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Abstract

We study singular radially symmetric solution to the Lin—Ni-Takagi equation for a super-
critical power non-linearity in dimension N > 3. It is shown that for any ball and any k > 0,
there is a singular solution that satisfies Neumann boundary condition and oscillates at least
k times around the constant equilibrium. Moreover, we show that the Morse index of the
singular solution is finite or infinite if the exponent is respectively larger or smaller than the
Joseph—Lundgren exponent.

Mathematics Subject Classification 35B32 - 35B05 - 35J15 - 34B40

1 Introduction

In the present paper we study singular solutions of the problem

—Av+v=v” in Bg\{0},
v >0 in Bg\{0}, (1.1)
d,v =0 on 0Bg,

where Bk € RY, N > 3 is a ball of radius R > 0 centred at the origin. We show that
for sufficiently large p (super-critical), (1.1) possesses a radial solution with many oscilla-
tions. The importance of singular solutions stems from the fact that they are asymptotes to
the bifurcation branches of regular solutions. Therefore, we investigate the Morse index of
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singular solutions, which indicates the oscillatory or non-oscillatory nature of the bifurcation
branches.

The problem (1.1) arises as a particular case of the stationary Keller—Segel system which is
a reaction—diffusion system modelling chemotaxis—oriented motion of cells toward higher
or lower concentrations of chemicals. One can also derive (1.1) from the activator—inhibitor
system proposed by Gierer and Meinhardt [14] under the assumption that one chemical
diffuses much faster than the other one. Gierer-Meinhardt system was extensively studied
during last decades (see for example [29] and references therein), since it is one of the first
and simplest examples of the diffusion driven instability.

Equation (1.1) with sub-critical exponent on smooth domains has been intensively studied
in the last decades. More precisely, consider

—Av+iv=v" in Q,
v>0 in , (1.2)
dbv=0 on 909,

where @ ¢ RY, N > 3, is an open smooth domain, A>0and1 < p<2—1= %
In a series of seminal works [18,24,25], Lin, Ni, and Takagi proved the existence of families
of solutions concentrating around one or more points. Specifically, they showed that, when
1 < p < 2% — 1, then the least energy solution u; to (1.2) satisfies
1
T

u; — XTU(\/i(x —Xx3)), as A — 00
where x; € €2 converges to the boundary point with the maximal mean curvature and the
asymptotic profile U is the unique positive radial solution to

—AU+U=UP, lim U(y)=0, in RV,
|x]—o00

Observe that the parameter X is related to the size of the domain. Indeed, let v be for
2
example a solution of (1.2) with Q2 = Bg. Then, by setting u(x) = R»-Tv(Rx), we see that
u satisfies
— Au+ R*u=u”, in By. (1.3)

We refer to [2,7,17,20] and the references therein for construction and analysis of families
of solutions concentrating on multiple points located either in the interior of €2 and/or at the
boundary.

The position of spikes is more restricted if p is critical, that is, if p = 2* — 1. Then, it
is possible to show the concentration/bubbling phenomena when A — oo with asymptotic
profile being the standard bubble, that is, the unique (up to scaling and translations) solution
to

AU =U¥"', in RV,

When piscriticaland N = 3 or N > 7, ithas been proved that there is no solution bubbling at
an interior point of the domain [12,26]. Moreover, in arbitrarily dimension, interior bubbling
solutions can only exist if they are bubbling also at the boundary [27]. We refer to [9] for
construction of families of bubbling solutions when p approaches from below or above the
critical one. We also very briefly point out that families of solutions concentrating on higher
dimensional object have been obtained see for instance [1,8] and the references therein.
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In the supercritical case p > 2* — 1, there is another significant exponent found by Joseph
and Lundgren [16]

4
R L v AR
00, 3<N <10,

which is connected to the number of intersections of radial solutions, and therefore to
the stability with respect to compactly supported perturbations. First bifurcation results in
supercritical range were obtained for radial solutions solving (1.3) with Dirichlet boundary
conditions, or more generally for

N -1
U+ —U, +2g(U)=0,0<r <1,
r
U>0,0<r<l1, (1.4)
U'0)=U(1)=0,

see [6,10,15,16,21,22]. If g(U) = €Y or g(U) = (1 + U)?, Joseph and Lundgren in [16]
(see also [11, Chapter 2] for a recent survey) showed that there is a curve of positive solutions
to (1.4) starting from the trivial solution U = 0 and A = 0. Moreover, they proved that this
branch oscillates around a fixed value of A when 3 < N < 9 in case g(U) = eV respectively
ps < p < pyr when g(U) = (1+U)? (see Theorem 1.1 below for more precise statement).
On the other hand, the branch does not oscillate when N > 10 respectively p > p;r. Letus
point out that Gel’fand [13] was the first one who treated the case N = 3 for g(U) = eV,

In the literature, there are fewer results for (1.3) with Neumann conditions. The first
reason might be that there are infinitely many branches with positive radial solutions, which
are harder to analyze. The second reason might be practical, as in the Dirichlet case the radial
solutions are stable at least in some parameter ranges, whereas in Neumann case, the radial
solutions have large Morse index in the space of all (even non-radial) functions. Nevertheless,
the bifurcation results were obtained by Miyamoto [23], who analyzed bifurcations of radial
solution to (1.2) with respect to the parameter . To make the notation compatible with [23],
note that after scaling v we can rewrite (1.2) for Q2 = By as

—Av = A(v” —v) in Bpg,
v>0 in Bg, (1.5)
v =0 on 0Bg.

