorem

and careful estimates of singular solutions. Note that similar ideas were used in

7]

14



The proof of u(-,y) — U* as ¥ — oo is partly motivated by [? ] and crucially
depends on the uniqueness of the singular solution U*. Then, it suffices to
prove that u(,v) converges to a function that satisfies both the equation (?7?)
and asymptotics at the origin (?7?). Since, u(-,y) and U* satisfy the same
equation (??), the convergence of u(-,7) to a solution of (??) follows from a
priori estimates and standard regularity theory. The asymptotics at the origin
is of a different flavor and requires careful estimates in transformed variables.

The proof of Theorem 7?7 uses an observation that for fixed A and large u,
the term w is negligible compared to e“, and therefore if « is large, then close
to the origin we can neglect the zero order term which was responsible for the
breaking of scaling. Hence, close to the origin u can be approximated by the

solution of scale invariant problem

Al + Xe™ =0 on (0,00),

(0, @) = a, @(0,a) =0.

The same reasoning yields that singular solutions of (??) can be approximated

near the origin by the singular solution of (??) which is given by
a*(r)=—-2lnr+1In LN}\* 2).

Using the classical arguments of Joseph and Lundgren [? | and scale invariance
of (??) we conclude that if 3 < N < 9 and « being sufficiently large, the solution
u(-, ) of (?7) intersects arbitrarily many times ¢* in a small neighborhood of the
origin. Using precise estimates we can indeed verify this intuition and conclude
that the solution u of (??) with u(0) =  intersects arbitrarily many times the
singular solution U* in a small neighborhood of the origin. The rest of the proof
of Theorem ?? follows from zero number arguments.

Theorem ?7 is a consequence of the continuity of the function A\ — RY for

all 7 € N and the fact that, for any 7 € N,

Ry, =07, as A —0".

15



Although this idea is rather elementary its proof poses the main technical chal-
lenge of the paper. In order to prove (??) we not only need more precise asymp-
totics of Uy at the origin, but we require estimates on the length of the interval
where the asymptotics are valid. In fact, we prove estimates up till r, the first
intersection point of Uy with #y. The cornerstone of the proofs is an observa-
tion that the higher order correction of Uy for small r is negative. Once the
first intersection with @, is established, we obtain an estimate on (U5)'(rx) and
finish the proof using careful estimates and Sturm-Piccone theorem. We remark
that direct estimates up till the first critical point of U5, that is, till R}, seem
beyond reach. The continuity of A — M} is primarily based on the uniqueness
of U3.

The bounds on the Morse index stated in Proposition 7?7 are based on the
asymptotic behavior of Uy when r» — 0 combined with Hardy’s inequality. The
proof of Theorem ?? follows from the fact that the function A — R}, is Lipschitz
which allows us to use the Sard’s theorem. Lipschitz continuity in turn follows
from precise estimates on the modulus of continuity of the function A — U3.
The main observation in the proof of Theorem ?7? is the fact that the function
A — rf\ﬁ is bounded in C?(I), for some compact interval I C (0,00), by a
constant not depending on -y, which follows from precise estimates on the rate
of convergence of regular solutions to singular ones.

The paper is organized as follows. In Section 7?7, we prove the first part
of Theorem ?7, namely, we establish the existence of Uy and prove oscillations
around wy. We finish the proof of Theorem 7?7 in Section ?? by showing the
convergence of ux(r,y) to Uf(r) as v — oo. Section ?? is dedicated to the
proofs of Theorem 7?7 and Proposition ??. Theorem ?7 is proved in Section ?7.
Finally, generic results, Theorems ?7 and ?? are proved in Section ?7. Let us
mention that we expect the same results to hold for the Lin-Ni-Takagi equation

or all radii, which will be the subject of a forthcoming work.
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2. Construction of the positive radial singular solution in the whole

space.

Fix N > 3, A > 0 and consider the equation

"

u 4 u= e in (0, 00),
u>0 in (0,00),

where u depends on the radial variable r» and the derivatives are with respect
to 7. The main goal of this section is the proof of the existence and uniqueness
of solution of (??) with

2(N —2
u(r):—21nr+ln7( 5 )

+0(1) asrT — 0",
where we denote by o(1) the class of functions f such that lim,_,q+ f(r) = 0.

We use the following change of variables

u(r) =n(¢) +2¢,

where

-2 m
To simplify notation, we denote m = 7) and ( = In—. A direct
r

computation shows that
d7u _ ldnp 2
dr rdC 1’

and
d*u 1 d%n 1dyg 2

o Rt
In the following, if f : R — R depends only on one variable p, usually r or (,
we denote f/ = j—i, and analogously for higher order derivatives. Then, (?7?) is

equivalent to

0= —u" — N —
T
= L+ (N =2+ mPe X (4 2) — 2N~ 2)(e — 1)] |

r2

u +u— ¥
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and consequently

1"(Q) = (N = 2)n'(¢) + 2(N = 2)n(¢) = 9(<),

where

9(¢) =m?e > (n(¢) +2¢) — 2(N — 2) (") — 1 —n(()) .

We also set

¢(n) = —2(N —2)(e" =1 —n)

and note that ¢(n) ~ 1n? for n ~ 0. The blow up rate (??) is equivalent to

lim 7n(¢) =0.
(—o0
For any N > 3 denote
a=N-2 B= \/ |N*10|,

and let Gy be the Green’s function for the left hand side of (??) defined by

e~ %%sin(Bz) 3< N <9,
GN(Z) = -9

@l

(8]
N

P N = 10, for z >0, Gn(z)=0 for 2 < 0.
Fe~27sinh(8z) N > 10,

Observe that Gy € L'(R) N L>(R) for any N > 3. Then, (??) is equivalent to

= / Gn(T —o)g(T)dr
R

Thus, finding solution of (??) satisfying (??) reduces to finding a solution of
(??).
Proposition 2.1. Let m > 24/2(N — 2). The equation (??) admits a unique

solution on (—oo,00) satisfying

lim n(¢) = 0.

(—o0

18



This solution is also unique on any interval ({y, ), (o € R.

Remark 2.2. Clearly, Proposition 77 establishes existence and uniqueness of

solution U* asserted in Theorem ?7.

Proof of Proposition ?77. First, we construct a local solution by using the con-
traction mapping theorem on the Banach space X = {n € C°([p;0)); [n]o0 <
o}, where ¢y is determined below and CY([(p,00)) is the space of continuous
function on [(y, 00) that decay at infinity, equipped with the supremum norm.
Also, for any 7 > 0 denote Br = {n € X; |n|eo < 7} and let g be as in (?7). To
avoid confusion, we explicitly indicate the dependence of g on 7.

Let G be defined by (??). For any 1 € B and any ¢ > (o, denote

Fn)(¢) = / G (o — Ogln, o)do = / " Gn(o)g(no + Qo

Note that the integrals are well defined since Gy € L' and G y(z) = 0 for z < 0.
Since n € X, we have that n({) — 0 as ( — oo, and therefore |g(n, ()] — 0 as

¢ — oco. Hence, since G € L*

[F'(n)(Q)] < CNSliIé lg(n,o+¢)| =0  as(— o0

and in particular F': X — X.
Next, we show that F' is a contraction on Br. Indeed, for any € > 0 there is

7 > 0 and (y > 0 such that for every n;,72 € Br and { > (y one has

l9(m,0) = g(n2,0)| < (m*e™> |1 (0) = n2(0)| + 2(N = 2)[e™(7) — () — 11 (0) + 12 (0)]

<ellm = nalloo

where in the last step we used the mean value theorem for the function m(x) =
e® — x and the fact that |m/(z)| = |e* — 1| is small if z is small, that is, if

Ini(o)| <7 < 1 for i € {1,2}. Then, since Gy € L!

1E(m) = F2)ll Lo ((¢o009) < €M = m2ll oo (¢ ,00) |G Izt = Cnvellm = m2l Lo (.00 -
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Fix € > 0 such that Cye < %, which in turn fixes small 7 and large (p.
Finally, we show that F maps B; into itself. By increasing ( if necessary,
we can assume that (e 2¢ < go7 for any ¢ > (o, where 0 < g9 < m Then,

for any ¢ > (o,

o 1
/ Gn(0)e 27 (o 4 ¢)do| < egCym?F < 57
0

F(0)|; e = sup 2m?>
(0] (€0,00) gzg

Thus for any n € B one has

1 1
IE ) Lo co,00) < I () = E(O) e (¢ 00y FIHE O] Lo (gg,00) < 1l 2 (G0 ,00) 5
and so F is a contraction on Br. The existence and uniqueness of solutions on
(Co, 00) follows from the Banach fixed point theorem. To prove the uniqueness
in X suppose that there are two solutions 77 and 72. Fix 7 as above and by
(??) we can choose (p sufficiently large such that 51,12 € Br. By the already
proved uniqueness we obtain that 7, = 72 on ((p,00). The fact that n; = 7o
follows from the uniqueness of the initial value problems.

Let us prove that 7 can be extended to the whole real line. We proceed by
showing that a solution u of (??) defined on the interval (0,7y) can be extended
to the interval (0,00). Indeed, let (0, Ry) be the maximal existence interval of
the solution and assume Ry < co. Since the nonlinearity is Lipschitz it suffices
to show that « is bounded on the interval Iy = (Ry/2, Ro). Next, observe that

the functional
/ 2 _ .2
V(T) _ (u (’I")) 5 u (’I") + )\eu(r)

is a Lyapunov functional for the flow, that is, » — V(r) is decreasing on r €

(0, Rp). Hence,
V(r) <V(Ryg/2)=C" for any r € Iy,
that is, V' is bounded from above on Iy. To prove that u is bounded, note that
(?7?) yields (u'(r))? — u?(r) < C*, and therefore
(u?) = 2uu’ <u®+ (u)? < C* +2u?.

20
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The Gronwall inequality yields that u?(r) < Ce?" for r € Iy, where C' depends
on C*, Ry, and u(Ro/2). Thus, u is bounded on Iy, and therefore can be

continued beyond Ry, a contradiction. O

Next we obtain more precise asymptotics on 7 at infinity, which in turn

transforms into more precise asymptotics of u at the origin.
Lemma 2.3. If n) is a solution of (?7), (??), then for any § > 0,

lim e (¢) = lim @959/ (¢) =0.

(—o0 (—o0
Proof. By applying Young convolution inequality to (?7?), we have

/4 " (@)ldo < Gy lls /4 " lg(0))do = O / " lg(0)]do

¢
Since, for every € > 0, one has 2(N — 2)|e* — 1 — a| < ¢|a| for any sufficiently
small |a|, and since n(c) — 0 as 0 — oo, we deduce that for any § > 0, there

exists large (o such that, for any ¢ > (p,

19(O)] < eln(Q)] +2m*¢e™ + mPe™*|n(¢)] < 26(e720 7D+ [n(Q)]).

This implies that, for e = i and any ¢ > (p
[ Intolds < ce2a-m,
¢

where C' depends on d and N. Substituting this estimate and (??) with e = %
to (?7), we obtain that

1 [ Co(18e o
In(Q)] < 5/ G (T — 0)|(e720797 1 |y(0)|dr < Ce=2(1-0/2)¢

and the first assertion follows.

