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Abstract
We study singular radially symmetric solution to the Lin–Ni–Takagi equation for a super-
critical power non-linearity in dimension N ≥ 3. It is shown that for any ball and any k ≥ 0,
there is a singular solution that satisfies Neumann boundary condition and oscillates at least
k times around the constant equilibrium. Moreover, we show that the Morse index of the
singular solution is finite or infinite if the exponent is respectively larger or smaller than the
Joseph–Lundgren exponent.

Mathematics Subject Classification 35B32 · 35B05 · 35J15 · 34B40

1 Introduction

In the present paper we study singular solutions of the problem

⎧
⎨

⎩

−�v + v = v p in BR\{0},
v > 0 in BR\{0},

∂νv = 0 on ∂BR,

(1.1)

where BR ⊂ R
N , N ≥ 3 is a ball of radius R > 0 centred at the origin. We show that

for sufficiently large p (super-critical), (1.1) possesses a radial solution with many oscilla-
tions. The importance of singular solutions stems from the fact that they are asymptotes to
the bifurcation branches of regular solutions. Therefore, we investigate the Morse index of
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singular solutions, which indicates the oscillatory or non-oscillatory nature of the bifurcation
branches.

The problem (1.1) arises as a particular case of the stationaryKeller–Segel systemwhich is
a reaction–diffusion system modelling chemotaxis—oriented motion of cells toward higher
or lower concentrations of chemicals. One can also derive (1.1) from the activator–inhibitor
system proposed by Gierer and Meinhardt [14] under the assumption that one chemical
diffuses much faster than the other one. Gierer-Meinhardt system was extensively studied
during last decades (see for example [29] and references therein), since it is one of the first
and simplest examples of the diffusion driven instability.

Equation (1.1) with sub-critical exponent on smooth domains has been intensively studied
in the last decades. More precisely, consider

⎧
⎨

⎩

−�v + λ̃v = v p in �,

v > 0 in �,

∂νv = 0 on ∂�,

(1.2)

where � ⊂ R
N , N ≥ 3, is an open smooth domain, λ̃ > 0 and 1 ≤ p ≤ 2∗ − 1 = N+2

N−2 .
In a series of seminal works [18,24,25], Lin, Ni, and Takagi proved the existence of families
of solutions concentrating around one or more points. Specifically, they showed that, when
1 < p < 2∗ − 1, then the least energy solution uλ̃ to (1.2) satisfies

uλ̃ → λ̃
1

p−1U (

√
λ̃(x − xλ̃)), as λ̃ → ∞

where xλ̃ ∈ ∂� converges to the boundary point with the maximal mean curvature and the
asymptotic profile U is the unique positive radial solution to

−�U +U = U p, lim|x |→∞U (y) = 0, in R
N .

Observe that the parameter λ̃ is related to the size of the domain. Indeed, let v be for

example a solution of (1.2) with � = BR . Then, by setting u(x) = R
2

p−1 v(Rx), we see that
u satisfies

− �u + R2u = u p, in B1. (1.3)

We refer to [2,7,17,20] and the references therein for construction and analysis of families
of solutions concentrating on multiple points located either in the interior of � and/or at the
boundary.

The position of spikes is more restricted if p is critical, that is, if p = 2∗ − 1. Then, it
is possible to show the concentration/bubbling phenomena when λ → ∞ with asymptotic
profile being the standard bubble, that is, the unique (up to scaling and translations) solution
to

−�U = U 2∗−1, in R
N .

When p is critical and N = 3 or N ≥ 7, it has been proved that there is no solution bubbling at
an interior point of the domain [12,26]. Moreover, in arbitrarily dimension, interior bubbling
solutions can only exist if they are bubbling also at the boundary [27]. We refer to [9] for
construction of families of bubbling solutions when p approaches from below or above the
critical one. We also very briefly point out that families of solutions concentrating on higher
dimensional object have been obtained see for instance [1,8] and the references therein.
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In the supercritical case p > 2∗ −1, there is another significant exponent found by Joseph
and Lundgren [16]

pJ L =
{
1 + 4

N−4−2
√
N−1

, N ≥ 11,

∞, 3 ≤ N ≤ 10,

which is connected to the number of intersections of radial solutions, and therefore to
the stability with respect to compactly supported perturbations. First bifurcation results in
supercritical range were obtained for radial solutions solving (1.3) with Dirichlet boundary
conditions, or more generally for

⎧
⎪⎪⎨

⎪⎪⎩

Urr + N − 1

r
Ur + λg(U ) = 0, 0 < r < 1,

U > 0, 0 < r < 1,

U ′(0) = U (1) = 0,

(1.4)

see [6,10,15,16,21,22]. If g(U ) = eU or g(U ) = (1 + U )p , Joseph and Lundgren in [16]
(see also [11, Chapter 2] for a recent survey) showed that there is a curve of positive solutions
to (1.4) starting from the trivial solution U = 0 and λ = 0. Moreover, they proved that this
branch oscillates around a fixed value of λ when 3 ≤ N ≤ 9 in case g(U ) = eU respectively
pS < p < pJ L when g(U ) = (1+U )p (see Theorem 1.1 below for more precise statement).
On the other hand, the branch does not oscillate when N ≥ 10 respectively p ≥ pJ L . Let us
point out that Gel’fand [13] was the first one who treated the case N = 3 for g(U ) = eU .

In the literature, there are fewer results for (1.3) with Neumann conditions. The first
reason might be that there are infinitely many branches with positive radial solutions, which
are harder to analyze. The second reason might be practical, as in the Dirichlet case the radial
solutions are stable at least in some parameter ranges, whereas in Neumann case, the radial
solutions have largeMorse index in the space of all (even non-radial) functions. Nevertheless,
the bifurcation results were obtained by Miyamoto [23], who analyzed bifurcations of radial
solution to (1.2) with respect to the parameter λ̃. To make the notation compatible with [23],
note that after scaling v we can rewrite (1.2) for � = BR as

⎧
⎨

⎩

−�v = λ(v p − v) in BR,

v > 0 in BR,

∂νv = 0 on ∂BR .

(1.5)

Theorem 1.1 ([23]) Suppose that p > 2∗ − 1. Let S denote the set of the regular, radial
solutions of (1.5). Then

S = C0 ∪
∞⋃

n=1

Cn,

where C0 = {λ, 1}. Moreover, since solutions are radial and v′(0) = 0, each Cn can be
parametrized by γ = v(0) ∈ (0,∞), hence Cn = {(λn(γ ), v(·, γ, λn(γ )))}. Furthermore,
γ �→ λn(γ ) ∈ C1(0,∞) and the following assertions hold :

(i) For each n ≥ 1, λn(1) = λ̄n, where λ̄n = μn
p−1 and μn is the n-th eigenvalue of the

Laplacian with Neumann boundary condition.
(ii) For each n ≥ 1, there exists λ∗

n > 0 such that λn(γ ) → λ∗
n as γ → ∞.