Theorem 1.1 ([23]) Suppose that p > 2* — 1. Let S denote the set of the regular, radial
solutions of (1.5). Then

o0
S=c0uUc,,,

n=1

where Cy = {A, 1}. Moreover, since solutions are radial and v'(0) = 0, each C, can be
parametrized by y = v(0) € (0, 00), hence C, = {(An(y), v(-, ¥, An(¥)))}. Furthermore,
Y = Au(y) € C1(0, 00) and the following assertions hold :

() For eachn > 1, A,(1) = A, where A, = p’i”l and [, is the n-th eigenvalue of the
Laplacian with Neumann boundary condition.
(ii) Foreachn > 1, there exists A, > 0 such that 1, (y) — A} as y — oo.
(iii) If p < pyL, then for each n > 1, Ay (y) oscillates around )} infinitely many times as
y — 00. More precisely, there exists a sequence (y,)m with y,, — 00 as m — 00 such
that An(yy) = A
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(iv) Foreachn > 1, A,(y) — ooasy — 0t
(v) Foreachy € (0,00), L1 (y) < Xo(y) < ...

As mentioned above, the parameter X is connected to the size of the domain, which is in
many models fixed (see Keller—Segel system and chemotaxis). However, other constants such
as diffusivity can change, and these, after scaling, are related to p. Hence, instead of changing
the domain, that is, the parameter X, we fix the domain and vary p. We recall bifurcation
results in such case from [5]. Here and below p! ad denotes the i-th radial eigenvalue of
the operator —A + Id in the ball Bz := {x € R" : |x| < R} with Neumann boundary
conditions.

Theorem 1.2 ([5]) Foreveryi > 2, the trivial branch (p, 1) of problem (1.1) has a bifurcation
point at (pimd, 1). If B; C R?, parametrized by (p, u(0)), is the continuum that branches out

of (pl.’“d, 1), then the following holds:

(i) The branches B; are unbounded and do not intersect. Furthermore, near (p; ad 1), B; is

a Cl-curve.
(ii) If (p, A) € B;, then the corresponding solution u, satisfies u, > 0 in Bg.
(iii) Each branch consists of two connected components B;” := B; N {(p, A) : A < 1} and

B =B, N{(p,A): A>1}.

(iv) If (p, A) € B; then the corresponding u, — 1 has exactly i — 1 zeros, u/p has exactly i
zeros (including ones on the boundary and at the origin).

(V) The functions satisfying u,(0) < 1 are uniformly bounded in the C Lnorm.

Previously, by different techniques the lower branches B; were presumably constructed
in [4] and the first upper branch B; by [28] when N = 3.

The goal of this paper is to establish oscillatory results for upper branches as in Theorem
(1.1) or as in the Dirichlet case. In the following, we will only be concerned with upper
branches for p > 2* —1 and their asymptotics when p gets large. Of course, in the finite range
the branches can have only finitely many turns, and therefore large p behaviour determines
on oscillations or non-oscillation of branches. We focus on singular solutions, that are limit
profiles of bifurcation branches as proved by Miyamoto in the following theorem.

Theorem 1.3 ([23]) Let N > 3 and p > 2* — 1. There is a unique solution U; =U*to

—u" — u +u=uP, inRT,
r

lim, _, g+ reu(r) =Ap N, (1.6)

u >0, in R,
where
2 L
0= 1 and Ap y =[0(N —2—6)]rT.
p—
Moreover, U* attains infinitely many times the value 1. Furthermore, if there are sequences

(V) and (pp)n with y, — oo and pp — peo > 2% — 1, thenuy, ,, — U;w in Cﬁw(O, 00),
where ., p is the solution to

N-—-1
—u — u +u=u’, inR,

.
u(0) =1y, u'(0) =0.

(1.7)
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Since U* attains infinitely many times the value 1, there exists an increasing sequence
(Ré,)i such that (U;)’(R;) = 0, and therefore U}, is a solution of (1.1) with R replaced by
R;,. However, if the size of the domain is fixed, then the existence of singular solution does
not follow from Theorem 1.3, unless one is willing to change the equation (or more precisely
A) by scaling as in (1.5).

In our main result, we show that, for a fixed radius R and any large integer i > 1, we
can find p > 2* — 1 such that R; = R. In other words, for any R fixed, we are able to
construct a singular solution to (1.1) having a prescribed number of intersections with 1 (and
therefore a prescribed number of critical points). Since by Theorem 1.2 all solutions on Bi+
have exactly i critical points, we believe that the limit point of Bi+ is exactly the constructed
singular solution with i critical points.

Our theorem also complements the results proved by Lin and Ni [19] that, asserts that for
any fixed p > 2* — 1, there exists R* depending on p and N such that, for all R < R*,
equation (1.1) only admits constant solutions.

Theorem 1.4 Let N >3 and R > 0. Fix p > 2* — 1 and let U;; be the solution to (1.6). Let

i* be the smallest integer such that Rg > R. Then, for any i > i*, there exists p' > 2* — 1
such that

= R.