Finally, since
1) = [ Gn(r = oa(rydr
and G’y € L', we can proceed as in (?7) by replacing G by G’ and conclude

the proof. O

Next, we show that U* € H. _(RY) where U* is defined in Theorem ?7?.
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Lemma 2.4. If U* is as in Theorem 77, then

lim (U*)'(r) + % =0.

r—0
Moreover, U* € H'(Bg,) for any Ry > 0.
Proof. By Proposition 7?7, U* exists on (0,00). Relation (??) implies that

U (r) =~ (€)= 2 = e/ ()~ 2

m

and the first assertion follows from Lemma ?7?. Next, recall that U*(r) =

n(¢) —2In -. So, using Lemma ??, we deduce that
2 fu N
10" sy = o [ Q@Y+ |07 By
Ry
< C/ (r~? 4+ (Inr)? + 1)r¥dr <
0
for N > 3. This establishes the lemma. O

Next, we focus on the behavior of U* for large r. As a preliminary we prove

the following lemma which is based on Pohozaev-type identity.

Lemma 2.5. Fiz N > 3 and A € (0, Ay), where Ay is as in Theorem ?7?. If
U* is the unique solution of (?7), then U* > u, and
hrn_%r.}fU (r) > u,,

where uy <1 is the smaller solution of u = Ae®.

Proof. If v =U" — u,, then v satisfies

—Av+v=u,(e’"—1)

with
2(N -2 2(N -2
v(r) = —21nr+ln¥ —u, +0(1) = —2lnr+ln%+0(l)
2(N —2
= —21nr+ln(7)+0(1).
U
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For a contradiction, assume that either there exists the smallest Ry such that
v(Rg) =0, or v > 0 and liminf, ., v(r) = 0. In the latter case we set Ry = oo.
Denote eg = 1 — uy, € (0,1).

We claim that Ry = oo implies lim, o, v(r) = 0. Indeed, if not then there
exist vy > 0 and a sequence r,, — 00 as n — oo such that v(r,) > vy > 0. Since
liminf, . v(r) = 0, by the mean value theorem, there is a local minimizer r*
of v. In particular, v'(r*) = 0 and thus (U*)'(r*) = 0. Since the Lyapunov
functional V' defined by (??) is decreasing, we obtain that V' (r*) > V(r) for any
r > r*. This implies that there is no r > * such that U*(r) = U*(r*) and since
r* is a local minimum U*(r) > U*(r*) > 0 for any r > r*. This contradicts
liminf, . U*(r) = 0, and the claim follows.

If Ry = oo, then since v \, 0, we can fix R > 0 such that \e”(T') -1 <
(1 +&o)|v(r)| for each r > R. Consequently,

—Av+v < uy(1+¢g0)v=(1—ed)v in RV \ Bg(0).

Define ¢(r) = Cre= % (=B for some C; > 0 specified below. It is easy to see

after increasing R if necessary, that we have
2 N -1
—AY+ 9 = (1 — ‘if) Y +50%¢ >(1-¢cp)v  in RN\Bg(0).

Fix R and choose Cy such that C; > v(R). Then, ¥(R) — v(R) < 0 and
lim, _ o (v(r) — 9(r)) = 0. Then, a comparison principle yields v(r) < ¥ (r), for
all » > R. Also, elliptic regularity theory implies that v’ decays exponentially
at infinity.

Fix any R € (0, Ry) multiplying (??) by 7Vv’ and integrating, we find, for
any 0 < p < R,

N_9 (R Ny, 21 R N,27R N R
/ |’U/|2T’N71d7"+ |:7’ (’U (T)) :| _ |:T v :| _|_7/ v 7dN 1d7’
2 o 2 . 2 o 2 J,

R
+ uy [PV (e flfv)]R Nuy (e”fl—v)TNfldr.

On the other hand, multiplying (??) by vr¥ =1 and integrating, we have

R R R
/ [ |2rN Ldr — +/ w2V ldr = u)\/ v(e? — 1)rV1dr,
P P P
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Since for small p one has |v(p)| < C|lnp| by (?7?), and
4

W' (p)l = 1T") (p)| < >

by Lemma 77, we have that the lower boundary terms converge to 0 as p — 0.
Also, if Ry = oo since v(R) and v'(R) decay exponentially as R — oo, the
upper boundary terms decay to 0 as R — oo. If Ry < oo, one has v(Ry) = 0
and clearly RYY (v'(Rp))? > 0. This implies that

R R N_9o (R
/ v*rN " ldr4op(1) < uy, N/ (¥ —1 —v)rNtdr — T/ v(e’ — 1)rN1dr | .
0 0 0
1) =01if Ry < co. Let us denote
N-2
z(e® — 1)) .

We will obtain a contradiction to (??) for sufficiently large R if we prove that

f(z) > 0 for any = > 0. Since f(0) = f’(0) = 0, it suffices to show that

where og(1) = 0 as R — o0 if Ry = o0 and og(

f(x):;v2—g)\ (N(ew—l—x)—

f"(xz) > 0 for any z > 0. A simple computation shows that f”(x) = 2 —

uy | 2e” — ze””) and that
- N
£ (6) | i N <,
min f”(z) = N =2
x>0

F70) =2(1—w,), if N>6.
Since by definition uy < 1, we have f”(x) > 0 for N > 6, a contradiction. Also,

we obtain a contradiction if

0.20, if N =3,

4 _6-N
Uy < N _2° N=2 4074, if N =4,
0.96, if N =5.

One can check that the previous values corresponds to
0.16, if N =3,
A=140.35 if N =4,
0.36, if N=25,

that is, A < A}y O
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Remark 2.6. Under the assumptions of Lemma 7?7 one has U* > 0.
Next, we prove that U* oscillates around u) as claimed in Theorem ?7.

Lemma 2.7. Let N > 3 and suppose that A € (0,\y), where Ny is as in the
statement of Theorem ??. If U* is as in Theorem 7?7 (for the existence and
uniqueness see Proposition ?77), then there exists a sequence 0 < R} < ... <
RY < ... — 00 such that U*(RY) = uy. In particular, there is a sequence (R3¥)

such that (U*)'(R¥) = 0.

Proof. By Lemma ?? one has M := infU* > u,. If we denote w(r) =

rie (U*(r) — @y), then standard calculations yield that w satisfies

. (U* A (N =DV - 3)) w0 = mir)w.

U* —uy 4r2
Set
_)\f
Flo)=2"2% s4a,, F@@)=1-a.
Xr — Uy

It is easy to see that F' is continuous and F' — —oo as x — oo. Furthermore,
the numerator is positive if and only if « € (uy, %)), whereas the denominator
is positive if and only if 2 > @y. Thus, F < 0 on (u,,00), and consequently
F < —2ey <0 on [M,00). Choose Ry large such that

(V= 1D(N =3)

472 <

and we obtain m(r) < —ey for r > Ry. By the Sturm-Picone comparison theo-
rem we obtain that w has infinitely many zeros on (R, o0), which in particular

implies that U* intersects u) infinitely many times. O

3. Convergence to the singular solution.

In this section, we finish the proof of Theorem ?7?, that is, for any fixed
A > 0 we show that the solution w, of (??) converges to the solution U* of (?7)
in CL_(0,00) as n — oco. Although, the framework originates from [? ], our

setting is different due to breaking of scaling, and dependence of A on n. For
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clarity of notation, we often drop the subscript n of functions if the dependence
is clear from the context.
If G (p) = tn(r,yn) — Yn With p = e r, then (-, ) satisfies

N -1 ‘i
a”+7a’+/\ne"—e_7"(ﬁ+%):0 in (0,00),
T

The existence of global solutions of (??) and (?7?) is established in the proof of

the following lemma.

Lemma 3.1. For any n > 0 there exist unique solutions G, and @ of (7?) and

(??) respectively. Moreover,

G — @ in CL([0,00)) as vy — oo.

Proof. Since the non-linearities are locally Lipschitz, local existence and unique-
ness of solution to (??) and (??) follow from standard arguments for radial
solutions. Also, if the solutions exist, then they are necessarily unique. Next,
define

~1 2 ~2
En(p) _ (U (2P)) e u 2(,0) + /\neﬂ(p) _ ef'yn,ynﬁ(p) )

Tt is easy to check that F,, is decreasing and F,(0) = A, and since (A;) con-
verges, |E,(0)] < C. Thus, since v > 0 and v + e~ 7y is bounded on (0,0),
Young inequality yields

((@)?)'(p) < @ (p)+()*(p) < En(p)+(p) (1 + e;")+ewa<p> < At C(@(p)+1),

where C' is a universal constant. Then, Gronwall inequality implies
|a(p)| < Cre?,
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where C7, Cy are universal constants. Thus, 4 is a priori bounded, and therefore
it can be uniquely extended to [0,00). Also, since all coefficients are bounded
by elliptic regularity, 4 has bounded first, second, and third order derivatives
locally on [0, 00), uniformly in n. Then, by Arzela-Ascoli theorem @, — oo
in C?

loc

[0,00). Furthermore, e~ (4i(p) + v,) — 0 and \,e*?) — X\ e?=(P) as
n — oo locally uniformly in p. Thus (4, ) converges (up to sub-sequence) locally

uniformly in C2([0,0)) to a solution of (??), and since such solution is unique,

we obtain that @ = @y is globally defined. Convergence (?7) follows. O
As in (??), we define ( = lnm — Inr with m = 2(1)\\:2) and we let n(¢) =

u(r) — 2¢. Then, 7 satisfies (cf. (?7))

0" — (N =2)/ +2(N = 2)({=e" = 1) —m?e ¢ (n+2() =0,  —00< (< o0,
lime 00 (7(¢) + 2¢) = Yn,
lim¢ o0 €4 (1 (¢) +2) = 0.
For p = e2r weset 7 = —7,/2 = Inm — Inp and 7(7) := n(¢). Observe
that (1) = u(r) — 2¢ = a(p) + vn — 2¢ = 4(p) — 27 is a transformed function

corresponding to @ solving (??). Standard computations show that

7’ — (N —2)if +2(N — 2)()%;677 — 1) —m2e 2" (R + 27 4+ ,,) = 0, —00 < T <00,

lim, o0 (7(7) + 27) = 0,
lim, €™ (7'(7) +2) = 0.

We also define 7(7) = u(p,y) — 27, a transformed function of @. Then 7 satisfies
7" — (N =27 +2(N—-2)(e" —1) =0, —00 < T < 0,
lim: 0 (7(7) +27) = 0,

lim, o e™(7(7) —2) = 0.
In the transformed variables, Lemma 77 rewrites as
Corollary 3.2. We have

Mn(-) = 7(+), in CL.((—00,00)) as n — oc.
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Proof. For any compact A C (—00,00), denote B = {p:Inm —Inp € A} and
observe that B C (0,00) is bounded, compact, and independent of . Then,

Lemma 7?7 implies that

sup i, (7) =17 (7)| = sup |(fn (7)+27)" = (0(7)+27)'| = sup |p(it,, (p)—2'(p))| — 0 as n — o0
TEA TEA pEB

Analogously, we obtain sup, ¢ 4 |7, (7) — 7(7)| = 0 as n — oo and the assertion

follows. [

Next, a standard calculation yields that

E(r) = ()" | 2(N —2)(e"™) —q(r) — 1)

is non-decreasing, and strictly increasing unless 77'(7) = 0. Also, since e” — x —
1 >0, we obtain £ > 0. A standard theory of Lyapunov functions implies that
7] converges to a set of equilibria as 7 — —oo. Since 0 is the only equilibrium,
we have (7(7),7' (7)) — (0,0) as 7 — —oo0.