(iii) If p < pJ L , then for each n ≥ 1, λn(γ ) oscillates around λ∗
n infinitely many times as

γ → ∞. More precisely, there exists a sequence (γ n
m)m with γ n

m → ∞ as m → ∞ such
that λn(γ n

m) = λ∗
n.
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(iv) For each n ≥ 1, λn(γ ) → ∞ as γ → 0+.
(v) For each γ ∈ (0,∞), λ1(γ ) < λ2(γ ) < . . ..

As mentioned above, the parameter λ is connected to the size of the domain, which is in
manymodels fixed (seeKeller–Segel system and chemotaxis). However, other constants such
as diffusivity can change, and these, after scaling, are related to p. Hence, instead of changing
the domain, that is, the parameter λ, we fix the domain and vary p. We recall bifurcation
results in such case from [5]. Here and below pradi denotes the i-th radial eigenvalue of
the operator −� + I d in the ball BR := {x ∈ R

N : |x | < R} with Neumann boundary
conditions.

Theorem 1.2 ([5])For every i ≥ 2, the trivial branch (p, 1) of problem (1.1) has a bifurcation
point at (pradi , 1). If Bi ⊂ R

2, parametrized by (p, u(0)), is the continuum that branches out
of (pradi , 1), then the following holds:

(i) The branches Bi are unbounded and do not intersect. Furthermore, near (pradi , 1), Bi is
a C1-curve.

(ii) If (p, A) ∈ Bi , then the corresponding solution u p satisfies u p > 0 in BR.
(iii) Each branch consists of two connected components B−

i := Bi ∩ {(p, A) : A < 1} and
B+
i := Bi ∩ {(p, A) : A > 1}.

(iv) If (p, A) ∈ Bi then the corresponding u p − 1 has exactly i − 1 zeros, u′
p has exactly i

zeros (including ones on the boundary and at the origin).
(v) The functions satisfying u p(0) < 1 are uniformly bounded in the C1-norm.

Previously, by different techniques the lower branches Bi were presumably constructed
in [4] and the first upper branch B2 by [28] when N = 3.

The goal of this paper is to establish oscillatory results for upper branches as in Theorem
(1.1) or as in the Dirichlet case. In the following, we will only be concerned with upper
branches for p > 2∗−1 and their asymptotics when p gets large. Of course, in the finite range
the branches can have only finitely many turns, and therefore large p behaviour determines
on oscillations or non-oscillation of branches. We focus on singular solutions, that are limit
profiles of bifurcation branches as proved by Miyamoto in the following theorem.

Theorem 1.3 ([23]) Let N ≥ 3 and p > 2∗ − 1. There is a unique solution U∗
p := U∗ to

⎧
⎪⎪⎨

⎪⎪⎩

−u′′ − N − 1

r
u′ + u = u p, in R

+,

limr→0+ r θu(r) = Ap,N ,

u > 0, in R
+,

(1.6)

where

θ = 2

p − 1
, and Ap,N = [θ(N − 2 − θ)] 1

p−1 .

Moreover, U∗ attains infinitely many times the value 1. Furthermore, if there are sequences
(γn)n and (pn)n with γn → ∞ and pn → p∞ > 2∗ −1, then uγn ,pn → U∗

p∞ in C0
loc(0,∞),

where uγ,p is the solution to
⎧
⎨

⎩

−u′′ − N − 1

r
u′ + u = u p, in R,

u(0) = γ, u′(0) = 0.
(1.7)
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Since U∗ attains infinitely many times the value 1, there exists an increasing sequence
(Ri

p)i such that (U∗
p)

′(Ri
p) = 0, and therefore U∗

p is a solution of (1.1) with R replaced by

Ri
p . However, if the size of the domain is fixed, then the existence of singular solution does

not follow from Theorem 1.3, unless one is willing to change the equation (or more precisely
λ) by scaling as in (1.5).

In our main result, we show that, for a fixed radius R and any large integer i > 1, we
can find p > 2∗ − 1 such that Ri

p = R. In other words, for any R fixed, we are able to
construct a singular solution to (1.1) having a prescribed number of intersections with 1 (and
therefore a prescribed number of critical points). Since by Theorem 1.2 all solutions on B+

i
have exactly i critical points, we believe that the limit point of B+

i is exactly the constructed
singular solution with i critical points.

Our theorem also complements the results proved by Lin and Ni [19] that, asserts that for
any fixed p > 2∗ − 1, there exists R∗ depending on p and N such that, for all R < R∗,
equation (1.1) only admits constant solutions.

Theorem 1.4 Let N ≥ 3 and R > 0. Fix p̃ > 2∗ − 1 and let U∗
p̃ be the solution to (1.6). Let

i∗ be the smallest integer such that Ri∗
p̃ > R. Then, for any i ≥ i∗, there exists pi > 2∗ − 1

such that

Ri
pi = R.

In particular, for any i ≥ i∗, there exists pi > 2∗ − 1 such that equation (1.1) admits a
singular radial solution U satisfying

	{r ∈ [0, R]|U (r) = 1} = i .

We remark that an analogous result with u p replaced by λeu (with λ as a bifurcation
parameter) been obtained by the authors and Bonheure in [3].

Next, we investigate the asymptotic behavior of the branch B+
i . The following theorem

proved in [23] gives a strong indication that for each i ≥ 1, the branch B+
i oscillates around

pi (see Theorem 1.4) when 2∗ − 1 < pi < pJ L . Fix p > 2∗ − 1 and γ0. We denote by
(r ip,γ )i , the increasing sequence of positive real numbers satisfying u′

γ,p(r
i
p,γ ) = 0, where

uγ,p is the unique solution to (1.7).

Theorem 1.5 [23, Theorem 6.1] Let R > 0, N ≥ 11, i ≥ i∗, and 2∗ − 1 < pi < pJ L . Then,
there exist a sequence of initial data (γn)n and a sequence of positive integer ( jn)n such that
γn → ∞ and r jn

pi ,γn
= R.

Note that since jn in general depends on n, one cannot conclude that the points (pi , γn)
lie on Bi . Also, without additional information one cannot combine Theorem 1.5 and The-
orem 1.3 to prove Theorem 1.4 by limiting procedure. We remark that the oscillations and
convergence of Bi was proved by authors and Bonheure in [3] for (1.1) with v p replaced by
λev . The proof in the present case is more involved and will be published separately.