In particular, for any i > i*, there exists p' > 2* — 1 such that equation (1.1) admits a
singular radial solution U satisfying

#{r € [0, RIWU(r) =1} =i.

We remark that an analogous result with u? replaced by re* (with A as a bifurcation
parameter) been obtained by the authors and Bonheure in [3].

Next, we investigate the asymptotic behavior of the branch B;’ . The following theorem
proved in [23] gives a strong indication that for each i > 1, the branch B;’ oscillates around
p' (see Theorem 1.4) when 2* — 1 < p' < pyr. Fix p > 2* — 1 and yy. We denote by
(VL,,,)i, the increasing sequence of positive real numbers satisfying ug, p(r;',!y) = 0, where
uy, p is the unique solution to (1.7).

Theorem 1.5 [23, Theorem 6.1]1Let R > 0, N > 11,i > i*, and2* — 1 < p' < pyr. Then,

there exist a sequence of initial data (y,), and a sequence of positive integer (jn)n such that
Jn _

Yn — 00 and T = R.

Note that since j, in general depends on 7, one cannot conclude that the points ( pi . Yn)
lie on B;. Also, without additional information one cannot combine Theorem 1.5 and The-
orem 1.3 to prove Theorem 1.4 by limiting procedure. We remark that the oscillations and
convergence of 13; was proved by authors and Bonheure in [3] for (1.1) with v? replaced by
AeV. The proof in the present case is more involved and will be published separately.

A strong indication that branches oscillate when p’ < pj; and do not oscillate when
p' > pyr is provided by the radial Morse index of our singular solution. Recall that the
Morse index of v satisfying (1.1), denoted by m(v), in the space of radial functions is the
number of negative eigenvalues o counted with multiplicity of the following eigenvalue
problem

—Ap+¢ —pul'¢p =ad in Bp\{0},
dy¢p =0 on 0Bpg,
¢ s radially symmetric.
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Note that each turn of the bifurcation branch increases the Morse index of solutions, thus finite
or infinite Morse index of the limit (singular solution) suggest respectively non-oscillatory
or oscillatory behaviour.

Proposition 1.6 Let U;l. be a solution to (1.6), where p' is as in Theorem 1.4. Then m(U;i) <

oo if p' > pyr, while mU%) =00 if2* —1 < pl< pyL.

Finally, we briefly sketch main ideas of the proofs. To prove Theorem 1.4, we follow the
general framework used in [3]. Specifically, Theorem 1.4 is a consequence of continuity of
the function p — R;, forall i € N and

R’ - 0tasp—> oo forall i eN. (1.8)

To establish of (1.8), as in [3], we obtain very precise estimates of U 1’," in a neighbourhood of
the origin. It is crucial to control the size of the neighbourhood with respect to parameter p.
The proof is rather technical and requires very detailed information about solutions. Unlike
in [3], our estimates cease to hold before the first intersection point with 1 that we denote r,.
At least heuristically ), ~ ip (in fact the upper bound can be made rigorous). Although we
are not able to control the solution till r, we obtain estimates on the interval of comparable
length [0, %], where ¢ is sufficiently small constant. The key ingredient is the negativity of
the higher order correction of U ;‘,“ Note that such estimate would not suffice in [3], however
since our constant equilibrium (equal to 1) is independent of p, we could proceed.
Consequently, we prove that (U;)’ ( %) converges to 0 when p — oo. Using the decay of

an energy functional, we show that U; (r) stays very close to 1 for any r > % and we are

conclude by using the Sturm-Piccone theorem.

The continuity of the function p — R; relies heavily on the uniqueness of U} and again
the precise estimates at the origin on a controlled interval.

Proposition 1.6 containing the estimates on the Morse index of U ; relies on the the
asymptotic behaviour of Uy when r — 0 and the Hardy’s inequality.

2 Proof of Theorem 1.4

In this section, we prove Theorem 1.4. It will be a consequence of the continuity of the
function p — R’ for all i € N and the fact that

R, — 0", as p — oo. 2.1

First, we prove that (2.1) holds true. In all the following, we denote by U™* := U ;‘ the singular
solution of (1.6). Before proceeding, let us give several definitions and recall some facts. We
begin by introducing a change of variables which was already used in [23] to prove the
existence of a singular solution.
Define
n(¢) = A;’lNrQU*(r) -1, —¢=m"Inr,

where A, y and 6 are defined in Theorem 1.3 and

m=1[0(N—-2—6)]2.
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It is easy to check that 5 satisfies

N —an' 4+ (p—n=—0+n? +1+py+m?e (1 +n), onR, 22
lim; 00 () =0, '
where
a=m(N —2—20).
~ _ 2
Next, we set ij = n — f, where f({) = Dye >"¢ and D, = M’m- Then, a
straightforward computation shows that
7" —aif + (p = Dij = m*e ™" n + $(n) =: &, (2.3)
where
¢(m) = —((1+m? —1—pn).
We will also make intensive use of the following representation formula :
o0
n= / Gn(o —&)g(o)do, 2.4)
¢
where
e ;X sin(Bx), ifp—1> (a/2)?
Gy(x)=13e¢ ﬂ7x sinh(Bx), ifp—1< (a/2)2 , forx >0, Gyx) =0, ifx <O.
e x, if p—1=(a/2)>
a2
and B = /|p — 1 — (@/2)?|. Using that lim, oo = 1( 2= N2 2 and = l( )2 = (88(8%99))