Fix any 7 and recall that 7,(¢) = 9, () with 7 = ¢ — 3. Then, Corollary

7?7 implies
tim (3 (r0+ %) 7 (ro+ ) ) = lim_ (3a(r0), i (70)) = (Gi(70), (7o)
n—00 2 2 n—00
Since (7(7), 7 (7)) — (0,0) as 7 — —oo, we have that the right hand side of
(??) is arbitrary close to (0,0) if 7y is large negative.

In the following result we implicitly assume as above that the functions de-
pend on n. Denote 2(¢) = n/(¢). Next, we show that there is ¢* > 0 independent
of n such that if (n({), 2(¢)) is close to (0,0) for some ¢ > ¢*, then (1(¢), 7' (¢))
is close to (0,0) for any ¢ € (¢*,¢). Note that by (??), ¢ is indeed large, since

To is fixed and 7, is large.

Lemma 3.3. For any n > 0 and ¢ > 0 denote I'" = {(n,z) € R? : 2(N —
2)(f2e" —1—n) + 322 < e} and fix g9 > 0 such that T3, C {(n,2) € R?:

|n| < 1}. Note that since A, = Moo, €0 can be chosen independent to n. Fix
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e € (0,e9) and let ¢* > 2 depending on € > 0, but independent of n be so large

that

mz%(l+2()2§ for any ¢ > (*.

N ™

If there are { > (* and n > 0 such that (1(¢),n'(¢)) € TZ, then (n(¢),n'(¢)) €
5., for any ¢ € (¢*.0).

Proof. Fix any n > 0. We set

~ 2;2

E,(n,2,) 5

2 —2¢
+2(N —2) (;’16’7—1—17) —m; (n+2¢)2.

Since 7 satisfies (?7?), it is easy to check that

dEn(n(C;,CW’(C), Dy (77" 12N —2) (::;en - 1) —m2e™%(n + 20)

—2m’e” % (n+2¢) + m*e > (n + 2()*

= (N = 2)(n)* + m®e> (1 +20)(n + 2¢ — 2).

Fix € € (0,£0) and let ¢ > ¢* be as in the statement of the lemma. Since € < &,
then '3, C {(n,2) € R? : || < 1} and, by continuity, (1(¢), 2(¢)) € I's. for any
¢ close to . By contradiction assume that there is 7> ¢* such that

(1(¢), 2(¢)) € T, for ¢ € (T,C) and (n(T), 2(T)) & I's..

Integrating (??) between T' and ¢ and recalling that |[n(¢)| < 1, for ¢ € (T,()
and T > ¢* > 2, we find

N _ _ ¢
En(n(¢), 2(¢),¢) = En(n(T), 2(T),T) > mzA e (n(¢) +2¢)(n(¢) +2¢ — 2)d¢ > 0.

Then, recalling that (7(¢),2(¢)) € s, we deduce from the previous line and
(?7) that

—~

GO | o — o™ —1 -y < COE Loy — )o@ —1 =y 42—

IN
oW

€,

a contradiction to the definition of T'. O
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Now, we prove the convergence of u,, to U* when n — oo, which completes

the proof of Theorem ?77.

Proposition 3.4. Let U* be the singular solution given by Theorem 77 (cf.

Proposition 7?). Then,
u, = U* asy— oo in Cp.((0,00)).

Proof. Fix sequences (v )nen and (A, )neny with v, 0o and A, = Ao € (0, 00)
as n — oo and let z, = ), (see (?7)). Fix any small € € (0,&¢), where g9 > 0
and ¢* are as in Lemma ?7. Also, recall the definition of I'. from Lemma ?7

and denote

r:=(re  ri=QJre

n>0 n>0
Since A, = Ao, I'f and I', are non-empty bounded sets that approach to {(0,0)}
ase— 0.

By (?7?), there exists 79 < 0 such that, for any sufficiently large n, one has
G =10+ % > (" and (9n(Cn)s 20(Cn)) € TZ. Then, Lemma ?? implies that
(Mn(€), 2n(Q)) € %, for any ¢ € (¢*, )

Since 7 satisfies (?7), we deduce that n € C?((¢*,(,]) and, after differenti-
ating (??) with respect to ¢, we obtain n € C3((¢*,(,]). Since ¢* is indepen-
dent of n and (, — oo as n — oo, we have, by Arzela-Ascoli’s theorem, that
An = A and a standard diagonal argument shows that (1, z) converges (up to
(T, 0))?%, where (1.(C), 2.(¢)) satisfies

sub-sequence) to (1., z«) in (C},

n! — (N =2)n, +2(N —2)n, = m?e > (n, +2¢) —2(N —2)(e™ —1-n,), ( €R.

In view of the uniqueness property established in Proposition ??, to finish the

proof, we only need to show that

7+(¢) = 0 when ¢ — oo.

Suppose for contradiction that there exists a sequence (¢},)xen such that ¢j, —
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00, as k — oo and a constant § > 0 such that

(74 (Cr) (1)) ¢ T, for any k> 1.

By decreasing ¢ if necessary, we can suppose that ¢ < §/4. Choose sufficiently
large k such that ¢}, > (*, 70 < 0 and sufficiently large n such that ¢, >
¢ and (9(CnsYn)s 2(Cnsym)) € TE (cf. (??)). Then, by Lemma ?? one has
(¢, 7)), 2(C, 1)) € T, C T for any ¢ € (¢*,(n), a contradiction.

(R), where n(-,~) solves (?7)
and 7, satisfies (??) with (??). Finally, fix any open set A with A C (0, 00)

Overall, we proved that 7(-,7) — 7 in C}

loc

and let B:={¢ €R:Ilnm —Inr € A}. Since B is open and bounded, one has,

for some constant C'4 depending on A,
[u(-,7) =U*C)lleray = lul,y) = 2(Inm —1n-)) = (U(-) = 2(Inm —In-))[[c1a)
< Caln(,7) = Mo (llcrsy =0 asy — o0,

as desired. ]

4. Oscillation of the branch and Morse index: proof of Theorem 77

and Proposition ?7.

To prove Theorem ??, we first recall a result of Joseph and Lundgren [? ].

Let
2(N —-2)

a*(r) = —2logr + k, k = log 3

be the singular solution of (?7), that is, it satisfies the equation in (??) and

blows-up at the origin.
Proposition 4.1. For any o > 0, let 4(-, ) and a* be defined in (77) (?7)

respectively. Then,

) B 00 if3<N<9
Zpo,o0)[ul- @) —a*(1)] =
0 ifN>10,

where Zr(u) = §{r € Ilu(r) = 0} and §4 is the cardinality of the set A.
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For any given v > 0, let (rf\ﬁ) be an increasing (finite or infinite) sequence
of positive real numbers such that u’(rﬁw,’y) = 0, where u(-,y) = ux(+,7) is the
unique solution of (??). We show that if 3 < N <9, then rf\ﬁ oscillates around
R} (recall that (U*)'(R%) = 0) infinitely many times as v — oc.

The following main result of this section is partly motivated by [? , Lemma
5], where a problem with Dirichlet boundary conditions is considered (see also
[? ] for a related problem with Neumann boundary condition). However, in the
works above, it is assumed that the parameter can be removed from the equation
by rescaling of the domain. Our situation is different and we have to work
directly with parameter dependent equation. We also have to appropriately

modify the zero number argument to treat Neumann boundary conditions.

Lemma 4.2. Assume 3 < N < 9 and fix R > 0. If X\ be the positive real
number given in Theorem 77, then there exist a sequence of initial data (Vn)n

with v, — oo and a sequence positive integer (j,)n such that ’I”i?ﬁn =R. In

other words, u(-,v,) satisfies Neumann boundary data on OBR.

Proof. First, for any A > 0 we show that, for any A > 0 and I = (0, A), one has

Ziu(,v) = U*()] > o0 as v — 0.

Recall that, by Lemma 7?7, we have
a(p,y) = a(p,0) in Cjoe([0,00)) when  — oo,
where p = eZr, u(p,0) = u(r,y) — ~ satisfies (??) and a(p,~) = u(r,y) — v

satisfies (??). Set U*(p,y) = U*(r) — v and k = In M Then (?7?) yields
that, for any ro > 0, there is C' = C(r¢) such that

|[U*(r) 4+ 2Inr — k| < Cr for any r < rg,
and therefore

U*(p,~) +2Inp — k| < Cpe™ 3 for any p < roe?/?.
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Consequently,

U*(-,v) = @" in Cjpe((0,00)) as v — oo,

where @* is defined in (??). Fix any M > 0. Then, by Proposition ??, there

exists a bounded interval Ip; C (0, 00) such that
Zry (1) —a* ()] = M.

By scale invariance of the equation, one has @*(r) = @*(e*/?r) 4+ a and a(r, 1 +

«) = @(e*?r,1) + a, and therefore, for any v > 1,
Ziylu(y) = () = Z 1 ul,1) —a* ()] = M.
Then, thanks to (??) and (??), we have
Z () = U ()] > Ziy [al,y) —a* ()] > M.
Finally, for given I and sufficiently large v one has Ip; C e2 I, and consequently

Zrlu(7) = U ()] = Z 3[4 7) = U (7)) = M.

e

Since M was arbitrary, the claim (??) follows.

For A := M\, let U* be the solution of (??) and notice that (U*)'(R) = 0.
Also, for the same A, let u(-,y) be the solution of (??). Observe that u(-,~)
does not necessarily satisfy Neumann boundary condition at R. Since w., :=
u(+,y) — U™ satisfies a linear differential equation, it follows from the uniqueness
of initial value problem that every zero of w, is simple.

Observe that, for every v > 0, Zjp,1j(w,) < 0o since otherwise by continuity,
the accumulation point would be a degenerate zero. Also, since w) has only
finitely many simple zeros, continuous dependence on parameters yields that
zeros of w, depend continuously on . For each v > 0, let m., := Zjo 1j(w,) and
let (2])72) C [0, R] be the increasing sequence of zeros of w,. Since w,(0) =
—o0, we have that 2] > 0 for each y > 0, and moreover w/(2]) > 0. By
induction it is easy to prove that w’ (z]) > 0 if i is odd and w/ (2]') < 0 if 7 is

even.
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Since the zeros of w.,, are non-degenerate a new zero of w, cannot be created
in the interior of [0, R]. Furthermore, w,(0) = —o0, and therefore a new zero
cannot enter [0, R] through 0. Hence, (??) yields that there exists a sequence

(v&) with v, — oo as k — oo such that w,, (R) = 0. Since w/, (R) > 0

Vi
if k is odd and w/w (R) < 0 if k is even, by the continuous dependence on
parameters, we obtain that there exists v; € (Y&, Yx+1) such that w’%z (R) =0.

Since (U*)'(R) = 0, we infer that v/ (R,~;) = 0 and the lemma follows. O

Next, we prove that the Morse index of the singular solution Uy is finite

when N > 10 and infinite when 3 < N < 9.

Proof of Proposition ?7. Assume 3 < N < 9. In order to prove that U;; has
infinite Morse index, by variational characterization of eigenvalues, it suffices to
prove that there are infinitely many linearly independent functions f : (0,1) —

R such that

J(f) = /01 (17712 + (1 = Xe¥e) g2) VL < 0.