A strong indication that branches oscillate when pi < pJ L and do not oscillate when
pi > pJ L is provided by the radial Morse index of our singular solution. Recall that the
Morse index of v satisfying (1.1), denoted by m(v), in the space of radial functions is the
number of negative eigenvalues α counted with multiplicity of the following eigenvalue
problem ⎧

⎨

⎩

−�φ + φ − pu p−1φ = αφ in BR\{0},
∂νφ = 0 on ∂BR,

φ is radially symmetric.
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Note that each turn of the bifurcation branch increases theMorse index of solutions, thus finite
or infinite Morse index of the limit (singular solution) suggest respectively non-oscillatory
or oscillatory behaviour.

Proposition 1.6 LetU∗
pi
be a solution to (1.6), where pi is as in Theorem 1.4. Thenm(U∗

pi
) <

∞ if pi > pJ L , while m(U∗
pi

) = ∞ if 2∗ − 1 < pi < pJ L .

Finally, we briefly sketch main ideas of the proofs. To prove Theorem 1.4, we follow the
general framework used in [3]. Specifically, Theorem 1.4 is a consequence of continuity of
the function p → Ri

p for all i ∈ N and

Rp
i → 0+ as p → ∞ for all i ∈ N. (1.8)

To establish of (1.8), as in [3], we obtain very precise estimates ofU∗
p in a neighbourhood of

the origin. It is crucial to control the size of the neighbourhood with respect to parameter p.
The proof is rather technical and requires very detailed information about solutions. Unlike
in [3], our estimates cease to hold before the first intersection point with 1 that we denote rp .
At least heuristically rp ≈ 1√

p (in fact the upper bound can be made rigorous). Although we
are not able to control the solution till rp we obtain estimates on the interval of comparable
length [0, c̃

p ], where c̃ is sufficiently small constant. The key ingredient is the negativity of
the higher order correction of U∗

p . Note that such estimate would not suffice in [3], however
since our constant equilibrium (equal to 1) is independent of p, we could proceed.

Consequently, we prove that (U∗
p)

′( c̃
p ) converges to 0 when p → ∞. Using the decay of

an energy functional, we show that U∗
p(r) stays very close to 1 for any r ≥ c̃

p and we are
conclude by using the Sturm-Piccone theorem.

The continuity of the function p → Ri
p relies heavily on the uniqueness of U

∗
p and again

the precise estimates at the origin on a controlled interval.
Proposition 1.6 containing the estimates on the Morse index of U∗

p relies on the the
asymptotic behaviour of U∗

p when r → 0 and the Hardy’s inequality.

2 Proof of Theorem 1.4

In this section, we prove Theorem 1.4. It will be a consequence of the continuity of the
function p → Ri

p , for all i ∈ N and the fact that

Ri
p → 0+, as p → ∞. (2.1)

First, we prove that (2.1) holds true. In all the following, we denote byU∗ := U∗
p the singular

solution of (1.6). Before proceeding, let us give several definitions and recall some facts. We
begin by introducing a change of variables which was already used in [23] to prove the
existence of a singular solution.

Define
η(ζ ) = A−1

p,Nr
θU∗(r) − 1, −ζ = m−1 ln r ,

where Ap,N and θ are defined in Theorem 1.3 and

m = [θ(N − 2 − θ)]− 1
2 .
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It is easy to check that η satisfies
{

η′′ − αη′ + (p − 1)η = −(1 + η)p + 1 + pη + m2e−2mζ (1 + η), on R,

limζ→∞ η(ζ ) = 0,
(2.2)

where

α = m(N − 2 − 2θ).

Next, we set η̃ = η − f , where f (ζ ) = Dpe−2mζ and Dp = m2

4m2+2αm+(p−1)
. Then, a

straightforward computation shows that

η̃′′ − αη̃′ + (p − 1)η̃ = m2e−2mζ η + φ(η) =: g̃, (2.3)

where
φ(η) = −((1 + η)p − 1 − pη).

We will also make intensive use of the following representation formula :

η̃ =
∫ ∞

ζ

GN (σ − ξ)g̃(σ )dσ, (2.4)

where

GN (x) =

⎧
⎪⎪⎨

⎪⎪⎩

e− α
2 x

β
sin(βx), if p − 1 > (α/2)2

e− α
2 x

β
sinh(βx), if p − 1 < (α/2)2

e− α
2 x x, if p − 1 = (α/2)2

, for x ≥ 0, GN (x) = 0, if x < 0.

and β = √|p − 1 − (α/2)2|. Using that lim p→∞ 1
p−1 (

α
2 )2 = N−2

8 and 1
p−1 (

α
2 )2 = (8−2θ)2

8(8−θ)

when N = 10, we deduce that, for p large enough, p−1 > (α
2 )2 if N ≤ 10 and p−1 < (α

2 )2

if N > 10.
We also define w(r) = r

N−1
2 (U∗(r) − 1). By standard manipulations, one has

w′′ +
(

(U∗)p −U∗

U∗ − 1
− (N − 1)(N − 3)

4r2

)

w = 0. (2.5)

The following asymptotics when p → +∞ of parameters are useful below

lim
p→∞

β√
p

=
√∣

∣
∣
∣1 − N − 2

8

∣
∣
∣
∣ if N �= 10, β =

√
3(p − 1) − 1

4(p − 1) − 1
if N = 10,

lim
p→∞ pθ = 2, lim

p→∞ Ap,N = 1, lim
p→∞

α√
p

=
√

N − 2

2
, lim

p→∞
m√
p

= 1√
2(N − 2)

,

lim
p→∞ Dp = 1

4(N − 1)
. (2.6)

If precise constants are not necessary, we use the notation A ≈ pb for some real number b
if there exist two positive constants c1 and c2 such that, c1 ≤ A

pb
≤ c2, for p large. We also

use the notation Ap = O(p−b) if there exists a constant C not depending on p, such that
|Ap| ≤ Cp−b for any large p. First, we provide an upper bound (for p large) for the first
intersection of the singular solution with the value 1. Let us prove an auxiliary lemma first.
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Lemma 2.1 There exists 0 < c̃ < 1 such that for any sufficiently large p,

PN <

⎧
⎪⎪⎨

⎪⎪⎩

1

2

1 − e− (α+8m)π
2β

1 + e− (α+8m)π
2β

if N < 10,

1

2
if N ≥ 10,

(2.7)

where

PN :=
∣
∣
∣φ

(
f (ζ̃p)

)∣
∣
∣

f (ζ̃p)
×

⎧
⎨

⎩

4

(α + 8m)2 + 4β2 (1 + e− (α+8m)π
2β ) if N < 10,

1
2β( α

2 +4m−β)
if N ≥ 10,

(2.8)

and

rp = e−mpζp ,
c̃√
p

= e−mp ζ̃p =
√

f (ζ̃p)

Dp
. (2.9)

Proof First, notice that

(α + 8m)2 + 4β2 ≈ p for N < 10, 2β
(α

2
+ 4m − β

)
≈ p for N ≥ 10, (2.10)

and

α + 8m

2β
≈ 1 for N < 10.