when N = 10, we deduce that, for p large enough, p—1 > (% )2 1fN <10and p—1 < (%)?
if N > 10. .
We also define w(r) =r 2 (U*(r) — 1). By standard manipulations, one has

unHr-Uu* (N—-1(N-3)
" — =0. 2.5
* ( U —1 472 v (3)
The following asymptotics when p — 400 of parameters are useful below
— 3(p—1) —1
lim — 1 - —| if N #10, = p=b=l
p—>0o0 f 4p—-1D—1
lim pf =2, lim A 1, ’ _ I
im = im_ = 1rn — o lim — = —Y—,
pol PNTD S 2 p—oo Jp  JIN -2
1
lim D, = ——. (2.6)

p—oo P AN — 1)
If precise constants are not necessary, we use the notation A &~ p? for some real number b
if there exist two positive constants ¢; and ¢, such that, ¢; < ;‘4,) < ¢, for p large. We also

use the notation A, = O(p~?) if there exists a constant C not depending on p, such that
Ay < Cp~" for any large p. First, we provide an upper bound (for p large) for the first
intersection of the singular solution with the value 1. Let us prove an auxiliary lemma first.
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Lemma 2.1 There exists 0 < ¢ < 1 such that for any sufficiently large p,

1 1 _(oc+28[;n)7z
Py —< (a+8m)m l:fN < 10’
Py {21 T e
- if N > 10,
> ifN >
where
= (a+8m)m
o(rén)| [ a+e ) N <0,
Py = 7’ ( ~,,) Aa@ramrrap e NS (2.8)
1 .
7€\ warmn N 210,
and
ry= e, S emly = [TE) 2.9)
NG Dy

Proof First, notice that
(@+8m)? +4p%~p for N <10, 28 (% +4m —,8) ~p for N>10, (2.10)

and
o+ 8m
2B

In addition, since f (2,,) = D,,E2 /p and D), =~ 1, we can choose ¢ sufficiently small such
that k := D,,E2 < 1. Then using that p — (1 + k/p)? increases to eX, we obtain

~1 for N < 10.

k KNP . 2
¢(;):(l+;) —k—1i =l —k— 1] < enk?. @.11)
Consequently,
¢ (/@) p ) N
‘ S‘(Ep) )‘ B EZD,,M’ (Dye*/p)| < enpDpc

and from (2.10) follows

Py < pD,Jéz%N =CnD,&.
Hence, (2.7) is satisfied for some sufficiently small ¢ independent of p as desired. O
In the rest of the proof, we fix ¢ such that Lemma 2.1 holds. Fix any gy > 0 and set

¢ =inf{¢ > ¢, 1 |7(2) < (1 +8) Py f(z) forany z > ¢}, (2.12)
To simplify notation, we set Py ¢, := Py (1 + &o). First, we show that ¢;* is well-defined.
Lemma 2.2 Forany p > 2* — 1 and any gy > 0, we have ¢ < oo.
Proof Fix any ¢ > 0. First, notice that

, if N <10,

2
IGnll < Cnp=1% .
a%ﬂ(alzﬂ), if N > 10,
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andCy,, ~ p~lif N # 10and Cy , ~ p~ /2 if N = 10. Using the representation formula
(2.4) and Young’s inequality for convolutions, we obtain

/ In(o)ldo < CN,p[ 18(0)ldo. (2.13)
¢ ¢

Since the function x +— |¢(x)|/x is increasing, then (2.11) implies

l¢aml _ 1¢(e/p)l
no- &/p
On the other hand, since n(¢) — 0as ¢ — oo (see (2.2)), we deduce that there exists {y > 0

depending on p and 7 such that [n(¢)| < ¢/p for any ¢ > ¢o, and consequently by the
definition of 1

<cype  forall 0<n§£.
p

lp ()| < enpeln(@)] < ey pe((ii@)] + [Dpe 7).

Recalling the definition of g (see (2.3)), one has for o > ¢,
18(0)] < (cnep +m?e ) (|fi(0)| + Dpe™>").

Since m ~ ,/p and D,,e’Q’”f = f(¢) < ¢/p for ¢ > ¢, then m?e™2"% < cye, and
therefore
(o) < 2enep(lii(o)] + Dype™>"?). (2.14)

Substituting this estimate into (2.13), we obtain, for ¢ > ¢o and any sufficiently large p > co,
o0 cnepD
(1- 2cngcN,,,)/ (o) do < %CN,,,[W.
&

We decrease gy if necessary to have

1 1

£0 , and therefore (1 — ZCNSPCN’p) forany € € (0, o).