By the boundary conditions (??), we see that, for any € > 0, there exists rg

such that, for all r € (0,rq),

2(N —2)

AN 1 >
= 3

(1-e).
Then, it follows that if 3 < N <9, we have, for some small g > 0,

i, UL (r (N_2)2 2 1
MNe A()—1>(4—|—50 2

Next, we define f;(r) = f(r)x;(r), where

1, ifr € [rjy1, 1], 4
%(r) = T = el

0, elsewhere ,

and f(r) = r~W=2/2sin(gglogr/2). Notice that f; and fj have disjoint sup-

ports for j # k, and therefore they are linearly independent. Moreover, f; is a
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solution of

N-1 N-2)?% g\ 1
7f]//7 f; o <( ) +0> 7f] :O’ r e (T’j+1,7’j)~

r 4 4 ) r?
Since f;(r;) = f;(rj+1) = 0 we have that f; € W2((0,00)) and by (??)
T N —2 2 1 B 3 i1
g = [ (5= (B va) 2) =3 [0 Lpas <o
Tj+1

Tj+1

Thus the Morse index of Uy, is infinite.

Next, let us consider the case N > 10. We show that there are at most finitely
many linearly independent functions satisfying (?7?). Recall that (U3 )'(R) = 0.
Again, by using asymptotics of U}, at the origin, we have that, there is ¢ > 0
and rg € (0,1) such that, for any r € (0,7¢),

2N —2)

(N —2)°

NiglUsi () _ 1 <
e - 42

(1+¢) < (1-¢),

r
where the last inequality holds for N > 10. Next, choose xo € C*(RY) such

that
1, ifre(0,r9/2),
Xo(r) =
0, ifr>rg,
and set x1 = 1— xo. For ¢ € H} ,(B1(0)) with ¢/(R) = 0, the Hardy inequality

[? ] and (??) imply
1 ‘ .
j(¢) = /0 (‘¢/‘2 — (XO + Xl)()\leU*i(T) _ 1)(252)7"N71d7°

1 1
=0 6)/0 <I¢~’|2 ~ot 2>2¢2) P /0 (el¢/I = xa(WePx @ — 1)¢?)rVLdr

T
1 . )
- / (0| — xa(NePxi ™ — 1)2)rN =14y
0

Since |[(AeYxi (M —1)| < Cyi, for r € (rg/2, 1), the operator —eA—xq (AeUxi (") —
1) on By(0) with Neumann boundary condition has finitely may negative eigen-
values, and therefore
1
/ (el¢'|? = xa (M) = 1)¢?)r¥tdr < 0
0
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has only finitely many linearly independent solutions. Thus, the Morse index of

U*

i is finite, as desired. O

5. Proof of Theorem 77

In this section, we prove Theorem ?7. Let (R})$%;, be an increasing, un-
bounded sequence of positive real numbers depending on N and A such that
(U3)'(RY) = 0 (see Lemma ?7), where U; is the solution to (??). To prove

Theorem 77, we need two ingredients. First we show that, for any ¢ € N,
Ry —0,as A\ — 0"

and obtain necessary bounds on solutions. Then, we show that, for any 7 € N,

the map A\ — Rf\ is continuous.

Proposition 5.1. For each A > 0, let U} be the unique solution to (??) and
denote by (R%)S2,, the increasing sequence of all positive real numbers such that

=1’

(U3)'(RY) = 0. Then, for any fized i € N, we have
Ry =0, as A — 0.

Proof. The proof is divided into several steps. We begin by giving some nota-
tions. Many constants and functions in the proof depend on A and

However for the clarity of the notation, this dependence is not explicitly indi-
cated, but the needed asymptotic is explained. If a constant depends only on
the dimension N, we usually denote it by Cn, ¢y, etc. Note that such constant

can change from line to line. First, we define

m? 9 N -2
10 =g (< vn).

and let ¢ — n be the unique solution of (??) (see Proposition ??). Setting

7(¢) = n(¢) — £(¢), we see that 7 satisfies

7" — (N = 2)if' +2(N = 2)ij = m®e"*n(¢) + ¢(n(¢)) =: (¢),



where ¢ is as in (?7).
Define o, 3, and Gy as in (??) and (??) and recall that Gy € L*(R)NL>(R)

for any N > 3. Hence,

(0) = /C " (o — Qilo) do = G+ 5(0).

If v := U* /uy, then v satisfies (see (77))

, N-—-1

—" = EA(’U—l)

vV+uv=e

and w(r) = riT (v(r) — 1) satisfies (see the proof of Lemma ?7)

ﬂ,\(’t}*l) _ _ o
o (e v (N-1)(N 3)) w = 0.

v—1 42

For any A € (0,1/e), we recall that uy > 1 is the solution of the equation
u = Ae*. Let r) be the smallest r such that U*(r) = uy, or equivalently the
smallest point such that v(r) =1 or w(r) = 0.

Step 1. For any é > 0 there is As > 0 such that
—(1=0)In X <y,
for any A € (0, As).
Proof of Step 1. By taking the logarithm of the equality @y = Ae®*, we obtain
Inwy —uy, —InA=0.
For v; = —(1 — §) In A\, we have
Invy —v; —InA=In((1 - §)InA~") —5n A >0,

for any A € (0, As), where As is sufficiently small. On the other hand, for any

fixed A and sufficiently large v, one has
Inv—v—InA<0.

In particular there is a solution of u = Ae" which is bigger than v; = —(1—0) In \.

Finally, since w) is the biggest solution, u) > v; and the claim follows. O
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Remark 5.2. For any § > 0, one can prove more the precise bound
—InA+In(—InX) <@y < —(1+5)InA,
for any sufficiently small A\ depending on 0.

Step 2. Recall that ry is the smallest r such that U*(r) = uy. Then, there

exists Ky > 0 such that r§ < %(—i\’, for any small A > 0.

Proof of Step 2. Set Ky = max{(N —1)(N —3),2(167)?}. For a contradiction,
assume that there exists a sequence A\, — 0 as n — oo such that r2 > Ky /u,,
where 7, := ry, and u, := u,. Then U] > i, on I, := [An,2A,] with
A, = \/W, and consequently w, := wy, > 0 and v, = vy, > 1
(solutions of (??) and (??) with A = ;) on I,,. Since for any x > 0 one has
e >x+ 1 and v, > 1, we have for any r € I,

Dy (N-D(N-=3)  Gpw-D+1-v G(N-1)(N-3)_3
v—1 4r2 - v—1 4K N — 4

ﬂn_la

where the last inequality holds by the definition of K. Furthermore, by Step
1, u) — oo, and therefore it is possible to choose n large enough such that

2 2
§ﬂn 1> lﬂn > (167) > (4m) .
1 2 Kx A2

Then, w,, satisfies

Wl + qu(r)w, =0, on [A,,2A4,],

with g, > (47)?/A2 for any sufficiently large n. However, the equation

4 2
i (;) =0
has a solution m(r) = sin(4mr/A,) which has zeros at A, + %4, € [4,,24,]
for any k € {0,1,---,4}. By the Sturm-Piccone comparison theorem, w, has
also a zero on I,, contradicting the fact that w, > 0 on I,,. O

Let 75 be as in Step 3. and let () be defined by (see (77))

2N -2) _,

N = \
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Step 3. There exists a constant Cy such that for any sufficiently small A > 0,
one has f(¢y) < Cn.

Proof of Step 3. Step 1 and Step 2 with § = % imply for any small A > 0

which is equivalent to
e 2 < RS A .
T N—-2—-InA

The previous inequality can be rewritten as

O > —% (m (NK_NQA) - ln(—ln/\)) .

In particular, we see that {, — oo as A — 0. Since the function z — xe™" is

decreasing on (0, 00), for any sufficiently small A > 0 one has

N —2e% N-2\_ Ky (n(F250) = In(~1n3)) e
UG YIS ) T a2 A =
This proves Step 3. O

Remark 5.3. For clarity let us indicate explicitly the dependence of f on A (or
equivalently on m). Fiz any M > 0 and for each A\ > 0 choose (x > 0 such that
fr(8) < M. Since infx f — 0o as m — 0o on any compact set K C (0, 00),

one has

C\ — 00, as A — 0 or equivalently if m — oco.

We frequently use this observation below, often without further reference.

Next, we derive estimates on 7 solving (??) . We consider two cases: f({y) <
1.1 and f(¢x) > 1.1, where () is given by (?7).
Step 4. There exists a constant Cy such that if, for sufficiently small A > 0,
one has 1.1 < f((y), then |7(¢))] < Cy.
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Proof. First, the assumption and Step 3 yield 1 < f(¢)) < C, and therefore by
Remark 7?7, {, — oo as A\ — oo. Hence, there exist two constants cy <1 < Cpn

such that, for any sufficiently small A,
enA < e7Z2¢, < Cn .

Using that A = uye™ ™ and Uy — oo as A — 0 (see Step 1), we obtain that for

small A
CyA = ﬂ)@iﬂAdHnCN < (ﬂ)\ —21In CN)eiﬂ*JrzlncN ,
and
N =TUpe A tinen > (T — 2In cN)e_ﬂ*“l“CN .
Consequently

(@ —2Iney)e” ™2 < eyd < eP02(0) < Oy < (Uy—2InCy e ™20,

Since the function z — xe™? is decreasing on (0, 00), we have
ay —2Iney > 20, > uy — 2InCy .

By (77),
Uy = u(rx) = f(Cx) +7(C) + 20,

we deduce that

—2InCy < f(C,\) —|—77(<,\) < —2lncy.

Since 1 < f(¢x) < Cy, we obtain the desired result. O

Before proceeding let us introduce some additional notation. Define
r=1.1,

and denote (f the largest solution of f(¢) = T, where of course ¢; depends on
A and by Remark 77, (§ — oo as A — oo. We remark that instead of 1.1, we

can take any number bigger than 1, sufficiently close to 1 (see (77?)).
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Fix any €9 > 0 and set

G = f{C > G ()] < (1+20) P f(2) for any = > ¢},

with inf ) = oo, where

(I+e “57) 4 if 3<N<9
@M p 6T B
= p = 4 3 —
PN T PN . T X W if N = 10,
4 .
m if N > 10,

and ¢ is defined in (??). Clearly, Py and Py are constants depending only on

N and (5 depends on the solution 7. Since (5 > (7, one has
¢ — 0 as m — 00.

Moreover,

el —T—1 ~ el' —T—1 1
Py T TNy < T 2
N T ( PN < =35 — <3

where in the first inequality, after standard manipulations, we used that N —
2(N —2) Py is increasing and Py — 1/3 as N — oo. Denote Py ., := Py (1+¢o)
and by the definition of ¢; one has |7(0)| < Py, f(0) for each o € ({5, 00).

Next, in the following three steps we obtain estimates on CN on the interval

[(7,00) and in particular we prove that the assertion of Step 4 remains valid if

f(¢) <1.1.

Step 5: For any m > 0 and €9 > 0, one has (5 < oo.

Proof of Step 5. We proceed as in the proof of Lemma ??. Using the represen-

tation formula (??) and Young’s inequality for convolutions, we obtain

/C ii(o)ldo < C /< " (o) ldo,

where Cy = ||Gn ||z Since n(¢) — 0 as ( — oo, for any € > 0 there is {y > 0

depending on N, n, and ¢ such that for any ¢ > ¢y one has

o) =2(N =2)[e" =1 —n| < Z|nl,  where n=n(¢).
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By the definition of § and (??), one has, for o > (o,

9(0)] < m*e™>(|f(o)] + [7(0)]) + %(Iﬁ(a)l +1f(@))-

Fix ¢, > 0 such that m?e~ %0 < £, and set ¢§ = max{Cy,{,}. Then we have,

for o > (g,

g(a)l < e([f(o)] + ln(o)]) -

Substituting (??) into (??) and requiring that € € (0,1/(2Cy)) we obtain, for

¢=¢ >0,
o ~ 1 o 1 o ~
[ N5 [ ir@lde 3 [ i) do.

and consequently
[tieldr < i) do.