In addition, since f (ζ̃p) = Dpc̃2/p and Dp ≈ 1, we can choose c̃ sufficiently small such
that k := Dpc̃2 ≤ 1. Then using that p �→ (1 + k/p)p increases to ek , we obtain

∣
∣
∣
∣φ

(
k

p

)∣
∣
∣
∣ =

∣
∣
∣
∣

(

1 + k

p

)p

− k − 1

∣
∣
∣
∣ ≤ |ek − k − 1| ≤ cN k

2. (2.11)

Consequently,
∣
∣
∣φ

(
f (ζ̃p)

)∣
∣
∣

f (ζ̃p)
= p

c̃2Dp
|φ (

Dpc̃
2/p

) | ≤ cN pDpc̃
2

and from (2.10) follows

PN ≤ pDpc̃
2CN

p
= CN Dpc̃

2.

Hence, (2.7) is satisfied for some sufficiently small c̃ independent of p as desired. ��
In the rest of the proof, we fix c̃ such that Lemma 2.1 holds. Fix any ε0 > 0 and set

ζ ∗
1 := inf{ζ ≥ ζ̃p : |η̃(z)| ≤ (1 + ε0)PN f (z) for any z ≥ ζ }, (2.12)

To simplify notation, we set PN ,ε0 := PN (1 + ε0). First, we show that ζ ∗
1 is well-defined.

Lemma 2.2 For any p > 2∗ − 1 and any ε0 > 0, we have ζ ∗
1 < ∞.

Proof Fix any ε > 0. First, notice that

‖GN‖L1 ≤ CN ,p =
{

2
αβ

, if N < 10,
2
α2

1
β(α−2β)

, if N > 10,
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and CN ,p ≈ p−1 if N �= 10 and CN ,p ≈ p−1/2 if N = 10. Using the representation formula
(2.4) and Young’s inequality for convolutions, we obtain

∫ ∞

ζ

|η̃(σ )|dσ ≤ CN ,p

∫ ∞

ζ

|g̃(σ )|dσ. (2.13)

Since the function x �→ |φ(x)|/x is increasing, then (2.11) implies

|φ(η)|
η

≤ |φ(ε/p)|
ε/p

≤ cN pε for all 0 < η ≤ ε

p
.

On the other hand, since η(ζ ) → 0 as ζ → ∞ (see (2.2)), we deduce that there exists ζ0 > 0
depending on p and η such that |η(ζ )| ≤ ε/p for any ζ ≥ ζ0, and consequently by the
definition of η̃

|φ(η(ζ )| ≤ cN pε|η(ζ )| ≤ cN pε(|η̃(ζ )| + |Dpe
−2mσ |).

Recalling the definition of g̃ (see (2.3)), one has for σ ≥ ζ0,

|g̃(σ )| ≤ (cN εp + m2e−2mσ )(|η̃(σ )| + Dpe
−2mσ ).

Since m ≈ √
p and Dpe−2mζ = f (ζ ) ≤ ε/p for ζ ≥ ζ0, then m2e−2mσ ≤ cN ε, and

therefore
|g̃(σ )| ≤ 2cN εp(|η̃(σ )| + Dpe

−2mσ ). (2.14)

Substituting this estimate into (2.13), we obtain, for ζ ≥ ζ0 and any sufficiently large p ≥ c0,

(
1 − 2cN εpCN ,p

)
∫ ∞

ξ

|η̃(σ )| dσ ≤ cN εpDp

m
CN ,pe

−2mζ .

We decrease ε0 if necessary to have

ε0 <
1

4cN pCN ,p
, and therefore

(
1 − 2cN εpCN ,p

) ≥ 1

2
, for any ε ∈ (0, ε0).

Hence, ∫ ∞

ξ

|η̃(σ )| dσ ≤ cN Dp

m
e−2mζ . (2.15)

Next, we use ‖GN‖L∞ ≤ CN combined with (2.4), (2.14), (2.15) and Young convolution
inequality to get that

|η(ζ )| ≤ CN

∫ ∞

ζ

|g̃(σ )| dσ ≤ CN εp
∫ ∞

ζ

(Dpe
−2mσ + |η̃(σ )|) dσ

≤ CN εp

(
Dp

m
+ cN Dp

m

)

e−2mζ .

Then, the definition of ε yields

|η(ζ )| ≤ cN Dp

mCN ,p
e−2mζ for any ζ ≥ ζ0.

Since Dp ≈ 1, m ≈ √
p, and CN ,p ≥ 1 for large p, we obtain the desired conclusion. ��

Lemma 2.3 For any small ε0 > 0, there exists p0 > 0 such that, for each p ≥ p0, we have
η ≤ 0 on [ζ ∗

1 ,∞) where ζ ∗
1 is defined in (2.12).
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Proof We first assume that N ≤ 10. We rewrite (2.4) as

η̃(ζ ) =
∫ ∞

ζ

GN (σ − ζ )g̃(σ )dσ =:
∫ ∞

ζ

F(ζ, σ )dσ (2.16)

and

∫ ∞

ζ

F(ζ, σ )dσ =
∞∑

k=0

∫ ζ+ (2k+1)π
β

ζ+ 2kπ
β

F(ζ, σ )dσ +
∫ ζ+ (2k+2)π

β

ζ+ (2k+1)π
β

F(ζ, σ )dσ

=
∞∑

k=0

∫ ζ+ (2k+1)π
β

ζ+ 2kπ
β

F(ζ, σ ) + F

(

ζ, σ + π

β

)

dσ, (2.17)

where

F(ζ, σ ) + F

(

ζ, σ + π

β

)

= GN (σ − ζ )

(

g̃(σ ) − e− απ
2β g̃

(

σ + π

β

))

.

Recall, for any σ ≥ ζ ∗
1 we have |η̃(σ )| ≤ PN ,ε0 f (σ ), with 1 > PN ,ε0 for any sufficiently

small ε0 > 0. Since φ is decreasing on (0,∞) and f ± η̃ ≥ 0 on [ζ ∗
1 ,∞), one has

φ(( f + η̃)(σ )) − e− απ
2β φ

(

( f + η̃)

(

σ + π

β

))

≤ φ(( f − |η̃|)(σ )) − e− απ
2β φ

(

( f + |η̃|)
(

σ + π

β

))

≤ φ((1 − PN ,ε0) f (σ )) − e− απ
2β φ

(

(1 + PN ,ε0) f

(

σ + π

β

))

≤ φ((1 − PN ,ε0) f (σ )) − e− απ
2β φ

(
(1 + PN ,ε0)e

− 2πm
β f (σ )

)
.