< Ed
4CNPCN,p 2

Hence,
o0
D
/ (o) do < NP g=ame (2.15)
g’: m

Next, we use |G yl|lre < Cy combined with (2.4), (2.14), (2.15) and Young convolution
inequality to get that

()l =< CN/ 18(0)do =< CNSP/ (Dpe™"" + [7(0)]) do
¢ ¢

D cyD
< Cyep (# + 7Nm p) e~ me,

Then, the definition of ¢ yields

D
@) < “XZP =M forany ¢ > g.
mCNyp

Since D, ~ 1,m ~ ,/p, and Cy,, > 1 for large p, we obtain the desired conclusion. O

Lemma 2.3 For any small ey > 0, there exists pg > 0 such that, for each p > pgo, we have
n < 0on[¢f, 00) where ¢ is defined in (2.12).
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Proof We first assume that N < 10. We rewrite (2.4) as

o0 o0
i) = / Gr(o — 0)F(0)do = / F(t.0)do 2.16)
¢ ¢
and
00 o pp BT g+ @i
/ F(¢,0)do = Z/ F(¢,0)do +/ . F(¢,0)do
¢ im0 Je+ ¢+ G
00 ;._"_(21(;])71 -
=> F(,0)+F (¢, 04 = )do, (2.17)
im0 Je+ 3 p
where

F(¢,0)+F (g,a + %) =Gy(o—1¢) (g(a) g (G + %)) .

Recall, for any o > ¢} we have [7j(0)| < Py g, f(0), with 1 > Py for any sufficiently
small &9 > 0. Since ¢ is decreasing on (0, c0) and f £ 7 > 0 on [{], 00), one has

S(f +iD@)—e T ((f + 1)) (a + %))
<o/ — liho) — e F g ((f + i <o T %))

< ¢((1 = Py fo) —¢ F¢p ((1 + Py f (G + %))

< ¢ = Pye) f@) —¢ T (14 Pyee 7 1 0)).

We claim that for any sufficiently small gg, &1 > 0 and any sufficiently large m (that is
large p), one has

2

_am _2mm m
¢ (1= Pyo)z) <e F¢ ((1 + Pyee ? z) —2(1 + Py.oy) =22,
Dp
forany z € [0, Ky /p]. (2.18)

Indeed, it is easy to check that both value and the value of the derivatives of both sides in
(2.18) vanish at z = 0. Thus, it suffices to verify that the second derivative of the right hand
side is larger than the second derivative of the left hand side on the interval [0, K/ p]. Itis
equivalent to

-2
p(p— D1 = Py ) (1+ (1= Py gz)’
_x _2am \ P2 m?
= p(p = D(1+ Py e T (1 (14 Pug)e™ 7 z) 4401+ Prey) -
P

However, by (2.7),

11— efﬁ(aJrSm) 1

P _ —
N < 2 1 +e—%(a+8m) < 2
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and by (2.6)
o+ 8m N+6
= 1) > 22 D f |
28 (N—2)(10—N)+0()Z V24 0() for N €[3,10),
m 2

1
5= Tor=ao=m T 0z 3+ 0 forN €[3,10).

For N = 10, the left hand side diverges to infinity, so the latter estimates are still valid. Thus,
for any sufficiently small g and large p, we have

—_

2rm
1= Pye>=>=e 0D > Q4 Py e 7

2
(1 — Py ) >

A= DN W

> %efls/inJrO(l) >2(1 + PN,go)Ze—%(Ol-‘rSm).

So, we obtain, for any small &9 > 0, and large p

-2
(1= Pye)* (1+ (1 = Py g)z)”
T 2rm P_2
—(1 + Py ) e 2@FEM (1 +0+ PN,so)e’Tz)

1 ) 1
> —(1— Prne)® (14+ (1= Pyez)’ " =

2
z5 Z 5 (1= Prg)”

Since m? ~ p, (2.18) follows for any sufficiently large p.
In addition, using that f is decreasing and that |7j(0')| < Py ¢, f(0), we have, foro > ¢},

e~ ((77 + o) = FEHD G ) (a + %)) <21+ Py em’e " f (o)
2
=2(1 + PN,S())g—pf%a).

Therefore, recalling that g(¢) = ¢ (n(¢)) + m2e=2m8y (), the previous bound combined
with (2.18) implies

Zo)—e g <a n %) <o0. (2.19)

Since Gy = 0 on (¢ + 27, ¢ + 2£0T) we obtain that

F(c,o)+F<§,o+%> <0.

Using (2.17) and (2.16), this established the proof for N < 10.
Next,assume N > 10andnoticethat Gy > Ointhis case. Also, since |7)(0)| < Py ¢, f (o)
on [{1*, o0) and Py ¢, < 1 for any sufficiently small &, we obtain that n = f 47 > 0 on

p(

—1
[¢f, 00). Since (1 +x)? — 1 — px > pT)xz for x > 0, then for any ¢ > ¢f

00 ~1
i€ = [ Gto = o) (me o) - L= @) )do
¢
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Also, since n > 0, we have

rip—1
2

2 flo) p(p
DP
2

< n(0) f(o) (1";— -
)4

m2€_2a77(0) _ ) 2(g) < T](U) ( (f( ) - |77(0)|)>

—1
%(1 - PN,50)> <0

where we used % ~ p in the last inequality. Thus 7(¢) < 0 for each ¢ > ¢ as desired. O

Lemma 2.4 For any sufficiently small &g > O, there exists po such that, for each p > po, we
have ¢} = g:p, where ¢ is defined in (2.12). In particular, |ﬁ(§~p)| < f(g”).

Proof In Lemma 2.3, we proved that 7 < 0 on ({1*, 00). In order to obtain an estimate on
[17], we need a lower bound on 7.
First, let us assume that N < 10. Since Gy(oc — ¢) < 0 on the interval

(; + (Zk;n” JC+ (Zk?)” ), (2.19) and (2.17) yield on such interval

F(g,o)+F<;,o+%> > 0.