Using (?77?) and (??), we obtain for ¢ > (§,
7)) < Gllz /C 5(0)|do < <Ch /C 1(0) + lil(0) do

§€CN/OOf(U)dU§€CNf(C)-
¢

By making € > 0 smaller if necessary such that ¢ < Py(1 + ¢g)/Cn we obtain

(5 < (g, and the claim follows. O

Step 6: For any small g > 0, there exists mg > 0 such that for each m > mg

we have 77 < 0 on [(5,00), where (5 is defined in (?7?).

Proof of Step 6. Suppose first that 3 < N < 9. Then, we rewrite (?7?) as

_ /;o Grlo — O)io)do —: /Coo F(C, 0)do

and

(2k+1)7r + (2ls+2)7r

F(C,0)do = / o+ [ F(C,0)do
/C Z +21m C+ (276-;3—1)7r
oo ot Gt _
—Z/ 0)+F(C,a+)da,
. 3
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where

F(¢,0)+F (c,a + g) = Gn(o =) (g(a> —e ¥y (o + g)) .
Recall, for any o > (5 we have |f(0)| < Py, f(0) and by (??), 1 > Py, for
any sufficiently small gy > 0. In the following, we use the notation O(m~1) for
quantities converging to zero as m — oo. Then, since ¢ is decreasing on (0, 00)
and f+7 >0 on [(;,00), one has

S((f+) (o)) e F ¢ ((f + 1) <a - g)) < o((f=lil) (o)) —e"F ¢ <(f + [7]) (o + g))

< G((1 = Pyey)f(0) —e ¢ <(1 + Prco) f <U - g))

< B(1 = Prz)f(0) = ¢ o (14 Pra)(eF +0m™ )/ (0).

where in the last step we used that, for o > (3,

7Tm2

26N —1)°
< (e F +0m M)/ (o) .

™

54

flo+n/8)=e 7 f(o)+ “Fe2 < e F f (o) (0)

We claim that for any sufficiently small 9,1 > 0 and any sufficiently large m,

one has

6((1— Pyoy)z) <e 5 g ((1 + Pyog)(e F + O(mfl))z) —e12%,  forany z€[0,T] .

Indeed, for any x > 1 sufficiently close to one (see below), define
Un(z) = 6 (1= Px)2) — ¢ o ((1+ Pywe ¥ 2)

and note that ¢, (0) = 9. (0) = 0. Moreover, using that ¢"(z) = —2(N — 2)e*
and Py < 1/3, we have, for k = 1 and any z € [0,T],

1(z) = —2(N ~2) ((1 — Py)PelmPr (3 H0E(1 4 PN>2e<”PN)eM>

< (N — 2)e(1=Pn)z ((1 CPy)? e BHE( 4 PN)262PNZ>
< (N — 2)ell=Pn)z ((1 Py — e (3E (1 4 PN)%?PNF)

4 1
< —2(N —2)elt=Pn)z (9 = e_”9662/3'1‘1) = —2cy < 0.
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Then by the continuity ¢!/ (z) < —ey < 0 for any k > 1 sufficiently close to 1
and any z € [0,']. Fix such kg > 1. Thus 9.(2) < —cn2z? on [0,T], and we
obtain that (?7?) holds true for any €1 < ¢y and for any sufficiently small 5 > 0
and large m. The claim follows.

In addition, using that f is decreasing and that |7j(c)| < Py, f(0), we have,

for o > ¢ > (7,

wte e (14 1)(0) = T4 1) (04 7)) <214 Pucme flo)
et
G
where we used that by Remark 7?7, (f — oo as m — oo. Therefore, after
recalling that §(¢) = ¢(n(¢) + m?e=2n(¢), (??) yields

3(0) — e g (a+g) <o.

fo) <erf*(o),

Since for any integer k£ > 0, one has G (0—() > 0 on the interval (( + %T”, ¢+ W)
we obtain from (?7?)
F(C, o)+ F <C,cr—|— g) <0,
and Step 6 follows for 3 < N < 9.
Next, assume N > 10 and notice that Gy > 0 in this case. Also, since
[7(0)] < Py, f(o) on [(5,00) and Py, < 1 for any sufficiently small eq, we
obtain that n = f + 7 > 0 on [(5,00). Since e* — 1 — 2 > %xQ for x > 0, then

for any ¢ > (5,

i <OOG — 220 — (N —2)n%(0) ) do.
10 [ Gnlr =0 (me ™ mio) — (N ~2)r?(e) o
Also, since n > 0 we have

o)

e o)~ (- 207(0) < (o) (ex D (1) 13t

c

<n(o)f(o) (B - 1= Pra)) <0,
1

where ¢y depends only on N and the last inequality follows for any sufficiently

large (7, that is, for sufficiently large m. Thus n(¢) < 0 for each 77 > (} as
desired. 0
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Step 7: For any sufficiently small €y > 0, there exists mg such that for each
m > mg we have (5 = (f, where (5 is defined in (??) and (f is the largest

solution to f(¢) = I'. In particular, |7(¢))| < Cn.

Proof of Step 7. In Step 6, we proved that 77 < 0 on (¢, 00). In order to obtain
an estimate on |7|, we need a lower bound on 7.

First assume 3 < N < 9. Since Gy (6—¢) < 0 on the interval (C + (zk'gl)”,ﬁ—i— (%ZQ)W),
(??) and (?7) yield

F(§,0)+F<C,o+g> > 0.

Consequently by using that ¢ is decreasing and 7 < 0, we obtain, for any ¢ > (3,

C+% 00
7(0) > / G (o — OB((f +7)(0))do + m? / G (o — Qe (7 + f)(o)do
¢ ¢
>/C+EG (0 — O6(f(0))do — m?(1 + P )/m|G (0 - Ole™> f(o)d
= J. N N0 : N .

In order to estimate ¢(f (o)) we use that, for any y > = > 0, one has

oy) "y
Indeed, this inequality is equivalent to

ezfx71<eyfy71
2
Y

x2

which is true since the function z +— (e — 2 — 1)/2? is increasing on (0, 00).

Hence, since ¢ < 0 on (0, 00) we have for o > ¢

7o) = o) () = strone oo

Using that o € (¢,{ +7/8) and { > (§ — oo as m — oo, we have

U+CN>2
(+en

0(f(0)) = o(f()e™ I (1 +O0(m™)),
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and therefore

PO o).

w1+ [ G0l f(o)do < exm (e < e
¢

Thus, for any ¢ > (5

+3
0 2 AL 7 a0 a3 — €))do — O(m ™) (0
¢

_AUQ) e o

Using that 7 < 0 and z — ¢(x)/x, is decreasing and the definition of Py we

obtain for any ¢ > (5 > (7, that is, f(¢) € (0,T'] and sufficiently large m

49(£(<) EEt
(@rep+apQte

< (By+0(m™) 1) < (1+ 2) Prf(Q)-

If {5 > ¢f , then, by continuity, |7(¢)] < (14¢€0)Pn|f(¢)] holds for any (§ < ¢ <

7] < )F(¢) +0(m™) f(¢)

¢ sufficiently close to (3, a contradiction to the definition of (5. Thus (f = 3
as desired.
If N > 10, using Gy > 0, the monotonicity of ¢, and 77 < 0 as above, we

obtain, for any ¢ > (7,

n(¢) = /COO Gn(o = Q)(m*e™*7i)(0) + ¢(f(0)))do

> (?(-{(0232 /Coo Gn(o = Qe "o+ ey)2do — O(m ™) F2(0),

and note that we could not use (??) since ¢ — ¢ is unbounded. Then, if N > 10,

one has
_ —1y g2
70 2 2L ( 2 ) - 0
and using again that |¢(f(¢))| < en f*(¢) for any ¢ > ¢ and { — oo as m — o0,
we have
10> ) om0,

((a/2+4)* = p?)
If N = 10, one similarly has

P(f(9)

(a/2 + 4)2 - O(mil)f2(<) .

n(¢) =
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The rest of the proof is the same as in the case 3 < N < 9. O

Remark 5.4. In Steps 5-7 we proved that

0=7(0) =2 —f(Q)=-T  forany(=(f

which in turn implies

0<n<f(Q)  forany(=(.

In the original variables, for U5 (r) = n(¢) + 2¢ we have

(N —-2) (N —2)
kS —

2 2
—2Inr+ln 3 <Ui(r) < —2Inr+In +enr?(1-In7) foranyr <éy.

The importance of this bound is in the estimate on Uy on an interval which is
independent of X. An interested reader can calculate explicitly constants ¢y and
CN-
Remark 5.5. From Remark 7?7 we can also obtain an estimates on (U})' as
follows. By (?7) .

70 =~ [ Elo—0ato)dr.
Since G’y is a bounded integrable function, using Remark 77 and analogous

estimates as in (?7) we have

7 (I < COnF(C)  forany ¢ > (.

In the original variables the last bound translates into

(U3 0) + 2 ey — 57 (m A2 lnr)| = 170l

§CN%f(C)§CN,>\T(1+|1nr|) for any r < cy,
where Cn . is bounded in A uniformly on compact subsets of (0, 00).
Step 8: Proof of Proposition ?7.
Proof of Step 8. Recall that ry is the smallest solution of U*(r) = uy and () is

the corresponding transformed variable, see (??). Denote zy := M}, that is, 2y
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is first critical point of U* and let py be transformed zy, see (??) with r\ and
¢ replaced respectively by zy and pj.

First, we show that z) > ry. Indeed, otherwise z) < r) and as in the proof
of Lemma ??, we have that the function V' defined by (??) is decreasing in r.
Then, as in the proof of Lemma ?? we obtain that U*(r) > U*(z)\) > 4y a
contradiction to Lemma ??. Hence for the rest of the proof we assume that
Zx 2> T

By Steps 5-7 (cf. Remark ??) one has |7(¢)] < Cn for any ¢ > (. In
particular, |7(¢y)| < Cn if ¢\ > ¢*, that is, if f(¢y) < T. But |7({)\)] < Cn
holds also by Step 4 if f(¢x) > T'. Overall, we have |7({))| < Cn.

We claim that |7(¢)| < Cy holds in fact for all ¢ > ¢, and any sufficiently
small A > 0. Indeed, if {, > ¢}, then the statement is already proved in Steps
5-7. If {\ < (I, assume that there exists ¢ € ((x, 7] such that 7/(() = 0.
Without loss of generality let f be the largest such number. Since 5 < (7,
then f(f) > T = 1.1, and consequently for any large m (or small \), one has
1) < —%f(g:) < —2. If 7 corresponds to , see (?7?), then

U@ = 2 (F @+ +2) = (7' +2) > 0.
Since (U*)'(r) < 0 for r sufficiently close to 0, we obtain 7 > z,, and therefore
¢ < ¢, a contradiction to ¢\ < 5 Thus, no such ¢ exists, and therefore 7
is increasing on ((y, (7). Since max{|n(m\)|, |7(¢(P)|} < Cn, we deduce that
[7(¢)| < Cu, for all ¢ > ¢, and the claim follows.
Now, |77] < Cy implies that |g| < Cn (defined in (?7?)) on (¢, 00). Differen-

tiating (??) and using that G’y is integrable, we find
760 < [ 1o~ G)lao)ldo < O
A
Then, using (??) and |f'(¢)] < 3f({), for any |(| large enough, we have

(U ()| < TNEITQNE2 O _ g ooy,

X LD\

Furthermore, recalling that U*(r) = 2¢ + f(¢) + 7(¢), we deduce from Step 3,
and [77(¢))] < Cn that 2¢\ — ey < U*(ry) = ux < 2¢) + ¢ny. Consequently,
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Uy = Ae™ yields

(U (ry)| < OnVAE™ = CnvTy.
Recalling that v := U* /@y solves (?7?), we obtain

1
VU

[v'(rx)] < Cn and o(ry) =1.