We claim that for any sufficiently small ε0, ε1 > 0 and any sufficiently large m (that is
large p), one has

φ
(
(1 − PN ,ε0)z

) ≤ e− απ
2β φ

(
(1 + PN ,ε0)e

− 2πm
β z

)
− 2(1 + PN ,ε0)

m2

Dp
z2,

for any z ∈ [0, KM/p] . (2.18)

Indeed, it is easy to check that both value and the value of the derivatives of both sides in
(2.18) vanish at z = 0. Thus, it suffices to verify that the second derivative of the right hand
side is larger than the second derivative of the left hand side on the interval [0, KM/p]. It is
equivalent to

p(p − 1)(1 − PN ,ε0)
2 (

1 + (1 − PN ,ε0)z
)p−2

≥ p(p − 1)(1 + PN ,ε0)
2e− π

2β (α+8m)
(
1 + (1 + PN ,ε0)e

− 2πm
β z

)p−2 + 4(1 + PN ,ε0)
m2

Dp
.

However, by (2.7),

PN <
1

2

1 − e− π
2β (α+8m)

1 + e− π
2β (α+8m)

<
1

2
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and by (2.6)

α + 8m

2β
= N + 6√

(N − 2)(10 − N )
+ O(1) ≥ 2

√
2 + O(1) for N ∈ [3, 10),

m

β
= 2√

(N − 2)(10 − N )
+ O(1) ≥ 1

2
+ O(1) for N ∈ [3, 10).

For N = 10, the left hand side diverges to infinity, so the latter estimates are still valid. Thus,
for any sufficiently small ε0 and large p, we have

1 − PN ,ε0 ≥ 1

2
≥ 3

2
e−π+O(1) ≥ (1 + PN ,ε0)e

− 2πm
β

(1 − PN ,ε0)
2 ≥ 1

4
≥ 9

2
e−2

√
2π+O(1) ≥ 2(1 + PN ,ε0)

2e− π
2β (α+8m)

.

So, we obtain, for any small ε0 > 0, and large p

(1 − PN ,ε0)
2 (

1 + (1 − PN ,ε0)z
)p−2

−(1 + PN ,ε0)
2e− π

2β (α+8m)
(
1 + (1 + PN ,ε0)e

− 2πm
β z

)p−2

≥ 1

2
(1 − PN ,ε0)

2 (
1 + (1 − PN ,ε0)z

)p−2 ≥ 1

2
(1 − PN ,ε0)

2.

Since m2 ≈ p, (2.18) follows for any sufficiently large p.
In addition, using that f is decreasing and that |η̃(σ )| ≤ PN ,ε0 f (σ ), we have, for σ ≥ ζ ∗

1 ,

m2e−2mσ

(

(η̃ + f )(σ ) − e− π
β

(2m+α/2)
(η̃ + f )

(

σ + π

β

))

≤ 2(1 + PN ,ε0)m
2e−2mσ f (σ )

= 2(1 + PN ,ε0)
m2

Dp
f 2(σ ).

Therefore, recalling that g̃(ζ ) = φ(η(ζ )) +m2e−2mζ η(ζ ), the previous bound combined
with (2.18) implies

g̃(σ ) − e− απ
2β g̃

(

σ + π

β

)

≤ 0. (2.19)

Since GN ≥ 0 on (ζ + 2kπ
β

, ζ + 2(k+1)π
β

), we obtain that

F(ζ, σ ) + F

(

ζ, σ + π

β

)

≤ 0.

Using (2.17) and (2.16), this established the proof for N ≤ 10.
Next, assume N > 10 andnotice thatGN ≥ 0 in this case.Also, since |η̃(σ )| ≤ PN ,ε0 f (σ )

on [ζ ∗
1 ,∞) and PN ,ε0 < 1 for any sufficiently small ε0, we obtain that η = f + η̃ ≥ 0 on

[ζ ∗
1 ,∞). Since (1 + x)p − 1 − px ≥ p(p − 1)

2
x2 for x ≥ 0, then for any ζ ≥ ζ ∗

1

η̃(ζ ) ≤
∫ ∞

ζ

GN (σ − ζ )
(
m2e−2σ η(σ ) − p(p − 1)

2
η2(σ )

)
dσ.
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168 Page 12 of 20 J.-B. Casteras, J. Földes

Also, since η ≥ 0, we have

m2e−2σ η(σ ) − p(p − 1)

2
η2(σ ) ≤ η(σ )

(

m2 f (σ )

Dp
− p(p − 1)

2
( f (σ ) − |η̃(σ )|)

)

≤ η(σ ) f (σ )

(
m2

Dp
− p(p − 1)

2
(1 − PN ,ε0)

)

≤ 0,

where we used m2

Dp
≈ p in the last inequality. Thus η̃(ζ ) ≤ 0 for each ζ ≥ ζ ∗

1 as desired. ��
Lemma 2.4 For any sufficiently small ε0 > 0, there exists p0 such that, for each p ≥ p0, we

have ζ ∗
1 = ζ̃p, where ζ ∗

1 is defined in (2.12). In particular, |η̃(ζ̃p)| <
f (ζ̃p)
2 .

Proof In Lemma 2.3, we proved that η̃ ≤ 0 on (ζ ∗
1 ,∞). In order to obtain an estimate on

|η̃|, we need a lower bound on η̃.
First, let us assume that N ≤ 10. Since GN (σ − ζ ) ≤ 0 on the interval(

ζ + (2k+1)π
β

, ζ + (2k+2)π
β

)
, (2.19) and (2.17) yield on such interval

F(ζ, σ ) + F

(

ζ, σ + π

β

)

≥ 0.

Consequently, by using that φ is decreasing and η̃ ≤ 0, we obtain, for any ζ ≥ ζ ∗
1 ,

η̃(ζ ) ≥
∫ ζ+ π

β

ζ

GN (σ − ζ )φ(( f + η̃)(σ ))dσ + m2
∫ ∞

ζ

GN (σ − ζ )e−2mσ (η̃ + f )(σ )dσ

≥
∫ ζ+ π

β

ζ

GN (σ − ζ )φ( f (σ ))dσ − m2(1 + PN ,ε0)

∫ ∞

ζ

|GN (σ − ζ )|e−2mσ f (σ )dσ.

(2.20)

Using the explicit forms of GN and f , a direct computation allows us to estimate the second
term

m2(1 + PN ,ε0)

∫ ∞

ζ

|GN (σ − ζ )|e−2mσ f (σ )dσ ≤ (1 + PN ,ε0)m
2 Dp

(4m + α/2)β
e−4mζ .

In order to estimate the first term on the right hand side of (2.20), we use that x �→ φ(x)/x2

is decreasing, and therefore for any y ≥ x > 0,

φ(x)

x2
≥ φ(y)

y2
,

which implies

φ( f (σ )) ≥ φ( f (ζ ))

(
f (σ )

f (ζ )

)2

= φ( f (ζ ))e−4m(σ−ζ ).