Consequently, by using that ¢ is decreasing and /) < 0, we obtain, for any ¢ > ¢,

B C+7 00 5 ~

i€ = [ G = 08 +iodo +m [ Gyto = 0 i+ fierdo
¢ ¢

t+%
2/ Gn(o — )¢(f(0)do —m*(1 + Py, ao)/ |Gy (o —O)le ™ f(o)do.

e
(2.20)

Using the explicit forms of Gy and f, a direct computation allows us to estimate the second
term

2 *© —2mo 2 Dp e
m (1+PN,80>/; (Grlo =0)le ™ fo)o < (Ut Pue)m™ G = o ge

In order to estimate the first term on the right hand side of (2.20), we use that x + ¢ (x) /)c2
is decreasing, and therefore for any y > x > 0,

d(x) _ ()
2 = 7,
which implies

f(o)
F©)

Thus, inserting the two previous estimates into (2.20), we obtain for any ¢ > ¢

P(f (D) /Hz o~ (5 +4m)(@—0)

P(f(0) = ¢(f(£)) ( ) = ¢ (f(¢)e "D,

n() = sin(B(o — ¢))do

D
— P 2 p —4m¢
o Py e)m a2 B

46 (£()) Gt Dy am

_ _ 2
= —(a T8 + 48 (14+e %) — (14 Pygym m +a/2)p
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Since ¢ > E,,, we have f(¢) < C/p,forany ¢ > ¢} Thus, there exists a constant Cy > 0,
not depending on p, such that

__ b
(4m +a/2)p

Using again that 7 < 0 gnd X > ¢(x)/x is decreasing and the definition of Py (see (2.8)),
we obtain, for any ¢ > ¢, and sufficiently large p,

(1 + Py ey)m? e < Oy p' P A < CupT P (0.

4o ) ey c
1 2B R
101= Gprramr@ e " MO+ Tf©
(PN + ) F© < (1+3) Pu . (221)
p2

If ¢ > ;“p, then, by continuity and (2.21), |7(¢)| < (1 + &o)Py|f(¢)] holds for any
;“,, < ¢ < ¢} sufficiently close to £}, a contradiction to the definition of ¢;*. Thus ;" = z »
as desired.

If N > 10, using Gy > 0, the monotonicity of ¢, and 77 < 0 as above, we obtain, for any

¢ =,

i) > / Gn(o = OP(fE)e ™™™ —m2(1 + Py gp)e 2 f(0))do
¢

> ¢(f(O) / Gl — e oo — L2,
Then, one has |
—_— —o0(p Hrxo.
n) = 2B + 4m ﬁ)¢(f(§)) (p= ) ()
Proceeding as above, we find
S(f () c , ”
— 1+—)P .
OIS am g7 Ot 57 © < (1+3) Py /@
And the proof is concluded as in the previous case. O

Remark 2.5 In the Lemma 2.4, we proved that
0=7(6) = —(1+e0)Pyf(§) forany ¢ =,
which combined with Py < % imply
0<n<f() forany¢ >7¢,.
In the original variables, we have
Apnr™? <URr) < Apnr (14 Dypr?)  forany r <&//p.
The importance of this bound is in the estimate on U ; on an explicit interval.
Proposition 2.6 For any fixed i € N, we have

R;—>O,asp—>oo.
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Proof Assume ¢ is as in Lemma 2.1 and denote 7, = &/,/p and {, = —m ™" In7,. Then,
Remark 2.5 holds on the interval (0, 7,]. As above, we denote by Cy constants depending
on N but not on p.

First assume N < 10. Observe that (2.11), implies |¢(z)] < CNp Zforz < cn/p
and consequently Lemma 2.4 yields [3(¢)| < C,p?e™*"¢ for any ¢ > {F Then, taking the
derivative of the representation formula (2.4), using that 7 < 0, asymptotics (2.6), and the
definition of Z’ p (see (2.9)), we have

&) = SiEy) — o f @7 cos(Ba — Ep))E(0)do

&p
o
< Cy pe@/Dip / e~ (@20 p=4m 5 (2.22)
ip
< Cyp2e —4my < CTIX

The same estimate holds true for N > 10 since
o0 ~
/ —(a/2)o cosh(B(o — ;. )e—4mad6 < / e—(ot/Z)ae,B(U—;“,,)e—étm(rdJ
Zp gl’
< Cyp~V2e=@/Dip=4mey

Thus, we have, using that U%(r) = A, nr?(ii(Z) + 1 + Dye™2"%), (2.6), Lemma 2.4,
(2.22), and the definition of 7,

i i(Zp) + 1 S\ 7@
U Fp)l = Ap N7y |(=0) (’;+Dpr,, — P2 +2D,F
p p
_ o . e (2.23)
< NGy + (pFp) T L+ @)D + 17 EpIF, p~ )
<Cyp '? =0, as p — oo.
In addition, Remark 2.5 implies
P\7T p\7T &
A (7)’<U*~<A (T)’lDf,
N7 =U,(rp) = ApN ) + P
and consequently U, (r,) — 1 as p — co. Also, we have
1P\ (P 2\
1
AZfN <~2),, < (U3 Fp NP < Ap+ (~2) (1 + D, p) .
SinceAﬁjrl (p—1)"» 5 , we obtain that (U ; Fp))Ptl ~ 1,andtheref0re(U;(Fp))”+l/(P+