Furthermore, since the function
eﬂ,\(v(r)fl) v2 (7’)

o' (r 2
THE(T):( (2)) + o I

is non-increasing, any r > r) one has

Cn

1 eﬁx(v(r)—l) UQ(T)
- > F > F > — > —
U 27 (m) 2 B(r) 2 T 2 =2

Thus, for sufficiently small A > 0,
vi(r) > 1 - — for any r >y,

and consequently

sup (1 —v)y =0 as A—0,

>y
where g+ = max{g,0} denotes a positive part of a function g. Recall that
w(r) = rie (v(r) — 1) satisfies (?7) and clearly

F—1) _ gia(v-1) _

= —1.
v—1 v—1

Fix any p > 0, a > 0 and denote I, := [%,a]. Choose any r € I,. If u(v(r) —
1) > —1, then using that « — (e® — 1)/z is increasing we have for sufficiently
small A (or large @y by Step 1)

A=) _ 1 g1 _q

W1 mem o ™ (“i)z“'

On the other hand if wy(v(r) — 1) < —1, then v(r) < 1 and

eﬂ;(v(r)—l) -1 6_1 -1 1— 6_1

o(r) =1 o) =1 7 supps,, (1—v(p))+

>,
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for sufficiently small A\, where we used (??) in the last inequality. Hence, for

any g > 0 and a > 0 one has for sufficiently small A > 0 that

Tx(v—1) _ N-1)(N-3
e U_( )( )ZM—CNa forany rel,:= Pﬂ}
v—1 4r? ’ 4

Thus, given a > 0 and integer ¢ > 0, there is large y, such that a solution of the
equation 2’ + (u—Cn q)z = 0 has at least i+2 zeros on I,, and by Sturm-Picone
oscillation theorem for any sufficiently small A > 0, the function w has at least
i+ 1 zeros on I,. Consequently, U*(r) = @ has at least i + 1 solutions on I,
and therefore U* has at least ¢ critical points on I,. In a different notation for
any j € {1,---,i} and any a > 0 one has RJ)'\ < a for any sufficiently small
A>0. O

Proposition 5.6. For any i € N, the function X — RY is continuous.

Proof. Fix A* > 0 and an open interval Iy = (A,B) with 0 < A < B < oo.
Without loss of generality assume A < ¢y, where ¢y is as in Remark ??. Then

by Remark ?? there is § > 0 such that for any A € (\* — §, \* + ) one has
[UX(A)| < Cn -

If for some A € (A* — 6, \* + J) the function Uy is decreasing on (A, B), then
non-negativity of U* yields |[Uy| < Cy on (A, B). If for some A € (A*—0, A" +0),
there is a smallest zy < B such that (U})(zx) = 0, then since V' defined by
(??) is non-decreasing and by the Step 8 in the proof of Proposition ?? one has
Ui (2x) < @y, then, for any r > 2,
- x 1 x 1

iy > AR > AR E) - (UR(20))? = V(1a) 2 V(1) 2 AR — (U3 ().
Since A € (A\* — §,\* 4+ §), we obtain that the left hand side is bounded by a
constant independent of A, and consequently U is bounded on (zy,0), by a
constant independent of A € (A* — §, A\* + J). Overall, we have

sup sup Uy < C(A).
AE(A* =8 X" +6) (A,B)
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Then, the elliptic regularity implies that, for any ¢ > 1,

U lws.a(z) < C(N,q, A, B — A, X", 0) for any A € (A" — 6, A" +0).

For ag € (0,1), we choose gy > 0 large enough such that W% (I) <
C?t2o(Iy). Let (A)nen be a sequence such that A\, — A* when n — oo.
Thanks to (??), using Arzela-Ascoli’s theorem, there exists a sub-sequence, still

denoted (), such that Uy — w, as n — oo, in C*(Iy). Noticing that
[AnePan () — x*ew)| < A [eU3n () — ()| 4 |\, — X*[e?®) =0 as n — 0o,
we deduce that w satisfies the equation

—Aw +w = \*e” in Ip.

Since I is an arbitrary compact interval, proceeding as above and using stan-
dard diagonal arguments, we obtain the existence of a sub-sequence (A, )n,
An € (A = 6,A" +6), for all n € N, such that Uy, — w, as n — o0, in

C? .((0,00)), for some function w satisfying

—Aw+w = A"e” in (0, 00) .

Next, we claim that w is in fact U3.. Using the uniqueness of solution proved

in Proposition 7?7, it is sufficient to show that

lim w(r)+2lnr = Ay n,
r—0+

2(N —2)

where Ay vy =1In . However, by Remark ?7 there is r¢(¢) independent

of A € (A\* — 0, \* 4+ ¢) such that
Axn <U(r)+2lnr <Ay n +e for all r € (0,r9(g)).

Clearly Ay, v — Ax- v when n — co and using that U — win C{ ((0,70(e))),

we obtain
Ay v <w(r)+2Inr < Ay« y +¢, for all 7 € (0,7(g)).
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Since € > 0 is arbitrary, we conclude that (??) holds, and therefore w = U}. by

the uniqueness. Hence,

Ui = Ui, as A= X", in CF.((0,00)).

Finally, we prove the continuity of the function A\ — Rj. In the following, we
assume that R} is a local minimum of U3, the case of local maximum follows
analogously. Note that U*(R) # uy, otherwise U* = u,, and we have a
contradiction to the uniqueness of the initial value problem. Thus, for any

sufficiently small £ > 0, we obtain

Ui (Ry. — &) > Ut (RL.) and U (Ry. +8) > UL (RL.) .

Then (?7), yields that for A > 0 sufficiently close to A\* that (??) holds true
with Uy, replaced by Uy. Thus, there exists a local minimizer gy of U} in any
small neighborhood of Rj., or equivalently for every A > 0 there is g, with
(U3)'(gn) = 0 such that

lim A = Ri* .
/\—>>\*q A

On the other hand assume that there exists a sequence (A, )nen such that A, —
A* and (g, )nen converging to ¢*. Then by (??) one has (U;.) (¢*) = 0.
Finally assume that there exists a sequence (A, )nen such that A, — A* and
two sequences (qx,, )nen, (g3, Jnen that converge to ¢*. Then by the mean value
theorem, there exists sy, between ¢, and ¢\ such that (U*)"(sy,) = 0. By
passing to the limit, one has (Uy.) (¢*) = (U.)"(¢*) = 0, a contradiction to
the fact that every critical point is either strict minimizer or strict maximizer.
Overall, we proved that in each neighborhood of Rj., for sufficiently small

A, there exists exactly one critical point of Uy and the proof is finished. O

Proof of Theorem ??. By the definition of i*, for any i > ¢ we have Rg > R. On
the other hand, by Proposition ??, we know that, for any i > 0, limy_,o R} < R.

Since for any i € N the function A\ — R} is continuous by Proposition 77,
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we deduce that there exists A\* > X such that R? = R. This concludes the

proof. O

6. Oscillation of the branches for generic radius

In this section, we prove two generic uniqueness results, one for singular and
one for regular solutions i.e. we prove Theorems 7?7 and ??7. More precisely
we show that, for generic R > 0, if (U}.)'(R) = 0 for some A\* > 0, then
(U)(R) # 0, for any A = A*, A # X* and that there exists at most one A
such that rgﬁ = R, if A = A\* and 7 is large enough. The proof of Theorem 77
relies on the Sard’s theorem applied to the function A — RY, and therefore our
first goal is to show that this function is Lipschitz. We start with the following

lemma.

Lemma 6.1. For any \* > 0 and any compact I C (0,00), there exists Cy« 1 >
0 locally bounded in A* such that

U = Uxllez(ry < Cxs 1| A = A7,
for any X sufficiently close to \*.

Proof. Fix any X > 0 and denote V) = U5 + 6%, where 6* = In(A\/A*). Then, V)

satisfies
N -1
r

1
—Vy -

Vi4 V=A% e + 6
and by Remark 77

2(N —2)

VA(T):—2ln7‘+ln< e

> +O(r*(1 —In7)).

Denote W = Uy. — V). We see that W satisfies
N-1

_W// o 7W’+W: )\*(GU;* _eV)\) _6* — )\*GU;*(]_ _e—W) _5*
r

and after simple algebraic manipulations, we end up with
N -1

2(N —2 Ll—e W oW .
W' — W' +W— ( )W = [ A*eUsr~ € + AeUxx —
T 72 w 72

]

2(N — 2)

Jw-a.



Furthermore,

W(r) =O0(r*(1 —Inr)),
where O(r?7%) in general depends on A and A\*. By Remark ?? one has that
[W] <1 on (0,cy) and combined with (??) one has |[W| < 1 on I for any A
sufficiently close to A*. Hence,

1l—eW_w
w

and then by Remark ?? for § < 1, we have

)\*QU;* 1-— e_W 4
w

Also, by Remark 7?7, we infer that

< CW on [,

1
§CN—2r2|1—lnr| <en(1+|Inr|) on [.
r

el 2N = 2)' _2(N-2) ‘eq(") - 1‘
2 2 ’
where |g(r)| < enr?(1 + |In7|). Thus, if we set W = W/§*, we obtain
- N-—-1_ 2(N —-2) - -
L T O SR
r r

with |m(r)| < ex(1+ |In7|). Furthermore, Remark ?? implies W/(0) = 0 and

this condition is fulfilled continuously. Finally, denote Z1(r) = W(r), Za(r) =
rW'(r) and Z = (Z1,Z5). Then

M R 0 0 B
7' =—-JZ —rm(r) + ) Z(0)=0,
r Zl r

where
0 1

—2(N-2) 2—-N

J =

Since the eigenvalues pq, o of J have negative real parts, proceeding as in
Lemma 2.3 of [? ], one can show that Z; is bounded on I.

Consequently, W is bounded, and therefore |W| < C|6*| on I. Since |§*| <
Ch»

A — X*| for any A sufficiently close to \*, the assertion of the lemma follows
from standard regularity theory since I is bounded away from the origin, and
therefore the coefficients of the equation are bounded, uniformly in A € (A* —
0, \* + ). This also implies that \* — C)« is bounded locally uniformly on
(0, 00). O
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Lemma 6.2. The function A — Ré\ is Lipschitz.

Proof. Fix A* > 0 and i € Nt. Without loss of generality, we assume that
R} is a local minimizer of Us.. Thus, from the equation in (?7), we infer that
(Us.)"(Ri.) = M > 0. By continuity, there is €9 > 0 such that

Uy > 2

? r € ly:= [Rf\* —E(),Rg\* +€0] .