Thus, inserting the two previous estimates into (2.20), we obtain for any ζ ≥ ζ ∗
1

η̃(ζ ) ≥ φ( f (ζ ))

β

∫ ζ+ π
β

ζ

e−( α
2 +4m)(σ−ζ ) sin(β(σ − ζ ))dσ

− (1 + PN ,ε0)m
2 Dp

(4m + α/2)β
e−4mζ

= 4φ( f (ζ ))

(α + 8m)2 + 4β2 (1 + e− (α+8m)π
2β ) − (1 + PN ,ε0)m

2 Dp

(4m + α/2)β
e−4mζ .
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Since ζ ∗
1 ≥ ζ̃p , we have f (ζ ) ≤ C/p, for any ζ ≥ ζ ∗

1 . Thus, there exists a constant CN > 0,
not depending on p, such that

(1 + PN ,ε0)m
2 Dp

(4m + α/2)β
e−4mζ ≤ CN p1/2β−1 f 2(ζ ) ≤ CN p−1/2 f (ζ ).

Using again that η̃ ≤ 0 and x �→ φ(x)/x is decreasing and the definition of PN (see (2.8)),
we obtain, for any ζ ≥ ζ̃p and sufficiently large p,

|η̃(ζ )| ≤ 4|φ( f (ζ ))|
((α + 8)2 + 4β2) f (ζ )

(1 + e− (α+8)π
2β ) f (ζ ) + C

p
1
2

f (ζ )

≤
(

PN + C

p
1
2

)

f (ζ ) <
(
1 + ε0

2

)
PN f (ζ ). (2.21)

If ζ ∗
1 > ζ̃p , then, by continuity and (2.21), |η̃(ζ )| ≤ (1 + ε0)PN | f (ζ )| holds for any

ζ̃p ≤ ζ ≤ ζ ∗
1 sufficiently close to ζ ∗

1 , a contradiction to the definition of ζ ∗
1 . Thus ζ ∗

1 = ζ̃p
as desired.

If N > 10, using GN ≥ 0, the monotonicity of φ, and η̃ ≤ 0 as above, we obtain, for any
ζ ≥ ζ ∗

1 ,

η̃(ζ ) ≥
∫ ∞

ζ

GN (σ − ζ )(φ( f (ζ ))e−4m(σ−ζ ) − m2(1 + PN ,ε0)e
−2mσ f (σ ))dσ

≥ φ( f (ζ ))

∫ ∞

ζ

GN (σ − ζ )e−4m(σ−ζ )dσ − 1

2β|α
2 − β + 4m| f

2(ζ ),

Then, one has

η̃(ζ ) ≥ 1

2β(α
2 + 4m − β)

φ( f (ζ )) − O(p−1) f 2(ζ ).

Proceeding as above, we find

|η̃(ζ )| ≤ φ( f (ζ ))

2β(α
2 + 4m − β) f (ζ )

f (ζ ) + C

p
f 2(ζ ) <

(
1 + ε0

2

)
PN f (ζ ).

And the proof is concluded as in the previous case. ��
Remark 2.5 In the Lemma 2.4, we proved that

0 ≥ η̃(ζ ) ≥ −(1 + ε0)PN f (ζ ) for any ζ ≥ ζ̃p

which combined with PN ≤ 1
2 imply

0 ≤ η ≤ f (ζ ) for any ζ ≥ ζ̃p.

In the original variables, we have

Ap,Nr
−θ ≤ U∗

p(r) ≤ Ap,Nr
−θ (1 + Dpr

2) for any r ≤ c̃/
√
p.

The importance of this bound is in the estimate on U∗
p on an explicit interval.

Proposition 2.6 For any fixed i ∈ N, we have

Ri
p → 0, as p → ∞.
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Proof Assume c̃ is as in Lemma 2.1 and denote r̃ p = c̃/
√
p and ζ̃p = −m−1 ln r̃ p . Then,

Remark 2.5 holds on the interval (0, r̃ p]. As above, we denote by CN constants depending
on N but not on p.

First assume N ≤ 10. Observe that (2.11), implies |φ(z)| ≤ CN p2z2 for z ≤ cN /p
and consequently Lemma 2.4 yields |g̃(ζ )| ≤ Cn p2e−4mζ for any ζ ≥ ζ̃p . Then, taking the
derivative of the representation formula (2.4), using that η̃ ≤ 0, asymptotics (2.6), and the
definition of ζ̃p (see (2.9)), we have

η̃′(ζ̃p) = α

2
η̃(ζ̃p) − e(α/2)ζ̃p

∫ ∞

ζ̃p

e−(α/2)σ cos(β(σ − ζ̃p))g̃(σ )dσ

≤ CN p2e(α/2)ζ̃p

∫ ∞

ζ̃p

e−(α/2)σ e−4mσ dσ

≤ CN p3/2e−4mζ̃p ≤ CN√
p
.

(2.22)

The same estimate holds true for N > 10 since
∫ ∞

ζ̃p

e−(α/2)σ cosh(β(σ − ζ̃p)e
−4mσ dσ ≤

∫ ∞

ζ̃p

e−(α/2)σ eβ(σ−ζ̃p)e−4mσ dσ

≤ CN p−1/2e−(α/2)ζ̃p e−4mζ̃p .

Thus, we have, using that U∗
p(r) = Ap,Nr−θ (η̃(ζ ) + 1 + Dpe−2mζ ), (2.6), Lemma 2.4,

(2.22), and the definition of r̃ p

|(U∗
p)

′(r̃ p)| = Ap,N r̃
−θ
p

∣
∣
∣
∣
∣
(−θ)

(
η̃(ζ̃p) + 1

r̃ p
+ Dpr̃p

)

− η̃′(ζ̃p)
mr̃p

+ 2Dpr̃p

∣
∣
∣
∣
∣

≤ CN (r̃ p + (pr̃p)
−1(1 + |η̃(ζ̃p)|) + |η̃′(ζ̃p)|r̃−1

p p−1/2)

≤ CN p−1/2 → 0, as p → ∞.

(2.23)

In addition, Remark 2.5 implies

Ap,N

( p

c̃2

) 1
p−1 ≤ U∗

p(r̃ p) ≤ Ap,N

( p

c̃2

) 1
p−1

(

1 + Dp
c̃2

p

)

,

and consequently U∗
p(r̃ p) → 1 as p → ∞. Also, we have

Ap+1
p,N

( p

c̃2

) p+1
p−1 ≤ (U∗

p(r̃ p))
p+1 ≤ Ap+1

p,N

( p

c̃2

) p+1
p−1

(

1 + Dp
c̃2

p

)p+1

.