D~ plasp— oo
Next, we will prove more precise estimate. Since the function

wp'en* 1., WPt

is non-increasing, then by the above estimates, one has, for any r > 7,
1 (UH2(r)
u, ) (7p))? —§+Mp E(rp)>E(r)>—p?,
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where 1, — 0 as p — oo. Hence, from (2.23) follows
L= (U»*(r) < 2up,

and therefore (1 — (U;‘;)z(r))Jr — 0 as p — oo, where h, = max{h, 0} denotes the
positive part of a function /. On the other hand, if there is £* > 0 and rj; > 7, such that
U;,‘(r;) > 1+ &*, then

1 WP
E(r;)Z_E(U;)Z(r)+7;+1 — 00 asp — 0o,

a contradiction to E(r) < E(7y) < Cy.

Overall we proved that |U% () — 1| — 0, forall r > 7. Recall that w(r) = r' 7 (U%(r)
1) (see (2.5)) satisfies

U*r —-u* — —
w,,+(( D -Up (V- DY 3)>w=0.

2
U;—l r

Fix a > 0 and denote I, := [$,a]. Choose any r € I,. Since |U(r) — 1| — 0 locally
uniformly, we have

Wyr)N?r —U;(r)

R RS > p/2, on I,.

U ;(r) —1
Fix alarge A > 0 depending on a as specified below. Then, for sufficiently large p > 2* — 1
depending on @ and A, one has
Upr)P =Up(r) (N = 1D(N =3)
U; (r)y—1 4r2

>A—-Cnygq forany rel,:= [%,a].

Thus, given a > 0 and an integer i > 0, we choose A large enough such that a solution of the
equation z” + (A — Cn 4)z = 0 has at least i + 2 zeros on I,. By Sturm-Picone oscillation
theorem, the function w has at least i + 1 zeros on /,. Consequently, U; (r) = 1 has at least
i + 1 solutions on I,, and therefore U; has at least i critical points on /,. In a different

notation, for any j € {l,...,i} and any a > 0, one has R{; < a, for any sufficiently large
p>2"—1 O

Remark 2.7 By (2.23), we have

Uy )+ QAP,Nr_]_G‘ < ‘Ap,Nr_e <(—9) (@ + Dpr> - nrrig) + 2Dpr>‘ .

By Remark 2.5 and (2.22), one has [n(¢)| < f(¢) < Cyr? and n' @) < C;V\/ﬁr2 for any

r < —-.Thus,

N
¢
U () +0A ,Nr—lﬂ < Cyr'™?, forany r < ——.
p r \/ﬁ
Proposition 2.8 For anyi € N, the function p — R;, is continuous.
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Proof Let p* > 2* — 1. Fix any open interval Iy = (A, B) such that0 < A < B < oo and
without loss of generality assume that A < ¢/(2p). Then, by Remark 2.5, there is § > 0
such that, for any p € (p* — 8, p* + §), one has

U3(A)] < Cy.

Ifr < Rll,, since U; is decreasing and positive (see [23, Theorem A.3]) on (0, R}y), we have
|U%(r)| < Cw, forany r € (A, R)).If r > R}, we use the fact that the functional

(W) W) W)

E =
@ 2 2 1

’

is decreasing. Since U;(Rll,) < 1 by [23, Lemma 4.8], this implies for any r > Rll, that

W)™ U WyRDP
p+1 2 - p+1 “p+1 ’

Thus, also in this case, we have |U ; | < Cn on (A, B). Overall, we showed that

sup sup U, < C(A).
pe(p*—8,p*+8) (A, B)

Then, elliptic regularity theory implies that, for any ¢ > 1,
1Upllwsa() < C(N,q, A, B— A, p*,8), forany pe (p*—38,p*+3). (224)

Let ap € (0, 1). We choose gp > 0 large enough such that w340 (Ip) — CTta([y). Let
(pn) be asequence such that p, — p* whenn — oo. Thanks to (2.24), using Arzela—Ascoli
Theorem, there exists a subsequence (p,) such that U ;n — w, as n — 00, in C%(Iy). From
the uniform bound (2.24) follows

[(U3 )P (s) — wP" ()] < [(U3)P"(s) = (U ()] + WU )F () — wP (5)],
we deduce that w satisfies the equation
—Aw+w:w”*, in Iy.

Since I is an arbitrary compact interval, proceeding as above and using standard diagonal
arguments, we obtain the existence of a subsequence (p,)n, pn € (p* — 8, p* + §), for all
n € N, such that U;,"" — w,asn — 00, in CZZUC((O, 00)), for some function w satisfying

—Aw+w=w”  in(0,0c0).

Next, we claim that w is in fact equal to U ;*. Using the uniqueness of solution to (1.6) (see
Theorem 1.3), it is sufficient to show that

lim % w(r) = Ay, (2.25)
r—>0t
2 . .
where 6« = —r However if p > 2, by Remark 2.5 for any ¢ > 0, there is ro(¢)

independent of p € (p* — &, p* + §) such that

Ap,Nr_el’ < U;(r) < Ap,Nr_el’ + &, forall r € (0, rg(e)).
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Clearly Ay, N — Ap*N, Op, — 0Op=, when n — o0 and using that Uy — w in
Ciae((0. 70(£))). we obtain

Apr 70 <w(r) < Ape yr %" 4 g, forall r e (0,r(e)).