Now for fixed A > 0 sufficiently close to \*, we estimate Ri. Without loss
i

of generality assume (U5)'(R}.) < 0, the other case is analogous. For any

r€ Iy =[RS, R,. + ¢¢], the mean value theorem implies

(U3) ()= (U3) (R}+) = (UR)" (O (r—Ri-) = (UX-)" () (r—Ry-)+(UX U3 )" (¢) (r—Rj.) -

for some ¢ € Iy depending on A. Setting r = Rj. + &o in (??), one has by
Lemma ?? combined with (??) and the fact that (U}.) (R%.) = 0 that

(UR) (RA +eo) 2 5ot (UX = U3)"(¢)e0 > 50— CnIA =X

Consequently, for A sufficiently close to A*, we deduce that (U})'(R.) < 0 <
(U3)'(R%. + o) and by the intermediate value theorem, there is j such that
R& € [Ri.,Ri. + eo]. Since critical points of Uf. are non-degenerate, it is

standard to see that j = i. Therefore, by setting 7 = RY in (??), one obtains

0< 5 (BA=R3.) < (UR)" (OB =RY-) < [(US=UR) (B HI(UR=UR)" (O (r= R3] < Cx

A—NF],

where we used the fact that (U3.)'(RY.) = (Us)'(R%) = 0 in the last inequality.

This concludes the proof. O
We are now in position to prove Theorem ?77.

Proof of Theorem ?7. Fix i € NT. Since by Lemma ?? the function \
F;(\) := R} is Lipschitz, Rademacher’s theorem implies that F; is differen-
tiable for any A € (0,00) \ S;, where S; has Lebesgue measure zero. Denote

by E; = {X € (0,00) \ S; : F/(\) = 0}. Then, by Sard’s theorem for Lipschitz
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functions (see [? |), one has that F;(F;) is a set of measure zero. Moreover,
since Fj is Lipschitz with locally uniformly bounded Lipschitz constant, one has
that F;(S;) has also measure zero.

Overall, S} := F;(S;UE;) is a set of zero measure, and therefore S* = J, S}
has measure zero as well. Thus for any radius R € (0,00) \ S*, any ¢ and any
A* such that R%. = R, the function A — R} is differentiable at A\* with nonzero
derivative. We claim that for any A sufficiently close to A* one has (U})'(R) # 0.
Indeed, otherwise there is a sequence A\, — A* such that (U} )'(R) = 0, or
equivalently, Rf{; = R for any n > 1. Since critical points of U}. are non-
degenerate, ¢, = 4 for any sufficiently large n. Then, by the definition of the

derivative F/(A\*) = 9\ RS. = 0, a contradiction. O

Next, we turn to the proof of Theorem ?7. The main ingredient is the proof
of the fact that for some compact interval I C (0, 00), the function A\ — rgﬁ is
bounded in C?(I) by a constant that does not depend on 7. To show this, we
will prove that d\u(-,7,\) and d3u(-,v, ) are uniformly bounded in ~.

Lemma 6.3. Assume 4 < N < 9. Moreover, suppose that A < 0.196 if N = 4.
For any compact interval I C (0,00), the function X+ u(-,v,\) is a locally C*
map from (0,00) to C?(I), where u(-,7,\) is the solution to (7). Moreover,

for any § > 0 and sufficiently large v (depending on &), there holds

2
—_— <
s Mau(r,\) <0,

for any r > 0.

Proof. Due to the smooth dependence on data, the function A — wu(-,7, A) is
smooth, so the main challenge is to prove uniformity in v. Fix v > 0 and A > 0
and denote w(r) = dyu(r, A).

Fix M > 0. Then, by Remark ?? there exists € > 0 such that AeVs > M
on (0,¢). By Theorem ??, for sufficiently large 7, one has \e“(*) > M. Also,
decreasing ¢ > 0 if necessary, we can assume that v < 0 on (0,¢), for any

sufficiently large ~.
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By the smooth dependence on parameters, w is a smooth function satisfying

the problem

"

N -1
—w" — ——w' +w = Ne"w + e, w(0) = w'(0) =0.
T

Define the energy

GO
E(r)= 5 + Ae 5 5
A standard calculation yields
(w')? w? /

E'(r)=—(N-1) + )\e“u’7 —e"w’.

r
Fix 9 > 0 as in Corollary ??. Then, for any r € (0,&¢), one has

0 WA U

E'(r) < W)
(r) < ' . p

where we used that v’ < 0 on (0,ep). Equivalently, we have

(w')?

(&
r

—Uu

(E(r)e ) < —w' — 4
So, using that w(0) = E(0) = 0, we obtain
T /\2
8o / @e*“dﬁ(f"(r)E(T) < —w(r).
o P

For fixed 9, by choosing M sufficiently large, we have

e OB > 2002

Combining the two previous inequalities, we see that 0 > w > —%, for any

r € (0,e0). Moreover,

u(r)

T 2
/ (wi)e_“dp <C lw'(r)] < Ce 2
o P

Next, we extend the bound to the desired interval I = (a, A) with a > 0.
Without loss of generality assume a < € and recall that € > 0 is independent of
~. Theorem ?? implies that by choosing sufficiently large v, one has |[u—U| < 1

on (a/2, A), where U is the singular solution corresponding to A. In addition |U|
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is bounded on (a/2, ), and therefore |u| < C on (a/2, A) with C' independent
of large . Then since |@] < C on (g/2,¢), we obtain that there is a point
so € (a/2,a) possibly depending on 7 such that |w(s)|, |w'(s)] < C. Since w
solves on (a/2,00) an equation with coefficients bounded independently of ~,
we obtain that |@w| < C on (a, A) as desired.

Furthermore, by the standard elliptic regularity theory and above bounds

on coefficients, one obtains

[0zullc2(a,4) = lwllo2(a,4) < Cra,a -

Next, we prove that the second derivative of u with respect to A is bounded
uniformly in «. First, we obtain the estimate for small r, and then we extend
it to I as above. Again, by the smooth dependence on the data, A — u(-, \) is

a smooth map and therefore
ORu(-,A) = Ohw(-, A) =: Z(-, ),

is a well defined smooth function. Also, Z solves

N-1
~Z' — =7+ Z= A" T 2w+ A, Z(0) = Z/(0) = 0.

Next, let us estimate |Z’| near the origin. If we define the energy

R _ (Z/)2 uzQ Z2
E(r)= 5 + Xe 5 5

then, as above, we have E(O) =0 and

2 "2
E'(r) < u')\e“% — (2w + Mw?)Z' — (N — 1) (Z)
,
- 1 1 Z"?
<u'E(r)- (A()\w +1)% - /\2> Z'e" — 50% ,

which can be rewritten as
2
e UEY < —(=Ow+1 2_ L1 Z'f(;o@e*“.
( )
r

Note that we cannot proceed as in the previous case, since the coefficient of Z’

is not constant. Rather after integrating and using that E(0) = 0 = Z(0), we
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obtain

A—96
2

(2')°
p

1" 1 v
(Z(r)? < *X/O (w4 1)2Z"dp + FZ(r) - 50/0 e Ydp.

Then, Young’s inequality yields
L 2 "(Z)? . " 4u
— | Aw+1)*Z'dp| <ég | ——e dp+C | p(Alw+1)e"dp.
AJo o P 0
We conclude the proof by showing that the last integral on the right hand side
is bounded. Observing that
Aw + 1)* = Qw4+ 1) (VPw® + 3X2w? + 3 w + 1),

the assertion follows once we show for any p > 1

T
/ pe (Aw + l)wpldp‘ <C.
0

We need more estimates on w. Since w solves (77)

N -1 N -1

r r

~ny = E =gt (<o = A ) < - e
= pwP (A w + e —w) — p(p — DwP 2 (w')?.
So, using the representation formula (?7), we find

W) =55 [ # (1 - (f)H) Pl wt e —w)ur ™ — (p—1)u? 2 (w')?|dp

and

W) =o' = =1 [ (2)" ettty o1y ldp.

Since |w| < C and u < U + C (see Remark ?7?), then (?7) yields
T T T 1
/ p(w')?wP™dp < C/ pw')?e e dp < C/ —(w')?e Mdp < C'.
0 0 o P
Then, (?7), (??), (??), and |w| < C imply

r N-2
/ p (1 — (8) ) (Aew +e" — w)w”_ldp’ <C,
0 '

T N-2
/ P (8) (Ae'w + e* — w)wp_ldp’ <C,
0

r
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and consequently

/ pet(Mw + DwP~tdp| < C.
0
This established (??). Overall (see (??7) and (??)), we have proved that

A ) 1
SZ0))? < C - 520)

which yields |Z| < C. The boundedness in C?(a, A) for a > 0 follows from the

elliptic regularity as above. O

Lemma 6.4. Assume 4 < N < 9. Moreover suppose that A < 0.196 if N = 4.
For any sufficiently large v > 0, the function \ — rf—\ﬁ belongs to ClQOC(O,oo),
where rﬁw 1s defined as in Theorem ??. Furthermore, for any compact interval
I C (0,00), we have

A= 75, lle2ny < Cr,
where C is in particular independent of .

Proof. Denote w = dyu, where u satisfies (??). Then, as in Lemma ??, one
has that w satisfies (??). By the definition of r§ _, we have «'(r§ ,A) = 0 and,
after differentiation with respect to A, one obtains

w'(ry 4 A) w'(ry 5:A)

u’ (1, A) N Aexp(u(ry ., A) —u(ry ., A)’

% J—
O\ Y =

where in the last equality we used the equation for u. By Theorem ?7?, for large
7 one has that r} _ is close to R, a critical point of U*. Thus for large v, Lemma
7?7 yields |w’(rf\ﬁ,/\)\ < C. Also, Theorem ?? implies that u(r} ., ) is close
to U*(R}Y), and in particular the denominator of (??) is bounded away from 0
uniformly in large v. A combination of these observations yields |8,\rf\ﬁ| <C.
Analogously, by using full power of Lemma 7?7, we obtain the boundedness

of the second derivatives, and the assertion follows. O
We are now in position to prove Theorem ?77?.

Proof of Theorem 7?. For a contradiction, assume that there exist sequences

Yn — 00 and Ap, A, = A* such that 7§ _ =7}, = R. Then, by the mean
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value theorem, there exists A between ), and A/, such that 8,\7“3:”% = 0. Since
A= Aand A — 8,\7“3,% has bounded (uniformly in v and locally in \) second
derivative, one has that 3,\7‘§\wn — 0 asn — oo.

Furthermore, by Lemma 7?7, the sequence of functions (A — rf\m%)n is uni-
formly bounded in C?

loc?
s 1
in C .

and therefore by Arzela-Ascoli’s theorem, it converges

In addition (A = 7} _ ), converges point-wise to R};, and therefore it
converges to Ri; in CL .
Combining the previous observations, we obtain that BARé\i = 0, a contra-

diction to the definition of the set S*. O

7. Appendix

Recall that @ defined in (?7?) satisfies

~1

_a//_(N_l)u?+e_'Y(a+’y)=)\€ﬁ in (0, 00),

with @(0) = @/(0) = 0. Also, Uy = —2Inr + In 28=2) solves

—AU, = \es.

Define u as a solution of

and, by Lemma ??, @ — @ in C}_[0,00) as v — oo. First we obtain some

preliminary estimates on .

Lemma 7.1. The function @ is decreasing and i(r) > —iAr?. Furthermore,

a(r) < Us(r) forr €]0,4/2(N —2)/A].

Proof. Note that —Au > 0, which can be rewritten as

1
2

—(rNta) > 0.

Integrating, we deduce that @’ < 0, for r > 0. In particular, we see that @ < 0.
Then, using that @, a’ < 0, we have

@ = —Ea’ — e > —Xe® > —\.
T
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Integrating twice the previous inequality and using the initial conditions, one
obtains that u(r) > —%)\rz. Finally, the last assertion follows since & < 0 and

U, > 0 on the desired interval. O

Remark 7.2. Since 4 — u in C},[0,00) as v — 0o, analogous estimates as in
Lemma 7?7 holds for i up to an error term of order o,(1). Note that o,(1) =0

as y — o0.