Since Ap+1
p,N ≈ (p−1)−

p+1
p−1 ,weobtain that (U∗

p(r̃ p))
p+1 ≈ 1, and therefore (U∗

p(r̃ p))
p+1/(p+

1) ≈ p−1 as p → ∞.
Next, we will prove more precise estimate. Since the function

r �→ E(r) = ((U∗
p)

′(r))2

2
− 1

2
(U∗

p)
2(r) + (U∗

p)
p+1(r)

p + 1

is non-increasing, then by the above estimates, one has, for any r ≥ r̃ p ,

((U∗
p)

′(r̃ p))2 − 1

2
+ μp ≥ E(r̃ p) ≥ E(r) ≥ − (U∗

p)
2(r)

2
,
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where μp → 0 as p → ∞. Hence, from (2.23) follows

1 − (U∗
p)

2(r) ≤ 2μp,

and therefore (1 − (U∗
p)

2(r))+ → 0 as p → ∞, where h+ = max{h, 0} denotes the
positive part of a function h. On the other hand, if there is ε∗ > 0 and r∗

p > r̃ p such that
U∗

p(r
∗
p) ≥ 1 + ε∗, then

E(r∗
p) ≥ −1

2
(U∗

p)
2(r) + (U∗

p)
p+1(r)

p + 1
→ ∞ as p → ∞,

a contradiction to E(r∗
p) ≤ E(r̃ p) ≤ CN .

Overall we proved that |U∗
p(r)−1| → 0, for all r ≥ r̃ p . Recall thatw(r) = r

N−1
2 (U∗

p(r)−
1) (see (2.5)) satisfies

w′′ +
(

(U∗
p)

p −U∗
p

U∗
p − 1

− (N − 1)(N − 3)

r2

)

w = 0.

Fix a > 0 and denote Ia := [ a
4 , a

]
. Choose any r ∈ Ia . Since |U∗

p(r) − 1| → 0 locally
uniformly, we have

(U∗
p(r))

p −U∗
p(r)

U∗
p(r) − 1

≥ p/2, on Ia .

Fix a large A > 0 depending on a as specified below. Then, for sufficiently large p > 2∗ − 1
depending on a and A, one has

(U∗
p(r))

p −U∗
p(r)

U∗
p(r) − 1

− (N − 1)(N − 3)

4r2
≥ A − CN ,a for any r ∈ Ia :=

[a

4
, a

]
.

Thus, given a > 0 and an integer i > 0, we choose A large enough such that a solution of the
equation z′′ + (A − CN ,a)z = 0 has at least i + 2 zeros on Ia . By Sturm-Picone oscillation
theorem, the function w has at least i + 1 zeros on Ia . Consequently, U∗

p(r) = 1 has at least
i + 1 solutions on Ia , and therefore U∗

p has at least i critical points on Ia . In a different

notation, for any j ∈ {1, . . . , i} and any a > 0, one has R j
p < a, for any sufficiently large

p > 2∗ − 1. ��

Remark 2.7 By (2.23), we have

∣
∣
∣(U∗

p)
′(r) + θ Ap,Nr

−1−θ
∣
∣
∣ ≤

∣
∣
∣
∣Ap,Nr

−θ

(

(−θ)

(
η̃(ζ )

r
+ Dpr

)

− η̃′(ζ )

mr
+ 2Dpr

)∣
∣
∣
∣ .

By Remark 2.5 and (2.22), one has |η(ζ )| ≤ f (ζ ) ≤ CNr2 and |η′(ζ )| ≤ CN
√
pr2 for any

r ≤ c̃√
p . Thus,

∣
∣
∣(U∗

p)
′(r) + θ Ap,Nr

−1−θ
∣
∣
∣ ≤ CNr

1−θ , for any r ≤ c̃√
p
.

Proposition 2.8 For any i ∈ N, the function p → Ri
p is continuous.
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Proof Let p∗ > 2∗ − 1. Fix any open interval I0 = (A, B) such that 0 < A < B < ∞ and
without loss of generality assume that A < c̃/(2p). Then, by Remark 2.5, there is δ > 0
such that, for any p ∈ (p∗ − δ, p∗ + δ), one has

|U∗
p(A)| ≤ CN .

If r ≤ R1
p , since U

∗
p is decreasing and positive (see [23, Theorem A.3]) on (0, R1

p), we have
|U∗

p(r)| ≤ CN , for any r ∈ (A, R1
p). If r > R1

p , we use the fact that the functional

E(r) = ((U∗
p)

′(r))2

2
− (U∗

p(r))
2

2
+ (U∗

p(r))
p+1

p + 1
,

is decreasing. Since U∗
p(R

1
p) ≤ 1 by [23, Lemma 4.8], this implies for any r ≥ R1

p that

(U∗
p(r))

p+1

p + 1
− (U∗

p(r))
2

2
≤ (U∗

p(R
1
p))

p+1

p + 1
≤ 1

p + 1
.

Thus, also in this case, we have |U∗
p | ≤ CN on (A, B). Overall, we showed that

sup
p∈(p∗−δ,p∗+δ)

sup
(A,B)

U∗
p ≤ C(A).

Then, elliptic regularity theory implies that, for any q > 1,

‖U∗
p‖W 3,q (I0) ≤ C(N , q, A, B − A, p∗, δ), for any p ∈ (p∗ − δ, p∗ + δ). (2.24)

Let α0 ∈ (0, 1). We choose q0 > 0 large enough such that W 3,q0(I0) ↪→ C2+α0(I0). Let
(pn) be a sequence such that pn → p∗ when n → ∞. Thanks to (2.24), using Arzela–Ascoli
Theorem, there exists a subsequence (pn) such that U∗

pn → w, as n → ∞, in C2(I0). From
the uniform bound (2.24) follows

|(U∗
pn )

pn (s) − w p∗
(s)| ≤ |(U∗

pn )
pn (s) − (U∗

pn )
p∗

(s)| + |(U∗
pn )

p∗
(s) − w p∗

(s)|,
we deduce that w satisfies the equation

−�w + w = w p∗
, in I0.

Since I0 is an arbitrary compact interval, proceeding as above and using standard diagonal
arguments, we obtain the existence of a subsequence (pn)n , pn ∈ (p∗ − δ, p∗ + δ), for all
n ∈ N, such that U∗

pn → w, as n → ∞, in C2
loc((0,∞)), for some function w satisfying

−�w + w = w p∗
in (0,∞).

Next, we claim that w is in fact equal to U∗
p∗ . Using the uniqueness of solution to (1.6) (see

Theorem 1.3), it is sufficient to show that

lim
r→0+ r

θp∗ w(r) = Ap∗,N , (2.25)

where θp∗ = 2

p − 1
. However if p > 2, by Remark 2.5 for any ε > 0, there is r0(ε)

independent of p ∈ (p∗ − δ, p∗ + δ) such that

Ap,Nr
−θp ≤ U∗

p(r) ≤ Ap,Nr
−θp + ε, for all r ∈ (0, r0(ε)).
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Clearly Apn ,N → Ap∗,N , θpn → θp∗ , when n → ∞ and using that U∗
pn → w in

C2
loc((0, r0(ε))), we obtain

Ap∗,Nr
−θp∗ ≤ w(r) ≤ Ap∗,Nr

−θp∗ + ε, for all r ∈ (0, r0(ε)).