Since ¢ > 0Ois arbitrary, we conclude that (2.25) holds, and therefore w = U ;* by uniqueness.
Hence,
Ui — Uk, as p— p* in C}.((0,00)). (2.26)

Finally, we prove the continuity of the function p — R;,. In the following, we assume that
R;* is a local minimum of U;*, the case of local maximum follows analogously. Note that

U ;* (R;*) # 1, otherwise U* = 1, and we have a contradiction to the uniqueness of the
initial value problem. Thus, for any sufficiently small ¢ > 0, we obtain

* i = * i * i = * i

Up*(Rp* — &) > Up*(Rp*) and Up*(Rp*—i—e) > Up*(Rp*).
Then (2.26) yields that, for p sufficiently close to p*, there exists a local minimizer g, of
U, in (R;* — &, R;* + £). Since € > 0 was arbitrary, for each p close to p*, there is a local
minimizer g, of (U;)’(qp) = 0 such that
lim g, = R}..
p—=>p*
On the other hand, if there exists a sequence (p,)nen such that p, — p* and (gp,)nen

converges to R*, then by (2.26), one has (U ]’j*)’ (R*) = 0. Equivalently R* = R]’,* for some
Jj- Thus, we proved that the critical points of U}, concentrate around critical points of U ;*
and in arbitrary small neighborhood of R;* there is a critical point of U ;.

To finish the proof, we show that in a small neighborhood of R;*, there exists at most one
critical point of U*. For a contradiction, assume that there exists a sequence (p,),eN such
that p, — p* and both sequences (gp,)neN, (q;)n )neN converge to g*. Then by the mean
value theorem, there exists s, between g, and q;,n such that (U 1";*)” (sp,) = 0. By passing
to the limit, one has (U;*)’(q*) = (U;*)”(q*) = 0, a contradiction to the fact that every
critical point is either strict minimizer or strict maximizer (otherwise by the uniqueness of
solutions to initial value problems, U;* is constant).

Overall, we proved that in each neighborhood of R;*, there exists exactly one critical
point of U;" and the proof is finished. O

We are now in position to prove Theorem 1.4.

Proof of Theorem 1.4. By assumptions, we know that, for any i > i R% > R. On the other
hand, by Proposition 2.6, for any i € N, lim_, R; < R. Since the function p — R/, for
any i € N, is continuous by Proposition 2.8, we deduce that there exists p' > p such that
R;, = R. This concludes the proof. ]

3 Proof of Proposition 1.6

First, we show that U ;i has a finite (resp. infinite) Morse index provided that p' > p; (resp.

2* — 1 < p' < py1), i.e. we prove Proposition 1.6.
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Proof of Proposition 1.6. Fix p := p' > pyr. Then, for sufficiently small g > 0, one has

(N —2)?

pPO(N —2—6) < (1 —¢gp) 1

Due to boundary conditions in (1.6), there exists ro € (0, 1) such that, for any r € (0, rgp),

O(N —2—6 N —2)?
pUNI ) =1 < pUHP~'(r) < %(1 +0) < %(1 —&l).

1, ifr e (0,ro/2)

. , and let
0, ifr >rg

Let xo € C'(RY) be a cut-off function such that xo(r) = {

X1 = 1— xo. We take ¢ € Hrlad(BR (0)) such that ¢'(R) = 0. Then we have, thanks to the
Hardy inequality,

T@ = [ (¥R = (U = gl
Br(0)

- /B 067 = Go+ X0 0) =~ D

(N —2)?

el Ul ed)p?dx

z/ (1= D)IVel® - 0

Br(0)

[ @IVer = ) - gl
Br(0)

= [ @Yo - ) - g,
Br(0)

Since | pU)?~(r)—1] < C.forr € (ro/2, R),and the operator —5 A— x1 (p(U3)?~ ' (r) —
1) with Neumann boundary condition has a finite number of negative eigenvalues, we con-
clude that m(U;) < 00.

Next assume that 2* — 1 < p < pyr. As above, using boundary condition in (1.6), one
has that, for some small gy > 0, there exists rq such that, for all » € (0, rg),

2
M_,_ 2) 1 (3.1)

pUNPr) =12 ( Z &) =
Next, we define f;(r) = f(r)x;(r), where

1, if relrjir,rjl

5. — . — ,27mj/e0
r) = ri=e
x5 () {0, elsewhere, J

and f(r) = r~V=2/2in(eg log r /2). Notice that fj and f; have disjoint supports for j # k,
and therefore they are linearly independent. Moreover, f; is a solution of

N-1 (N=2?% &\ I
_fj{/_ f]{_<+ 0 2fj:O, rG(FjJrlan)-

r 4 4 )2
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Since f;(r;) = fj(rj+1) = 0 we have that f; € W'2((0, 00)) and by (3.1)

rj _ 72 rj
I = / (|f;|2 - (% +8%) %ff) PN ldr = —%88/; lzf]?dx < 0.

rjt1 r i+l

Thus the Morse index of U ; is infinite. O
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