We show that on small intervals, we have an uniform (with respect to )
upper bound for @ —Us. Before proceeding, we formulate the following Gronwall

lemma proved in [? , Theorem 15].

Theorem 7.3. Let u be a non-negative function satisfying, for s > s,

z(s) < c+/ k(s,r)x(r)dr, ¢ >0,

where k(s,r) is a continuously differentiable function in s and continuous in r

with k(s,t) >0, for s > r > so. Then

2(s) < cexp (/ (k(r,r) + / %(r, t)dt> dr> .

Thanks to this inequality, we have the following result.
Lemma 7.4. Assume 4 < N < 9. Let w = u — Us. Then, for any 5,6 >0,
there are £9,70 > 0 such that for any v > ~o, and any s < 9’2, one has

2+ (2+0)5Y)
wls) s x5

where Sg = \/w.

Remark 7.5. Lemma 77 immediately implies

+=:K,

(s) < Us(s) + K s < ege?,
which in original variables yields for large ~y

u(r) <Us(s)+ K+v=Us(r)+ K r<eg.
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Proof of Lemma ?7. First observe that wy(s) = 1 and wa(s) = s>~V

are linearly
independent radial solutions of the problem Aw = 0. We define the Wronskian
W (wy, ws) = wiwh — wow = (2 — N)s'=N. Moreover, if w is a radial solution
of Aw = f, then, for any fixed a € R™, the variation of parameters yields

wa(r)f(r) ©_wn(r)f(r)

s W w)@ T2 | W w) ()

w(s) = crwi(s)+cawa(s)—wi(s)
where ¢;, ¢y are constants depending on w(a) and w’(a). For i, we have

r

i(s) = erwn(s) + exun(s) — 1 / Y (1 - (S)M) (e — (@ +7))dr .

Since, by definition, 4'(0) = 0, we obtain

1 0 N-1 i —Y (5
@——m/l r T (e — e V(G + y))dr,

and then @(0) = 0 implies

[

0
= e (4
c1 N—2/1 r(Ae® —e V(U4 7))dr.

By Remark ??, one has || < 0,(1)

>

A

0y(1) =1 > - 04(1) < ea < NN -2)

e T +0,(1)

and in particular c¢1, ¢y are bounded, independently of large v > 0. On the

other hand, since AeVs(") = 2(N — 2)/r2, a direct calculation yields
2(N —2) 2 2ws(s) 1 8 r\N-2 U
(22 NI
Us(s) <n 3 N—2>w1(8)+N—2 N—2/1 r S Ae”=dr

By definition of w = @ — Uy, we infer that

2 2(N -2 2
w(s):<01+N_2—ln : A )>+<62_N_2>w2(8)
1 8 r\N-2 ;
- 1— (= a _ JUs\ = (5 )
N72/1 r( (5) )()\(e e”s) —e V(U +))dr
Using again that A\eVs(") = 2(N — 2)/r2, we obtain

e —eVs) = W(e“’ —-1).
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By Remark ??, w(s) < 0 on (0,1] for any large . We set sy € (1,€7/?) to be
the smallest real number such that w(sg) = 0. If no such s exists, then the

assertion follows. Thus, on the interval (0, sg), one has
-1<e¥-1<0.

Moreover, by definition, observe that —y < @& < 0. Thus, for s € [1, o], the
integrand in (?7?) is negative and therefore we have for s € [1, sg],

w(s) > <c1+ N2_2 o Q(NA_ 2)> + <CQ— 1\]2—2) wa(s) > C,

where C is a constant independent of 7. Since w(s) < 0, for 0 < s < 59, and
w(sg) = 0, one has w'(sg) > 0. On the other hand, differentiating (??), we

obtain

Since w < 0 is bounded on [1, sg] and sy < eeZ, we have for any r € [1, 5o,

=)
A

2
|a(r)+’7|=‘w+’y—21nr+ln <C+~—2lnr,

and
e —1] <1.

Thus, for any s € [1, so], we obtain that

w(s) < €y 20 4 [er—l(Q(N 2

. P r2_ +e_7(C+’y—21nr)> dr,

where by (77?)

Cr=2—(N—=2)c <2+0,(1).

Recalling that, for m # —1,

/SmlnSdS _gnrlmtins—1
(m + 1)2 ;
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we obtain for m = N — 1, that
s Nlns—1 sV
N-1 N
C —2lnr)dr < | -2s" — + — (C
/1 rN=HC 4 nr) r_< s e +—( +7))

Nlns—1 S
N-1
= —2s—— + — (C ,
s < s~z + N( +7)>
where we dropped the lower limit term since it is negative. Since sy < e€7/2,
for small € > 0 the expression in the parentheses on the right had side of (?7)

.. . ol X .
is increasing on (0,ee2 ), we replace s by ez and obtain

_2N1n5—1 C)'

S
/1 rNTHC 4y —2Inr)dr < sV lee? ( e N

Therefore, we have for small € > 0 independent of ~y

1 [ N (2N=2) AN —2) 1
= 4 - o e — /2 <= 2 .
sN*1/1 r ( 2 Te (C+~y—2Inr) ) dr < (N72)5+e gllnel ) < 8(2—1—5 |Inel)

Thus, combining (??) and (?7)

C)\ 1 2+€+C)\S27N
/ 2
w(s)SSN_1+;(2+s\ln5|)§ .

s
Next, we rewrite the representation formula (??) for w with different starting
point. Namely, we have

w(s) = & + Gaws(s) — ﬁ /S r (1 - (T>N2) (A" =€) —e (@ +~))dr,

S0

for some constants ¢1, ¢2. We have w(sg) = 0 and by Remark ?? for sufficiently
large 7 one has sg > /2(IN — 2)/A = §y. Hence, (??) and (?7?) yields
1 1
0<w(s0) < — (2+e+Cusg V) < —[2+e+ a5 V]
So S0
Then, by using (??) and similar expression for w’ as well as its derivative, we

obtain

2 C x2—N
g%

614—528%71\[:07 OSEQ(Q_N) s
0

Consequently,

24+c+Cha N

24+c+Ch N
N -2 ‘

0> EQU)Q(S()) = E2ngN > — N _2

and 0< ¢ <
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Denote s; < €7/2 the smallest number larger than sg such that w(sy) = 0. If
such number does not exist, then we set s; = ee?/2. So, for s € [s0, $1], we have

e®®) —1 >0, and therefore

w(s) < 24_5;?);3*1\’ - Nl_ 5 /6:7“ (1 - (Z)N_2> (2(1\;2_2)(61” -1)— e‘”(ﬁ—kv)) dr

2+e+ 0O\ N 1 s mN-2\
< S 2l
=T N-2 +N—2/SOT ! (s) e @+ y)dr

9 2N 1 s N-2
(RO e

Using (??) with N = 2 and s; < /2 we have for small £ > 0

s N-2 s ¥
/ r (1 - (C) ) e~ (C=2Inr+v)dr < / re”7(C—2Inr+y)dr < Cee 2 s|Ine| < Ce?|Ing|,
So

s so

for some constant C' not depending on 7. Therefore,

24+ 8+ 05N 1 /s ( P N-2\
w(s) < + r|l— (7) e Ywdr .
N-2 N-2/, s

Then, by Theorem ??, we obtain, for any s € (sg, s1),

w(s)§2+5;;0*28 eXp(e 7// () dtdr)

24+ &+ Cha Y o
S—N—Q exp (Ce7s?)

2+ 4+ Ch5N
<y o),

where in the last inequality we used that s < s7 < ge/?.

Finally, let us treat the interval (si,ee?) if s; < ce?

. Note, that we cannot
merely reiterate the approach above, since we used that w < 0 on (0,sg) to
obtain the estimate for w’(sg). If s; < ce? denote s* € (sg, 1) the first local
maximum of w and the above arguments yield w(s*) < % + 0,(1).
Using AeVs = 2(N — 2)/r?, we obtain that w satisfies

w o g _2(N-2)

" = (e”=1)—e " (w+y+Cr—21n7).
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Define the energy

and observe that

E(r)=—(N—1) (“’r/)? _ AW - 22§ew ) N A

Then, Young’s inequality implies for N > 3

N2
e V(y—Cx—2Inr)jw'| < (N —3) (w) + Cre” (y+Cy —2Inr)?,

r
and consequently, since N > 4,

N2 AN — 2)(e" — 2
E'(r) < —Q(wr) _A 72:26 w) +Cre” Y (y+Cy—21Inr)? < —;E(r)+0r6727(7+0>\—21n7")2.

Hence,

(r*E(r)) < Crie™®(y+ Cy —21Inr)?.

ol
2

Using the substitution p = te"% and r < ee” 2, we obtain

. PP(v+Ca—2In(e2p))*dp S/ p*(Cx—2Inp)?dp = O(e) .
2 0

w2

re

/ t3e*27(7+CA—21nt)2dt:/

S se

Finally, we have, for r > s*,

2(N — 2)(e"™) — w(r)) - e_;r w?(r) < r2E(r)
< (" E(") + 0(2) < 2N — 2)(e*) —w(s)) — V26 L oge),

and therefore, for s* < r <ee™ 2,

(V)

e —w(r) — 6sz(r) < et —w(s*) 4+ 0(e).

If € = 0, the monotonicity of function x — e* — x on (0, 00) yields that w(r) <
~2—N
w(s*) < 2+ch753 + O(e). Finally, by continuity and monotonicity, we have

that, for small € > 0, w(r) < w(s*) < % + O(e) as desired. O
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Lemma 7.6. Assume4 < N <9. Let w =u—Us and 59 = 1/ 2(1\]/\72). For any

8,6 > 0, there exists Y0,€0 > 0 such that, for any v > o and any s < gge?/?,
there holds

where K is defined in Lemma 77.

Proof. Using (??) and the fact that & <, we have

w'(s) > 2_8N KCQ—N2_2> w2(8)+Nl_z/lsr(’;)N_QW(ew—ndr].

w(s) > 228 K@ - NQ_Q> ws(s) + 1 /137« (g)N*2 W(ﬁ - 1)dr]

By (??) and A < 1/e

2 A 2

N—2<N(N—2)7N—2<0

Coy —

and the assertion follows. ]

Corollary 7.7. Assume 4 < N < 9. Moreover, suppose that X < 0.196 if
N =4. For any § > 0, there exists yg,e0 > 0 such that, for any v > v and any

r < €g, there holds
2(N-1)+90

u'(r) > — .

Proof. We set w = 4 — Us. Choose g9 > 0 as in Lemma ?? (and recall the

definition of K there) and observe that, for s < goe?,

W' (s) =Ul(s) +w'(s) > 7% _ @ _ 7¥'

Furthermore, by the definition of @ (cf. (??) and note that s = ez r)

d d ds d x
- — 1] = 7 2 >
Tu(?") SU(S) " SU(S)@
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S2—N
2+280

N—2

We finish the proof, once we show that ef° > (N — 1), where K, =

(compare with the definition of K). Solving for A, yields

2/(N-2)
In(N — 1) — -2
>\§2(N2)<( 2) N‘2> .

which is indeed true since the right hand side is bigger than 1/e if N > 5 and
bigger than 0.197 if N = 4. O

Remark 7.8. Numerical simulations suggest that the value of 3¢9 (namely the
small positive real number such that w(Sy) = 0) can be improved in order for

the previous corollary to hold true for any A < 1/e when N = 4.
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