Since ε > 0 is arbitrary, we conclude that (2.25) holds, and thereforew = U∗
p∗ by uniqueness.

Hence,
U∗

p → U∗
p∗ , as p → p∗, in C2

loc((0,∞)). (2.26)

Finally, we prove the continuity of the function p → Ri
p . In the following, we assume that

Ri
p∗ is a local minimum of U∗

p∗ , the case of local maximum follows analogously. Note that

U∗
p∗(Ri

p∗) �= 1, otherwise U∗ ≡ 1, and we have a contradiction to the uniqueness of the
initial value problem. Thus, for any sufficiently small ε̄ > 0, we obtain

U∗
p∗(Ri

p∗ − ε̄) > U∗
p∗(Ri

p∗) and U∗
p∗(Ri

p∗ + ε̄) > U∗
p∗(Ri

p∗).

Then (2.26) yields that, for p sufficiently close to p∗, there exists a local minimizer qp of
U∗

p in (Ri
p∗ − ε̄, Ri

p∗ + ε̄). Since ε̄ > 0 was arbitrary, for each p close to p∗, there is a local
minimizer qp of (U∗

p)
′(qp) = 0 such that

lim
p→p∗ qp = Ri

p∗ .

On the other hand, if there exists a sequence (pn)n∈N such that pn → p∗ and (qpn )n∈N
converges to R∗, then by (2.26), one has (U∗

p∗)′(R∗) = 0. Equivalently R∗ = R j
p∗ for some

j . Thus, we proved that the critical points of U∗
p concentrate around critical points of U∗

p∗
and in arbitrary small neighborhood of Ri

p∗ there is a critical point of U∗
p .

To finish the proof, we show that in a small neighborhood of R j
p∗ , there exists at most one

critical point of U∗
p . For a contradiction, assume that there exists a sequence (pn)n∈N such

that pn → p∗ and both sequences (qpn )n∈N, (q ′
pn )n∈N converge to q∗. Then by the mean

value theorem, there exists spn between qpn and q
′
pn such that (U∗

p∗)′′(spn ) = 0. By passing
to the limit, one has (U∗

p∗)′(q∗) = (U∗
p∗)′′(q∗) = 0, a contradiction to the fact that every

critical point is either strict minimizer or strict maximizer (otherwise by the uniqueness of
solutions to initial value problems, U∗

p∗ is constant).

Overall, we proved that in each neighborhood of Ri
p∗ , there exists exactly one critical

point of U∗
λ and the proof is finished. ��

We are now in position to prove Theorem 1.4.

Proof of Theorem 1.4. By assumptions, we know that, for any i ≥ ĩ , Ri
p̃ > R. On the other

hand, by Proposition 2.6, for any i ∈ N, lim p→∞ Ri
p < R. Since the function p → Rp

i , for

any i ∈ N, is continuous by Proposition 2.8, we deduce that there exists pi > p̃ such that
Ri
pi

= R. This concludes the proof. ��

3 Proof of Proposition 1.6

First, we show thatU∗
pi
has a finite (resp. infinite) Morse index provided that pi > pJ L (resp.

2∗ − 1 < pi < pJ L ), i.e. we prove Proposition 1.6.
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Proof of Proposition 1.6. Fix p := pi > pJ L . Then, for sufficiently small ε0 > 0, one has

pθ(N − 2 − θ) < (1 − ε0)
(N − 2)2

4
.

Due to boundary conditions in (1.6), there exists r0 ∈ (0, 1) such that, for any r ∈ (0, r0),

p(U∗
p)

p−1(r) − 1 ≤ p(U∗
p)

p−1(r) ≤ pθ(N − 2 − θ)

r2
(1 + ε0) ≤ (N − 2)2

4r2
(1 − ε20).

Let χ0 ∈ C1(RN ) be a cut-off function such that χ0(r) =
{
1, if r ∈ (0, r0/2)

0, if r > r0
, and let

χ1 = 1 − χ0. We take φ ∈ H1
rad(BR(0)) such that φ′(R) = 0. Then we have, thanks to the

Hardy inequality,

J (φ) =
∫

BR(0)
(|∇φ|2 − (p(U∗

p)
p−1(r) − 1)φ2dx

=
∫

BR(0)
(|∇φ|2 − (χ0 + χ1)(p(U

∗
p)

p−1(r) − 1)φ2dx

≥
∫

BR(0)
((1 − ε20)|∇φ|2 − χ0

(N − 2)2

4r2
(1 − ε20)φ

2dx

+
∫

BR(0)
(ε20 |∇φ|2 − χ1(p(U

∗
p)

p−1(r) − 1)φ2dx

≥
∫

BR(0)
(ε20 |∇φ|2 − χ1(p(U

∗
p)

p−1(r) − 1)φ2dx .

Since |pU∗
p)

p−1(r)−1| ≤ C , for r ∈ (r0/2, R), and the operator−ε20�−χ1(p(U∗
p)

p−1(r)−
1) with Neumann boundary condition has a finite number of negative eigenvalues, we con-
clude that m(U∗

p) < ∞.
Next assume that 2∗ − 1 < p < pJ L . As above, using boundary condition in (1.6), one

has that, for some small ε0 > 0, there exists r0 such that, for all r ∈ (0, r0),

p(U∗
p)

p−1(r) − 1 ≥
(

(N − 2)2

4
+ ε20

)
1

r2
. (3.1)

Next, we define f j (r) = f (r)χ̃ j (r), where

χ̃ j (r) =
{
1, if r ∈ [r j+1, r j ],
0, elsewhere,

r j = e−2π j/ε0

and f (r) = r−(N−2)/2 sin(ε0 log r/2). Notice that f j and fk have disjoint supports for j �= k,
and therefore they are linearly independent. Moreover, f j is a solution of

− f ′′
j − N − 1

r
f ′
j −

(
(N − 2)2

4
+ ε20

4

)
1

r2
f j = 0, r ∈ (r j+1, r j ).
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Since f j (r j ) = f j (r j+1) = 0 we have that f j ∈ W 1,2((0,∞)) and by (3.1)

J ( f j ) ≥
∫ r j

r j+1

(

| f ′
j |2 −

(
(N − 2)2

4
+ ε20

)
1

r2
f 2j

)

r N−1dr = −3

4
ε20

∫ r j

r j+1

1

r2
f 2j dx < 0.

Thus the Morse index of U∗
p is infinite. ��
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